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1 Introduction
Due to recent technological developments in artificial intelligence and robotics, more and more
people are increasingly interacting with artificial agents in a variety of domains, among which the
military [51, 98]. As robots become more intelligent, they are increasingly self-governing, gain
decision authority within their functioning [6, 28, 35, 62, 84], and require less human involvement
and control [48, 57]. In other words, they become increasingly autonomous; able to achieve a given
set of tasks during an extended period of time without human control or intervention [86]. As such,
robots transition from relatively simple tools towards autonomously acting agents, which greatly
impacts the trust relationship between humans and such technology [35, 51, 99].

It is expected that cooperation in teams where at least one human works together with one robot,
so called Human-Robot Teams (HRTs), will increase in the (near) future [6, 62, 93, 94]. Future
robots are envisioned to have the ability to observe and act upon an environment autonomously
and to communicate and collaborate with other agents, including humans, to solve problems and
achieve (common) goals [20, 39, 40, 62, 98]. In HRTs, robots can work interdependently with human
team members towards a shared objective [62]. Robots can take over tasks that were previously
conducted by humans, whereas other tasks still need to be executed by human counterparts [67]. As
a result, the rise of HRTs poses interesting challenges related to teamwork, task delegation and trust.

1.1 Delegation
Teamwork typically involves dividing and assigning tasks or responsibilities to different team mem-
bers. When delegating authority, an actor (i.e., in our HRT case, the human) hands over a specific
(set of) task(s) to another actor (i.e., the robot) who is expected to take responsibility for planning
and execution of the assignment in a timely and effective manner to reach commonly understood
goals [32, 57, 60]. Since reaching a goal consists of completing a set of tasks, delegation is inherently
hierarchical [57]. As a result, delegation can be adapted to different levels of abstraction, such as
(1) skill-based delegation, which proceeds by delegating single elementary tasks or actions (e.g.,
go-right, go-left), (2) rule-based delegation, which proceeds by delegating in terms of pre-defined
templates of taskwork and teamwork (e.g., perform-blanket-search procedure) and ultimately, (3)
goal-oriented delegation, which proceeds by delegating in terms of goals [8, 56, 60]. Which type of
delegation is appropriate will depend on a robot’s level of autonomy (LOA), which can range
from no autonomy (i.e., manual human control), to semi-autonomy (i.e., human can veto) to full
autonomy (i.e., human is at most informed) [16, 65].

The more autonomous a robot gets, the more abstract and goal-oriented a delegated assignment
can be, the more degrees of freedom the robot has in terms of execution and the more trust in the
robot is required. Goal-oriented task delegation implies that the delegator does not have to outline
the specific rules and skills that should be used in the process of reaching the desired end-state. In
short: it means telling the robot what to do instead of how to do it. This leaves considerable room
for the robot to fill in the remaining details on the execution of desired actions, which allows it to
adapt to changing environments and operational demands [56]. As a situation evolves, the possible
paths to achieve a certain goal can change [32]. As a result, an (semi-)autonomous robot might
exhibit unexpected behaviour—from the perspective of a human operator—in its pursuit to reach
a certain goal. A possible risk is that a human’s lack of understanding of the robot’s actions can
cause people to lose trust and want to take over manual control, negating the advantages of task
delegation. Regardless of the LOA of a robot, communication and human participation in certain
decision-making loops will always remain crucial for effective and safe operations [1].

To keep the human involved, robots will need to be able to explain their behavioural choices,
especially when they deviate from the expected manner to reach a goal. Higher decision authority
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assigned to robots typically increases the human desire to know what the robot will be doing [10].
When the human operator cannot understand the basis of the robot’s assessments and actions, trust
may be eroded, especially when the robot’s actions do not align with the human’s expectations [46,
64]. In the current study, we are interested in the implications of a robot that has been delegated
the authority to select the best course of action given the local situation, which could contradict a
human’s expectation and result in a suboptimal outcome (i.e., not attaining the goal). In the context
of goal-oriented delegation, does understanding the robot’s actions towards a goal drive trust or is
ultimately attaining the goal the primary factor?

1.2 Trust
Teamwork requires task delegation and task delegation requires trust. Trust is defined as a human’s
willingness to make oneself vulnerable and to act on an agent’s decisions and recommendations in
the pursuit of some benefit, with the expectation that the agent will help achieve their common
goal in an uncertain context involving risk [23, 34, 43, 50, 70, 83]. During collaborations, human-
robot trust is continuously adjusted with the goal of finding an appropriate level where the
perceived trustworthiness of a robot align with its actual reliability; a process known as trust
calibration [43]. A human operator’s trust should be calibrated to reflect a robot’s capabilities in
order to achieve appropriate reliance [43, 97]. Goal-oriented delegation and higher LOA means less
human involvement and control, which results in more uncertainty and thus a higher demand for
appropriate levels of trust.

Well-calibrated trust enhances a team’s effectiveness, whereas both “undertrust” (i.e., trusting
too little) and “overtrust” (i.e., trusting too much) diminish it [16]. Undertrust can lead people to
overly and unnecessarily monitor the robot after delegation, or even to refuse to interact with the
robot altogether, thereby compromising profitability. Overtrust, on the other hand, could result in
the robot having too much freedom, possibly compromising safety [94]. Calibrated trust is crucial
to minimize the risks and to maximize the benefits in the highly interdependent and dynamic
nature of teamwork [6, 43, 44].

In general, perceiving good robot functioning will likely increase perceived trustworthiness,
whereas perceiving maladaptive (i.e., errors or mistakes) or ambiguous (i.e., unexpected or un-
predictable) robot functioning often results in decreases in perceived trustworthiness—so called
trust violations [17, 19, 39, 100]. As we strive for calibrated trust rather than maximum trust,
decreases in perceived trustworthiness are a logical and functional adaptive response to perceiving
errors, technical failures or other forms of reduced reliability and performance. However, with
the anticipated advancements in the ability of robots to self-select courses of action, the range of
possible causes of human-robot trust violations expands. That is, human-robot trust is not solely
based on a robot’s perceived abilities and performance (i.e., what it does and can do), but also on its
perceived purpose and alignment with a trustor’s values (i.e., why it was developed and operates in
a certain way), as well as the understandability or interpretability of the robot and its ability to
explain its actions (i.e., how it operates) [43, 45]. This operationalization of trust corresponds to
the Ability (what), Benevolence (why) and Integrity (how) (ABI) model from Mayer et al. [52] and
reflects how a trustee’s trustworthiness is based on more than reliability and performance. As a
consequence, trust violations are not solely caused by reduced performance.

