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Rubin’s Rules cannot be used when the result of an analysis in an KEYWORDS
imputed dataset is not a statistic and its associated standard error, Missing data; multiple
but a test statistic (e.g. Student’s t-test). While complex methods imputation; Rubin’s Rules;
have been proposed for pooling test statistics across imputed sam- hypothesis testing
ples, these methods have not been implemented in many popular

statistical software packages. The median p-value method has been

proposed for pooling test statistics. The statistical significance level

of the pooled test statistic is the median of the associated p-values

across the imputed samples. We evaluated the performance of this

method with nine statistical tests: Student’s t-test, Wilcoxon Rank

Sum test, Analysis of Variance, Kruskal-Wallis test, the test of sig-

nificance for Pearson’s and Spearman’s correlation coefficient, the

Chi-squared test, the test of significance for a regression coefficient

from a linear regression and from a logistic regression. For each test,

the empirical type | error rate was higher than the advertised rate.

The magnitude of inflation increased as the prevalence of missing

data increased. The median p-value method should not be used to

assess statistical significance across imputed datasets.

1. Introduction

Missing data are common in applied research. Missing data occur when the value of a vari-
able is recorded for some subjects, but not for all subjects in the dataset. Ignoring missing
data and conducting statistical analyses in those subjects with complete data can result
in biased estimates of statistics and decreased precision. Multiple imputation (MI), which
was initially proposed by Rubin, is a statistical method to address missing data that entails
using a missing data model to impute or fill in multiple plausible values for missing data
[5]. This results in the creation of M complete samples (M > 1), each with the same size
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as the original sample. However, in each of these M samples, all missing data have been
replaced with plausible values. The analyst then conducts a statistical analysis in each of
these M complete samples. The results of the statistical analyses are then pooled across the
M complete samples. MI is being used with increasing frequency (see Figure 2.1 in van
Buuren [8]).

The most common method for pooling results of statistical analyses across complete
samples is Rubin’s Rules [5]. When estimating a parameter for which there is an associ-
ated standard error (e.g. a regression coefficient and its associated standard error), Rubin’s
Rules provides a method for pooling the statistic and its standard error across the imputed
samples. One can then assess the statistical significance of the pooled parameters using
conventional statistical methods. However, when the result of an analysis in a complete
sample is not a parameter estimate and associated standard error, but a test statistic (e.g.
Student’s t-test for testing the equality of the mean of a continuous variable in two inde-
pendent populations), then Rubin’s Rules cannot be applied to pool the test statistics across
the complete samples. Different methods have been proposed for pooling test statistics
across imputed samples [8]. However, unlike Rubin’s Rules, these methods have not been
implemented in commonly used statistical software packages (e.g. SAS PROC MIANA-
LYZE allows for pooling of parameter estimates, but not of test statistics; the R function
mice::pool() expects a standard error, which is not available for objects of class htest), and
can be difficult for analysts to implement on their own.

Eekhout and colleagues proposed the median p-value method to assess the statistical
significance of test statistics for categorical variables in logistic regression, that are pooled
across imputed samples [2]. The statistical test is applied in each of the M complete samples
and the p-value associated with the test is noted in each of the M complete samples. The
median of these M p-values is the median p-value and is used to formally test the given
hypothesis across the imputed datasets. Thus, one would reject the null hypothesis if the
median p-value were less than or equal to 0.05. Given the simplicity of this method and its
ease of implementation, it would be useful to explore the validity of the method across a
range of statistical tests.

The objective of the current paper was to evaluate the type I error rate of the median p-
value method for determining the significance levels of test statistics pooled across imputed
samples. The paper is structured as follows: in Section 2, we provide a brief description of
the median p-value method. In Section 3, we describe a series of Monte Carlo simulations
that were used to address this question. In Section 4, we report the results of these simu-
lations. Finally, in Section 5, we summarize our findings and place them in the context of
the existing literature.

