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1 Executive Summary 

This deliverable presents a comprehensive methodology to estimate uncertainties in gridded, 
regional primary PM emissions. The uncertainties data consist initially of country-level 
emission uncertainties, gridded uncertainties related to the spatial distribution, and spatial 
correlation lengths. These estimates are based on a wide range of data at the highest level of 
detail possible (generally per sub-sector and fuel) and aggregated to the GNFR sector using 
error propagation. We present an overview of the data that is used and how everything is 
combined. The results show that significant uncertainties exist in primary PM emissions, both 
at the national scale and in the spatial distribution. 

Next, we demonstrate an optimization procedure, which is used to create consistency between 
country-level and gridded uncertainties. The results of the optimization procedure are scaled 
spatial correlation lengths and gridded uncertainties, which match with the country-level 
uncertainties. In this way, the gridded uncertainties can be used directly instead of having to 
combine them with country-level data. This is more user-friendly, but also increases 
consistency and statistical soundness. 

Finally, we look into the uncertainty related to the PM split into different PM components. 
Because the PM split consists of fractions, which for each sector and country should sum up 
to one, there are additional constraints to consider. The results show a strong impact of 
methodological choices and whether or not we consider error correlations to exist between 
the different components. We conclude more effort is needed to get a handle on the PM 
component uncertainties and error correlations. 

The data provided in this deliverable are gridded uncertainties of primary PM (PM2.5 and 
PM10), NMVOC, SOX, NOX and NH3 and spatial correlation lengths per sector, which match 
the CAMS-REG-AP_v6_1_Ref2_v2_1_emissions_year2019. We also provide aggregated 
uncertainties per country and sector. These data are intended for use in CAMEO WP6.   
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2 Introduction 

2.1 Background 

Monitoring the composition of the atmosphere is a key objective of the European Union’s 
flagship Space programme Copernicus, with the Copernicus Atmosphere Monitoring Service 
(CAMS) providing free and continuous data and information on atmospheric composition.  

For monitoring atmospheric composition a combination of data and models is used to provide 
a starting point for the state of the atmosphere: fluxes of atmospheric pollutants (both 
anthropogenic and biogenic), atmospheric transport processes, and atmospheric 
concentrations of air pollutants. All this information is combined and weighted to optimize 
knowledge on air pollution and emissions. 

The uncertainty in the data products and models can have a significant impact on the final 
data and information that is provided through CAMS, and as such on policy making. Therefore, 
an important challenge is to quantify the uncertainties related to all the data products and 
models in CAMS. 

Emission uncertainties are an essential input for the optimization of emissions through inverse 
modelling, but also, for example, to better understand their impact on source-receptor 
calculations. One difficulty is the complexity of the data sets and the existence of error 
correlations. Therefore, a methodology needs to be developed to accurately and consistently 
describe uncertainties and error correlations in gridded emissions data. 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

The objective of this deliverable is provide regional uncertainties in gridded primary PM 
emission data to support work done in WP6 on source-receptor calculations. 

2.2.2 Work performed in this deliverable 

In this deliverable the work as planned in the Description of Action (DoA, WP5 T5.3.1) was 
performed, adding to the milestone M10 extra sub-sectors and an update to the data to 
improve consistency. In addition to primary PM, data is also provided for NMVOC, SOX, NOX 
and NH3 as requested by the users. Finally, we have performed a first analysis of the 
uncertainties and error correlations in the PM split into different PM components. 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

2.2.4 CAMEO Project Partners: 

 

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER 
FORECASTS 

Met Norway METEOROLOGISK INSTITUTT 

BSC BARCELONA SUPERCOMPUTING CENTER-CENTRO 
NACIONAL DE SUPERCOMPUTACION 

KNMI KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT-
KNMi 

SMHI SVERIGES METEOROLOGISKA OCH HYDROLOGISKA 
INSTITUT 

BIRA-IASB INSTITUT ROYAL D'AERONOMIE SPATIALEDE 
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BELGIQUE 

HYGEOS HYGEOS SARL 

FMI ILMATIETEEN LAITOS 

DLR DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV 

ARMINES ASSOCIATION POUR LA RECHERCHE ET LE 
DEVELOPPEMENT DES METHODES ET PROCESSUS 
INDUSTRIELS 

CNRS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 
CNRS 

GRASP-SAS GENERALIZED RETRIEVAL OF ATMOSPHERE AND 
SURFACE PROPERTIES EN ABREGE GRASP 

CU UNIVERZITA KARLOVA 

CEA COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX 
ENERGIES ALTERNATIVES 

