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ARTICLE INFO ABSTRACT
Keywords: Future cities must play a vital role in reducing energy consumption and decarbonizing the electricity sector, thus
Energy community evolving from passive structures towards more efficient smart cities. This transition can be facilitated by energy

Energy storage
Robust optimization
Uncertainty

communities. This emerging paradigm consists of collectivizing a set of residential installations equipped with
onsite renewable generators and storage assets (i.e., prosumers), which can eventually share resources to pursue
collective welfare. This paper focuses on cooperative communities, where prosumers share resources without
seeking selfish monetary counterparts. Despite their apparent advantages, energy management and scheduling of
energy communities suppose a challenge for conventional tools due to the high level of uncertainty (especially
due to intermittent renewable generation and random demand), and privacy concerns among prosumers. This
paper addresses these issues. Specifically, a novel management structure based on multiple aggregators is pro-
posed. This paradigm preserves users’ confidential features while allowing them to extract the full potential of
their assets. To efficiently manage the variety of assets available under uncertainty, an adaptive robust day-ahead
scheduling model is developed, which casts as a solvable and portable Mixed Integer Linear Programming
framework, which eases its implementation in real-world cases. The new proposal concerns uncertain generation
and demand using a polyhedral representation of the uncertainty set. A case study is conducted to validate the
developed model, showing promising results. Moreover, different results are obtained and analysed. Finally, it is
worth remarking on how the level of robustness impacts the collective bill, incrementing it by 75 % when risk-
averse conditions are assumed. In addition, the role of storage assets under pessimistic conditions is remarked,
pointing out that these assets rule the scheduling plan of the community instead of renewable generators.

driving the transition of power distribution systems from passive to

active networks (Feng et al., 2018). This transition poses significant

1. Introduction challenges for systems operators such as duck curves, bidirectional

power flows and privacy concerns (U.S. Department of Energy, 2023).

1.1. Context and motivation Under this paradigm, a growing interest for local energy communities

(LECs) has been observed in recent years. According to European

Residential sector contributes with a large share of global electricity Commission (2023), LECs aim at collectivizing citizen energy actions
consumption, thus contributing notably to global warming with dra- pursuing different economic, environmental and social benefits.

matic effects on population lifestyle (Aydin, 2014). To reduce the The optimal exploitation of available resources as well as coordina-

negative effects of global warming, governmental entities are promoted tion of the different agents involved in a LEC require the implementation

measures to decarbonize the energy sector (Aydin, 2014), such as pro- of energy management systems (Koirala et al., 2016). Such tools differ

mote the use of renewable generators. The increasing penetration of from conventional energy management strategies in a variety of aspects,
renewable sources and wide adoption of demand response initiatives are
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Nomenclature

Indices (sets)

i) Prosumer

t(7) Time

a Referred to a parameter passed to an aggregator

c(®) Shiftable appliance

(€] Allowable time windows for appliances and electric
vehicles

Superscripts

Net Net demand

NF/F Non-flexible/flexible demand

PV Photovoltaic

Shift Shiftable appliances
Air,in/out Indoor/outdoor air

HVAC  Heating-ventilation-air conditioner system
sp/db Setpoint/dead-band

W.,h/c  Hot/cold water

EWH Electric water heater

ES,ch/dch Energy storage in charging/discharging mode
Bat Batteries
EV Electric vehicle

Maximum/minimum value

Forecasted/calculated value

Parameters

39 Solar irradiance [kW,/m?]

0 Temperature [°C]

DC Duty cycle of a shiftable appliance [hours]
At Time step [hours]

A/B Thermal characteristics of the building [-/(kW/°C)]

COP Coefficient of performance [-]

C Thermal capacity [kWh/°C]

R Equivalent thermal resistance [kWh/°C]

v Volume [gal]

n Efficiency [pu]

DOD Depth-of-discharge [%]

e2P Energy-to-power ratio [hours]

r Uncertainty budget [-]

z Energy cost [$/kWh]

M Large positive number [-]

8 Parameter that relates purchasing and selling energy prices
0<6<1)

Variables

P Power [kW]

y Commitment statuses [binary]

€ Energy [kWh]

A Dual variable associated to equality constraints [-]

/N7 Dual variable associated to inequality constraints [-]

2,2 Dummy variable to linearize complementarity terms

[binary]

Variables (vector notation)

x Vector of primal continuous variables

y Vector of primal binary variables

A Vector of dual variables associated to equality constraints
W Vector of dual variable associated to inequality constraints
2,2 Vector of dummy variable to linearize complementarity

terms

being primordial to pay attention at privacy concerns, impact of un-
certainties and peer-to-peer (P2P) energy sharing. This paper focuses on
this issue.

1.2. Energy management in LECs: state-of-the-art

According to Vespermann et al. (2021), a LEC can be understood as a
group of a few prosumers that are eventually willing to share energy
resources. Under this definition, energy management or different
dispatch strategies for LECs were firstly studied in various works (Fazeli
et al., 2012; Steinheimer et al., 2012). However, this very first works
rather focused on introducing basic concepts or describing the necessary
communication infrastructures for P2P power sharing within commu-
nities. More comprehensive works have been developed since 2019,
focusing on a variety of aspects.

Broadly, energy management in LECs can be performed in a
centralized, decentralized or distributed way. Centralized frameworks
are the most logical option and ensure that global objectives are opti-
mized. In such paradigms, a central operator is responsible of collecting
information from prosumers and decide the optimal scheduling strategy
consequently. Nevertheless, this kind of frameworks reveal privacy data
as prosumers need to share confidential information with the coordi-
nator. The simplest methodologies based on centralized scheduling as-
sume that the coordinator has complete access to information
(Khorasany et al., 2021; Mustika et al., 2022; Javadi et al., 2022). This
approach, although ensure reachability of collective goals, entail clear
privacy concerns as some users may be reluctant to share confidential
information. More sophisticated approaches present multi-layer struc-
tures (Tostado-Véliz et al., 2022; 2023a; 2023b), in which information
from prosumers is not fully shared but flexibility can be leveraged yet.
Within this category, there exists other methodologies rather focused on

other secondary aspects. For instance, reference (Feng et al., 2020)
presents a game-based approach to achieve consensus among pro-
sumers, whereas (Jo et al., 2021) is rather focused on storage sharing.

On the other hand, distributed algorithms ensure privacy of users as
the energy management decisions are taken collectively in a distributed
fashion. Among the existing distributed algorithms, the alternating di-
rection of multipliers method has been successfully applied in cooper-
ative energy communities (Lilla et al., 2020; Orozco et al., 2022).
Although this approach ensures that users’ privacy is completely pre-
served, its computational tractability may be challenging due to two
issues: (1) the solution is obtained iteratively solving a collection of
optimization problems; and (2) the optimization problem results
quadratic, for which off-the-shelf solvers are not frequently available.
Moreover, the alternating direction of multipliers may unintentionally
benefit to large consumers/generators. This situation, although unlikely
in residential communities, may occur in LECs involving non-residential
users like parking lots, commercial buildings or large storage facilities.
Alternatively, a hierarchical energy management framework was pro-
posed in Nagpal et al. (2022), which ensures privacy since only pro-
sumers’ net load profiles are communicated to a central entity. This
approach is similar to the multi-layer frameworks in Tostado-Véliz et al.
(2022; 2023a; 2023b) but ensuring total privacy. However, as only load
profiles are shared, opportunities provided by flexible devices as
controllable appliances and electric vehicles (EVs) could not be fully
exploited.