2. The median P-value method

The median p-value test is a method that has been proposed for use when the result of
the statistical analysis in each of the M complete datasets is a p-value (i.e. from a statistical
test) and not a set of regression coeflicients and their associated standard errors [2]. After
analyses in the M complete datasets, there will be M p-values, one from each of the M
complete datasets: p1, p2, ... , pm- The median p-value is the median of these M p-values. If
the median p-value is less than the specified significance level (e.g. 0.05), then the analyst
would reject the null hypothesis.
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3. Monte Carlo simulation methods

We used Monte Carlo simulations to evaluate the type I error rate of the median p-value
method when applied to the following 9 statistical tests: Student’s t-test, Wilcoxon Rank
Sum test, Analysis of Variance (ANOVA), Kruskal-Wallis test, the test of significance for
Pearson’s correlation coefficient, the test of significance for Spearman’s correlation coeffi-
cient, the Chi-squared test, the test of significance for a regression coeflicient from a linear
regression model estimated using ordinary least squares (OLS), and the test of significance
for a regression coefficient estimated from a logistic regression model.

We describe the simulations for each of these tests in the following sub-sections. In
each set of simulations, we simulated data under the null hypothesis, induced missing data
under a missing at random (MAR) missing data mechanism, created complete datasets
using the MICE algorithm, and then applied the median p-value method. Since none of
our statistical tests involved longitudinal data with a temporal ordering of the variables, we
only considered non-monotone (or general) patterns of missing data and did not consider
monotone patterns of missing data.

For a given statistical test, we considered 10 scenarios defined by the proportion of miss-
ing data. This factor ranged from 0 (no missing data) to 0.9 in increments of 0.1. In each
scenario, we simulated 1,000 datasets. For example, in the first scenario, the prevalence of
missing data was 0, while in the second scenario, the presence of missing of missing data
was 0.1, while in the tenth scenario the prevalence of missing data was 0.9. For a given
scenario (i.e. a given prevalence of missing data), the proportion of simulated datasets in
which we rejected the null hypothesis is an estimate of the empirical type I error rate of the
median p-value method.

When estimating the empirical type I error rate in settings with no missing data, the
following approach was used for all nine statistical tests: in each simulated dataset, prior
to inducing missing data, we applied the statistical test (e.g. Student’s t-test) and noted the
statistical significance of the test. This was categorized as statistically significant (P < 0.05)
or as not statistically significant (P > 0.05) (i.e. we rejected or accepted the null hypothesis
of no difference in means). The empirical type I error rate in the absence of missing data
was the proportion of simulated datasets in which we rejected the null hypothesis across
the 1,000 simulation replicates.

3.1. Student’s t-test and Wilcoxon rank sum test

We consider the two sample Student’s t-test that does not assume equal variances in the
two groups (and thus the variance is estimated separately in each group and the Welch
approximation to the degrees of freedom is used) and the Wilcoxon rank sum test (also
known as the Mann Whitney U test). The former is a parametric test that tests the hypoth-
esis that the mean of a given variable is equal in two independent populations. The latter is
a non-parametric test that tests whether the distribution of the variable is the same in two
independent populations.

For a given value of the proportion of missing data (as noted above, ranging from 0 to
0.9 in increments of 0.1), we simulated samples of size 1,000. For each of the 1,000 subjects
we simulated two variables: (i) a binary group variable G (taking the values A vs. B) using
a Bernoulli distribution with parameter 0.5 (i.e. 50% of subjects were labeled as ‘A’, while
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50% were labeled as ‘B’); (ii) a continuous variable, X, such that each subject’s value of
X was drawn from a standard normal distribution. Since X was generated from the same
distribution for those in the two levels of the group variable, we were generating data under
the null hypothesis: the population mean of X was the same in the two groups (or, for the
Wilcoxon rank sum test, the distribution of X was the same in the two groups).

