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A B S T R A C T

Accurate and efficient power flow (PF) analysis is crucial in modern electrical networks’ operation and
planning. Therefore, there is a need for scalable algorithms that can provide accurate and fast solutions
for both small and large scale power networks. As the power network can be interpreted as a graph,
Graph Neural Networks (GNNs) have emerged as a promising approach for improving the accuracy and
speed of PF approximations by exploiting information sharing via the underlying graph structure. In this
study, we introduce PowerFlowNet, a novel GNN architecture for PF approximation that showcases similar
performance with the traditional Newton–Raphson method but achieves it 4 times faster in the IEEE 14-bus
system and 48 times faster in the realistic case of the French high voltage network (6470rte). Meanwhile, it
significantly outperforms other traditional approximation methods, such as the DC power flow, in terms of
performance and execution time; therefore, making PowerFlowNet a highly promising solution for real-world
PF analysis. Furthermore, we verify the efficacy of our approach by conducting an in-depth experimental
evaluation, thoroughly examining the performance, scalability, interpretability, and architectural dependability
of PowerFlowNet. The evaluation provides insights into the behavior and potential applications of GNNs in
power system analysis.
1. Introduction

The complexity of electrical power systems is continuously rising,
largely attributed to the substantial integration of decentralized renew-
able energy resources. Within this context, power flow (PF) stands as
a fundamental challenge in ensuring the stability of power systems,
playing a pivotal role in both the operational management and long-
term planning of electrical networks. At its core, PF is a mathematical
problem that revolves around determining the voltages at various
buses, a task accomplished by solving a set of nonlinear equations,
which are inherently linked to the network configuration, load distri-
bution, and generation characteristics [1]. Traditional methods, such
as Newton–Raphson [2], the Gauss–Seidel [3], and the fast-decoupled
methods, have excellent accuracy and convergence properties but scale
slowly with larger power systems, particularly in long-term planning of
national grids with thousands of buses [4]. In contrast, the DC power
flow (DCPF) technique [5] simplifies this problem into a linear one
by making assumptions about the voltage magnitude, but at the cost
of accuracy. Consequently, there is a need for innovative algorithms
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capable of efficiently solving the PF for significantly larger networks.
These novel algorithms should aim to balance the need for speed
without compromising accuracy, ultimately facilitating the streamlined
operation and planning of large real-world electrical grids.

Modernizing the grids with the addition of accurate smart metering
and data acquisition systems has enabled the development of Machine
Learning (ML) methods for accurate and efficient power system analy-
sis [6]. ML PF methods use historical operation data gathered from the
metering infrastructure and try to approximate the power system state
based on them. In [7], the authors effectively transformed the nonlinear
PF relationship into a linear mapping within a higher-dimensional
state space, resulting in a substantial improvement in the precision
of the calculation process. Similarly, Chen et al. [8] mitigate the
errors of model-based PF linearization approaches by approximating
the nonlinear PF equations in a data-driven manner. In [9], the data-
driven PF method comprises two distinct stages: offline learning and
online computing. During the offline learning stage, a learning model
is developed utilizing the proposed exact linear regression equations,
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Table 1
ML-based methods for state estimation and PF.

Study Problem Neural network architecture Max. Experiment scale (Buses)

[12] Grid topology and PF MLP + Bilinear NN 2383
[13] Probabilistic PF MLP 661
[14] Grid topology and PF Deep shallow NN 123
[15] State estimation Gauss–Newton unrolled NN + GNN 118
[16] State estimation GCN + GRN 123
[17] State estimation Hyper-Heterogeneous multi graph GNN 179
[18] PF Iterative GNN-based 118
Ours PF Mask encoder + GCN + Message passing 6470
which is subsequently solved by applying the ridge regression method
to mitigate the impact of data collinearity. Subsequently, the need for
nonlinear iterative calculations is obviated in the online computing
stage, thereby streamlining the computation process. Furthermore, Liu
et al. [10] reformulated PF into a regression model, leveraging the
structural attributes of AC power flow equations, including Jacobian
matrix-guided constraints, to substantially reduce the search space.
Overall, all these simple ML methods have outperformed the DCPF
method [11]; however, the scalability issues still do not allow for the
application of these methods in large power systems.

Numerous deep learning techniques have been developed, promis-
ing to find more scalable solutions. Many studies emphasize the use of
physics-informed methodologies that leverage the inherent character-
istics of the problem, as demonstrated in Table 1. For example, Hu
et al. [12] incorporate an auxiliary task for PF model reconstruction,
wherein the neural network (NN) based PF solver is effectively regular-
ized by encoding varying levels of Kirchhoff’s laws and system topology
into the reconstructed PF model, consequently ensuring adherence to
physical laws and constraints. In [13], the training process of the NN
is enhanced through the physical PF equations, such as incorporating
branch flows as a penalty term in the NN’s objective function and
simplifying the backpropagation update gradients based on the trans-
mission grid’s physical characteristics. Similarly, Li et al. [14] use NNs
to estimate the distribution system state equations by creating virtual
nodes to represent buses without any smart metering. An alternative
approach is to enhance a classical solver (Gauss–Newton) by training an
NN to serve as a regularizer [15]. However, it is important to note that
classic deep learning approaches do not exploit information sharing via
the underlying graph structure of power system, leading to limited gen-
eralization capabilities and efficiency in real-world large-size network
scenarios.

GNNs [19] have garnered significant attention in recent years due
to their capacity to leverage graph-structured data by aggregating
information from neighboring nodes. In practice, GNNs are efficient
because the same parameters can be used for every node. Consequently,
researchers have explored diverse GNN architectures to tackle the
PF problem because the topology of a power system can be nat-
urally interpreted as a graph. In particular, GNNs have been suc-
cessful in various tasks related to power systems [20], such as fault
detection, time-series prediction, power flow calculation, and data
generation. Wu et al. [16] used the power flow equations to derive
a novel representation of the power system topology, which can be
utilized in GNNs to improve performance in power grid state fore-
casting and voltage control through reinforcement learning. In [17],
a weakly supervised learning approach is employed based on the PF
equations that do not require labeled data, however, at the cost of accu-
racy compared to fully supervised methods. Meanwhile, [18] improves
upon an iterative-based GNN approach by employing a purely physics-
constrained model loss.1 Despite the proliferation of various studies
n this domain, little attention has been directed toward investigating
he effectiveness of proposed methodologies for large power networks.

1 In this paper, we distinguish the model loss for training a neural network
nd the line loss of the power system.
2

Consequently, a comprehensive evaluation and comparison of tradi-
tional and GNN-based approaches concerning accuracy, computational
complexity, scalability, and interpretability are imperative to discern
the most promising techniques for PF analysis.