As robots become more autonomous, task delegation can become more goal-oriented, providing
the robot more with greater degrees of freedom in terms of execution. Hence, trust violations might
be increasingly caused by a human operator’s lack of understanding of the robot’s assessments
and actions, rather than poor robot performance. When a robot does something unexpectedly
(according to the human), its efficacy and accuracy could be questioned and the action can lead
to a decrease of human-robot trust, regardless of whether the robot is actually maladapted [71,
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76]. For example, a drone might rightfully adapt its course of action to changes in the operational
environment to reach a certain goal, such as avoiding a collision, without informing the human.
If the drone’s deviation significantly conflicts with the human’s expectations and the robot lacks
the ability to explain itself, the human operator might take over manual control because they do
not understand the drone’s actions and perceive them as inappropriate and untrustworthy [35, 48,
71]. As such, a lack of understanding causes a trust violation and leads to a situation of undertrust.
Since the success of human–robot interactions (HRIs) greatly depends on people’s ability to
trust them, trust violations that lead to undertrust would make it necessary for a robot to engage
in trust repair strategies [3].

Given (1) the inevitability of unexpected robot behaviour in HRI, (2) the possibility that unex-
pected behaviour results in trust violations and poor trust calibration, and (3) the disadvantageous
consequences of poor trust calibrations, it is important to evaluate methods to prevent or buffer
(unnecessary) trust violations as a consequence of unexpected behaviour. Most current HRI trust
repair literature focuses on the role of trust repair strategies after an apparent error [7, 17, 22, 26, 38,
44, 61, 73, 75, 92, 95]. However, more recently researchers have started to evaluate trust violations
as a result of unexpected behaviour rather than failure [48, 68, 80]. In essence, to prevent that trust
will unjustly erode due to a misunderstanding of the basis of a robot’s assessments and actions,
robots will need to be able to explain the rationale behind their behavioural choices. Increasing
transparency and interpretability through explanations can enhance trust calibration by lowering
unrealistic expectations on the one hand (i.e., preventing overtrust) and by clarifying unexpected
behaviour on the other (i.e., preventing undertrust) [11, 43, 54].

1.3 Transparency
Transparency can be defined as “the ability for the automation to be inspectable or viewable so that
its mechanisms and rationale can be readily known” [58] (p. 235). Transparency is an important
part of the design of robots, because without a clear understanding of a robot’s decision-making
mechanism, humans might find it difficult to trust or adhere to a robot’s decisions, especially
when those actions or decisions contradict the human’s expectations [46]. At the same time, full
“transparency”—implying that the machine is “see through” in the sense that all its inner workings
are observable [10, 58]—is not desirable either [57]. When HRI is successful, it can save time and
reduce cognitive effort. However, if a human would have to maintain awareness of everything the
robot does, then no time or cognitive effort would be saved [57]. Ideally, transparency allows the
human teammate to develop and/or maintain realistic expectations regarding the robot and its
behaviour [35, 57] and thereby contributes to effective trust calibration [6, 30, 72]. However, to
ensure effective collaboration, it is crucial to find a balance between keeping the human sufficiently
informed while preventing cognitive overload.

To find that balance, literature suggests that robots should primarily communicate the rationale
and intentions of their actions [13, 47, 48, 63, 77]. A recent study evaluating human-robot trust in case
of unexpected robot behaviour compared different explanation types and found that explanation
strategies that indicated why the event occurred were most effective at buffering the decline in
perceived trustworthiness [48]. Explanations are verbal statements that aim to clarify the reasons
for an occurrence. They are deployed in HRI, prior to or after certain actions, to enable the human
to comprehend the inner workings or logic of the robot’s actions or decisions [18, 48]. Explanations
are generally invoked when the mental models of those who must work together mismatch. The
explanation is then meant to synchronize the mental models so that the differences are understood
and repaired [58]. As such, explanations can have a positive effect on trust in case of trust violations.

For instance, increased transparency and feedback can effectively mitigate a human’s dissatisfac-
tion in the event of an unforeseen occurrence caused by a robot [27]. Feedback enhances a human’s
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willingness to trust automation and can delay or avoid unnecessary manual intervention [33].
Results of an automated driving study show that explanations provided before rather than after a
certain event strengthened trust [15]. In other words, increased transparency through explanations
can strengthen trust.

While transparency can benefit trust, it also a poses a challenge to the human operator. In
most cases, humans that perform a task together with a robot do not have the time, skills, or
attention to accurately interpret transparency information during an operational situation or the
adequate precision to take over the robot’s task if necessary [59].There is a possibility that increased
transparency could come at the expense of cognitive workload since it requires additional processing
and interpretation of information (i.e., additional cognitive effort) [25, 49, 96]. Cognitive workload
generally refers to the amount of cognitive resources and effort required for task performance
relative to the available resources [66]. An increase in cognitive workload arises when multiple
tasks compete for the same resources, and task requirements exceed the mental capacity. High
levels of cognitive workload can result in fatigue, and hence reduce human performance. On the
contrary, appropriate implementation of transparency in HRT could also result in reduced cognitive
workload of the human-teammate, as it helps to understand the robot’s behaviour and reasoning
[6, 55, 62]. At the same time there are also studies that find no effect of transparency on workload
[9, 81, 82]. In other words, the results are inconclusive and further research is needed to determine
whether transparency affects workload advantageously or disadvantageously.

1.4 Outcome
While transparency can enhance a human’s understanding of a robot’s reasoning process and
thereby help to create realistic expectations regarding the robot’s capabilities, it is conceivable that
a negative outcome will still be disappointing and detrimental to trust. At the same time, since
unexpected robotic behaviour might arise from the fact that increasingly intelligent agents may
devise alternative plans that are better and more efficient than those humans would come up with,
we are also interested in the effect of positive outcomes. Whether the robot’s execution is logical or
understandable for the human and whether the robot eventually reaches its goal are both likely
to affect trust. As such, we seek to explore how and to what extent transparency and outcome
influence the development of trust.