We then induced missing data in the random sample using the mice::ampute() function
[6]. We induced missing data such that there were two missing data patterns: (i) the binary
group variable G was missing and the continuous variable X was observed; (ii) the binary
group variable G was observed and the continuous variable X was missing. We used a miss-
ing at random (MARRIGHT) missing data mechanism that created more missing data for
the higher values [8] (pages 70-73). Thus, the likelihood of missing data in the group vari-
able was positively associated with X and the likelihood of missing data in X was positively
associated with the group variable. Except for the proportion of incomplete rows (called
‘prop’), all arguments in the mice::ampute() function were left at default, resulting in equal
prevalences for the two missing data patterns. In short, the process to generate missing val-
ues works as follows. The user specifies the allowed missing data patterns (patterns), the
relative frequency of each pattern (freq), and the proportion of incomplete cases (prop).
For MAR and MNAR mechanisms, we can optionally specify the weights of predictors to
create a linear combination per pattern (weights) and the location on the linear combina-
tion where missing values should be assigned (type). We set the weights to all be equal to
1. Thus, the magnitude of the association of X with missingness in G was the same as the
magnitude of the association of G with missingness in X. For each row in the complete
data, the algorithm randomly draws a missing data pattern using a combination of prop
and freq, constructs the sum scores, and creates missing values and the specified locations.
For the exact details, we refer to Schouten and colleagues [6,7]. The decision to set the
prevalences of the two missing data patterns to be equal was made to simplify the simula-
tions, rather than allowing there to be multiple scenarios defined the relative frequency of
the two missing data patterns. We specified that the prevalence of missing data be the same
for the two variables because it seemed to be a balanced approach, rather than allowing the
missingness in one variable to dominate the analyses. Multiple imputation using the multi-
variate imputation using chained equations (MICE) algorithm was used to impute missing
values [8-10]. We created M complete datasets, where M was set equal to the percentage of
subjects for whom there was missing data [11]. Thus, for example, when data were missing
for 50% of the subjects, we created 50 complete datasets. In each of the M complete datasets
we used a t-test to compare the mean of X between the two groups. We then computed the
median p-value across the M complete datasets.

We repeated the above process 1,000 times and determined the proportion of simulated
datasets in which we rejected the null hypothesis. This is the empirical type I error rate of
the median p-value method. Due to our use of 1,000 simulation replicates, empirical type I
error rates less than 0.0365 or greater than 0.0635 are statistically different from the adver-
tised rate of 0.05 using a standard normal-theory test. We also obtained a non-parametric
estimate of the density function of the median p-values across the 1,000 simulation repli-
cates. If the median p-value test was behaving as advertised, the distribution would be
uniform U(0,1). The above process was repeated for each of the different prevalences of
missing data. We also obtained a non-parametric estimate of the density function of the
p-value for the t-test across the M x 1,000 imputed datasets.
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The two-sample t-test allows for the comparison of the mean of a continuous variable
between two groups. An alternative way to test this hypothesis is to use a univariate linear
regression model in which the continuous variable is regressed on a binary indicator vari-
able denoting group membership. A rationale for including the use of linear regression for
comparing group means is that one can compare this method, which involves the applica-
tion of Rubin’s Rules, with a method that pools p-values. We compared the performance of
linear regression with that of the median p-value test used with the two-sample t-test. To
do so, we repeated the above simulations using linear regression (estimated using OLS) to
regress the continuous variable X on a binary indicator variable denoting group member-
ship (thus, the analysis model was a linear regression model in which X was regressed on
the binary indicator variable denoting group membership). The analysis model was fit in
each of the complete datasets and the estimated regression coefficients were pooled using
Rubin’s Rules. The statistical significance of the estimated regression coeflicient for group
membership was assessed. We then repeated the above simulations using the Wilcoxon
rank sum test.

3.2. ANOVA and Kruskal-Wallis test

ANOVA is a parametric statistical test that tests the equality of means across a set of
independent populations. The Kruskal-Wallis test is a non-parametric test of whether the
distribution of a continuous variable is the same in different independent populations.

This set of simulations was similar to those described in Section 3.1, with minor mod-
ifications. First, as in Section 3.1, we generated two variables for each subject: (i) a 3-level
group variable G, such that the prevalence of each of the three levels was 1/3 (i.e. the three
groups were approximately of equal size in the simulated samples) (this is the primary dif-
ference from the simulations described in Section 3.1 which involved simulating a binary
group variable); (ii) as in Section 3.1, a continuous variable X from a standard normal
distribution. Therefore, the mean of X was the same across the three levels of the group
variable. We then used ANOVA to test the null hypothesis that the mean of X was the
same across the three levels of the group variable. Apart from these differences, these sim-
ulations were similar to those described in Section 3.1. As above, the weights that were used
to calculate the weighted sum scores when inducing missing data were all set equal to 1.

We then repeated the above simulations using the Kruskal-Wallis rank sum test to test
whether the distribution of X was the same across the three groups.