To address the scalability and other aforementioned real-world
application concerns, we propose PowerFlowNet. PowerFlowNet is a
novel GNN architecture specifically designed to leverage electrical
power networks’ structural characteristics and interconnectedness, en-
abling efficient approximation of the PF. In practice, PowerFlowNet
transforms the PF into a GNN node-regression problem by representing
each bus as a node and each transmission line as an edge while
maintaining the network’s connectivity. The key advantage of Power-
FlowNet lies in its significantly lower execution time, regardless of the
network size; thus, enabling it to be applied for realistic power grid
planning and operation processes. Specifically, our thorough experi-
mental evaluation demonstrates PowerFlowNet’s accuracy and execu-
tion speed compared to traditional methods, such as DCPF, while its
performance is similar to the most trusted Newton–Raphson method
but with significantly lower execution time. During planning and op-
eration with distributed energy resources, thousands of PF calculations
are needed because of the number of possible scenarios. In such cases,
accuracy and low execution time are indispensable. Additionally, an
in-depth analysis of the proposed approach’s scalability, architectural
dependability, and interpretability is conducted, aiming to provide
valuable insights into the broader applicability of GNN algorithms in
the power system domain.

In detail, the key contribution of this paper is summarized as
follows:

• We introduce a novel GNN architecture for PF approximation
with significantly lower executing time (during operation) and
comparable results compared to the Newton–Raphson method.
Its distinctiveness, compared to existing PF GNN approaches, lies
in its adept utilization of the capabilities from message passing
GNNs [21] and high-order GCN [22], in a unique arrangement
called PowerFlowConv, for handling a trainable masked embed-
ding of the network graph. This innovative approach renders
the proposed GNN architecture scalable, presenting an effective
solution for the PF problem for larger-size networks.

• PowerFlowNet demonstrates the ability to deliver accurate PF
approximations for individual buses, using data only from neigh-
boring buses up to four steps away, even in scenarios where not
all buses within the system are observed.

The subsequent sections are structured as follows: Section 2 pro-
vides a brief review of GNNs, while in Section 3, a comprehensive
exposition of PowerFlowNet and of our interpretation of PF as a GNN
problem is presented. Lastly, an extensive evaluation of the proposed
algorithm followed by an insightful discussion is presented in Section 4.

2. GNNs and classic PF algorithms

This section provides an overview of the fundamental background
of GNNs and the methodologies they employ. Furthermore, it delves
into the traditional techniques used in PF analysis, including the DCPF

method.
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Fig. 1. A message passing step of node 𝑖 consisting of message creation, aggregation,
and update of the hidden state.

2.1. Graph neural networks

GNNs are a class of ML models designed to operate on graph-
structured data, which can represent complex relationships and inter-
actions between entities [23]. GNNs have gained significant attention
due to their ability to capture and leverage the structural information
inherent in graphs. In detail, a graph ( , ) can be defined as a set of
 nodes and  edges with node features2 𝒙𝑖 ∈ R𝐹 and edge features
𝒙𝑒𝑖,𝑗 ∈ R𝐹𝑒 , where 𝑖 ∈  and the pair (𝑖, 𝑗) ∈  . Additionally, GNNs can
use regular, fully connected layers to help them understand and work
with the structure of these graphs.

2.1.1. Message passing NNs
At the heart of GNNs lies the concept of message passing [21].

Message passing allows information to propagate through the graph
by iteratively aggregating and updating node features based on their
neighborhood relationships. In each message passing step, each node
receives information from its neighbors, performs local computations,
and then transmits updated information to its neighbors (Fig. 1). Specif-
ically, the message passing phase can run iteratively for 𝑇 steps. The
nodes features in the intermediate layers are often called hidden states.
For every node 𝑖, its hidden state 𝒉𝑡𝑖 is updated based on the message
function 𝑀𝑡(⋅) and the node update function 𝑈𝑡(⋅). Therefore, for node
𝑖 with neighbors  (𝑖), each iterative message update 𝒗𝑡+1𝑖 is

𝒗𝑡+1𝑖 =
∑

𝑗∈ (𝑖)
𝑀𝑡(𝒉𝑡𝑖,𝒉

𝑡
𝑗 ,𝒙

𝑒
𝑖,𝑗 ), (1)

𝒉𝑡+1𝑖 = 𝑈𝑡(𝒉𝑡𝑖, 𝒗
𝑡+1
𝑖 ). (2)

As shown in (1), the edge features 𝒙𝑒𝑖,𝑗 can also be included in the
message creation step. After the message passing phase ends, the final
feature vector for the whole graph is denoted as the output of a function
𝑅(⋅)

𝒚̂() = 𝑅({𝒉𝖳𝑖 |𝑖 ∈ }). (3)

Notice that the functions 𝑀𝑡(⋅), 𝑈𝑡(⋅), and 𝑅(⋅) are designed by the user
and should be fully differentiable so that they can be trained and used
by graph ML tasks. Overall, message passing enables all nodes to gather
and integrate information from their local context, incorporating both
the features of neighboring nodes and the graph structure.

2.1.2. Graph convolutional networks
One other popular type of GNN is the GCNs [19], which introduces

convolution operations on graphs. Similar to convolution neural net-
works (CNNs) for regular grid-like data, GCNs apply filters to node
features and aggregate information from neighboring nodes. By lever-
aging the local connectivity of the graph, GCNs can capture both

2 For disambiguation, we always represent the node and edge features with
etter 𝑥 and the line impedance with letter 𝑧.
3

node-level patterns and the information of the 𝐾-hop neighbors. In
particular, a graph convolutional layer of order 𝐾 is defined as

𝒚̂(𝑆,𝑋) = 𝜎

(𝐾−1
∑

𝑘=0
𝑆𝑘𝑋𝑊

)

. (4)

Here, a GCN layer is a function of the graph shift operator 𝑆 ∈
R𝑁×𝑁 , node features 𝑋 ∈ R𝑁×𝐹 , and trainable weight matrix 𝑊 ∈
R𝐹×𝐹 . Matrix 𝑆 can be the adjacency matrix 𝐴, or a more complex
epresentation such as the Laplacian transformation 𝐿. Moreover, 𝜎

represents a non-linear function, such as rectified linear units (ReLU),
which is employed to enable the approximation of every target non-
linear function. The hyper-parameter 𝐾 holds significance as it dictates
the 𝐾-hop3 neighboring nodes are taken into account during each
convolution. Consequently, a larger value of 𝐾 entails the inclusion of
more nodes.

2.1.3. Topology adaptive GCN
Many variants of the GCN layer have been proposed with one of

them being the topology adaptive graph convolution operator (TAG-
Conv) [22]. TAGConv addresses a limitation of traditional GCN by
adaptively learning the importance of different neighboring nodes dur-
ing message passing. TAGConv assigns weights to the neighbors based
on their relevance to the target node. Specifically, a TAGConv layer of
order 𝐾 is defined as

𝒚̂(𝑆,𝑋) = 𝜎

(𝐾−1
∑

𝑘=0
𝑆𝑘𝑋𝑊𝑘

)

. (5)

Here, the trainable weight matrix 𝑊𝑘 ∈ R𝐹×𝐹 is different for every
𝑘. This adaptivity enables TAGConv to effectively capture the local
structure and important dependencies in the graph.