MF METEO-FRANCE 

TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST 
NATUURWETENSCHAPPELIJK ONDERZOEK TNO 

INERIS INSTITUT NATIONAL DE L ENVIRONNEMENT INDUSTRIEL 
ET DES RISQUES - INERIS 

IOS-PIB INSTYTUT OCHRONY SRODOWISKA - PANSTWOWY 
INSTYTUT BADAWCZY 

FZJ FORSCHUNGSZENTRUM JULICH GMBH 

AU AARHUS UNIVERSITET 

ENEA AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, 
L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE 
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3 Methods 

3.1 Emission uncertainties 

The baseline emission inventory used in this work is the CAMS-REG-
AP_v6_1_Ref2_v2_1_emissions_year2019, which provides emissions of air pollutants for the 
European domain for the year 2019. The dataset was made as part of the CAMS emissions 
service and is an updated version of the inventory described in Kuenen et al. (2022). Official 
country reported emissions are used as a starting point for this inventory and spatially 
distributed using a range of spatial data sets. This inventory furthermore includes a specific 
science-based inventory for PM emissions from small combustion, instead of the reported 
emission data, which fully accounts for condensable organics in PM emissions (Simpson et 
al., 2022). 

Uncertainties in the emission inventory occur from all input data. The country-level emission 
uncertainties can be calculated from uncertainties in the activity data and emission factors, 
whereas uncertainties in the gridding depend on the spatial proxies. We also calculate spatial 
error correlation lengths. A detailed description of the methodology is presented elsewhere 
(Super et al., 2024), but a summary is given below. 

The country-level data and the spatial data are from independent sources and can therefore 
be inconsistent. However, the gridded uncertainties should ideally add up to the country-level 
uncertainties. For this purpose, we have developed an optimization methodology to ensure 
full consistency between the uncertainties from the different data sources. 

3.1.1 Country-level emission uncertainties 

Country-level emissions are based on activity data and emission factors. For greenhouse 
gases uncertainties in both parameters are reported in the countries’ NIR reports, submitted 
annually to UNFCCC (UNFCCC, 2021). We use the data submitted in 2020 and extract 
country-specific activity data uncertainties per sub-sector/fuel (the level of detail differs per 
country). We assume that the activity data, at least for fuel combustion, is shared between all 
pollutants and greenhouse gases and therefore we create consistency when using these data 
for all species. A gap filling procedure is applied to ensure all sub-sectors/fuels are covered 
for all countries (Super et al., 2024). Additionally, we add non-combustion related 
uncertainties. For example, for road and brake wear we assume a similar uncertainty as for 
road transport fuel combustion, as both depend largely on the vehicle kilometres per vehicle 
type. 

For the uncertainty in emission factors for air pollutants we make use of the EMEP/EEA air 
pollutant emission inventory guidebook 2019 (European Environment Agency, 2019). The 
guidebook provides emission factor ranges applicable mostly for Europe, so these ranges are 
applied to all countries in the domain. We use as much as possible Tier 1 (sub-sector) 
estimates per fuel, but sometimes a generic uncertainty range is assumed (based on a quality 
rating), or we select a dominant Tier 2 process for which an uncertainty range is provided, or 
we take an average of all Tier 2 processes if similar ranges apply. 

The uncertainties (relative standard deviations) in activity data (AD) and emission factors (EF) 
are combined to get the uncertainty in emissions (E): 

 
𝜎𝐸

𝐸
= √(

𝜎𝐴𝐷

𝐴𝐷
)

2
+ (

𝜎𝐸𝐹

𝐸𝐹
)

2
.        (1) 

The emission uncertainties (absolute standard deviations) for sub-sectors (sub) can be 
propagated to get the uncertainty at the GNFR (agg) level (see Table 1 for an overview of 
GNFR sectors): 

 𝜎𝐸,𝑎𝑔𝑔 = √∑ 𝜎𝐸,𝑠𝑢𝑏,𝑠
2𝑛

𝑠=1 .        (2) 
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Table 1. Overview of GNFR sectors in the CAMS-REG emission inventory. 