3.3. Tests of Pearson’s and Spearman’s correlation coefficient

Pearson’s correlation coefficient is a metric for quantifying the linear correlation between
two continuous variables. Spearman’s correlation coefficient is equal to Pearson’s correla-
tion coeflicient when applied to the ranks of the two variables.

We simulated samples of size 1,000. For each subject, we simulated two continuous
variables, X and Y, from independent standard normal distributions. Thus, X and Y were
independent of one another and had a true correlation of zero (i.e. the null hypothesis of a
zero correlation was true).

We then induced missing data in the random sample using a MAR missing data mech-
anism. There were two missing data patterns: (i) X was observed and Y was missing; (ii) X
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was missingand Y was observed (thus, either X could be missing or that Y could be missing,
but both variables could not be missing for the same subject). The prevalences of the two
missing data patterns were set equal to one another. As above, the weights that were used
to calculate the weighted sum scores when inducing missing data were all set equal to 1. In
each of the M complete datasets we estimated Pearson’s correlation coefficient between X
and Y and tested whether it was different from zero.

We repeated the above simulations using Spearman’ correlation coefficient.

3.4. The Chi-squared test

The Chi-squared test tests for an association between two categorical variables. It tests
whether the distribution of one categorical variable differs across the levels of the other cat-
egorical variable. For each of 1,000 subjects we simulated two 3-level categorical variables:
X and Y. For each of X and Y, the prevalence of each of the three levels was 1/3. Further-
more, X and Y were simulated to be independent of one another (i.e. the null hypothesis
was true). We induced missing data using a MAR missing data mechanism so that there
were two patterns of missing data: (i) X was observed and Y missing; (ii) X was missing
and Y was observed, with the prevalences of the two patterns of missing data being equal.
As above, the weights that were used to calculate the weighted sum scores when inducing
missing data were all set equal to 1. Apart from this modification, these simulations were
similar to those described above.

3.5. OLS regression

For each of 1,000 subjects we simulated three predictor variables from independent
standard normal distributions: x;; ~ N(0, 1), forj=1,2,3and i = 1,..., 1000. For each
subject we generated a continuous outcome using the following model: y; = 0xy; + x2; +
x3i + &, where &; ~ N(0,62 = (2/0.25) — 2), so that variation in the predictor variables
explained 25% of the variation in the continuous outcome (i.e. the model R? was 0.25).
Note that in this data-generating process, the outcome is conditionally independent of X;
(i.e. the regression coefficient for the first covariate is equal to 0). Thus, we are simulating
data under the null hypothesis that the regression parameter for X; was equal to zero.

We then induced missing data in the random sample. We induced missing data such that
there were four missing data patterns: (i) X; missing with the other three variables being
observed; (ii) X, missing with the other three variables being observed; (iii) X3 missing
with the other three variables being observed; and (iv) Y missing with the other three vari-
ables being observed. We set the prevalences of the four missing data patterns equal to one
another (thus, when the prevalence of missing data was 40%, the prevalence of missing
data for each of the four variables was 10%). We used a missing at random (MAR) missing
data mechanism. Thus, the likelihood of missing data for a given variable was related to
the values of the three other variables, but not to that variable itself. As above, the weights
that were used to calculate the weighted sum scores when inducing missing data were all
set equal to 1. Multiple imputation using the mice algorithm was used to impute missing
value. We created M complete datasets, where M was set equal to the percentage of subjects
for whom there was missing data. In each of the M complete datasets we regressed the con-
tinuous outcome on the three predictor variables using OLS regression (thus, the analysis
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model consisted of a linear regression model in which the continuous outcome variable,
Y, was regressed on Xj, X3, and X3). In each of the M complete datasets we noted the p-
value associated with testing the null hypothesis that the regression coefficient for the first
predictor variable was equal to zero. We then computed the median p-value across the M
complete datasets. We also used Rubin’s Rules to pool the estimated regression coeflicients
across the M imputed datasets and used the estimated regression coefficient and its asso-
ciated standard error to test whether the estimated regression coefficient was statistically
significantly different from 0.

We obtained a non-parametric estimate of the density function of the median p-values
across the 1,000 simulation replicates. We also obtained a non-parametric estimate of the
density function of the p-value for testing the statistical significance of the regression coef-
ficient for X; across the M x 1,000 imputed samples. The above process was repeated for
each of the prevalences of missing data.