2.2. Classic power flow analysis methods

The PF problem is mathematically formulated as solving a set of
non-linear equations. A power system has a set of buses (nodes)  and
a set of transmission lines (undirected edges)  ⊆  × . For each node
𝑖 ∈  , the PF equations are derived from Kirchhoff’s current law and
are expressed in complex form as

𝑃 L
𝑖 − 𝑃G + j(𝑄L

𝑖 −𝑄G) =
∑

𝑗∈ (𝑖)
𝑉̇𝑖

(

𝑉̇𝑗 − 𝑉̇𝑖
𝑧𝑖,𝑗

)∗

(6)

where j is the imaginary unit, italic 𝑖, 𝑗 refer to bus 𝑖 and 𝑗, 𝑃𝑖 and
𝑄𝑖 are the active and reactive power drawn from bus 𝑖 to the ground,
𝑉̇𝑖 = 𝑉 m

𝑖 ∠𝜃𝑖 and 𝑉̇𝑗 = 𝑉 m
𝑗 ∠𝜃𝑗 are the voltage phasors at bus 𝑖 and 𝑗,

𝑧𝑖,𝑗 is the impedance of line (𝑖, 𝑗) ∈  . At each node 𝑖, two of 𝑃𝑖, 𝑄𝑖,
𝑉 m
𝑖 , 𝜃𝑖 are unknown. For a system with |

|

 |

|

= 𝑁 nodes, there are 2𝑁
real-valued equations and 2𝑁 unknown real-valued variables.

2.2.1. DC power flow approximation
DCPF is an approximation of the ACPF. In DCPF, the voltage is

assumed constant at all buses; therefore, the voltage and reactive
power differences are 0, so the 𝛥𝑉 𝑚 and 𝛥𝑄 terms are neglected [5].
Subsequently, the PF equations can be further simplified to a linear
problem that does not require an iterative solution. In detail, the
relation between the active power (𝑃𝑖) and the voltage angle (𝜃𝑖) of
ach bus is

𝑖 = ℜ
⎡

⎢

⎢

⎣

∑

𝑗∈ (𝑖)
𝑉̇𝑖

(

𝑉̇𝑗 − 𝑉̇𝑖
𝑧𝑖,𝑗

)∗
⎤

⎥

⎥

⎦

≈
∑

𝑗∈ (𝑖)

𝜃𝑗 − 𝜃𝑖
ℑ[𝑧𝑖,𝑗 ]

. (7)

3 Nodes with distance 𝐾 from the original node.
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Fig. 2. Interpreting the PF problem of the IEEE 9-case into a GNN node regression problem. In detail, Fig. 2(a) shows the standard IEEE 9-case, and Fig. 2(b) illustrates how
each bus is transformed into a load, generator, or reference node while keeping the same line connectivity. Each node has different known and unknown features 𝒙 = (𝑉 𝑚 , 𝜃, 𝑃 ,𝑄)
depending on its type. The ultimate goal of this GNN problem is to approximate all the features for all nodes, thus solving the PF problem.
3. PowerFlowNet framework

This section presents a thorough explanation of PowerFlowNet,
accompanied by our interpretation of PF formulation in the domain of
GNN algorithms.

3.1. Interpreting power flow as a GNN problem

The primary objective of a PF study is to determine the voltage
magnitudes and angles for a given load, generation, and network state,
facilitating subsequent calculations of line flows and power losses. This
problem lends itself seamlessly to a GNN approach, as the electrical
network topology can be represented as an undirected graph ( , ),
where the set of nodes  corresponds to all the buses and the set of
edges  represents power lines. The node features, denoted as 𝑋 ∈
R𝑁×𝐹 , encompass various attributes for each bus, including voltage
magnitude (𝑉 m

𝑖 ), voltage angle (𝜃𝑖), active power (𝑃𝑖), and reactive
power (𝑄𝑖). Similarly, the edge features, denoted as 𝑋𝑒 ∈ R𝐸×𝐹𝑒 ,
encompass the resistance (ℜ[𝑧𝑖,𝑗 ]) and reactance (ℑ[𝑧𝑖,𝑗 ]) attributes for
each line (𝑖, 𝑗) ∈  , where ℜ[⋅] and ℑ[⋅] are the real and imaginary part
of a complex variable, respectively.

Illustrated in Fig. 2, the transformation of a transmission network
into a graph representation involves mapping the buses to nodes while
preserving the interconnectedness of the lines. The nodes are catego-
rized into three types: (a) load (PQ) nodes where the 𝑃𝑖 and 𝑄𝑖 are
known, (b) generator (PV) nodes where 𝑉 m

𝑖 and 𝑃𝑖 are known, and (c)
a single reference node where both 𝑉 m

𝑖 and 𝜃𝑖 are known. The edge
features 𝑋𝑒 are assumed to be given. The objective of this task is to
predict the missing node features for every node 𝑖 ∈  , e.g., for a PQ
node, we need to predict the 𝑉 𝑚 and 𝜃𝑚, thereby rendering this problem
as a node regression task.

3.2. PowerFlowNet architecture

PowerFlowNet is a GNN approach that reconstructs every node’s
full feature vector 𝒙̂𝑖 = (𝑉 m

𝑖 , 𝜃𝑖, 𝑃𝑖, 𝑄𝑖) given partial information of
the problem, such as the adjacency matrix of the graph 𝐴, the known
node features 𝑋 = [𝒙1,… ,𝒙𝑁 ]𝖳, where the unknown features are filled
with 0, and the edge features 𝑋𝑒 = [𝒙𝑒𝑖,𝑗 ]𝖳 for each line (𝑖, 𝑗) ∈  .
Our proposed model consists of a mask encoder and a stack of our
novel Power Flow Convolutional layers (PowerFlowConv). Initially, the
mask encoding layers shift the input features to distinguish known
and unknown features using a feature mask. Then, as illustrated in
Fig. 3, the encoded graph features are fed to the stack of Power
Flow Convolutional operations consisting of a unique arrangement of
message passing and TAGConv layers. This way, information from
every node and edge is aggregated so that complete feature matrix 𝑋̂ =
[𝒙̂1,… , 𝒙̂𝑁 ]𝖳 is predicted. A detailed explanation of PowerFlowNet’s
components and procedures is presented next.
4

3.2.1. Mask encoder
In the PF problem, each node has different known and unknown

features. The goal is to predict the unknown features while keeping the
known ones unchanged. This means that our NN should know which
features must be predicted. Consequently, for every input node with
feature vector 𝒙𝑖 we create a binary mask 𝒎𝑖 ∈ R𝐹 where 0 represents
the known and 1 the unknown features. For example, the mask of a
load (PQ) node with a feature vector 𝒙𝑖 = (𝑉 𝑚

𝑖 , 𝜃𝑖, 𝑃𝑖, 𝑄𝑖) and unknown
values 𝑉 𝑚 and 𝜃, will be 𝒎𝑖 = (1, 1, 0, 0). Additionally, we propose
using a mask encoder that learns to represent different types of nodes
(See Mask Encoder block in Fig. 3). In practice, it consists of two fully
connected layers that map a binary mask to a continuous-valued vector.
Notably, a fixed (not learned) mask embedding can also be used, but
our mask encoder can learn a more flexible mask representation that
improves the final performance. The exact mathematical operation for
every 𝑚𝑖 ∈ 𝑀 , where 𝑀 ∈ R𝑁×𝐹 , is