Uncertainty modelling is another important aspect in energy com-
munities. In LECs, uncertainties may be brought from different sources
such as demand, renewable generation or energy prices. However, as
LECs are normally small-scale entities, volatility in prices can be
diminished by agreeing tariffs with a retailer (Vespermann et al., 2021).
Surprisingly, it is a underaddressed issue in LECs. In Orozco et al.
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(2022), the day-ahead scheduling problem is modelled using scenarios,
which aim at capturing the volatility of loads and renewable generation.
Although this approach is simple and preserves the model linear, it
presents two important issues: on the one hand, stochastic approaches
are probabilistic rather than robust, so that the problem is not solved for
the worst-case realization of uncertainties. On the other hand, compu-
tational burden of this kind of problems dramatically increases with the
number of scenarios considered (Roald et al., 2023). Such issues are
partially solved by hybridizing scenarios with robust-based approaches
like interval notation (Tostado-Véliz et al., 2022) and information gap
decision theory (IGDT) (Tostado-Véliz et al., 2023a). Furthermore, a
day-ahead scheduling tool purely based on IGDT was proposed in Tos-
tado-Veliz et al. (2023b) for LECs. However, such approaches do not
ensure robust solution as the worst-case realization of uncertainties is
approached rather than looked for.

Lastly, it is worth analysing which capabilities are actually shared
within the community environment. Indeed, the most basic community
structure is devoted on P2P exchanges among prosumers. Nevertheless,
most of the studied methodologies pay special attention to share flexi-
bility provided by smart appliances. Fully capabilities of such devices
can be effectively leveraged in centralized approaches with fully infor-
mation access. However, when privacy concerns are taken into account,
total flexibility provided by prosumers can be hidden, thus hindering the
possibility of reaching collective goals (Tostado-Véliz et al., 2022;
2023a; 2023b; Nagpal et al., 2022). Nevertheless, prosumers can offer
further capabilities within a community structure, especially storage
capacity. Such feature can be provided by either installing batteries at
homes or enabling bidirectional power flow from EVs. For the former
case, auction-based approaches have been successfully investigated (Jo
et al., 2021), while only some handful works have already considered
the storage capability provided by EVs (Tostado-Véliz et al., 2022).
Storage sharing in LECs is an open topic that might present important
difficulties to be implanted in real cases. However, its implications are
worth to be investigated. For the sake of simplicity, Table 1 collects the
main features of the selected literature and gives a comparison with the
present work.

1.3. Contributions

The main research focus lies on the uncertainty modelling in LECs. It
was previously discussed that there exists an important gap in this field.
Actually, to the best of our knowledge, any of the studied references can
be conceived as a robust approach. Existing works mainly rely on
scenario-based techniques that do not ensure robustness of the solution.
To this end, an adaptive robust formulation of the day-ahead scheduling

Table 1
A summary of the studied literature.

Ref. Model Uncertainty Shared capabilities
Flexibility Storage
(Vespermann et al., 2021) MCP Risk-averse Yes No
(Khorasany et al., 2021) QP No Yes Yes
(Mustika et al., 2022) Heuristic No No No
(Javadi et al., 2022) MILP No Yes Yes
(Tostado-Véliz et al., 2022) MILP-QP Hybrid Yes Yes
(Tostado-Véliz et al., 2023a) MILP Hybrid No Yes
(Tostado-Véliz et al., 2023b) MILP IGDT Yes Yes
(Feng et al., 2020) LP No Yes Yes
(Jo et al., 2021) MILP No No Yes
(Lilla et al., 2020) QP No No No
(Orozco et al., 2022) QP Stochastic No No
(Nagpal et al., 2022) MILP No Yes Yes
Present MILP Robust Yes Yes

MCP: mixed complementarity problem.
QP: quadratic programming.

MILP: mixed-integer linear programming.
LP: linear programming.
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problem in LECs is proposed. The new methodology is based on other
robust-based approaches already applied to different well-known
problems (Ruiz & Conejo, 2015; Riepin et al., 2022), and ensures that
the worst-case realization of uncertainties is revealed and the scheduling
decisions are taken in consequence.

The present work also concerns about privacy issues in communities.
To partially preserve the privacy of prosumers while their flexibility is
fully leveraged, an innovative community structure based on multi-
purpose aggregators is proposed. This way, the community members
only share innocuous information with the aggregators and not with the
coordinator or other prosumers. In this regard, the role of three
emerging agents in LECs is explored: the net demand aggregator, who is
responsible on aggregating net load profiles and communicate import-
able and exportable power from prosumers; the flexibility aggregator,
who aggregates flexible demand capabilities from household devices;
and the storage aggregator, who concerns about both stationary batte-
ries and EV on-board storage systems to provide storage capability in the
community. For simplicity, the main contributions of this work are
summarized below:

e Developing an adaptive robust day-ahead scheduling tool for coop-
erative ECs accounting for uncertainties in demand and renewable
generation.

e Proposing an innovative community structure based on multi-
purpose aggregators with the aim of exploiting fully flexibility
from users while their privacy is partially preserved. To this end,
mathematical modelling of each aggregator is derived.

In the rest of this paper, Section 2 comments the proposed commu-
nity layout as well as the role of each agent together with some plausible
assumptions. Section 2 also presents the mathematical modelling of the
three proposed aggregators and derives the robust day-ahead scheduling
model for the considered community. Section 3 presents some numerical
results and discussion. Finally, the paper is concluded with Section 4.

2. Materials and methods
2.1. Community structure

Fig. 1 depicts a schematic representation of the proposed community
structure based on multi-purpose aggregators. A group of prosumers
constitute the core of the community. Each prosumer is assumed to
actively partake in the community, for which different smart devices are
available to enable flexible consumption. In particular, it is assumed that
each household owns rooftop photovoltaic (PV) units, stationary bat-
teries, EV charger (with bidirectional power flow enabled) and a set of
controllable (flexible) and non-controllable (non-flexible) appliances. In
the former case, it is distinguished between shiftable and thermostati-
cally controlled appliances (Tostado-Véliz et al., 2022). The first en-
compasses some characteristic devices whose operation can be shifted
throughout the day for convenience, but respecting some preferences of
users. The thermostatically controlled appliances are temperature-based
devices within which one can find heating-ventilation air conditioner
(HVACQ) systems and electric water heaters (EWHs).

2.2. Privacy-preserving philosophy

The particular community structure depicted in Fig. 1 pursues
limiting the information that prosumers share with the community
coordinator. Typically, prosumers share information with the commu-
nity manager directly (Javadi et al., 2022), thus compromising their
privacy. To avoid these issues, the proposed community structure de-
ploys a second layer in the community operation composed by aggre-
gators. These aggregators collect relevant information from prosumers,
transferring uniquely aggregated information instead of individual fea-
tures, thus preserving the privacy of users.
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Fig. 1. Schematic representation of the community under study.

Thereby, very few information is transferred to the community
operator (see the symbols included in Fig. 1). Actually, this agent re-
ceives aggregated information so that individual features of prosumers
are not revealed. In this sense, it is worth noting that aggregators only
perform summation of profiles, so that these agents may be simply data
hubs, thus hiding the information to other people. This way, individual
privacy of users is ensured.