3.6. Logistic regression

These simulations were similar to those described in Section 3.5, with minor modifi-
cations. For each subject, the probability of the occurrence of the binary outcome was
definedasp; =Pr(Y;=1) = %. We then generated binary outcomes from
a Bernoulli distribution with subject-specific parameter p;. Thus, the odds of the outcome
is conditionally independent of the first covariate. Missing data were induced as described
above, with the missing data models being of the same as for OLS regression in the pre-
vious section. As above, the weights that were used to calculate the weighted sum scores
when inducing missing data were all set equal to 1. The analysis model was a logistic regres-
sion model in which the binary outcome was regressed on the three continuous predictor
variables.

All simulations were conducted using the R statistical programming language (version
3.6.3) [4]. Missing data were induced using the ‘ampute’ function in the mice package for R
(version 3.13.0). Missing data were imputed using the mice function in the mice package.
In the MICE algorithm, continuous variables were imputed using Bayesian linear regres-
sion, binary variables were imputed using logistic regression, and categorical variables were
imputed using a multinomial logistic model.

4. Monte Carlo simulation results

We summarize the results of the Monte Carlo simulations for each of the different tests
separately. Note that the empirical type I error rates for the nine tests are reported in the
same figure (Figure 1) to facilitate a comparison of the empirical type I error rate across
tests. On the figure we have superimposed a horizontal line denoting the advertised type I
error rate of 0.05.

4.1. Student’s t-test and Wilcoxon rank sum test

The relationship between the prevalence of missing data and the empirical type I error
rate of the median p-value method are reported in Figure 1. The median p-value method,
when used with either Student’s t-test or the Wilcoxon rank sum test resulted an empirical
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Figure 1. Empirical Type | error rates of the different tests.

type I error that exceeded the target rate of 0.05. The inflation in the empirical type I error
rate increased as the prevalence of missing data increased and attained approximately 0.75
(or 75%) when the prevalence of missing data was very high. In contrast, analyses in the
absence of missing data (i.e. when the prevalence of missing data was 0) had empirical type
I error rates that did not differ from the target rate of 0.05. The use Rubin’s Rules with OLS
regression to test the equality of means between the two groups resulted in empirical type
I error rates that did not differ meaningfully from the advertised rate.

The non-parametric estimates of the densities of median p-values across the 1,000 simu-
lation replicates are reported in Figure 2. There is one panel for each prevalence of missing
data. In each of the nine scenarios, the empirical distribution of the median p-values was
non-uniform. There tended to be fewer large p-values than would be anticipated under
a standard uniform distribution. The non-parametric estimates of the density functions
for the p-values from the t-tests and Wilcoxon rank sum tests in the M x 1,000 imputed
datasets are also reported in each panel of the figure. As with the median P-value, there
tended to be fewer large p-values than would be anticipated under a standard uniform
distribution. Thus, a separate analysis per imputed dataset does not produce a uniform
distribution for the p-value under the null hypothesis. The t-test has n-1 as the degrees of
freedom, which is too high for imputed data. As a result, we observe a shift to the left in
the p-value distributions. The magnitude of the shift grows with the proportion of missing
data.

4.2. ANOVA and Kruskal-Wallis test

The relationship between the prevalence of missing data and the empirical type I error rate
of the median p-value method are reported in Figure 1. The empirical type I error rate
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Figure 2. Empirical distribution of median p—values across simulations replicates: t—test and Wilcoxon
rank sum test.

for the median p-value method when used the ANOVA and the Kruskal-Wallis test was
higher than the advertised rate of 0.05. The empirical type I error rate was approximately
1 (or 100%) when the prevalence of missing data was very high. In contrast, the empirical
type I error rates of the two tests in the absence of missing data had empirical type I error
rates that were not different from the advertised rate of 0.05.

The non-parametric estimates of the densities of median p-values across the 1,000 sim-
ulation replicates are reported in Figure 3. The distribution of median p-values was not
standard uniform in each of the nine scenarios. As above, there tended to be fewer large p-
values than one would expect under a standard uniform distribution. The non-parametric
estimates of the density functions for the p-values from the ANOVA and Kruskal-Wallis
tests in the M x 1,000 imputed datasets are also reported in each panel of the figure. The
shape of the deviations from uniformity was similar to Figure 2.