Generally, the performance of a robot is seen as the most important predictor of human-robot
trust [28, 34]. Unsurprisingly, research suggests that robot successes increase trust [100], while
robot failures decrease trust [36, 39, 40, 100]. Furthermore, the magnitude of trust decrements due
to robot failures is found to be bigger than that of trust increments due to robot successes [100].
This is in line the concept of loss aversion within prospect theory from classic decision-making
literature, which posits that people tend to value gains and losses differently, placing more weight
on perceived losses versus perceived gains [90]. That is, the pain of losing is psychologically more
impactful than the pleasure of gaining [90]. However, research also suggests that the effect of robot
performance on trust might depend on an individual’s perception of the interaction and vice versa.

One the one hand, there is research that suggests that the quality of the interactionmight influence
how people respond to a robot’s performance. For example, there are findings that suggest that
people place less value on task performance and more on transparency, control and feedback [27].
This study shows that participants preferred an expressive and error-prone robot over a more
efficient one. This suggests that an erroneous robot can be forgiven as long as it communicates,
while an inexpressive robot with high task performance could still be trusted less [27].

On the other hand, there is research that suggests that outcome can change how people perceive
the preceding interaction, a phenomenon referred to as the outcome bias. An outcome bias is where
the quality of a decision made by others under conditions of uncertainty is evaluated differently in
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hindsight, based on the outcome [4]. Research suggests that people evaluate the thinking behind a
decision as better when the outcome is favourable compared to when the outcome is unfavourable
[4]. Earlier HRI research has found evidence for the outcome bias, finding a reinforcing effect
where initial automation failure led to a larger trust decrement if the final outcome was undesirable
[100]. In other words, there are reasons to believe that the effects of transparency and outcome on
perceived trustworthiness might be interdependent.

1.5 Current Study
Goal-oriented delegation in complex environments with limited resources and changing circum-
stances poses challenges. Plans can be made in advance, but in case of unforeseen circumstances,
the robot will need to adapt its plan and “function beyond choreography” to still reach the end-goal
[13] (p. 119). That is, beyond a fixed, scripted series of actions that do not account for variability or
unexpected changes in the environment. At times, these adaptations will be advantageous, while
in other cases, they may be suboptimal or disadvantageous. The current study investigates how
transparency and outcome affect the perceived trustworthiness of a robotic partner in case of an
unexpected deviation from the expected manner to reach a delegated goal.

In the current study, transparency entails that the robot gives clarifying information in the
form of regular status updates including an explanation (i.e., the what and why) of its actions as
it deviates from the expected manner to reach the goal [13, 37]. We expect that when the robot
explains its reasoning and actions, a stable level of perceived trustworthiness can be maintained
in the event of deviant behaviour. Specifically, we expect that transparency will prevent a trust
violation in response to the robot’s unexpected behaviour [48] and will generally lead to higher
perceived trustworthiness. Conversely, we expect that a sudden and silent deviation from the plan
(i.e., low transparency) will lead to a violation of trust. We further expect an interaction effect
between transparency and outcome. Specifically, we hypothesize that the expected violation of
trust in response to the unexpected behaviour in the low transparency condition will amplify the
effect of a subsequent negative outcome [100]. In the high transparency condition, we expect higher
and more stable levels of perceived trustworthiness [48] and a smaller effect of negative outcome
compared to the low transparency condition.

2 Method
2.1 Participants and Design
In total, eighty-seven participants participated in the study. Five participants were excluded from the
dataset because of invalid data due to technical issues during the task. Participants were recruited
through convenience sampling (e.g., by handing out flyers, asking people in person, and making
requests in WhatsApp groups). All participants declared voluntary participation by signing an
informed consent form. The final dataset included eighty-two participants (43 W, 39 M, Mage =

23.6, SD = 3.2, range = 19–41 y), of which the majority was Dutch (65.9%) and the remainder from
elsewhere in Europe (17.1%), Asia (9,8%), or North or South America (both 3.7%).

Participants were randomly distributed across the cells of a 2 (transparency: low vs. high) by 2
(outcome: negative vs. positive) between-subjects design (low & neg.: n = 21, low & pos.: n = 20, high
& neg.: n = 20, high & pos.: n = 21). The main dependent variable was Perceived trustworthiness
(with the subscales Ability, Benevolence and Integrity). Perceived trustworthiness was repeatedly
measured and thus “Time” was included as a within-participants variable in the analysis to refer to
the different measurements (T1, T2, T3, T4). Each participant performed two missions; a training
mission and the experimental mission. Cognitive workload was also administered.
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2.2 Task and Procedure
Upon arrival at the laboratory, participants were greeted by the researcher and guided to a private
room where the study was to be conducted. The researcher provided a brief introduction to the
study, emphasizing the general purpose and the tasks participants would be asked to perform.
Participants were presented with an information sheet about the study and a consent form. Upon
agreeing to participate, participants filled out a pre-study questionnaire (i.e., demographics and
gaming experience) and received information regarding the scenario and task. Participants were
instructed to perform a virtual military transport and reconnaissance operation, together with a
quadruped robotic agent. Their mission had two major objectives. The first objective of the team
was to get to a designated location as fast and safe as possible in order to collect essential supplies
and equipment that would be airdropped by helicopter at a scheduled time. A green smoke grenade
was used to mark the drop zone. If the team did not reach the designated location in time, the
helicopter would not be able to deliver the supplies securely. If so, following troops would not be
resupplied and would run out of essential resources quickly. In other words, the team had to hurry
in order to complete the mission successfully.

The second objective of the team was to obtain information about the activities of an enemy
in that particular area by counting potential IED’s (i.e., red and blue barrels) along the way. By
assigning participants the counting task, each team member (i.e., the participant and the virtual
robotic partner) had a specific role contributing to their shared objective. This arrangement also
enabled us to assess whether transparency affected the participant’s performance in their secondary
task. The robot had been delegated the task to navigate to the designated location via the fastest yet
safest route, while providing 360 degrees coverage to its human counterpart. To ensure coverage,
participants needed to stay as close to the robot as possible at all times. The robot did not provide
any advice, but operated according to the goal it had been delegated. The path and the messages of
the robot were pre-programmed and thus fixed.