2.3. Scheduling routine

Daily, each prosumer communicates to each aggregator some
necessary information. Next, net demand from prosumers need to be
estimated. Then, these profiles are sent to the net demand aggregator,
who decomposes them into non-flexible demand and local generation
(through PV units).

The flexibility aggregator receives two values daily. Firstly, the total
energy required by flexible devices (shiftable and thermostatically
controlled appliances) denoted by 'EjF , which gives an idea about how
much energy will be demanded by flexible appliances throughout the
day. Secondly, the instantaneous maximum power that flexible appli-
ances can dispatch given by ﬁf .- These last value accounts for two fea-
tures of controllable appliances. On the one hand, each appliance is
assumed to present an upper bound in the power that can absorb, nor-
mally fixed by rated values. On the other hand, controllable appliances
are assumed to be scheduled within predefined time windows describing
preference users (Tostado-Véliz et al.,, 2022). Likewise, the storage
aggregator receives the maximum power dispatchable to storage units
given by ﬁff, but also the available storage bounds denoted by ngf and
Eff Note that storage bounds are a function of the time in order to
capture the availability of EVs.

After receiving all the relevant information, individual profiles are
aggregated and send to the community coordinator, who is responsible
of deciding the day-ahead scheduling plan for the entire community.
This task is performed on the basis of energy prices previously agreed
with a local retailer and targets minimizing the collective bill. After
deciding the power dispatched, it is communicated to each aggregator,
who disaggregate the different profiles to allocate power signals among
prosumers. This task can be performed under different logical rules.

However, this step is out of scope of the present work and the reader is
referred to (Mustika et al., 2022) for further information.

2.4. Assumptions

Often, prosumers have limited capability to predict their net demand
(non-flexible demand minus PV production). However, it could be
estimated on the basis of historical data or well-suited probability
functions. Nevertheless, it is noteworthy that the developed model
already considers forecast deviations. Actually, confidence intervals are
imposed on expected values of uncertainties, so that the considered
realization of uncertain parameters may lie any value within those in-
tervals. This is actually the essence of robust optimization. Indeed,
considering an expected value of uncertainties (which may not be esti-
mated with high accuracy), robust optimization seeks for the worst-case
realization of such uncertainty. Therefore, when running the developed
model, the result implicitly assumes forecast errors and yield a robust
solution taking into account their effects.

It is assumed that prosumers collaborate within the community in a
cooperative way, so that minimization of the collective bill is the unique
objective pursued by users. Nevertheless, others targets could be
included through multi-objective optimization (Tostado-Véliz et al.,
2022). For instance, system reliability could be considered by allocating
energy reserve through the community. Nevertheless, the focus of this
paper is on the model itself and the impact of alternative objectives will
be assessed in future works.

This way, prosumers do not pay/are not paid by P2P exchanges,
assuming that power sharing in the community always leads to mini-
mize the entire community cost (Orozco et al., 2022). On the other hand,
it is assumed that prosumers have some smart capability in order to
firstly forecast their own consumption/generation, and secondly to
schedule their own assets responding to signals received from the
aggregators. In this sense, the energy management of each building is
out of scope of the present paper, being the reader referred to the rich
existing literature (Tostado-Véliz et al., 2022; Shafie-Khah & Siano,
2018). In this regard, it is worth noting that home energy management is
not performed before sending information to aggregators. Instead, it is
assumed that this step is performed after receiving power signals from
aggregators once the community operator has decided the day-ahead
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scheduling plan for the community. Lastly, electrical network is not
considered owing to homes are assumed to be located near each other, as
customary in LECs (Vespermann et al., 2021; Orozco et al., 2022).

2.5. Aggregators modelling

Herein, the mathematical model of each aggregator described in
Section 2.1 is presented. Note that the models presented here involve
prosumers and aggregators actuation. In such a case, it is intended that
prosumers should prepare their own information in adequate format for
aggregators in order to preserve their privacy. Moreover, expected value
of uncertain parameters are denoted by tilde (). How these parameters
are treated is discussed in Section 2.3.2.

2.5.1. Net demand aggregator

The net demand aggregator receives daily net demand from pro-
sumers, who must forecast it in advance. Assuming that prosumers can
easily forecast weather parameters such as solar irradiance and tem-
perature, the simplified PV panel model (1) (Tostado-Véliz et al., 2022)
can be used to estimate the PV generation.

B =p (023t+0 0246, ™" &) ViesAteT D

where / and .7
On the other hand, p ¥ denotes the estimated PV potentlal for the j

prosumer at time t, b} i

are the set of prosumers in the LEC and time 1ntervals

is the installed PV peak power of the j prosumer,

T . ir,out
9, expresses the forecasted solar irradiance at time ¢ and Hj . stands for

the forecasted ambient temperature at time t.

Once the instantaneous PV potential of each prosumer is calculated
in (1), the net demand aggregator adds up all the profiles in (2) and
decomposes the aggregated demand into non-flexible demand and PV
generation in (3) and (4), respectively.
i)'Net — ~Net Vit c s (2)

at jit
jes

~PV ~Net ~Net (3)

Pot = ~Pay; vt par <0
pat _pm,Vt pNet>0 (4)

where negative demand is considered generation, the subscript a de-
notes aggregated values, ﬁfft is the net demand of the j™ prosumer at

time t whereas f)ﬁ_‘f indicates surplus generation and f)l:f denotes net
consumption in the community at time t. Thus, if there exists a surplus
generation in the community, p,, > 0, while pa; > 0 in case of net
consumption. Note that net demand is inherently uncertain in the model
above due to the uncertain weather parameters and non-flexible demand
(Vespermann et al., 2021).

2.5.2. Flexibility aggregator

Flexibility from prosumers is enabled by flexible operation of shift-
able and thermostatically-controlled appliances. In the former case,
assuming a fixed duty cycle (i.e. total number of hours that an appliance
must work daily), each prosumer can calculate the total energy
demanded by her shiftable appliances, as follows

thft Z Z DC;, 4hyfr )

JES e T

where the set Z; encompasses the shiftable appliances installed by the
] prosumer. DC]C denotes the duty cycle of the c” " shiftable appliance
installed by the j j prosumer (in hours), At is the time step and p _Sh’ft is the

rated power of the ¢ shiftable appliance installed by the j™ prosumer.
As seen, (5) basically calculates the total energy daily demanded by the
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shiftable appliances in the community and aggregate them to calculate

oS

7, which is sent to the flexibility aggregator.

The power scheduled for shiftable appliances is limited by their rated
power (in other words, an appliance cannot consume more power than
its rated value). Thus, assuming that each shiftable appliance is only
operable within some time slots (i.e. the preferable time windows @fhift),
the maximum instantaneous power assigned to shiftable devices is given
by

=S Y e 5 ©)

j&/ ce
te®, cﬁ"ﬂ

HVAC is devoted on maintaining the indoor temperature within
acceptable margins characterized by a set-point temperature OfVAC’Sp and

a dead-band term OfVAC'db, so that the instantaneous indoor temperature
should be kept within the range [HJHVAC‘S" - H;{VAC‘db,Gj-’ VAC® 4 QJH VAC'db].

Thus, assuming that the ambient temperature can be easily predicted,
each prosumer can estimate her total HVAC consumption according to
(7) and (8).