𝒎̂𝑖 = 𝑊1𝜎(𝑊0𝒎𝑖 + 𝑏0) + 𝑏1, ∀𝑖 ∈  , (8)

which is a function 𝒎𝑖 ∈ {0, 1}𝐹 → 𝒎̂𝑖 ∈ R𝐹 , and the weight matrices
𝑊0,𝑊1 and the biases 𝑏0, 𝑏1 are the trainable parameters. Finally, to
produce the encoded graph features 𝑋𝑙, we shift the input node features
𝑋 with the learned representation 𝒎̂𝑖 as

𝒙0𝑖 = 𝒙𝑖 + 𝒎̂𝑖, ∀𝑖 ∈  . (9)

3.2.2. Power flow convolutional layer
The second part of our proposed architecture consists of 𝐿 con-

nected PowerFlowConv layers that sequentially process the encoded
graph features and predict the final feature matrix 𝑋̂𝐿, where 𝑋̂𝐿 =
[𝒙̂𝐿1 ,… , 𝒙̂𝐿𝑁 ]𝖳 and 𝒙̂𝐿𝑖 = (𝑉 m

𝑖 , 𝜃𝑖, 𝑃𝑖, 𝑄𝑖), ∀𝑖 ∈  . Each PowerFlowConv
layer consists of an initial one-hop message passing step and a 𝐾-hop
TAGConv (See 2.1.3), which learns to automatically extract information
from the edge features 𝒙𝑒𝑖𝑗 , i.e., the line resistance and reactance, and
incorporates it in the neighboring node features 𝒙𝑙𝑖. Message passing
exploits information from the edge features, and TAGConv aggregates
node features in a large neighborhood. However, in the PF formulation,
both line characteristics and node states play an important role. There-
fore, by a combination of both techniques the proposed architecture
can provide high-quality PF approximations.

More specifically, we calculate the message passed to node ∀𝑖 ∈ 
as

𝒙̂𝑙𝑖 = 𝑊 𝑙
𝑀𝑃 1

⋅ 𝜎
⎛

⎜

⎜

⎝

𝑊 𝑙
𝑀𝑃 0

∑

𝑗∈ (𝑖)
⟨𝒙𝑙𝑖 ,𝒙

𝑙
𝑗 ,𝒙

𝑒
𝑖,𝑗⟩ + 𝑏𝑙𝑀𝑃 0

⎞

⎟

⎟

⎠

+ 𝑏𝑙𝑀𝑃 1
, (10)

where ⟨𝑥𝑙𝑖 , 𝑥
𝑙
𝑗 , 𝑥

𝑒
𝑖,𝑗⟩ is a concatenated vector of the described vectors fed

to a two-layer Multilayer Perceptron (MLP) with an in-between ReLU

activation function. Here again, the weight matrices and bias vectors
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Fig. 3. The PowerFlowNet model architecture consists of a mask encoder and 𝐿 PowerFlowConv layers. The input graph with incomplete feature information is fed node-by-node
to the mask encoder to generate encoded graph features, where each node 𝑛 ∈  with (𝒙𝑖 ,𝒎𝑖). Then, the encoded graph features are processed by a series of 𝐿 sequential
PowerFlowConv layers, each comprising a 1-step message passing and a high-order TAGConv. Finally, the complete output graph is produced.
𝑊 𝑙
𝑀𝑃 1

, 𝑏𝑙𝑀𝑃 1
,𝑊 𝑙

𝑀𝑃 0
, 𝑏𝑙𝑀𝑃 0

are the trainable parameters of the MLP of
layer 𝑙.

Afterward, we update the graph features 𝑋𝑙 by summing it up with
the message 𝑋̂𝑙, i.e., 𝑋̂𝑙 ← 𝑋𝑙 + 𝑋̂𝑙. Then, the signals 𝑋̂𝑙 are processed
by the TAGConv layer to generate the new encoded graph features 𝑋𝑙+1

as in

𝑋𝑙+1 = 𝜎

(𝐾−1
∑

𝑘=0
(𝐷− 1

2 𝐴𝐷− 1
2 )𝑘𝑋̂𝑙𝑊 𝑙

𝑘

)

. (11)

In (𝐷−1∕2𝐴𝐷−1∕2), the adjacency matrix 𝐴 of the graph is normalized
by the diagonal degree matrix 𝐷. As shown in [22], the normalized
adjacency matrix is often used in GNNs to provide computational
stability guarantees. Then, the encoded graph features generated by
the 𝑙th PowerFlowConv layer are passed to the next layer until 𝑙 = 𝐿.
Finally, the message passing step is used in the last layer while the
TAGConv step is discarded, as depicted in Fig. 3.

In general, GNNs are suitable for fast PF approximation due to their
nature as function approximators, allowing them to capture complex
relationships within the power system efficiently. Moreover, their per-
mutation equivariant property [24] ensures that the model processes
input data effectively, regardless of the ordering of the buses, en-
abling parallelization for enhanced computational efficiency. Unlike
traditional iterative methods, the proposed approach adopts an end-to-
end ML paradigm, where input features are directly mapped to output
features in a single step, streamlining the process without requiring
iterative convergence.

3.2.3. Model loss functions
The selection of the appropriate model loss function is important

in generating high-quality PF approximations. Usually, purely physics-
based model losses are used in existing ML approaches for PF [17,18].
However, using only physical model losses is insufficient due to the
non-linearities of the PF problem. We propose to utilize the Mean
Squared Error (MSE) for the training of PowerFlowNet and develop the
Masked L2 Loss as a better evaluation metric. In detail, MSE is defined
as

MSE (𝒚𝑖, 𝒙̂𝑖) = ‖𝒚𝑖 − 𝒙̂𝑖‖22 (12)

where 𝒚𝑖 represents the real values of the features and 𝒙̂𝑖 are the
predicted values of node 𝑖.

To get a more precise value of the actual error in predicting only the
unknown features, we developed the Masked L2 loss. This loss function
is similar to MSE but only calculates the error for the unknown features,

MaskedL2 (𝒚𝑖, 𝒙̂𝑖) = ‖𝒎𝑖◦(𝒚𝑖 − 𝒙̂𝑖)‖22. (13)

Here, the ◦ is the element-wise multiplication operator, and 𝒎𝑖 is the
binary mask of node 𝑖 indexing only the features of interest, as defined
in Section 3.2.1.
5

4. Experimental evaluation

This section presents the experimental setup employed in this study,
followed by a comprehensive evaluation aimed at elucidating the
strengths and weaknesses of the PowerFlowNet model. To gain deeper
insights into the efficacy of PowerFlowNet4 as a GNN approach for
PF approximation, the conducted ablation studies focus on four dis-
tinct aspects of the proposed approach: performance, interpretability,
scalability, and architectural dependability.