The task was performed on in the lab using a virtual experimental environment built in Unity3D
(Figure 1). The experimental setup contained two computer screens: one with the experimental
environment (i.e., “task screen”) and another with the questionnaire software (i.e., “questionnaire
screen”). The participants sat in a dimly lit laboratory room at approximately 65 centimetres from
the computer screens. Data was gathered via the online questionnaire software Qualtrics. The task
consisted of three parts: (1) a practice session with demo video, (2) the training mission, and (3) the
experimental mission. During the practice session, participants were placed in a neutral virtual
environment where they got familiar with the controls (key W and mouse), saw the robot and
examples of the red and blue barrels, and tested the volume of the audio via the headphones. Next
they were presented a map and a video showing the planned route to the designated location. They
were instructed that it was crucial that they strictly follow the plan as it had been coordinated
with the helicopter pilot. After that, each participant performed the training mission and the
experimental mission, the latter being presented as the ‘actual mission’. This was a fixed order.
Naturally, we could only introduce something unexpected after creating a shared expectation.

In the training mission, the robot adhered to the path demonstrated in the demo video. However,
at a fixed point in the experimental mission, the robot diverged from the predetermined route
and chose an alternative path, in response to environmental changes (i.e., the riverbed had dried)
(Figure 2). Both missions took place in the same virtual environment with the designated location
on the opposite side of a river. However, in the training session the river was full of water, which
meant that to cross over the river they had to use the bridge. In the experimental session, the
environmental circumstances changed and the riverbed dried up (see Figure 2). At the time of the
robot’s deviation, the river is not visible for the participant.
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Fig. 1. Screenshots of the virtual task environment. From left to right, top to bottom: (1) Examples of the red
and blue barrels in the demo, (2) first sight of the river in the training session, (3) robot crossing the bridge in
the training session, and (4) robot nearing the riverbed in the experimental session.

During the missions, perceived trustworthiness was measured at four times. At fixed points, the
task environment would freeze and participants were asked to turn to the questionnaire screen
to fill out a questionnaire (Figure 2). Participants were assured that the time needed to fill out
the questionnaires did not add up to their total mission time. After completing a questionnaire,
participants returned to the task screen and resumed their mission. At the end of each mission,
participants were asked to report the number of identified potential IEDs (red and blue separately),
and their level of certainty regarding their report. To check whether the participants noticed that
the robot had deviated from the plan, we included a manipulation check asking participants after
both missions to what extent the robot operated in accordance with the plan. Further, cognitive
workload was measured after each mission. The location and number of the IED’s (red and blue
barrels) in the environment were varied between the training and experimental session. There were
no barrels present in the demonstration video. After participants finished the experiment, they
were thanked and debriefed.

2.3 Independent Variables
Transparency had two levels (i.e., low vs. high) and was manipulated between participants. In
case of low transparency, the robot did not give any updates during the missions. In case of
high transparency, the robot provided regular updates on the mission’s progress including an
explanation for its deviation from the planned route (see Table 1, the explanation has code 2b).
The robot’s messages were generated through computerized speech that was created using a
website for converting text into speech,1 using a male voice speaking US English. The transparency
manipulation was present in both the training session and the experimental session.

1Via www.ttsmp3.com, voice: US English/Matthew
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Fig. 2. Bird-eye-view of the environments in the training (top) and experimental (bottom) session. Dotted
lines with arrows mark the routes. White dots with codes (i.e., 1a to 2d) reference the locations of the robot’s
auditory updates in the high transparency condition, as presented in Table 1. Yellow diamonds indicate the
locations where the task would freeze to measure trust (T1 to T8). The designated location was marked by
a green smoke grenade, highlighted in the top figure by a green star. The missions terminated where the
arrows end. Outcome was presented as text on screen. Outcome and the final trust questionnaires of each
mission (T4 and T8) were administered after the mission had ended.

Table 1. Overview of the Robot’s Updates in the High Transparency Condition

Mission Code Audio message
Training 1a Moving to location: left turn

1b Moving to location: straight ahead
1c Moving to location: approaching bridge
1d Moving to location: crossing bridge

Experimental 2a Moving to location: left turn
2b A faster alternative route has been detected, because the river had dried

up. Moving to location: right turn.
2c Moving to location: approaching river
2d Moving to location: crossing riverbed
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Table 2. Overview of the Mission’s Outcomes at T4 in the Experimental Session

Outcome Text on screen
Positive The riverbed had indeed dried up and your team was able to cross the riverbed.

Thanks to the alternative route, your team reached the destination 2 minutes
early. Your mission was successful.

Negative The riverbed did not dry up fully.Quicksand had formed, whichmade it impossible
to cross. The detour cost you precious time and your team did not reach the
planned location in time for the resupply by air. Your mission has failed.

Outcome had two levels (i.e., negative vs. positive) andwas alsomanipulated between participants.
The outcome was presented to the participants via text on screen (Table 2). This message appeared
as participants reached the riverbed in the experimental session (i.e., after audio message 2d, before
T8) (see Figure 2). A positive outcome meant that the HRT reached their goal and that the robot’s
deviation led to a better result than the original plan. A negative outcome meant that the HRT did
not reach their goal and that the robot’s deviation led to a worse result.

2.4 Dependent Variables
Perceived Trustworthiness: The Trusting Beliefs scale from [53] based on the factors of perceived
trustworthiness (i.e., ability, benevolence and integrity) [52, 79] was used to repeatedly assess the
participant’s perception of the robot’s ability, benevolence, and integrity (T1 U = 0.83, T2 U = 0.87,
T3 U = 0.89, T4 U = 0.88, T5 U = 0.88, T6 U = 0.92, T7 U = 0.93, T8 U = 0.94). This scale had a total of
eleven items and consisted of three subdimensions: ability (4 items, i.e., “The robot that I work with
is competent and effective in accomplishing its task”); benevolence (3 items, i.e., “I believe that the
robot would act in my best interest”); and integrity (4 items, i.e., “I would characterize the robot as
honest”). The items were adapted to reference “the robot.” Each item was rated on a 7-point Likert
scale (1 = Strongly disagree to 7 = Highly agree)

Workload: NASA Task Load Index (NASA TLX): The NASA TLX questionnaire was used to
assess the participants’ perception of workload. The NASA TLX consists of six individual rating
scales that are commonly used to measure cognitive workload (mental, physical, temporal, effort,
frustration, performance) [29]. Each item was rated on a 10-point Likert scale (0 = very low to 10 =
very high) (training mission: U = 0.67, experimental mission: U = 0.74).