L AC,sp VAC,db
~Air,in efw + Hfl At (Nthzrlout HHVAC sp) V_] €7 At

it = VAC, Air
g;-l Sp Aj ir,in
e 7\t=1 ()
Alrm
~HVAC _ BAlrm Zte/ )r ‘ .
§ = copmac IS ®
J

The thermal characteristics of the building and air impact on the
functioning of HVAC devices. Such characteristics are normally char-
acterized by a series of parameters such as the mass of air or thermal
resistance of the building (see (Tostado-Véliz et al., 2022) for details). In
this work and for easing the notation, such parameters have been
gathered in the parameters A and B in the equations above.

In (7), each prosumer calculates the instantaneous deviation of the
inside temperature with respect to the HVAC setpoint. Intuitively, the
total energy required by HVAC to keep the thermal comfortability will
be a function of (7). Indeed, the HVAC will be requested to operate al-
ways the indoor temperature deviates from the established set-point,

activating the heating mode if the temperature falls below Q;IVAC'SP -

Q;IVAC‘db and the cooling mode otherwise.

Note that, since dead-bands are included to avoid a frequent opera-
tion of the HVAC units, Eq. (7) is certainly relaxed including a term
inversely proportional to the dead-band amplitude. This way, the total
energy that the jth prosumer will need to maintain thermal comfort can
be estimated in (8) and the value of ¢ HVAC is sent to the flexibility
aggregator.

Similarly, one can calculate the total energy demanded by EWH as a
function of the hot water consumption, as follows

WH.,sp
gf _
—Wh WH.s —At
At- <6~ — HE P) < i W.h)
~Wh J J VAC.sp WH.sp iR .
AG, = 7 ’ (HJH - ejE )-e + 159
J
WH, WH ~Wh W.e W
o () 0%,
I—,EWH
cEINtET 9
Wh
"TEWH ZIE 7 (10)
i T ,LEWH Cw.h

where @W'h is the maximum temperature of the EWH installed by the jth
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prosumer, while HfWH‘P stands for its set-point. In (9), C¥" stands for the

thermal capacity of hot water and R¥" denotes the thermal resistance of
the heater. On the other hand, ¥*"¥ indicates the total capacity of the

heater installed by the j prosumer (in gallons) and ?l“;h the expected hot
water consumption of the jm prosumer at time t. In line with
(Shafie-Khah & Siano, 2018), it is assumed that hot water consumed is
instantaneously filled with cold water, whose temperature is 0", while

nEWH stands for the efficiency of the heater. Note that (9) assumes that

indoor temperature is equal to Q?VAC “P or close to it, which is plausible
due to the action of HVAC.

Basically, (9) is a modified version of the equations in (Paterakis
et al., 2015), which model the thermal characteristics of the EWH.
Similar to (7), Eq. (9) estimates the deviation of the hot water temper-
ature with respect to the heater set-point, in order to estimate the total
energy demanded by these devices in (10) and sends this value to the
flexibility aggregator.

Once the energy required by shiftable appliances, HVAC and EWH
has been calculated using the models above, the total energy demanded
by flexible appliances can be easily calculated, as follows

Ej}_«" _ g}shifr +EJI_-IVAC +E}EWH; Vj ey an

Then, the flexibility aggregator simply adds up the energy signals of
each prosumer to determine the flexible energy required by the com-
munity in (12).

%-3 02
=4
On the other hand, each prosumer can determine the maximum
instantaneous power that can allocate to her own flexible devices by
(13), where the rated powers of HVAC and EWH (which are assumed to
be operable any time instant) are added to the value obtained in (6).

Pl =P + P+ pM e S Nte T (13)

Finally, the result of (13) is communicated to the flexibility aggre-
gator, who collects profiles to determine the maximum flexible power in
the community by (14).

Poc = Pivte s a4
Jjes
It is worth noting that (12) is actually uncertain due to the effect of
ambient temperature on the total energy demanded by thermostatically-
controlled appliances.

2.5.3. Storage aggregator

To determine the available storage capacity in the community, each
prosumer determines her storage bounds by (15) and (16), which ac-
count for both stationary and on-board batteries.

g =3 g+ > giiNje s teT (15)
jer %,
tE@
=) e Ze Njesnte T (16)
jes

t&()EV

where /% and " denote the rated capacity of stationary batteries (e.g.
Li-ion batteries) and EV batteries of the j” prosumer, while & and &V
give the minimum energy that must be stored in such systems to avoid
their rapid degradation.

Note that, while stationary batteries are available any time instant,
storage capacity provided by EVs is only accessible when vehicles are
plugged. In this regard, it is assumed that each prosumer has perfect
knowledge about her departure time and thus can define her own EV
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time window denoted by ®]EV. This is the reason why storage bounds EjEf
and gff are a function of time. Indeed, when the vehicle leaves the home,
its on-board batteries are no longer available and do not provide storage
capacity to the system.

On the other hand, the individual storage limits necessary for (15)
and (16) are easily calculable. Indeed, while the upper bound is given by
the nominal capacity of devices, the lower one can be determined
considering the depth-of-discharge characteristic of battery packs, as
follows

_ DOD}\ _
g=(1- 00 €;Vj €/ Ni€ {Bat;EV} a7

where DODJ‘: is the established depth-of-discharge of the ith
tionary batteries or EV) of the jth prosumer (in per unit).

Once each prosumer determines her storage limits by (15) and (16),
they are communicated to the storage aggregator, who adds up them, as
follows

L= E e = enVie T (18)

jes jes

unit (sta-

The storage aggregator requires the maximum power dispatchable to
storage units, similar to flexible appliances, which can be individually
determined considering rated characteristics, as follows

ph=>p"+ Z pivte 7 19
jer
te@f"
where f)fat and ﬁjEV are the rated power of stationary batteries and EV,

respectively.

Again, it is worth noting that (19) accounts for the limited avail-
ability of EVs. While the charging/discharging power of EVs is limited
by the capacity of chargers, the rated power of batteries can be deter-
mined as a function of their nominal capacity and the energy-to-power
ratio (Alsaidan et al., 2018), as said (20).

—=Bat

—Ba E' .
P = Pj;VJ s (20)

where e2P; is the nominal energy-to-power ratio of the batteries
installed by the j prosumer (in hours).

Finally, each prosumer communicates the value obtained in (19) to
the flexibility aggregator, who collects profiles in (21).

=) pivte T (1)

jer

2.6. Day-ahead scheduling model

Throughout this section, the robust day-ahead scheduling model for
the LEC described in Section 2.1 is derived. This task is assumed to be
performed at the third layer by the community coordinator. In this
sense, information from aggregators is treated as a parameter. This way,
the community coordinator only receives aggregated information while
individual profiles are not revealed, thus preserving the privacy of
prosumers.

The day-ahead scheduling is determined over a daily time horizon,
which is divided into |.77| time intervals of size At. Note that this
modelling allows us taking time intervals shorter than an hour, as usu-
ally. This adoption allows modelling fast power transitions, thus refining
the scheduling results.