4.3. Pearson’s correlation coefficient and Spearman’s correlation coefficient

The relationship between the prevalence of missing data and the empirical type I error
rate of the median p-value method are reported in Figure 1. For both correlation coeffi-
cients, the empirical type I error rate of the median p-value method was higher than the
advertised rate of 0.05 across all scenarios. The empirical type I error rate, which increased
with increasing prevalence of missing data, was high when the prevalence of missing data
exceeded 0.6. The empirical type I error rates of the tests conducted in the complete data
(prior to inducing missing data) were no different from the advertised rate of 0.05.
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Figure 3. Empirical distribution of median p—values across simulations replicates: ANOVA and

Kruskal—Wallis test.

The non-parametric estimates of the densities of median p-values across the 1,000
simulation replicates are reported in Figure 4. As with the previous tests, the empirical
distribution of median p-values and M x 1,000 p-values were not standard uniform. The
shape of the deviations from uniformity was similar to Figure 2.

4.4. The Chi-squared test

The relationship between the prevalence of missing data and the empirical type I error rate
of the median p-value method are reported in Figure 1. The empirical type I error rate
of the median p-value method when applied to the Chi-squared test was higher than the
advertised rate. Furthermore, the empirical type I error rate increased as the prevalence of
missing data increased. The empirical type I error rate was approximately 1 (100%) when
the prevalence of missing data was 0.80. The empirical type I error rate of the Chi-squared
test applied to the complete data (prior to inducing missingness) was not meaningfully
different from the advertised rate.

The non-parametric estimates of the densities of median p-values across the 1,000
simulation replicates are reported in Figure 5. As with the previous tests, the empirical
distribution of the median p-values was not standard uniform. There tended to be fewer
large p-values than would be expected under a standard uniform distribution. The non-
parametric estimates of the density functions for the p-values from the chi-squared tests
in the M x 1,000 imputed datasets are also reported in each panel of the figure. As with the
median P-value, there tended to be fewer large p-values than would be anticipated under
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Figure 4. Empirical distribution of median p—values across simulations replicates: Pearson and Spear-
man correlation coefficient.

a standard uniform distribution. However, the magnitude of the discrepancy was less than
was observed for the median P-values.

4.5. OLS regression

The relationship between the prevalence of missing data and the empirical type I error rate
of the median p-value method are reported in Figure 1. The empirical type I error rates
for the median p-value method applied to OLS regression were higher than the advertised
rate of 0.05. While the empirical type I error rates increased with increasing prevalence
of missing data, the amplification of the type I error rate was substantially less than was
observed above. The use of Rubin’s Rules across the M imputed dataset and the use of OLS
regression in the complete data (before inducing missing data) resulted in empirical type I
error rates that were no different from the advertised rate.

The non-parametric estimates of the densities of median p-values across the 1,000 simu-
lation replicates are reported in Figure 6. The empirical distribution of the median p-values
did not follow a standard uniform distribution, and shifted to the left for higher propor-
tions of missing data. While the use of Rubin’s Rules resulted in an empirical distribution
of p-values that was closer to standard uniform, it did result in fewer very small p-values
and very large p-values than would be expected under a standard uniform distribution.
Similarly, the distribution of p-values across the M x 1,000 imputed samples had fewer
large p-values than would be expected under a standard uniform distribution. However,
the magnitude of the discrepancy was smaller than was observed for the median p-values.
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Figure 7. Empirical distribution of median p—values across simulations replicates: Logistic regression.

4.6. Logistic regression

The relationship between the prevalence of missing data and the empirical type I error rate
of the median p-value method are reported in Figure 1. Results were very similar to those
observed for OLS regression.

The non-parametric estimates of the densities of median p-values across the 1,000 sim-
ulation replicates are reported in Figure 7. Results were very similar to those observed for
OLS regression.