Secondary task performance (Identifying IEDs): In an attempt to assess cognitive workload
objectively, participants were instructed to count potential IED’s in the environment, which were
visually represented as red and blue barrels. At the end of each mission, participants were asked
to report the number of red and blue barrels they had identified separately. Task performance
was computed by first calculating the proportions of red and blue barrels separately (i.e., reported
barrels divided by the number of correct barrels, where 1.0 indicates perfect performance). If a
proportion exceeded 1.0 (i.e., overreporting), we subtracted the proportion from two. Subsequently,
the final performance score was obtained by multiplying the performance scores of the red and
blue barrels, which resulted in a number between 0 and 1.

3 Results
3.1 Manipulation Check and Control Variables
As a manipulation check, participants were asked to what extent the robot operated in accordance
with the plan on a scale from 1 (Completely not in accordance) to 7 (Completely in accordance).
Results of a paired sample t-test indicated that participants reported that the training mission went
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Fig. 3. A comparison of trust levels (y-axis) between conditions (separate lines) over time (x-axis). The left panel
shows the data from the training session and the right panel shows the data from the experimental session.
Grey lines with triangle markers represent conditions with a negative outcome, while black lines with circle
markers represent conditions with a positive outcome. Dashed lines indicate conditions with low transparency,
and solid lines indicate conditions with high transparency. Error bars represent standard deviations. NB. The
differences at T7 between low/neg. & low/pos. and high/neg. & high/pos. are non-significant (respectively
p = .152 and p = .506). The difference in trust between low/pos. and high/neg. at T8 are also non-significant (p
= .138).

according to plan (Mtraining = 6.3, SDtraining = 1.0), while participants reported that the final mission
did not (Mtraining = 3.8, SDtraining = 2.0). The difference is significant, t(81) = 10.30, p < .001. So, it
can be assumed that the deviant behaviour was noticed and that the manipulation was successful.

Also, gaming experience was measured prior the experiment with the item “How often do you
play video games?” on a scale from 1 (Never ) to 6 (Every day). We compared the level of gaming
experience between groups and found no significant differences (one-way ANOVA, F (3, 78) = 1.27,
p = .290). Additionally, we calculated Spearman’s correlations between gaming experience and
various outcome variables. No significant relations with gaming experience were found: subjective
workload (d = .14, p = .209), performance (d = .12, p = .302), and perceived trustworthiness (total
average experimental session) (d = .10, p = .391).

3.2 Perceived Trustworthiness
In the training session, there are no significant differences in perceived trustworthiness between
groups and timepoints (see Figure 3). The following analyses only consider the experimental session.

3.2.1 Overall Perceived Trustworthiness. We performed a repeated-measures ANOVA with the
between-subject factors Transparency (high or low) and Outcome (positive or negative) and the
within-subjects variable Time (prior to deviation [T5]; after deviation [T6]; before outcome [T7];
after outcome [T8]). The dependent variable was Overall perceived trustworthiness.

For the main effect of Time, Mauchly’s test of sphericity indicated a violation of the sphericity
assumption, X2(5) = 26.96, p < .001. Since sphericity is violated (Y = 0.83), Greenhouse-Geisser
corrected results are reported. A significant main effect for Time was obtained (F (2.48, 234) = 13.765,
p < .001, [2 = .150). Means were 5.1 at T5, 4.6 at T6, 4.6 at T7 and 4.5 at T8. Post-hoc (LSD) pairwise
comparison shows that this main effect is due to a significant decline in perceived trustworthiness
from T5 to T6 (ΔM = −0.4, p < .001), which reflects the effect of the robot’s deviation.
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Secondly, a significant main effect for Transparency on Perceived trustworthiness was obtained
(F (1, 78) = 16.72, p < .001, [2 = .177). On average, high transparency (M = 5.1, SE = 0.1) led to
higher perceived trustworthiness than low transparency (M = 4.3, SE = 0.1).

Lastly, a significant main effect for Outcome on Perceived trustworthiness was obtained (F
(1, 78) = 7.93, p = .006, [2 = .092). On average, people in a positive outcome condition (M = 5.0,
SE = 0.1) perceived the robot as more trustworthy than people in a negative outcome condition (M
= 4.4, SE = 0.1).

The two-way interaction effect between Transparency and Time on Perceived trustworthiness
was found to be significant (F (2.48, 234) = 12.37, p < .001, [2 = .137). Post-hoc (LSD) pairwise
comparison shows that a significant difference in perceived trustworthiness between the low and
high transparency conditions emerged at T6 (i.e., directly after the robot deviated from the plan)
(ΔM = 1.2, p < .001). Although this gap shrinks over time, it remains significant (T7: ΔM = 1.0,
p < .001; T8: ΔM = 0.8, p = .003). This effect illustrates that in the high transparency condition,
where the robot explains the rationale behind its deviation, trust is preserved. Conversely, in the
low transparency condition, the robot’s silent deviation before T6 results in a trust violation.

The two-way interaction effect between Outcome and Time on Perceived trustworthiness was
also found to be significant (F (2.48, 234) = 30.31, p < .001, [2 = .280). Post-hoc (LSD) pairwise
comparison shows that, as expected, the interaction effect was manifested in the final phase of the
run, after the outcome had been presented to the participant. At T8, perceived trustworthiness was
significantly higher in the positive outcome conditions than in the negative outcome conditions (ΔM
= 1.6, p < .001). In other words, a positive outcome had a positive effect on perceived trustworthiness,
while a negative outcome had a negative effect on perceived trustworthiness.

The three-way interaction effect between Transparency, Outcome and Time on Perceived trust-
worthiness was non-significant (F (2.48, 234) = 0.86, p = .445, [2 = .011). This indicates that the
effects of transparency and outcome on perceived trustworthiness in response to the events in the
task are independent.

3.2.2 Ability, Benevolence and Integrity-Based Perceptions of Trustworthiness. We then conducted
three separate repeated-measures ANOVAs, each with a different perception of trustworthiness
(Ability, Benevolence, and Integrity) as the dependent variable. Again, we included Transparency
(high or low) and Outcome (positive or negative) as between-subject factors and Time (prior to
deviation [T5]; after deviation [T6]; before outcome [T7]; after outcome [T8]) as the within-subjects
variable (see Figure 4). Greenhouse-Geisser corrected results are reported.