2.6.1. Deterministic model
The deterministic day-ahead scheduling model in which uncertain
parameters take expected values reads as
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mlTl At Z { ﬂlmport Impont ﬂEqur[ pE:qwrt} (22a)
te. 7
Subject to:
p{mport _,'_pat +P§st .dch pfxpnn +pat +pat +pas .ch. Vt cT (22b)
0 <pi <yp,vte .7 nic {Import, Export} (220)
yimport +ytExport < ];Vt c.7 (22d)
0<plV<plivte T (22e)
& =Ar> ph, (226)
te7
0<pl <pi;VteT (22g)
SE SES self dch A ES.ch ES ES.dch ',,ES .Y T\t=1
B - + At pZ: —Par ;Vte T \t=

(22h)
el Ve T [t<|7] (220)
S < el <Esvte T (22))

EES
€5 = S, ol s g (22K)
a 1

0 < pBt < yBSipE. vt ¢ 7 Ai € {ch;dch} (22D
ytES,ch _‘_yfs.dch S l;Vt cT (221-[1)
ye{0,1vte 7 (22n)

. . . . I E:
where x is the set of continuous variables (i.e. x = [ptmpm, ptx’"m, j A8

g deh pESh pE eES] while y collects binary variables (i.e. y = { fmport

yport ESch yfs"kh] ). pi™ort and pPP" the power imported and exported

through the distribution network (trading with the local retailer),
respectively at time t, while pfY stands for the instantaneous PV gener-

ation in the community at time t. Likewise, pﬁi“h and pES " are the
power discharged and charged from storage systems at time t. On the

other hand, ££5 denotes the total energy stored in storage systems at time

t while binary variables indicate commitment statuses (e.g. y=>% =1
indicates that storage systems are on charging mode at time t).

The objective function (22a) comprises incomes/expenditures by
exchanging energy with the local retailer. The set of constraints (22b)-
(22n) describe a set of operational constraints that make the model
feasible in real cases. In particular, (22b) is the power balance in the
community, accounting for power exchanged with the retailer, local PV
generation, storage systems as well as flexible and non-flexible demand.
(22¢) limits the power that can be exchanged with the distribution
network through retailer trades, which is realistic assuming that power
flow through branches is normally limited by either physical or
contractual conditions, while (22d) avoids simultaneous imports and
exports. The actual PV generation is considered controllable (not dis-
patchable) but limited to forecasted values in (22e). On the other hand,
(22f) forces that energy required by the flexibility aggregator is fully
satisfied respecting the maximum dispatchable power given in (22g).

In (22h), the dynamics of the storage aggregator are described,
conceiving it as a cloud storage unit with estimated roundtrip efficiency
(Liu et al, 2019). In particular, (22h) includes the artificial

self-discharge rate sself deh calculated in (22i), which accounts for the
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storage capacity loss due to departures of EVs. Indeed, this term is
inserted in (22h) simulating an artificial energy consumption which
models the departure of an EV at time t. (22j) expresses the limits in
storage capacity, which are served as information by the storage
aggregator. Since (22h) is not defined at the beginning of the scheduling
horizon, the initial energy stored must be estimated. In this paper, this is
done by establishing the parameter ¢£°. Thus, the operator can adopt
conservative (low values of sgs) or optimistic (high values of ggs) stra-
tegies. Power dispatched through the storage operator is limited in (221),
taking into account the power limit informed by prosumers while
simultaneous charge and discharge is avoided by imposing (22m).
Finally, binary variables are described in (22n).

2.6.2. Uncertainty modelling

In robust optimization, a proper representation of the uncertainty set
is essential to obtain reliable results (Ruiz & Conejo, 2015; Giraldo et al.,
2019). In this paper, a polyhedral representation of the uncertainty set is
considered, which typically presents good properties. This representa-
tion assumes that the actual realization of an uncertain parameter will
lie within a given range. This modelling accepts adaptive settings by
introducing the so-called uncertainty budget 0 <T < 1. In particular,
the polyhedral representation defines the behavior of an uncertain
parameter d by the following expressions

de [g, a] :vd (23a)

|E—d\§F~<H—Q>;Vd, 0<r<i (23b)

Note that (23) becomes deterministic if ' = 0 forcing to d = E, whereas
the complete range (23a) is considered if I' = 1. This way, the com-
munity manager can adapt the level of robustness adopted, thus
becoming more risk-averse as the value of I" increases. This particular
modelling becomes the optimization tool adaptive, allowing to decide
on the risk-aware character of the community. The model (23) results
nonlinear due to the absolute value in (23b). however, this nonlinearity
is easily removable using the tricks described in (Ruiz & Conejo, 2015).
Thus, the model (23) can be applied to the present problem (22)
resulting in the set of additional constraints (24).

{NPV ARSI (24a)
&

P <pilivte T (24b)

Z{ANF Bnj<r ~;{ﬁﬁ’f B} (24¢)

E,— 8, <T-(eh-%,) (24d)

In (24), three sources of uncertainties are considered. Firstly, the PV
generation due to its dependence with weather parameters. Secondly,
the non-flexible demand as it depends on unpredictable human behav-
iour. Thirdly, the energy demanded by flexible consumers as it depends
on the ambient temperature.

2.6.3. Robust bi-level problem
The robust counterpart of (22) casts as a bi-level framework which
incorporates the uncertainty modelling (24), as follows

. mport Import __ _Export Export
g, minAty {a p — ag T pEr ) (252)
“Wes " e
Subject to:
PP+ Py + Pt =PI+ By P P VEE T (25D)
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g, =AtY p, (25¢)
te.7
(22¢)-(22n) (25d)
Subject to:
(24a)-(24d) (25e)
Pl <piivte T (250)

Firstly, it is worth noting that uncertain parameters in (22) were

replaced by uncertain variables (denoted by tilde (\)) in (25). This
adoption allows considering uncertain parameters as variables, allowing
them to vary within given intervals according to (24). (25) stands for a
bi-level problem in which the inner problem is similar to (22), whereas
the outer problem (max problem) seeks for the worst-case realization of
uncertainties. Indeed, the outer problem takes the uncertain variables as
decision space and seeks for maximizing the collective bill. It gives
robust results assuming pessimistic realization of uncertainties. To this
end, constraints (24) are incorporated in (25e). Declaring the uncertain
parameters as variables require to replace the constraints (22b) and
(22f) by (25b) and (25¢), respectively, while the rest of constraints of the
problem (22) are collected in (25d). On the other hand, (25f) is imposed
to ensure that PV generation does not exceed the calculated PV
potential.

This way, the problem (25) seeks the optimal scheduling plan for the
LEC managing the variables x and y at the inner level, while the outer
problem decides on the worst-case realization of uncertainties under the
polyhedral representation given in (24).

Solving bi-level optimization problems is NP-hard (Ruiz & Conejo,
2015), thus supposing a challenge for conventional solvers. To overcome
this issue, the inner problem can be replaced by its Karush Kuhn Tucker
(KKT) conditions and integrated within the outer one to convert the
problem into a solvable single-level structure. However, only LP for-
mulations are reducible to their KKT conditions, which is not possible for
(25) due to the presence of binary variables. In the following
sub-section, binary variables the presented problem are relaxed under
plausible assumptions.

2.6.4. Relaxing binary variables

Binary variables appear in (22) to model commitment statuses. In
particular, these variables model the importing/exporting statuses of the
LEC as well as the charging/discharging processes of batteries.
Regarding batteries, different articles have already demonstrated that
commitment statuses can be removed (Sarfarazi et al., 2023), since the
cost minimization sense of the problem, together with a battery effi-
ciency lower than 100 %, makes uneconomical the simultaneous
charging and discharging of storage systems. Thus, this operational
option would be likely discarded by the solver because its
sub-optimality. One can easily check that these conditions meet in the
presented problem and therefore the commitment statuses of batteries
can be removed without any problem.