GNFR sector Sector name 

A Public Power 

B Industry 

C Other Stationary Combustion 

D Fugitives 

E Solvents 

F1 Road Transport - gasoline 

F2 Road Transport - diesel 

F3 Road Transport - LPG 

F4 Road Transport – non-exhaust 

G Shipping 

H Aviation 

I Off-Road 

J Waste 

K Agriculture Livestock 

L Agriculture Other 

 

3.1.2 Gridded emission uncertainties 

The country-level emissions (at the sub-sector level) are spatially distributed using ~40 
different proxy maps. These proxy maps are based on spatial datasets, such as population 
density maps. Uncertainties in the proxy values are based on 1) metadata of underlying data 
or 2) literature in which the underlying data were compared to other datasets.  

In addition, we try to define a representativeness error, which describes how well the proxy 
describes the spatial distribution of emissions of a certain sector. For road transport the 
location of roads is relatively well-defined, so this representativeness error is low. But 
population density is sometimes used as a default proxy when better data is lacking and in 
that case the representativeness error could be really large. 

The two sources of error are combined following the equation: 

 𝜎𝑡𝑜𝑡𝑎𝑙 = √𝜎𝑝𝑟𝑜𝑥𝑦 𝑣𝑎𝑙𝑢𝑒
2 + 𝜎𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠

2      (3) 

This means that there is one uncertainty value per combination of proxy map and sub-sector, 
which applies to all grid cells. However, by propagating these errors to the GNFR sector, taking 
into account the contribution of each sub-sector, we get spatially explicit uncertainties. 

3.1.3 Spatial error correlation length 

The spatial representativeness error causes gridded uncertainties to be correlated. For 
example, we know that heating demand per capita is lower in densely populated areas. If we 
do not correctly represent this relationship we make a similar error in areas with similar 
population density. So grid cells in a city centre have a correlated error. This correlation usually 
decreases with distance, following an exponential decay (see Eq. 5). 

We estimate this correlation length for each proxy map using semi-variograms (Super et al., 
2024).  A semi-variogram describes the spatial autocorrelation as a function of distance, i.e., 
the degree of variability between points located at a certain distance from each other. In the 
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case of the proxy maps points that are closer together are expected to be more similar, and 
therefore their errors are more strongly correlated. 

The spatial correlation length is an important parameter, because it reduces the degree of 
freedom of the system. If not all grid cells are completely independent from each other we can 
use one observation to optimize multiple parameters, instead of just one. It also affects the 
summation of the gridded uncertainties to the country-level, which plays an important role in 
the optimization procedure described next. 

3.1.4 Optimization of the covariance matrix 

In the previous dataset the gridded uncertainties and country-level uncertainties were provided 
separately and they were not necessarily consistent. We consider the country-level 
uncertainties to be a reliable estimate of the actual uncertainty at this scale. Therefore, in an 
ideal case, the uncertainties in gridded emissions per country should add up to the country-
level emission uncertainty, taking into account the spatial correlation length. 

We can construct a spatial covariance matrix B as follows: 

 𝑩 = 𝑺𝑪𝑺𝑻,          (4) 

where S is a matrix containing gridded uncertainties (variances) and C is the spatial correlation 
matrix which describes the error correlation between grid cells using the following 
parameterization: 

 𝑐𝑖,𝑗 = 𝑒−𝑑𝑖,𝑗/𝐿.          (5) 

Following this equation, the correlation is a function of distance d between grid cells i and j 
and the spatial correlation length L. The sum of the gridded relative uncertainties belonging to 
a specific country and sector can be calculated as: 

 𝜎𝜂,𝑟𝑒𝑙 =
√𝒂𝑻𝑩𝒂

∑ 𝐸𝑖
𝑛
𝑖=1

,          (6) 

where aT selects all cells belonging to a specific country and E is the emission per grid cell i. 
The standard deviation for a country is the sum of all elements from B where aT is not zero. 