As shown in Figure 4, perceptions of Ability and Integrity exhibited similar patterns as those
observed for overall perceived trustworthiness. Both dimensions showed a significant main effect
of Time, characterized by a notable decline in perceived trustworthiness from T5 to T6, reflecting
the impact of the robot’s deviation. The differences over time were more pronounced for Ability (F
(2.67, 234) = 12.96, p < .001, [2 = .235) than for Integrity (F (2.36, 234) = 8.66, p < .001, [2 = .100).
Similarly, both dimensions revealed a significant main effect of Transparency, indicating that high
transparency led to greater perceived trustworthiness, with a stronger effect for Ability (ΔM =

0.8, F (1, 78) = 31.80, p < .001, [2 = .290) than for Integrity (ΔM = 1.2, F (1, 78) = 12.95, p < .001,
[2 = .142).

The two-way interaction effect between Transparency and Time was also significant for both
dimensions, particularly pronounced for Ability (F (2.67, 234) = 14.53, p < .001, [2 = .157) compared
to Integrity (F (2.36, 234) = 6.94, p < .001, [2 = .082). As illustrated in Figure 4, post-hoc pairwise
comparisons (LSD) indicated a significant difference in perceived trustworthiness between low and
high transparency conditions at T6, immediately following the robot’s deviation from the plan.
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Fig. 4. A comparison of trust levels (y-axis) between conditions (separate lines) over time (x-axis). The panels
show different perceptions of trustworthiness: from top to bottom, Ability, Benevolence, Integrity, and Overall
Trust for reference. Grey lines with triangle markers represent conditions with a negative outcome, while black
lines with circle markers represent conditions with a positive outcome. Dashed lines indicate conditions with
low transparency, and solid lines indicate conditions with high transparency. Error bars represent standard
deviations.

Furthermore, the two-way interaction effect between Outcome and Time was significant for both
dimensions, with a stronger effect observed for Ability (F (2.67, 234) = 43.44, p < .001, [2 = .358)
than for Integrity (F (2.36, 234) = 12.50, p < .001, [2 = .138). Post-hoc (LSD) pairwise comparison
shows that, as expected, this interaction effect was manifested in the final phase of the experimental
session, after the outcome had been presented to the participant. The only distinction between
Ability and Integrity lies in the significant main effect observed for Outcome on Ability (F (1, 78) =
10.17, p = .002, [2 = .115), while this main effect was non-significant for Integrity (F (1, 78) = 0.91,
p = .343).
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The perception of the robot’s benevolence stands out among the studied perceptions of trust-
worthiness. Neither the main effect of Time (F (1.73, 234) = 0.44, p = .616) nor the main effect
of Transparency (F (1, 78) = 0.76, p = .387) reached significance. However, we did find a signif-
icant main effect for Outcome (ΔM = 0.8, F (1, 78) = 7.87, p = .006, [2 = .092). As depicted in
Figure 4, there was a consistent significant difference in perceptions of benevolence between par-
ticipants in the positive and negative outcome conditions, even before the outcome was presented.
Post-hoc analysis (LSD) of the significant two-way interaction effect between Outcome and Time
(F (1.73, 234) = 4.96, p = .011, [2 = .060) indicates that while the difference between the positive and
negative outcome condition was largest at T8 (p < .001), significant differences were already evident
at T5 (p = .015) and T7 (p = .010), prior to outcome presentation. Lastly, the two-way interaction
effect between Transparency and Time on the perception of benevolence was found to be significant
(F (1.73, 234) = 5.04, p = .011, [2 = .061). However, post-hoc pairwise comparisons (LSD) did not
reveal significant differences between transparency conditions at any of the timepoints.

The three-way interaction effect between Transparency, Outcome, and Time was non-significant
for each perception.

3.3 Workload
To assess the effect of transparency on subjective workload, we performed a repeated-measures
MANOVA with the between-subject factors Transparency (high vs. low) and the within-subjects
variable Mission (training vs. experimental) and NASA TLX subscales (mental, physical, temporal,
effort, frustration, performance). The dependent variable were the raw NASA TLX scores. The
analysis showed that there were no significant differences between the two transparency conditions
on any of the NASA TLX subscales. This suggests that transparency did not affect workload.

To assess the effect of transparency on secondary task performance, we performed a repeated-
measures ANOVA with the between-subject factors Transparency (high vs. low) and the within
subjects variable Mission (training vs. experimental). The dependent variable was the performance
on the barrel identification task. Our results showed no significant difference between the two
transparency conditions on task performance. We did find a significant effect of Mission on perfor-
mance, indicating that performance improved significantly from the training mission (Mtraining =

0.6, SEtraining = 0.2) to the experimental mission (Mexperiment = 0.8, SEexperiment = 0.2).
Lastly, we explored whether there was a correlation between subjective workload scores (i.e.,

averaged raw NASA TLX score) and performance on the secondary task. We found no significant
relations between subjective workload and performance on the secondary task. The scores from
the training and experimental mission were correlated for both subjective workload (Pearson’s
r = .71, p < .001) and secondary task performance (r = .23, p = .040).

4 Discussion
4.1 Findings
Our findings show a robust effect of transparency on overall perceived trustworthiness. Perceived
trustworthiness was considerably higher when the robot provided updates about its actions through-
out the task. Moreover, while the perceived trustworthiness of the robot remained stable during
the robot’s deviation for participants in the high transparency condition, participants in the low
transparency condition showed a significant decline in perceived trustworthiness in response
to the robot’s sudden adaptation to the plan. In other words, the explanation prevented a trust
violation. This confirms earlier research that showed that transparency can have a buffering effect
on perceived trustworthiness in case of unexpected behaviour or temporary malfunctioning [40, 41,
48, 88]. It also confirms that specifically clarifying the what and why of an unexpected action can
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prevent a breach in human-robot trust [48]. This finding broadly supports the work of other studies
in this area linking transparency with trust, in that it enables humans to know and anticipate the
robot’s behaviour [16].

Our findings reveal that perceptions of the robot’s trustworthiness in terms of ability and integrity
exhibited similar patterns, albeit consistently stronger effects were observed for ability compared
to integrity. Our results further suggest that, overall, the perception of the robot’s benevolence
remained relatively stable despite the robot’s actions during the mission (i.e., the deviation and
the outcome). This is somewhat unsurprising given that the mission primarily focused on how
effectively the robot executed its delegated task, rather than its purpose or benevolence. Therefore,
it makes sense that the effects of the manipulation are reflected in the robot’s perceived abilities and
performance (i.e., what it does and can do), as well as its understandability and its ability to explain
its actions (i.e., how it operates) [43, 45]. The stability of benevolence perceptions despite mission
events underscores the distinctiveness of this trust dimension from factors primarily concerned
with task performance and execution [43].