4.1. Experimental setup

The evaluation of PowerFlowNet’s performance requires the con-
sideration of the varied attributes present in each power network,
encompassing differences in size and topology. To address this require-
ment, three distinct power network cases are evaluated, namely IEEE
case-14, IEEE case-118, and case 6470rte [25], based on their contrast-
ing characteristics. The case with 14 nodes represents a minimal grid
topology characterized by a limited number of connections, while the
118 case exhibits a more intricate configuration. Moreover, the 6470rte
case accurately emulates the scale and intricacy of the French very high
voltage and high voltage transmission network. We evaluate Power-
FlowNet in this realistic large-scale network to fully show its scalability
potential. Notice that the proposed GNN model is topology dependent;
hence, once trained, it cannot be as accurate in unseen cases of topology
changes, e.g., N-1 contingency and topology reconfiguration, without
any additional training or data samples. While the proposed method
may face limitations in generalizing to unseen topologies, there is
potential for improvement through training PowerFlowNet with diverse
datasets encompassing a spectrum of topology variations. By incorpo-
rating multiple datasets that account for N-1 contingencies or offer PF
approximations of various grid topologies, PowerFlowNet can enhance
its adaptability. Notably, empirical evidence from our scalability study
(refer to Section 4.5) underscores the efficacy of PowerFlowNet when
trained on heterogeneous datasets. This underscores the significance
of selecting an appropriate training dataset tailored to the specific test
case, thereby maximizing the effectiveness of our approach.

4.1.1. Dataset generation
All aforementioned cases were modeled in PandaPower [26] and

solved using the Newton–Raphson method. For each case, a total of
over 30.000 distinct scenarios were generated by perturbing the default
case files. Following the same approach as [18], the generation of each

4 PowerFlowNet code, datasets, and trained models can be found
at https://github.com/StavrosOrf/PoweFlowNet and https://github.com/
distributionnetworksTUDelft/PoweFlowNet.

https://github.com/StavrosOrf/PoweFlowNet
https://github.com/distributionnetworksTUDelft/PoweFlowNet
https://github.com/distributionnetworksTUDelft/PoweFlowNet
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sample involved sampling from random uniform or normal distribu-
tions. Specifically, the resistance (ℜ[𝑧𝑖,𝑗 ] in 𝛺) and reactance (ℑ[𝑧𝑖,𝑗 ] in
𝛺) values of each line were uniformly selected within 80% and 120% of
their original values. In the case of generators, the voltage magnitude
(𝑉 𝑚) was uniformly set within the range of [1.00, 1.05] per unit, while
the initial active powers (𝑃𝑔 in MW) were sampled from a normal
istribution  (𝑃𝑔 , 0.1|𝑃𝑔|), where the mean corresponds to the original
ctive power and the standard deviation is 10% of it. Lastly, for buses
ith loads, their active power (𝑃 in MW) and reactive power (𝑄 in
VAR) were randomly sampled from normal distributions  (𝑃 , 0.1|𝑃 |)

nd  (𝑄, 0.1|𝑄|), respectively. These samples were then partitioned,
llocating 50% for training, 20% for validation, and 30% for testing.

.1.2. Training & evaluation
To train the models, the AdamW optimizer [27] was employed,

sing a learning rate of 0.001, in conjunction with the OneCycleLR
cheduler [28]. The training process encompassed up to 2000 epochs
for large models) and 1000 epochs (for medium and small networks),
ith each epoch comprising a batch size of 128 samples. In our stan-
ard implementation, we use 4 PowerFlowConv layers (𝐿 = 4) of
rder 3 (𝐾 = 3) to ensure that the computation subgraph of every
ode covers most of the input graph. PowerFlowNet is developed using
yTorch Geometric [29] components. Additionally, we use 128 nodes
or the hidden dimension and a dropout rate of 0.2 at the end of
ach layer to reduce overfitting. The training time is not considered
n the measurement of the execution time since the ML model needs
o be trained only once. We train the models with MSE loss as defined
n Eq. (12). For assessment purposes, we also trained with the physical
oss and the mixed loss (𝑤 = 0.5, 𝜏 = 0.02), defined in Eqs. (16) and

(17) respectively. These additional results can be found in Section 4.5.

Unbalance error. This is a node-wise physical model loss [18], defined
by the unbalanced power at each node, i.e. violation of the Kirchhoff’s
law. This is a self-supervised loss function since it does not require the
actual values of every node as presented in Eqs. (14)–(16).

Physical (𝑋̂) = 1
| |

∑

𝑖∈
‖𝛥𝑃𝑖‖

2
2 + ‖𝛥𝑄𝑖‖

2
2 (14)

𝛥𝑃𝑖 = 𝑃𝑖 −ℜ
⎡

⎢

⎢

⎣

∑

𝑗∈ (𝑖)
𝑉̇𝑖

(

𝑉̇𝑗 − 𝑉̇𝑖
𝑧𝑖,𝑗

)∗
⎤

⎥

⎥

⎦

(15)

𝛥𝑄𝑖 = 𝑄̂𝑖 −ℑ
⎡

⎢

⎢

⎣

∑

𝑗∈ (𝑖)
𝑉̇𝑖

(

𝑉̇𝑗 − 𝑉̇𝑖
𝑧𝑖,𝑗

)∗
⎤

⎥

⎥

⎦

(16)

The unbalance error model loss function is purely based on the PF
equations where  (𝑖) is the set of neighbor nodes of node 𝑖, 𝑉̇𝑖 = 𝑉𝑖∠𝜃̂𝑖,
(𝑉𝑖, 𝜃̂𝑖, 𝑃𝑖, 𝑄̂𝑖) is the 𝑖th row of 𝑋̂, and 𝑟𝑖,𝑗 and 𝑥𝑖,𝑗 refer to the resistance
nd reactance of line (𝑖, 𝑗), respectively.

ixed loss. Finally, we propose the Mixed model loss (Eq. (17)) that
ombines the unbalance error (physical) and MSE loss to efficiently
ncorporate the PF equations into PowerFlowNet. In detail, the Mixed
oss for the whole graph with predicted feature matrix 𝑋̂ and actual
eal feature value matrix 𝑌 is defined as:

ix (𝑌 , 𝑋̂) = 𝑤 ⋅MSE (𝑌 , 𝑋̂) + 𝜏 ⋅ (1 −𝑤) ⋅ Physical(𝑋̂) (17)

where 𝑤 ∈ [0, 1] is a weight to balance the MSE and physical loss, and
is a scaling factor bringing the physical loss to the same order of
agnitude as the MSE loss. In practice, 𝑤 and 𝜏 are hyperparameters

hat can be tuned during training.

valuation. During the evaluation, we compare the Masked L2 loss
s a metric.5 The execution times of each implemented method were

5 We also experimented with training with Masked L2 loss, which resulted
n almost the same performance as training with MSE loss.
6

c

examined using high-performance hardware configurations, including
the AMD RYZEN 7 5700X 8-Core processor, NVIDIA RTX 3060 TI 8 GB
graphics card, and 32 GB RAM, ensuring accurate and efficient mea-
surements. Notably, it is important to emphasize the reproducibility
of the experiments, as the availability of datasets, the PowerFlowNet
framework, and the trained models provided ensure the feasibility of
replicating the study’s outcomes and procedures.