 

Figure 1. Flow diagram showing the steps taken for the optimization of the gridded covariances. 
Yellow boxes are related to the initialization and orange boxes to the optimization. 

In most cases this standard deviation doesn’t match with the uncertainty that was calculated 
for a country using the method described in Section 3.1.1. To match the two estimates we can 
optimize the covariance matrix B by scaling the gridded uncertainties S and/or by scaling the 
correlation length L. We assume that the correlation length has the highest uncertainty, as it 
strongly depends on the chosen methodology, and therefore our first option is to scale L. 
However, we set a lower (sector-specific) and upper limit for L to avoid getting physically 
unrealistic results. In some cases a match is impossible within these limits for L and in that 
case we optimize the gridded uncertainties. An example is when the result from Eq. 6 exceeds 
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the country-level uncertainty following from Section 3.1.1. Adding/increasing the correlation 
length would further increase the aggregated uncertainty from Eq. 6 and a match is impossible 
without decreasing the gridded uncertainties. The whole process is also illustrated in Fig. 1. 

3.2 PM split uncertainties 

The primary PM emissions (PM2.5 and PM10) are split into 5 components (EC, OC, Na, SO4 
and other minerals (hereafter OthMin)) following a sector- and country-specific profile. The 
sum of each profile adds up to 1 and is different for PM2.5 and PM10. 

The PM split is provided per GNFR sector, but the underlying data contains more detailed sub-
sectors and fuels. The fractions of EC and OC are taken from a wide range of scientific 
publications and datasets (e.g., (Bond et al., 2004; Kupiainen and Klimont, 2004; Schauer et 
al., 2006; Streets et al., 2001)). Expert judgement is used to select the most representative 
data from all these datasets. For Na a fixed fraction is assumed per GNFR sector, whereas 
for SO4 a fixed fraction is assumed per GNFR sector-fuel combination. OthMin gets the 
remainder and is therefore not based directly on any data. 

We do not aim to exactly quantify uncertainties in the PM components for now, but rather to 
get an idea of how important it is to consider these components separately and whether we 
need to consider error correlations between the components. The difficulty in working with 
fractions is that they interact differently, as the sum should always be equal to one. This can 
be done in different ways, which may affect the final uncertainties. 

To understand the uncertainties in the individual PM components we did a literature review for 
OC and EC to collect ranges of EC/OC fractions for all sub-sectors. We made assumptions 
on the most important/representative sub-sectors within each GNFR sector to get one 
uncertainty value per GNFR sector. This is a very rough estimate, but sufficient for our goal. 
For Na and SO4, which are based on expert judgement, we assume one uncertainty value for 
all sectors.  

These uncertainties form the basis of a hypothetical test, in which we assume 1) no 
correlations between the PM components or 2) a full negative error correlation (r = -1) between 
OC and EC and between OC and OthMin. These correlations are based on the notion that the 
OC and EC emission factors are related to each other and to the carbonaceous fraction of 
PM:  

 𝐸𝐹𝑂𝐶 =
𝐸𝐹𝑃𝑀 ∙ 𝑓𝑐𝑎𝑟𝑏 − 𝐸𝐹𝐵𝐶

𝑓𝑂𝑀
,        (7) 

where BC is black carbon (represents EC), fcarb is the carbonaceous content of PM, and fOM is 
the average fraction of organic molecular weight per carbon weight (Klimont et al., 2017). 
Hence, an error in the EC emission factor leads to a similar (but opposite) error in the OC 
emission factor. And an error in the carbonaceous fraction results in an error in the sum of OC 
and EC, which is to be assigned to OthMin (assuming Na and SO4 fractions are independent). 

We create an ensemble of perturbations (N = 50) for each component following these 
assumptions and explore how different methodological choices and/or the inclusion of error 
correlations affects the component fractions. 