5. Discussion

We evaluated the performance of the median p-value method across nine different statis-
tical tests: Student’s two sample t-test, the Wilcoxon Rank Sum test, Analysis of Variance
(ANOVA), the Kruskal-Wallis test, the test of significance for Pearson’s correlation coeffi-
cient, the test of significance for Spearman’s correlation coefficient, the Chi-squared test,
the test of significance for a regression coefficient from a linear regression model estimated
using ordinary least squares (OLS), and the test of significance for a regression coeflicient
estimated from a logistic regression. Across all nine tests, we found that the median p-value
method resulted in inflated type I error rates that exceeded the advertised rate.

To the best of our knowledge, only three prior studies have assessed the validity of the
median p-value method. Eekhout and colleagues, who coined the term median p-value
method, used simulations to assess the performance of the median p-value method for
assessing the statistical significance of a categorical predictor variable in a logistic regres-
sion model [2]. In scenarios in which 25% of subjects had missing data, the empirical type
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I error rate for testing the significance of a categorical variable, for which there truly was
no effect, ranged from 0.065 to 0.077. When 40% of subjects had missing data, the empir-
ical type I error rates ranged from 0.083 to 0.098. These estimates are qualitatively similar
to those observed in the current study when examining logistic regression with contin-
uous covariates. We hypothesize that Eekhout and colleagues would have observed larger
type I error rates had they examined scenarios with higher prevalences of missing data. The
empirical type I error rates observed by Eekhout and colleagues that we described above are
when the outcome variable was included in the imputation model, as has been suggested
elsewhere [11]. Eekhout et al. noted that, when the outcome variable was excluded from
the imputation model, then the empirical type I error rate for the median p-value method
was lower than the advertised rate (note that this is not an ideal solution as it entails dou-
ble the work, with separate imputations for pooling test statistics (without the outcome
in the imputation model) and separate imputations for pooling parameter estimates (with
the outcome in the imputation model)). Bolt and colleagues used simulations to compare
the performance of the median p-value method with that of competitor methods for pool-
ing generalized additive models (GAMs) across imputed datasets [1]. When focusing on
the single covariate for which the null hypothesis was true, the use of the median p-value
method to pool the results of GAMs resulted in mildly inflated empirical type I error rates
(0.06-0.08) (see Figures 2 and 3). When using predictive mean matching for MI, the D2
pooling method and a variant of D2 tended to result in empirical type I error rates that were
closer to the advertised rate of 0.05. The authors simulated data such that data were missing
for approximately 35% of subjects. Based on our findings, we hypothesize that the empiri-
cal type I error rate would increase as the prevalence of missing data increased. Panken and
Heymans compared the median p-value method with three methods for variable selection
for logistic regression models when using MI [3]. While the median p-value method was
less complex and easier to implement than the competitor methods, it was shown to have
performance that was at least as good as those of the competitor methods. The methods
were compared using three metrics: (i) the selection frequency of variables; (ii) the agree-
ment between the p-values of the selected variables to those obtained when the variable
selection process was conducted in the original complete sample (prior to data being set
to missing); (iii) the stability of the selected regression model. We note that this does not
entail a formal evaluation of the type I error rate of the median p-value method. Rather, it
examines the performance of the method when used for selecting variables for a logistic
regression model.

Our study is subject to certain limitations. The primary limitation relates to our use
of Monte Carlo simulations. Due to the computational complexity of simulations involv-
ing MI, we were only able to examine a limited number of scenarios for each statistical
test. However, these limited numbers of scenarios were adequate to illustrate that the
empirical type I error rate was higher than advertised in most scenarios and that the
inflation increased as the prevalence of missing data increased. A secondary limitation
was that we restricted our study to nine statistical tests. Due to space constraints and
the computational complexity of our simulations, we were unable to include additional
statistical tests. However, while the magnitude of the inflation in the type I error rate var-
ied across statistical tests, our primary finding was consistent across tests: an inflation of
the type I error rate and that this inflation increased as the prevalence of missing data
increased.
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In summary, across nine statistical statistics, the median p-value method resulted in
empirical type I error rates that exceeded the advertised rate. For each of the nine tests,
the magnitude of the inflation increased as the prevalence of missing data increased.
For several tests, the empirical type I error rate was very high when the prevalence of
missing data was high. We would suggest that, while it may be applicable in specific
settings, the median p-value method not be used to assess statistical significance across
imputed datasets. Rather than using the median p-value method, we suggest that authors
use formal methods that have been proposed for pooling test statistics across imputed
samples [8].
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