4.2. Performance comparison

In this comparison study, PowerFlowNet is evaluated against other
baseline methods for PF approximation across three distinct cases, as
outlined in Table 2. The performance assessment of each approach is
conducted based on accuracy, quantified by employing the Masked L2
Loss, as well as the execution time on the same computing machine.
The datasets used for evaluation were generated using the Newton–
Raphson method, recognized for its accuracy in PF analysis, which
we assume to have negligible error for these particular cases. Note
that we did not enforce the generator reactor power limits in the
Newton–Raphson solution. As expected, the Newton–Raphson method
has increased execution time as the scale of the PF problem grows.
The second baseline method considered is the DCPF approach, which
relaxes the nonlinear problem to a linear one, thereby serving as an
upper-performance boundary for the comparison. However, the DCPF
only calculates each bus’ voltage angle and active power since it
assumes the voltage magnitude to be constant across the grid. Pow-
erFlowNet exhibits significantly lower values for the Masked L2 loss
when compared with the DCPF method. Additionally, our proposed
approach demonstrates significantly reduced execution time6 compared
to the Newton–Raphson method, with speed improvements of 4× in the
14-node case, 5× in the 118-node case, and 48× in the 6470rte case.
Notably, owing to the GNN architecture of PowerFlowNet, the execu-
tion time remains consistently low across different cases. This inherent
scalability characteristic of GNNs represents a significant advantage
over traditional methods, enabling the real-time approximation of PF in
extensive power networks. Note that the computation time of Newton–
Raphson is acceptable (≈ 0.6 s) when computing a small number of
cases but might not be enough when thousands of computations are
needed in tasks such as planning where the uncertainty of distributed
energy resources is introduced. For example, the Newton–Raphson
method would take around 20 minutes to calculate 2000 PF cases for
the 6470rte grid, while PowerFlowNet would need less than 1 min.

Furthermore, a comprehensive evaluation of alternative traditional
ML approaches was conducted to ascertain the unique benefits of utiliz-
ing PowerFlowNet. Initially, the Tikhonov regularizer [30], a method
designed to enforce smoothness while considering the underlying graph
structure, was assessed. However, as indicated in Table 2, its perfor-
mance consistently fell behind the other ML methods in terms of loss
across all cases, as well as in execution time within the context of large-
scale power networks. Subsequently, a three-layer MLP and a simplified
GNN consisting of three layers of GCNs [19] were evaluated. Although
neither approach surpassed PowerFlowNet in terms of loss (MLP was
1.9× worse and the GCN 17× worse in the 14-case), it is noteworthy
that the MLP exhibited a substantially faster execution time, differing
by an order of magnitude (≈ 6.5× faster).

In our experiments, the MLPs utilized are intentionally overparam-
eterized, having three fully connected layers, each comprising 128
nodes, with input and output sizes of 4 (representing 𝑉 𝑚, 𝜃, 𝑃 , 𝑄)
multiplied by the number of nodes. With approximately 30,000 train-
ing samples provided, the combination of a sufficiently large MLP,
an ample dataset, and adequate training time leads us to anticipate
favorable results. However, while MLPs excel in capturing complex

6 Note that when evaluating NN approaches, the training time is not
onsidered since the model needs to be trained only once.
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Table 2
Performance comparison of PowerFlowNet.
Case 14 118 6470rte

Algorithms Masked L2 loss Time (ms) Masked L2 loss Time (ms) Masked L2 loss Time (ms)

Newton–Raphson ≈0 17.0 ≈0 20.0 ≈0 580.0
DC power flow 45.74 8.0 99.87 10.0 510.5 30.0
Tikhonov Reg. 2.838 0.4 1.916 0.4 2.934 6100
3-Layer MLP 0.023 0.6 0.175 0.6 0.432 0.6
3-Layer GCN 0.208 1.0 0.591 1.0 1.18 2.0
PowerFlowNet 0.012 4.0 0.018 4.0 0.075 12.0
Fig. 4. Probability density function of the actual not-normalized error for every node in the test dataset. The brighter the color, the highest the probability of the prediction error
of PowerFlowNet being in that region.
relationships given plenty of resources, they inherently lack the ability
to leverage the underlying graph structure of the data. This limitation
underscores the importance of GNNs where they show better perfor-
mance in scenarios with graph-structured data. Despite this, our results
unveil that not all types of GNNs perform equally well, as evidenced
by the comparative performance against the GCN baseline (Table 2).
Thus, the proposed method strategically combines the strengths of both
MLPs and GNNs. By integrating features from both architectures, our
approach achieves greater effectiveness than the pure GCN or MLP
models.

4.3. Denormalized error distributions

After showcasing the performance of PowerFlowNet in three differ-
ent power networks, it is important to delve deeper into the results
and visualize the denormalized error distributions. This analytical ap-
proach allows us to gain valuable insights into the areas where more
accurate predictions can be achieved, as well as the conditions un-
der which these improvements are most evident. Such insights hold
practical significance for power systems operators, enabling them to
leverage PowerFlowNet effectively in real-world scenarios involving
network operation and strategic planning. Table 3 compares the av-
erage error distribution for every one of the four predicted values7 of
PowerFlowNet and the ML baselines (MLP and GCN).

7 The error distributions include only the predictions of the unknown
values.
7

Table 3
Comparison of the average absolute denormalized error.

Alg. 𝑉 𝑚 (p.u.) 𝜃 (deg) 𝑃 (p.u.) 𝑄 (p.u.)

Case 14
MLP 0.0014 ± 0.0011 0.56 ± 0.40 0.04 ± 0.03 0.03 ± 0.03
GCN 0.0074 ± 0.0053 0.79 ± 0.59 0.16 ± 0.10 0.13 ± 0.12
Our 0.0011 ± 0.0009 0.20 ± 0.16 0.04 ± 0.03 0.03 ± 0.03

Case 118
MLP 0.0064 ± 0.0049 1.23 ± 1.06 0.54 ± 0.41 0.41 ± 0.34
GCN 0.0092 ± 0.0068 3.01 ± 2.47 1.79 ± 1.15 0.71 ± 0.77
Our 0.0012 ± 0.0010 0.87 ± 0.73 0.29 ± 0.21 0.08 ± 0.10

6470rte
MLP 0.0053 ± 0.0046 10.4 ± 7.92 8.91 ± 6.73 0.62 ± 1.75
GCN 0.0331 ± 0.0273 14.4 ± 12.1 11.2 ± 8.3 0.96 ± 2.11
Our 0.0045 ± 0.0037 5.49 ± 4.46 7.99 ± 6.01 0.23 ± 0.40