The steps taken for the hypothetical test are as follows (summarized in Fig. 2): 

- Draw a random sample from a lognormal error distribution (to avoid negative fractions) 

with an expected value of 1 and using the uncertainties determined for each 

component, sub-sector and fuel; note that for now we assume no uncertainty in 

OthMin. 

o If we assume error correlations exist, the perturbations of EC and OthMin are 

made opposite to the perturbation of OC (e.g., if the perturbation of OC is 1.3, 

the perturbation for EC and OthMin is set to 0.7). If this leads to a value lower 

than zero the perturbations are set equal to zero. 
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- Use these perturbations to calculate new component fraction: new fraction = old 

fraction * perturbation.  

- Enforce that the sum of all fractions is equal to one: 

o In the absence of error correlations the OthMin fraction is not altered (it didn’t 

get an uncertainty) and we may assume that this component will compensate 

for the others (as long as it remains a zero-positive value). Next, we divide all 

fractions by their sum to ensure a sum of one. 

▪ We can also choose to limit the fraction of OthMin to one, as it is not 

physically possible to have a fraction larger than one. But the other 

fractions can also become larger than one (we scale them in the end), 

so this is not needed. We test the impact of this methodological choice.  

o If we do assume error correlations we can argue that OthMin is already 

perturbed, so we only divide all fractions by their sum. For comparison, we also 

apply the methodology suggested for the uncorrelated data. 

- All fractions are multiplied with the primary PM emissions per sub-sector, summed to 

GNFR sector and divided by the total primary PM emissions per GNFR sector to get 

the fractions at the GNFR level. 

- We take the median value of all countries per component and GNFR sector to illustrate 

the results. 

 

Figure 2. Flow diagram showing the steps taken for the hypothetical test on PM split 
uncertainties. Yellow boxes are related to the ensemble and orange boxes to the methodological 
choices. 

4 Results 

4.1 Emission uncertainties 

To give an idea of the order of magnitude of the emission uncertainties we present some 
figures showing the total PM uncertainty at the country level for all sectors combined (Fig. 3), 
the total PM uncertainty per sector for all countries combined (Fig. 4) and the uncertainty in 
the spatial distribution (Fig. 5). Small differences in sector contributions are visible for PM2.5 
and PM10, where the industry and other agricultural activities contribute relatively more to 
coarse particles. For the energy sector we also see a higher uncertainty for PM10, which is 
related to the dominant process (sub-sector) contributing to the total emissions. The different 
sector contributions also affect the aggregated uncertainty in the spatial distribution, which is 
dominated by important sectors with a high uncertainty in the spatial distribution (e.g., 
agricultural activities for PM10). 
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Figure 3. Emissions of PM2.5 (kg/yr) per country (for all sectors combined) and error bars 
representing the standard deviations. 

 

Figure 4. Emissions of PM10 and PM2.5 (kg/yr) per sector (for all countries combined) and error 
bars representing the standard deviations. 
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Figure 5. Relative standard deviations in gridding of PM10 and PM2.5. 

4.2 PM split uncertainties 

As a reference case (REF) we update the OthMin fraction (without setting a maximum value) 
for both the correlated and uncorrelated ensemble. The results for coarse and fine fractions of 
EC, OC and OthMin are shown below (Fig. 6). The boxplots show the spread in the ensembles 
based on the median of all countries. 

The results show large differences between the correlated (Corr) and uncorrelated (Uncorr) 
ensemble for most sectors and components, suggesting that the inclusion of error correlations 
is important. The correlated ensemble generally shows a larger spread for OC and OthMin 
and mostly a smaller spread for EC. 
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Figure 6. Boxplots (95% confidence interval) of the spread in the EC, OC and OthMin fractions 
in fine (PM2.5) and coarse (PM10) PM from the correlated (Corr) and uncorrelated (Uncorr) REF 
ensemble (N=50). 

To test the impact of methodological choices we also perform an experiment in which we set 
the OthMin fraction to a maximum value of one before weighing the fractions (LIM) (Fig. 7). 
The spread in the ensembles becomes larger for both the correlated and uncorrelated 
ensemble, especially for the coarse EC fractions. The same pattern is visible for OC and 
OthMin (not shown). 
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Figure 7. Boxplots (95% confidence interval) of the spread in the EC fraction in fine (PM2.5) and 
coarse (PM10) PM from the correlated (Corr) and uncorrelated (Uncorr) LIM ensemble (N=50). 