Regarding the importing/exporting status of the LEC, the same
principle can be applied. In this case, it is assumed that exporting prices
are always lower than purchasing ones. Note that this is a plausible
assumption in power systems, where retailers typically offer lower
selling prices in comparison with purchasing ones (e.g. see (Endesa,
2023)).

Keeping the above in mind, the binary variables can be relaxed and
thus they vanish from the problem, resulting in the following framework

max minAt.Z{n{mpon.pimpon _ 6.n{mpon.pflxpon}

~PV NF
Pug o ¢ g X tes

(26a)

Subject to:
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pl <PVt € .7 Ai € {Import; Export} (26b)
pEE< BVt € .7 Ai € {ch;dch} (26¢)
(22e), (22g)-(22k), (25b), (25¢) (26d)
Subject to:
(242)-(244), (250) (26€)

In (26a), the selling price was replaced by 5-7™"", with § < 1, thus
ensuring that selling prices are lower than purchasing ones. On the other
hand, (26b)-(26d) are the original constraints of (25) but omitting bi-
nary variables. Lastly, (26e) encompasses the uncertainty-related con-
straints. One can easily check that the inner problem in (26b)-(26d) is LP
since binary variables vanished, and therefore can be replaced by its
KKT conditions, which are detailed in the following sub-section.

2.6.5. KKT conditions of (26b)-(26d)
KKT conditions of (26b)-(26d) are given below

0

W = At- ﬂ,Import + /1 (25b) ﬂ(26b),lmport + ﬁ526b).lmport _ O;Vt cT (273.)
0z — —At~§-ﬂlmport _ /1(2517) ”(Zﬁb) Export 47 ﬂ (26b) Export _ 0 Vte T
apfxport t t
(27b)
0z _
= 22— y(20e) 1 A% =0Vt e T (27¢)
at
9L (25b) @2) _ (229  7(2%)
= AP 4 AeAP) — %) L g — 0:ve e T (27d)
at
07
—san = A = Ay AP — O L O —0vee 7 (27¢)
t
0z 2220
o =A%) 4 Ap. ;7 H£26c).dch RN _ gy e 5 @76
0z ; _
5~ = AP 30—y 4 g = 0wt e T\t=1 (27g)
0z . ;
s = A =+ =0 (27h)
al
0 < p L' > 0;vt € .7 Ai € {Import; Export} (28a)
0 <p' —plLa®P" > 0;Vt € 7 Ai € {Import; Export} (28b)
0 <phyLu® >0vte 7 (28¢)
0 < Poy —PhLm™) > 03Vt € (28d)
0<pj Lu* >0;vte 7 (28e)
—] —(2 load
0<ph, —pL La™ >0vte .7 (28f)
0 <pi' L9t > 0;ve € .7 Ai € {ch;dch} (28g)
0 <PBS —pBila®' > 0;vt € 7 i€ {ch;dch} (28h)
0<ef —eri Ly >0vee 7 (281)
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0<&s —S1p >0vte T (28))

where | stands for complementarity while 1 and y are the dual variables
of constraints in (22). In particular, the A’s link with equality constraints
while the u’s are associated to inequality constraints. It is worth noting
that inequality constraints in (22) are actually two constraints in most
cases (e.g. (22¢) can be decomposed into 0 < p and p{ < y!-p'). For these
cases, the y’s are linked to lower-bound constraints while the z’s link
with upper-bound constraints. Finally, superscripts in dual variables

point out the constraint associated to (e.g. Aizzh) is linked to the
constraint (22h)).

KKT conditions are formed by stationary (27) and complementarity
(28) conditions. Stationary conditions (27) are associated to equality
constraints and calculated by equalling to zero the Lagrangian function
() associated to (26). On the other hand, (28) represents the
complementarity conditions arisen from the inequality constraints in
(26). For more details about how KKT conditions are derived, the reader
is referred to the seminars in (Kazempour, 2024).

2.6.6. Final single-level robust optimization model

After replacing the inner problem (26b)-(26d) by its KKT conditions
(27) and (28), it can be passed to the outer one resulting in the following
single-level optimization framework

P Dt A e o)
putect 7
Subject to:
(22h), (25b), (25c¢) (29b)
(27a)-(27h) (29¢)
(28a)-(28h) (29d)
(26e) (29¢)
x—x<zM
(o
Xx—x<zM
{ﬂ<a—@M (29)
A: free (29h)
pE=0 (291)
z.z€{0,1} (29))

where 4, p and g collect the 4’s, y’s and the ii’s, respectively, while z and
Z are binary variables introduced to linearize complementarity
constraints.

In the problem above, (29b) are the equality constraints of the
original problem which ensure its feasibility, while (29¢) and (29d)
collect the KKT conditions (27) and (28), respectively. On the other
hand, (29e) stands for the uncertainty modelling (24). Note that (29f)
and (29g) linearize the complementarity constraints using the disjunc-
tive big-M method, as described in (Tostado-Véliz et al., 2023c). Lastly,
(29h) declares the 1’s free variables, the u’s are positive by (29i) and the
z’s are binary by (29j). It is worth noting that (29) is a MILP, for which a
variety of commercial solvers is available.

2.7. Comparison with other privacy-preserving techniques

This paper proposes a novel management arrangement for LECs
based on aggregating information from prosumers with the aim of
limiting information-sharing. Nevertheless, it is noteworthy that other
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privacy-preserving techniques have been studied in the literature. Two
of the most well-known are the alternating direction method of multi-
pliers (Orozco et al.,, 2022) and the differentiate privacy approach
(Dvorkin & Botterud, 2023). However, these two techniques solve the
optimization model iteratively and may result in computationally
intractability issues (Orozco et al., 2022). In this regard, the proposed
methodology does not perform as an iterative algorithm and, thereby,
the solution reachability is guaranteed with reasonable computational
burden.

2.8. Case study

This section presents a case study with various numerical results in
order to validate the developed aggregators models as well as exploring
the role of each agent in LECs and how they are affected by the level of
robustness. To this end, an experimental setup is constructed by coding
the mathematical formulation presented in this paper in Matlab R2021a.
The different optimization problems were solved using Gurobi (Gurobi
Optimization L.L.C, 2021), which offers free academia licenses
currently. All the simulations were run on an Intel® Core™ i7-10700 K
with 32.00 GB RAM over a 24 h time horizon with 15 min time reso-
lution (96 time slots in total).

The results are presented for different number of prosumers, which
results in different LEC sizes. The dataset for each prosumer regarding
controllable appliances, PV panels, etc.; was constructed randomly
taking conventional data for this kind of installations (see Appendix).
Nevertheless, weather parameters were considered identical for all the
prosumers within the community due to they are expected to be located
near each other. Thus, the expected solar irradiance and outdoor tem-
perature are plotted in Fig. 2 (upper) and respond to real data at Madrid
(Spain) in 2016 (Endesa, 2023). Using these data, the expected PV
generation can be calculated using a suitable PV panel model
(Tostado-Veliz et al., 2022). As seen, these data correspond to hourly
profiles over a daily basis and align with a typical day over the entire
dataset. Note that the present paper focuses on day-ahead scheduling
and therefore longer time horizons (monthly, yearly) are not relevant.
Moreover, in order to provide illustrative results, weather parameters
correspond to a day with significant PV production. This assumption
allows to analyse the effect of renewable generators properly and thus
validating the new tool (note that PV generation is actually one of the
sources of uncertainty considered).