Notice that the proposed model achieves precise predictions of
p.u. voltage magnitude for all cases, exhibiting an average error of
11 × 10−4 p.u. in the 14-node scenario and 45 × 10−4 in the notably
more intricate 6470rte case, all while maintaining a consistently low
standard deviation across each case. In contrast, the MLP and the
GCN baselines performed 1.2× and 6.2× worse in the 14-node case
and 1.1× and 7.3× in the largest test case, respectively. Additionally,
PowerFlowNet’s average absolute error remains minimal for both active
and reactive power with respect to the network’s actual demand and
load, with an actual error of 0.04 p.u. for active power and 0.03
p.u. for reactive power in the best-case scenario. Nevertheless, it is
important to note a significant rise in the predicted active power error,
particularly in the 6470rte case, where it reaches as high as 7.99
(p.u.). Here again, the GCN predicted power results are worse, with
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Fig. 5. Illustration of graph coverage defined as the number of nodes included in a
subgraph, plotted per K-hop size and sorted from slowest to fastest growth for every
node.

a prediction error of 0.12 p.u. higher in the 14-node case and 3.2 p.u.
in the 6470rte case. Notably, the MLP baseline produced equally good
power predictions in the 14-node case but gave an average of 0.91 p.u.
higher errors for active and 0.39 p.u. for reactive power in the 6470rte
case. Furthermore, the voltage angle prediction error for PowerFlowNet
is barely noticeable in the 14-node case, being only 0.2 degrees, but
increases to 5.49 degrees in the 6470rte case. This occurs because the
range of the voltage angles across larger networks network, i.e., the
6470rte case, is much greater. Similarly, high-angle errors persist with
the ML baselines too. In detail, GCN provided angle predictions with a
mean of 14.4 degrees of error and 10.4 degrees error for the MLP in
the largest node case.

Moreover, we can observe the per-node denormalized error distribu-
tion for every case in Fig. 4. Notice that the prediction error for nodes
where we already know the value is practically zero (indicated by the
vertical yellow line). Although the average voltage angle error is higher
for the 6470rte case (5.49 degrees as shown in Table 3), the average
voltage magnitude error is in the same range (less than 0.0045 p.u.) as
in the smaller networks, ensuring that the developed PowerFlowNet is
accurate enough for fast checking of operational constraints for large
numbers of scenarios regardless of network size.

4.4. Sensitivity to the hop size

To gain insights into the locality of information used by Power-
FlowNet to make predictions, we aimed to investigate the potential
of using subgraphs as a more scalable and generalizable approach to
tackle the challenges posed by the complex PF prediction task.

In this study, we define the receptive field as the longest distance
between any two nodes that can exchange information. Naturally, a
larger 𝐾 and 𝐿 would increase the receptive field. We examined 𝐾-hop
subgraphs across all three cases, where, for reference, a PowerFlowNet
model with 𝐾 = 3 and four layers of TAGConv (𝐿 = 4), a straightfor-
ward computation yields an effective receptive field spanning 12 nodes.
In practice, the size of these receptive fields, measured in the number
of nodes, will vary based on the specific graph topology. To better
understand this topological effect, we looked at the speed at which K-
hop subgraphs grow from each node in the graph, also defined as graph
coverage. In detail, for each node, we made 𝐾-hop subgraphs for K
between 1 and the graph diameter and measured the subgraph size after
each hop, as shown in Fig. 5. The graph diameter is the longest distance
between any pair of nodes within a graph, representing the maximum
distance between any two points in the network. This indicates the
distribution of receptive field sizes seen during training; interestingly,
it appears to form a Gaussian shape, particularly visible in the largest
graph in the dataset with 6470 nodes. As expected, the larger the graph
size the more hops are required to cover the whole graph. For example,
4 hops are required in the 14-node over 6 hops in the 118-node case,
and 11 to 25 hops in the 6470rte case.

Afterward, those subgraphs were each passed through the Power-
FlowNet model, and the Masked L2 loss was calculated only on the node
from which the 𝐾-hop neighborhood was generated. This showed us the
actual loss distribution among nodes depending on how far a 𝐾-hop
neighborhood can reach. The detailed results are illustrated in Fig. 6.
8

Fig. 6. Masked L2 loss on the central node of a 𝑘-hop subgraph for each node and 𝑘,
sorted by the total node loss.

Fig. 7. Average Masked L2 loss on the central nodes of a 𝑘-hop subgraph for different
numbers of 𝑘.

We noticed that this loss distribution has a different shape from the
subgraph growth figure, and indeed there is variation in which nodes
are more or less affected by a decrease in subgraph size.

Interestingly, we can observe that only around 3 hops are required
to obtain the minimum loss for most of the nodes, experimentally
proving the reason TAGConv of order 𝐾 = 3 can achieve high-quality
results. This also suggests that for most buses (nodes) in a power
network, we could make PowerFlowNet predict the PF values even
faster by only looking at smaller connected parts.

Finally, we plot the average loss across nodes in Fig. 7 and discover
that neighborhood hop counts well below the effective receptive field’s
hop count are enough to make predictions practically identical to those
when using the full graph. This indicates that local predictions in a
large network are feasible. Most importantly, we argue that training on
larger graphs could be made more efficiently by sampling subgraphs
across different graphs available in the dataset, so as to make sure
that stochastic gradient descent steps are performed using batches that
capture more of the variation available in the dataset. Subsequently,
this approach has the potential to augment the scalability aspects of
PowerFlowNet.

4.5. Network generalization capabilities

We demonstrate that our model has valuable generalization features
to perform well in different network topologies after training in one
particular topology. Also, we investigate how PowerFlowNet’s perfor-
mance scales with the NN’s model size, the size of the training dataset,
and the model loss function used.

Based on the standard setting PowerFlowNet (Medium) with 𝐿 =
4, ℎ = 128, we created two variants by modifying the total number of
the model’s trainable parameters by one order of magnitude as shown
in Table 4. In detail, we created PowerFlowNet (Small) with 𝐿 = 2, ℎ =
64 and PowerFlowNet (Large) with 𝐿 = 5, ℎ = 512. Table 4 shows the
relation between the model size and the Masked L2 loss when trained
with different model loss functions for the 118-node case. We note that
the performance scales very well with the model size. Most importantly,
from the medium to large model, the Masked L2 loss is almost one order
of magnitude lower, signifying the learning potential of PowerFlowNet.

The model performance does not differ greatly when trained with
physical loss (as used in [18]). This means learning with physical loss
is challenging regardless of the model’s capability. However, we notice
that the Masked L2 performance difference between training with MSE
and mixed loss shrinks as we move to the large model. This suggests
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Table 4
Masked L2 loss of scaled models on the 118 case.

Model # Params Trained with

MSE Physical Mixed

PowerFlowNet (Small) 32k 0.079 0.757 0.109
PowerFlowNet 357k 0.018 0.667 0.057
PowerFlowNet (Large) 7375k 0.002 0.628 0.004

Table 5
Performance evaluation for varying training cases.

Eval. Case 118 14

Eval. Metric M. L2 MSE Phys. M. L2 MSE Phys.

118+14 (L) 0.0023 0.0011 4.9676 0.0014 0.0006 0.1336
Train. Case 118 (L) 0.0029 0.0014 5.4080 6.1998 2.5947 40.942

118 (M) 0.0182 0.0105 58.9221 3.7860 3.7860 45.426

that this capability gain allows us to optimize both the MSE and the
physical loss, thus making precise and physics-conforming predictions.