The fact that we did not find an effect of transparency during the training session can be explained
by transparency displacement, the idea that transparency information should ideally be displaced
to other time periods (i.e., before or after the action) to enable more efficient communication in
the moment [58]. In our case, every participant received a detailed demonstration of what they
could expect during the mission (i.e., even prior to our “training” mission). This form of “a priori
transparency” frames expectations about what is likely to happen during operations and reduces
the need for communication during the action [58]. This explains why the status updates that
the robot provided during the execution of the training session did not have additional trust-
building value; because everything was still going according to plan. It was only when the robot’s
behaviour deviated from the framed expectations that real-time communication became necessary,
and transparency significantly influenced the perceived trustworthiness of the robot.

Next we found that mission outcome also affected perceived trustworthiness. As expected, mis-
sion success increased perceived trustworthiness, while mission failure led to a decrease. This
finding confirms that the performance of a robot is still an important predictor of human-robot
trust [28, 34]. In contrast to our expectations however, these increments and decrements were
independent of the robot’s transparency. As noted, in the low transparency condition we ob-
served a trust violation in response to the robot’s silent deviation. In line with the outcome bias,
we expected that this decrement would amplify the effect of a subsequent negative outcome.
Although the negative outcome did lead to a further decline in perceived trustworthiness, the
magnitude of this final trust violation was the same for participants in the high transparency
condition with a negative outcome, who had not yet experienced a trust violation. Like the
negative outcome, the positive effect of goal attainment on perceived trustworthiness was also
constant, in spite of the (lack of) communication that preceded it. People’s damaged percep-
tions of trustworthiness after unannounced deviations recovered significantly once the outcome
was favourable.

In essence, we expected that being informed about the what and why of a robot’s (unexpected)
behaviour would have more impact on perceived trustworthiness than the eventual outcome
of divergent behaviour. In addition to the outcome bias, we based our expectations on findings
where participants placed less value on task performance and more on transparency, control
and feedback [27] and preferred an expressive and error-prone robot over a more efficient and
effective one. We reasoned that an erroneous robot could be deemed trustworthy as long as it
communicated. However, our findings seem to indicate that people weigh the outcome at least as
heavily as the process in their estimations of trustworthiness. This discrepancy can be explained by
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the severity of the negative outcome on the one hand and the quality of the communication on
the other.

For one, the perceived severity of the negative outcome might explain its robust effect on per-
ceived trustworthiness [74]. Although the current study was based on a fictional virtual task,
without any reward or loss, the scenario was focused on successfully completing the mission,
especially when comparing our task to [27] where the objective was to prepare an omelette
with the assistance of a humanoid robot. In their study, errors (e.g., the robot dropping an egg)
resulted in delays but did not pose a significant threat to the ultimate goal achievement. In con-
trast, in our study’s negative outcome condition, the robot’s deviant behaviour led to a complete
mission failure.

Secondly, an alternative explanation might be related to the quality of the communication
between the participant and the robot. We manipulated transparency in a binary manner as either
high or low, indicating whether auditory status updates including an explanation for divergent
behaviour were provided or not. Participants were unable to engage in a dialogue with the robot
they were collaborating with. Then outcome was presented at the end of the task through text
on screen. Essentially, the transparency and outcome manipulations both amounted to unilateral
updates that informed the participants about the capabilities of the robot and the environment.
Hence, it might not be surprising that their effects on perceived trustworthiness were similar rather
than reinforcing.

Our current findings are in line with the general finding of [31], who conclude that humans
judge machines primarily by their outcomes, rather than their “intentions.” We believe that richer
forms of interaction (e.g., bi-directional communication) could cultivate a deeper understanding
of the rationale behind the robot’s decisions and foster a heightened sense of collective account-
ability. This could shift the focus from the end-result to the decision-making process and lead to a
greater understanding and forgiveness in situations where an unintended negative outcome occurs.
This would then thus be more in line with how humans judge humans [31]. The emergence of
Large Language Models offers this prospect of intuitive and effective bi-directional human-robot
communication. A recent study showed that incorporating these models in robots contributed to
increased trust in human-robot collaboration [101]. In order to truly consider robots as autonomous
partners in dynamic task environments, the ability to communicate bi-directionally within the
team is crucial [13]. Future research is required to gain a better understanding of the effect of
bidirectional communication. The possibility to request further details or to clarify instructions
during interaction is expected to add to the development of richer interactions and the calibration
of trust [76].

Lastly, we found no differences in the secondary task performance and self-reported cognitive
workload between high or low transparency. This can be considered positive as we found that
high transparency contributed to higher and more stable levels of perceived trustworthiness, while
the additional provided information did not come at the expense of workload [87]. Prior findings
on the effect of transparency on workload during human-robot collaboration are mixed [62]. Our
findings contradict studies that found that transparency affected workload either positively [6] or
negatively [25, 49, 96], but confirm earlier studies that found no effect of transparency on workload
[9, 54, 81, 82, 87]. The apparent inconsistencies in literature are likely due to both the broadness of
the definition of transparency and its highly context-dependent effects. Transparency can vary in
terms of the type and amount of information provided, as well as in the way it is communicated or
presented (modality). Previous studies have shown that transparency through other modalities,
like written text messages [25] and data visualizations [2, 6, 41, 54, 87] can also enhance trust. The
chosen modality could be a factor in trust, e.g., the auditory messages with synthesized “robotic
speech” that we used can have an anthropomorphic effect [85], which in turn could have influenced
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trust [91]. It will take continuous effort to find the appropriate modality and level of information for
different applications, as there appears to be no single optimal way of incorporating transparency
into the design of autonomous collaborative agents.

In short, our findings showed that a robot’s explanation in case of unplanned behaviour prevented
a decline in perceived trustworthiness. Our findings emphasize the importance of transparency for
effective HRT as it contributed to a stable level of trustworthiness without increasing cognitive
workload. Transparency remains a challenge in each form of human-robot collaboration. Successful
HRI and delegation is supposed to reduce the human’s cognitive effort, but there is a continuous
trade-off between keeping the human sufficiently informed to maintain trust and preventing
cognitive overload [57]. An interesting direction for future research regarding this issue is provided
in [2], where the authors developed a model capable of estimating the effect of transparency on
human trust and workload in real time. Studies incorporating such predictions in simulations or
real-life missions would provide valuable insight on this matter.