It is worth mentioning that days with less or almost null PV gener-
ation occur over a year (especially in winter). However, Nevertheless, as
commented before, this paper focuses on day-ahead scheduling, which is
performed daily and for which only the 24-h ahead are of interest. In
addition, presenting results for each day of the year is unaffordable for a
scientific paper and does not contribute with any additional
information.

It is assumed that a local retailer agrees with the community a three-
period time-of-use tariff such as that showed in Fig. 2 (bottom), which
corresponds with the ‘One Luz 3 Periodos’ currently offered by Endesa
(European Comission, 2023). Regarding selling prices, § = 0.9 was
taken, which is considered reasonable (Javadi et al., 2020) and the
retailer is assumed to limit at 10 kW the exchangeable power with the
distribution network for each prosumer partaking in the community.
Lastly, intervals for uncertain parameters were constructed by taking 20
% margin over expected profiles, if other is not specified.

3. Results and discussion
3.1. Aggregated results

As commented previously, the aggregators constitute the second
layer of the proposed LEC scheme. They serve as intermediate agents

between the community coordinator and prosumers, avoiding to share
with the former confidential information. In this sub-section, several
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Fig. 2. Expected weather parameters (upper) and retailer purchasing energy price (bottom).

indicative results are presented, which serve to validate the aggregators
modelling presented in Section 2.2. Hence, the results presented in this
section do not consider the effect of uncertainties, which will be
explored in sub-sequent sections.

Fig. 3 plots the total non-flexible demand, PV potential and flexible
demand for different number of prosumers. As expected, these in-
dicators grow with the number of prosumers almost linearly, which
indicates that the developed models represent fairly the prosumers’
behaviour. Likewise, Fig. 4 plots the available storage margins. As seen
in this figure, great storage capability is available at night due to the
presence of EVs, which are still plugged at home. However, storage
capability suddenly decreases at early morning, when most of vehicles
depart. For the rest of the day, only stationary batteries are available to
enable storage capability.

On the other hand, Fig. 5 shows instantaneous net demand as well as
schedulable flexible and storage power. Regarding net demand, it is
clear that surplus energy is available at midday and afternoon, because
high solar irradiance during these periods. At this time, the LEC becomes
a net generator, being possible to share energy among prosumers and
even sell energy to the grid. In contrast, prosumers demand energy
during night to cover their own demand. Flexible demand is higher at
midday and afternoon, assuming that most of prosumers are keen to
schedule their controllable appliances at these time slots. Nevertheless,
these devices can be shifted to other time instants, for convenience.
Lastly, more power can be dispatched for storage systems at night, due to
the presence of EVs, as previously mentioned.

3.2. Exploring the effect of adaptive robust scheduling

3.2.1. Impact on uncertain parameters

The possibility of setting the so-called uncertainty budget (I') gives
adaptability to the proposed robust day-ahead scheduling model. To
explore the effect of this parameter on uncertainties, Fig. 6 shows the
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Fig. 3. Aggregated energies for different number of prosumers.
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Fig. 4. Available storage margins for different number of prosumers.

assumed value of uncertain parameters for different levels of robustness.
As expected, the different uncertainties evolve in a pessimistic way with
the value of the uncertainty budget. Indeed, whereas demand-related
parameters grow, the considered PV potential decrease.

The conditions drawn in Fig. 6 lead to a more stressful operability
ambient, in which more demand has to be covered with limited
renewable generation. To confirm this point, Fig. 7 plots the total energy
imported by the studied LEC for different values of the uncertainty
budget. As seen, the total energy imported increases with the value of T,
as expected. In Fig. 7, it can be observed that the total energy imported
increases with the number of prosumers, which further validates the
developed model. In addition, the effect of the uncertainty budget on the
imported energy is clearer as more prosumers partake in the community.
Lastly, it is worth noting that more energy is imported in case of
considering that storage units are few charged at the beginning of the
time horizon (¢£° = 0.3). This result is logic since, in case of being fully
charged, storage systems can be leveraged to partially cover the com-
munity demand.

3.2.2. Impact on the collective bill

The stressful operating conditions described in the previous section
should have a direct impact on the collective electricity bill. Indeed,
Fig. 8 shows that the collective bill notably increases with the uncer-
tainty budget. Actually, this fact is more noticeable as more prosumers
partake in the community. In particular, the collective bill increased by
60 and 75 % with 5 and 25 prosumers, respectively. In Fig. 8 one can
easily check that the collective expenditures were greater in case of
B = 0.3, which was expected due to the unfavorable conditions
observed in this scenario, as previously discussed. More specifically, the
collective bill was approximately a 22 % higher in this scenario
compared with 55 = 1.
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The results in Fig. 8 show the monetary balance between the ex-
penditures/incomes from exchanging energy with the network. Actu-
ally, selling energy is expected to be a primary activity in LECs, where
eventual surplus renewable energy may help to alleviate the economy of
prosumers. To get a better view at this point, Fig. 9 reports the monetary
expenditures/incomes from purchasing/selling energy with the
network. As observed, the cost of purchasing energy follows a similar
trend to the collective bill, pointing out that this activity rules the overall
cost of the community. However, incomes from exporting energy are not
marginal and suppose an important monetary benefit for the entire
community. Note that monetary results are more favourable with €55
1, due to the circumstances already mentioned. It is interesting to note
that the incomes from selling energy increases with the number of
prosumers, as expected. However, this index seems independent of the
uncertainty budget. This surprising result will be further discussed in the
following sub-section.

3.2.3. Impact of flexible demands

Next, we briefly analyse the impact of flexible loads on the collective
bill. To this end, a case without flexibility is compared to the benchmark
scenario. In the scenario without flexibility, it is assumed that flexible
loads must satisfy their objective demand completely. Fig. 10 compares
these two cases. As seen, neglecting flexible loads has a dramatic impact
on the economy of the community, incrementing the collective bill by 70
%, approximately. It is noteworthy that, in case of neglecting flexibility,
the collective bill becomes very sensitive to the number of prosumers.

3.2.4. Impact of confidence intervals

The developed model allows setting the confidence intervals
imposed on expected uncertainties so that the considered realization
may vary within them. Thereby, confidence intervals may measure the
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Fig. 9. Monetary expenditures from purchasing energy (top) and incomes from
selling energy (bottom) for different levels of robustness and number
of prosumers.
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Fig. 11. Value of the collective bill with 25 prosumers for different confi-
dence intervals.

degree of confidence on expected uncertainties. Thus, higher confidence
intervals may denote few confidences on forecasting capabilities of
agents. The impact of this parameter is studied on Fig. 11 (for simplicity,
only results for 25 prosumers are plotted), where the collective bill for
different degree of confidence is plotted. As seen, considering wider
intervals lead to worse-case realization of uncertainties, which in turn
has a negative impact on the collective bill. As expected, the confidence
interval has no influence when I' = 0, as the problem becomes
deterministic.