Finally, we apply a different methodology to the correlated ensemble, as suggested above 
(MET) (Fig. 8). We maintain the maximum value for OthMin, so the uncorrelated ensemble is 
the same as in Fig. 7. The spread in the correlated ensemble becomes much smaller again 
and more similar to the REF ensemble. Hence, methodological choices have a significant 
impact on the results. 

 

Figure 8. As Fig. 7, but for the MET ensemble. 

5 Conclusion and outlook 

The PM emission uncertainties presented in this report clearly show the importance of a 
detailed uncertainty calculation, given the large differences between sectors and countries, 
but also between fine and coarse particles. Uncertainties can be significant for specific sectors 
and regions and are therefore important to consider in decision making processes. It is 
important to note that the uncertainties in the coarse and fine PM fractions are likely to be 
correlated, but it is outside the scope of this deliverable to investigate this further. 

The newly developed optimization procedure is still to be tested in practice, but should make 
the use of the emission uncertainties more user-friendly compared to the previous version of 
this dataset. Users now only need to use the gridded uncertainties and spatial correlation 
lengths to populate a covariance matrix, to create an ensemble or to use directly as a 
perturbation in source-receptor calculations. Improvements to the optimization procedure are 
foreseen to reduce computational resources for large countries. In the future we also want to 
take into account error correlations between species and more realistic boundaries for the 
correlation length (e.g., country-specific). Finally, we want to optimize all species 
simultaneously to have a fixed correlation length per country and sector. 
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The examination of the PM split uncertainties shows a large impact of methodological choices. 
The main challenge here is that we work with fractions, which form an extra constraint. In the 
future we want to explore the possibility to work directly with emission factors to calculate the 
uncertainties. Another point of concern is that we do not really know how strong the correlation 
is between, for example, EC and OC. In an ideal case, when we base OC directly on 
observations of PM and EC, this correlation is very strong and negative. However, the shares 
used in our database are estimated from multiple sources, are aggregated and/or averaged, 
so possibly this correlation is weaker. This requires more investigation and therefore we do 
not provide any data on this for now. 

6 Data availability and usage 

A total of six csv-files is provided: 

1. Uncertainties_per_country_2019.csv: Contains per country and pollutant the total 

emissions (‘Emission_kg’), the relative standard deviation in that emission 

(‘Rel_stdev’), and the absolute lower and upper limit of the 95% confidence interval 

related to that emission uncertainty (‘Low_lim_95CI’ and ‘Upp_lim_95CI’). 

2. Uncertainties_per_sector_2019.csv: Same as uncertainties per country, but 

aggregated per sector. 

3. Uncertainties_per_country_per_sector_2019.csv: Same as uncertainties per country, 

but aggregated per country and sector. 

4. Uncertainties_per_gridcell_2019.csv: Contains for each pollutant total emissions per 

grid cell and country (‘emis_kg_[pollutant]’), the relative standard deviation in that 

emission (‘Rel_stdev_[pollutant]’), and the absolute lower and upper limit of the 95% 

confidence interval related to that emission uncertainty (‘Low_lim_95CI_[pollutant]’ 

and ‘Upp_lim_95CI_[pollutant]’). Data are provided for point (P) and area (A) sources 

(‘SourceType’). 

5. Uncertainties_per_gridcell_per_sector_2019.csv: Same as uncertainties per grid cell, 

but aggregated per country and sector. 

6. Spatial_corr_lengths_2019.csv: Contains for each pollutant an optimized spatial 

correlation length per country and sector (‘length_opt_[pollutant]’). 

The combination of the gridded uncertainties per sector with the spatial correlation lengths is 
consistent with the uncertainty per country and sector as provided in a separate file. The 
correlation length represent an e-folding distance and should be applied only to area sources. 
Point sources have no spatial error correlation. 

Data can be downloaded from an FTP server: 

Server: web-ftp81.tno.nl 

Username: CAMEO@ftp0015.web-ftp81 

Password: KxJusngPjYqCGKGfFVDd 
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