4.2 Implications and Contributions
Our research extends the current understanding of trust violations in HRI due to unexpected be-
haviour rather than solely robot malfunctioning. As robots are increasingly deployed in increasingly
complex operational situations, it is crucial to investigate a wider range of human-robot trust viola-
tions while using realistic scenarios. Transparency is essential to prevent that trust will unjustly
erode due to a misunderstanding of the basis of a robot’s assessments and actions. Especially with
the emergence of deep learning AI, which makes the behaviour of AI-driven systems subject to
potentially unpredictable change [58], artificial agents will need to be able to explain the rationale
behind their behavioural choices. Explanations are needed to continuously synchronize the mental
models of those who must work together as to understand and resolve mismatches [58]. As such,
transparency is a major contributor of effective trust calibration.

Trust calibration is a lengthy and continuous process. The trustworthiness of any actor varies
across time and context. Hence calibrated trust should not be viewed as the static state of trust, but
as a fluctuating quality that is subject to continual calibration based on ever-evolving experience.
To capture this change, repeated measures of trust are crucial. “Change is particularly important for
the study of norm conflict, resolution, and mitigation, because people often update their perceptions,
judgments, or trust as they learn more about the robot and especially about its response to a norm
violation.” [69] (p. 5). While the current study did not include continuous captures of trust like
other studies have [12, 24, 42, 100], it has gone some way towards enhancing our understanding of
the dynamics of trust by repeatedly measuring trust.

4.3 Limitations and Future Work
Although the present study yielded insightful results, there are a few limitations that should be
taken into account when evaluating our findings. First, the generalizability of these results is subject
to certain limitations. Our analyses are based on a sample comprising mostly university students.
Given their non-expert background, the game-like task environment could have trivialized the
experience of the outcome of the scenario. It is likely that the effect of an outcome in a game-like
virtual environment may not be the same as its effect in “real-life” situations. The task scenario
described a military transport and reconnaissance operation. However, military personnel, who
are used to training with virtual scenarios, might have responded differently to the outcome in
this scenario, let alone during an actual mission. Despite the limited sample size, our study yielded
noteworthy findings. Nevertheless, researchers should exercise caution when extrapolating these
results to wider or more general contexts.
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A potential weakness of this study lies in the fact that the high-transparency condition included
robot speech, while the low-transparency condition did not. This difference raises the possibility
that the observed effects between the two conditions may be attributed to the robot’s speech
presence rather than the content of the speech itself. According to prior research, the presence
of speech can influence how people interact with an agent [85]. Additionally, a computerized
voice might suggest a specific gender, thereby triggering anthropomorphism and its associated
consequences [21]. However, it was only when the robot’s behaviour deviated from the framed
expectations that transparency significantly influenced the perceived trustworthiness of the robot.
We did not observe an effect of transparency during regular auditory status updates. Therefore, we
are confident that this difference does not undermine the study’s validity and that our findings
remain valuable for understanding the impact of transparency on perceived trustworthiness.

Another limitation was that participants had limited options available for handling unplanned
behaviour, as they were dependent on the robot for guidance and coverage. The robot followed
a scripted path with scripted messages and participants had to stay close to the robot, as it was
not able to wait for them. In regular interactions, however, there is no predetermined approach
to address unexpected events. We concur with [48] on this matter, who proposed that in practice
(a) the robot should request permission prior to engaging in unplanned behaviour, or that (b) the
conditions wherein the robot is delegated authority to act autonomously if certain situational
criteria are met should be identified prior to the task.

The human operator’s inability to deviate from the robot decreases their self-efficacy and increases
their dependency on the robot. Multiple studies have linked people’s self-efficacy—their evaluation
of their own competences and reliability in relation to a certain task—to trust calibration in HATs
[14, 16, 100]. For example, lowered self-competence can increase people’s willingness to accept
recommendations from a robot and to trusting it in cases they should not [89]. Follow-up studies
should allow more flexibility in choosing how to respond to deviant behaviour of an autonomous
system rather than having to adhere to a predetermined course of action (e.g., following the robot at
all times). These future investigation have the potential to explore the ambiguous relation between
trust and compliance.

A related avenue for future research could be to change the HRI role of the participants in
the collaboration. According to the HRI roles as defined by [78], the type of HRI in the current
study can be characterized as “peers.” In a peer interaction, the participant is considered to be the
robot’s teammate who shares the same goals [78]. In terms of task delegation and trust, it would be
interesting to look into HRIs where the participant has the role of supervisor. In a supervisor role,
the participants would monitor and control an overall situation and be able to delegate specific
tasks or to modify long term plans [78]. Allowing participants to transition between skill-based,
rule-based, and goal-based task delegation could serve as an interesting dependent variable that
possibly relates to trust and workload. That is, goal-oriented task delegation is assumed to require
more trust than skill-based delegation. However, maintaining a higher level of delegation could also
be an indication of increased workload. For example, research shows that despite having reduced
trust in the robot, people continue to rely on it when faced with high cognitive load [5]. Changing
the HRI roles and hence giving the participant more behavioural freedom would provide valuable
insights into the dynamics and drivers of trust and reliance.

4.4 Conclusion
It is envisioned that increasingly autonomous robots will be able to take overmore andmore complex
activities as their planning and decision-making abilities evolve. As a result, task delegation can
become more abstract and goal-oriented, giving a robot more degrees of freedom in terms of the
execution of delegated tasks. Instead of having to specify each step of the way, the robot can decide
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on an optimal approach itself. Robots will be increasingly deployed in unstructured environments
where it may not be feasible to think through responses in advance [1]. Especially in such complex
operational circumstances, goal-oriented delegation and the robot’s ability to adapt to changing
circumstances will yield flexibility that will benefit effective team performance. However, such
autonomy and decision authority can also lead to misinterpretations or misunderstandings from the
human perspective, which could then lead to possibly unwarranted trust violations. Transparency
is known to play a crucial role in fostering an understanding of the robot’s intent and establishing a
calibrated level of trust [77]. The current work confirms that transparency can alleviate the adverse
consequences associated with witnessing unexpected robot behaviour. By providing an explanation
in the wake of unexpected events or behaviours, trust can be maintained [13].
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