To further test PowerFlowNet’s capability, we trained the large
model on a mixed dataset composed of the 14 and the 118 cases (118 +
14). We unified the training loss function with MSE loss and evaluated
the trained models using different metrics (MSE, Masked L2, and phys-
ical loss) on each of the two cases individually. The results are given
in Table 5. After comparing with training large (L) and medium (M)
models on the 118-node case, we noticed that even without explicitly
bringing physical model loss in training, the large models achieve better
performance. Large models are around 10× better in terms of unbalance
error when trained and evaluated on the 118-node case. When we
augment the 118-node case training set with the 14-node case, the
Large PowerFlowNet model performs better than when trained only in
the 118-node case achieving an excelling accuracy in the 14-node case .
This suggests that the proposed large PowerFlowNet model can operate
on multiple graphs and learn the underlying physics without sacrificing
accuracy.

4.6. Extreme PF scenarios evaluation

We conducted generalization experiments to assess PowerFlowNet’s
performance on datasets with higher standard deviations, representing
out-of-distribution scenarios. All models were trained on the dataset
described in Section 4.1.1. To create out-of-distribution data, we sam-
pled the power setpoints of generators, 𝑃𝑔 from a normal distribution
 (𝑃𝑔 , 𝜎 ⋅ |𝑃𝑔|). Similarly, we sampled the active power 𝑃 for load buses
from  (𝑃 , 𝜎 ⋅ |𝑃 |). Here, 𝜎 varies between 0.05 and 0.5, providing a
range of test conditions. A standard deviation of 𝜎 = 0.1 in the training
dataset represents normal PF scenarios, while 𝜎 = 0.5 represents more
extreme cases, challenging the model’s robustness and generalization
capabilities.

Fig. 8 illustrates the evaluation results on out-of-distribution data
in terms of root mean square error (RMSE) of 𝑉 𝑚 (p.u) and 𝜃 (deg.).
RMSE is defined as:

RMSE(𝒚𝑖, 𝒙̂𝑖) =

√

∑𝑁
𝑖=1

(

𝒚𝑖 − 𝒙̂𝑖
)2

𝑁
, (18)

where 𝒚𝑖 represents the real values of the features and 𝒙̂𝑖 are the
predicted values of node 𝑖. As anticipated, the error generally rises
inearly with an increase in the test set’s standard deviation. It is critical
or ML models to have training data distributions closely aligned with
est data distributions to achieve accurate results [31]. In the 14-node
ase (see Fig. 8(a)), the error in predicted voltage magnitude (𝑉 𝑚)

increases up to 0.0035 p.u., while the angle error can be up to 1.2
degrees higher. Similarly, for the 118-node case (Fig. 8(b)), the out-
of-distribution error can reach up to 0.004 p.u. for voltage magnitude
and as high as 10 degrees for angle predictions. Finally, in the more
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Fig. 8. Out-of-distribution error of voltage magnitude and angle. The model is trained
with 0.1 standard deviation (indicated by a star).

complex 6470rte case (Fig. 8(c)), angle errors can escalate sharply, with
deviations reaching up to 60 degrees when 𝜎 = 0.5. This significant
error increase is likely due to the complexity and scale of the power
network.

Testing with out-of-distribution data presents a substantial chal-
lenge in ML [32]. Despite this, PowerFlowNet has demonstrated solid
generalization performance in the 14-node and 118-node cases, even
under extreme PF scenarios. To further improve robustness, the training
dataset could be augmented with additional extreme PF scenarios,
allowing PowerFlowNet to better learn and adapt to these challenging
situations.

In practice, PF calculations often encounter PV/PQ switching sce-
narios, where the reactive power limit of a PV bus is reached and
converted to a PQ bus. This paper only focuses on the most gen-
eral scenarios without including the PV/PQ switching in the training.
However, our model naturally accommodates PV/PQ switching due to
the GNN architecture and mask encoder. In Table 6, we evaluate our
model’s performance when encountering PV/PQ switching. Even when
the model has never seen PV/PQ switching in training, PowerFlowNet
can generalize and give reasonable voltage predictions. Notably, if
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Table 6
MAE of standard and PV/PQ switching scenarios in 118 case.

Scenario 𝑉 𝑚 (p.u.) 𝜃 (deg) 𝑃 (p.u.) 𝑄 (p.u.)

Standard 118 case 0.0012 0.8600 0.2851 0.0839
PV/PQ switching 118 case 0.0149 6.4485 2.6290 0.3387

Table 7
PowerFlowNet component significance analysis.

Case Full
model

Model
1-Layer

No message
passing (MP)

1-Layer &
No MP

14 0.012 0.04 0.08 0.38
118 0.018 0.21 0.22 0.95
6470rte 0.075 1.01 1.41 6.11

addressing PV/PQ switching properly with higher precision is impor-
tant in one’s application, additional PV/PQ switching training samples
should be included in the training.

4.7. Architectural ablation study

Finally, architectural ablation experiments were carried out to
demonstrate the vitality of PowerFlowNet’s unique structures through
component removal. Therefore, the experiments were designed to high-
light how each PowerFlowNet component contributes to generating
high-quality predictions. Table 7 depicts the results of these experi-
ments. Table 7 is split into four variations of PowerFlowNet: the full
model, PowerFlowNet with 𝐿 = 1, PowerFlowNet without message
passing, and PowerFlowNet with 𝐿 = 1 and without message passing.
Then, we can observe how the model performs in terms of Masked L2
loss in all different scenarios.

As observed, none of the PowerFlowNet’s variations performed
as well as the complete model. In the 1-layer case without message
passing, it is visible that the model fails to capture distant node de-
pendencies, resulting in up to 65× higher error. Similarly, the model
performs poorly (up to 6.6× higher error) in the no message passing
case since the edge features are completely ignored, highlighting the
importance of incorporating the edge features. On the other hand,
the 1-layer model performs the best (up to 3.3× higher error). Con-
sequently, this analysis shows that every part of PowerFlowNet is
important in achieving high-quality PF approximations.

5. Conclusions

In this paper, we presented PowerFlowNet, a novel data-driven
algorithm that capitalized on the efficiency and capabilities of GNN
operations applied to the power network’s topology, leading to a accu-
rate approximation of the PF. Specifically, our approach transformed
the traditional PF problem into a GNN node-regression task by repre-
senting buses as nodes and transmission lines as edges while preserving
network connectivity. Our model featured a distinctive configuration
involving a mask encoder in conjunction with a sequence of our pro-
posed PowerFlowConv layers, designed to aggregate features across the
entire graph and inherently learn the dynamics of the underlying PF.
The results verified PowerFlowNet’s ability to generate high-quality
solutions for a diverse set of network cases including the 6470rte very
large-scale power network of France. Most importantly, our method
produces high-quality PF predictions at a fraction of the time of tra-
ditional solvers, regardless of the scale of the network, outperforming
the well-established Newton–Raphson method in terms of execution
time while having closely comparable results. Ultimately, our ablation
studies reveal the robust aspects and potential limitations of our ap-
proach, thereby enabling the versatile deployment of PowerFlowNet
across a wide array of real-world power system operation and planning
scenarios.
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