3.2.5. Scheduling behaviour

To better understand some of the previous results, the scheduling
behaviour of the community is now analysed (for the sake of simplicity,
only results with ¢£5 = 1 are shown in this section as similar conclusions
can be drawn with ¢£5 = 0.3). First, the net demand is shown in Fig. 12
for two extreme values of the uncertainty budget. In the deterministic
case (' = 0), the net demand draws a logical behaviour, showing
exportable power at midday and afternoon because high PV potential.
However, in case of ' = 0.5, the exported power during peak PV periods
is limited, as expected, but more surprisingly a night exportable period
appears at 5:00 h This unexpected behaviour is propitiated by storage
assets, which enable exporting energy through discharging process.
Indeed, at this time most of EVs are plugged at home and therefore can
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Fig. 12. Net demand of the LEC under study for different number of prosumers.
In this figure, negative values indicate exported power.

be leveraged to export energy to the network and thus increasing the
exportable capacity of the community. This same behaviour, although
much more limited, is observed at 22:00 h, in this case through dis-
charging stationary batteries.

Results in Fig. 12 reveal that under deterministic conditions the
scheduling behaviour of the community is ruled by PV units, which
ensure the most economic operation of the community. In contrast,
when the operating strategy becomes risk-averse, limited PV generation
is assumed and therefore the importance of PV units turns marginal.
Under these unfavourable conditions, storage systems assume the leader
role and the scheduling principle becomes oriented to these devices. To
better illustrate this point, Fig. 13 shows the instantaneous aggregated
energy stored in the LEC. As seen, in case of deterministic conditions,
storage systems are partially discharged during night, when EVs are
plugged, being practically ignored for the rest of the day. In contrast,
clear discharging periods can be observed throughout the day in case of
I' = 0.5, thus showing that storage units (both stationary and on-board
batteries) are much more profusely exploited under risk-averse
conditions.

When storage systems start ruling the scheduling plan for the com-
munity, the rest of agents respond to them solidary. This is clearly
observed in Fig. 14, where the dispatched power to the flexibility
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aggregator is plotted. Under deterministic conditions, the community
dispatches from 20:00 h, principally. At these time slots, net demand and
energy price are low, thus supposing favourable conditions for sched-
uling flexible loads, while periods with high PV generation are leveraged
for selling energy, as shown in Fig. 12. In contrast, most of the dis-
patched power is shifted to the beginning of the time horizon with ' =
0.5. In this case, high storage capability during night propitiates more
favourable conditions for flexibility dispatching.

3.3. Scalability

Lastly, Fig. 15 compares the total computational time for different
community sizes, with the objective of validating the developed tool in
large-scale communities or cities. To this end, the developed mathe-
matical model has been run for up to 1000 prosumers, whose features
have been set as in previous simulations. As seen, the computational
burden increases linearly, which demonstrates that the developed model
scales well with the number of prosumers.

3.4. Limitations

The developed model presents few limitations at mathematical level,
as most frequent devices and functionalities in LECs have been devel-
oped. In this regard, storage (stationary and EVs), renewable generators,
flexible demand and thermostatically-controlled appliances were
included in the model and therefore the tool developed in this paper is
considered functional and applicable to real cases. In this sense, the
developed tool only presents assumable simplifications such as lineari-
zation of the thermal model of the building for modelling HVAC and
EWH. In this sense, such simplification is justified in (Wang et al., 2013),
demonstrating that the results obtained are perfectly comparable with
those obtained with comprehensive models.

On the other hand, relaxing binary variables as explained in Section
2.3.4 requires that exporting prices were lower than importing ones.
Although this assumption is typically observed in real cases, the devel-
oped model may fail if exporting and importing prices are equal.
Nevertheless, the preliminary results obtained by the authors under such
situation demonstrate that even so the developed mathematical model
work well, as simultaneous imports and exports are normally naturally-
discarded by the optimization solver.

The developed tool was tested in this work on a benchmark case
study comprising real data. Nevertheless, its application in real in-
stallations should be studied in future works.
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Fig. 13. Instantaneous energy aggregator response for different number of prosumers.
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Fig. 15. Total computational time for different community sizes.
4. Conclusions and future works

A novel LEC structure based on multiple aggregators has been pre-
sented in this work. This new paradigm stablishes a three-layer structure
for energy communities wherein prosumers partake at first layer, while
the coordinator takes decision at the third layer. The main merit of the
proposed community structure is that a group of aggregators partake at
the second layer, serving as a barrier between the coordinator and
prosumers thus preserving their privacy. To this end, main features of
prosumers are aggregated so that the coordinator only receives aggre-
gated information instead of individual data.

A robust day-ahead scheduling model for the proposed community
structure has been also proposed. The new model is based on. To this
end, source of uncertainties in energy communities were modelled as
polyhedral uncertainty sets and the overall optimization model was
formulated as a bi-level structure that can be reduced to a single-level
framework, and is formulated as a MILP, being in consequence solv-
able by a variety of off-the-shelf solvers.

A benchmark case study was conducted to validate the new tool.
Firstly, the effect of aggregation was highlighted, validating the new
aggregators’ models developed in this paper. The rest of results focused
on scheduling, economic and energy results. It was shown that the

Appendix - Prosumers data

proposed robust methodology worked well in the presented case study,
assuming pessimistic evolution of uncertainties following the value of
the so-called uncertainty level. Other results showed the impact of
robustness on economic indicators. In particular, the impact of adaptive
robustness was analysed, showing that collective bill can be incre-
mented by 75 % if risk-averse conditions are assumed. Other relevant
results and particular behaviour have been also identified, for example,
it was highlighted that the scheduling plan for the community is ruled by
storage assets rather than PV generators when pessimistic values of
uncertainties are considered.

In future research, the developed mathematical modelling can be
adapted to other energy structures wherein privacy concerns, such as
microgrids and distribution networks. Moreover, the developed robust
model can be further applied to smart grids. Future works should be also
focused on further analysing the role of storage assets in LECs and
propose novel tools to exploit optimally this kind of devices.
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Below, the ranges considered for constructing the dataset of each prosumer in the case study of Section 2.4 are reported.

e PV peak power € [1, 4] kW
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e Number of controllable appliances € [0, 3]

e Duty cycle of each controllable appliance € [2, 6] hours

e Rated power of each controllable appliance € [0.5, 2] kW
e Time window of each controllable appliance € [2: 00 h, 23 : 45 h]
e Battery capacity € [1, 5] kWh

e Battery depth-of-discharge € [40, 80] %

e Battery rated power < (0.6, 3.3] kW

e Battery efficiency =95 %

e HVAC rated power € [1.5, 2] kW

HVAC setpoint € [23, 25] °C

HVAC dead-band € [0.5, 1.5] °C

HVAC coefficient-of-performance € [1, 2]

o AT c 4.8, 8

o BT € [0.42, 0.7)

EV total capacity € [10, 22] kWh

EV initial state-of-charge € [0.4, 0.8] of the total capacity
EV total capacity € [10, 22] kWh

EV charging rated power = 3 kW

EV departure time € [6 : 00 h, 9 : 30 h]

Sustainable Cities and Society 116 (2024) 105878

It is worth noting that non-flexible demand for each prosumer was taken randomly from the dataset available in (Singh, 2023), whose daily hourly
data is plotted in Fig. A1 (upper). Due to this dataset is based on real-life data, we consider that net demand of prosumers approximates well to real-life
typical behaviour. On the other hand, hot water consumption was set randomly from conventional consumption patterns plotted in Fig. A1 (bottom),
while data regarding EWHs were taken from Tostado-Véliz et al. (2023d).

=

Power [kW]
N

Hot water
consumption [liters]

M

0 1 1
2:00 7:00

Data availability
Data will be made available on request.
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