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Abstract

With software permeating our world, modern software systems grow both in size (e.g., lines of
code, number of software artefacts) and complexity. Logs produced by software systems during
execution are regularly the first and only information used by software engineers to comprehend
the behaviour of these complex systems and to repair software faults. However, analysing logs is
not trivial due to the immense size of the information logged by these systems. Many previous
studies have proposed tools and techniques aiming to support log analysis, despite that, software
developers commonly rely on text-based tools as well as self-made scripts and programs when
analysing logs. The functionalities of such tools are often limited and do not provide developers
with a way to incorporate their domain knowledge into the analysis. The domain knowledge of
developers lives mainly in their minds.

The goal of this thesis is to investigate how to enable software engineers to better utilise their
domain knowledge of logs more actively in the analysis process. Specifically, we investigate the
presence of patterns and sequences which we refer to as structures as well as the knowledge of
these structures. Furthermore, as logs are commonly analysed in text-based tools in which they
are represented as raw textual data, we aim to make log analysis more visual and interactive.

To that end, we conduct an interview study in Philips Image Guided Therapy Systems (IGTS)
- a leading company specialising in the field of health technology, to understand what structures
are present in logs and whether they are utilised by software engineers during log analysis. As
a result, we observe that software engineers often utilise their domain knowledge of specific
structures occurring in the logs to distinguish between irrelevant and relevant, for their analysis,
parts. Consequently, we develop functionality that enables developers to encode their domain
knowledge of structures in log analysis by defining structures and searching for them in logs
visually and interactively. We evaluate our implementation with software engineers on logs
produced by industrial software. We discover that the participants are able to encode their
knowledge of structures successfully and use our features to facilitate the investigation of software
issues. However, we also discovered some limitations of the features. First, the usefulness of the
features depends on the experience and knowledge of the users. The features may not be helpful
for analysing unfamiliar logs. Second, the features may not handle well structures that contain
a large number of entries. Specifically, the results may be hard to navigate and use. Despite
these limitations, our solution receives above-average ratings for usability from the evaluation
participants.
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Chapter 1

Introduction

Today, software systems are employed in a variety of fields and forms, ranging from simple mobile
apps used daily to complex cybersecurity solutions used by large organisations. Due to this ever-
expanding presence of software, software systems evolve both in functionality and in complexity
[1, 2, 3]. However, as their complexity increases, so does the difficulty of comprehending their
behaviour. One way in which software developers can better grasp the behaviour of complex
systems is by analysing software logs - a collection of recorded events that occur in a software
system during execution. These logs can vary in the shape and size of their contents, in format
and in purpose, among other factors. These files are often the main information source on
software behaviour [4], and are analysed for various purposes, with the most commonly cited one
being the investigation of software bugs1[5].

In the context of this study, we consider two common categories of logs - event logs and func-
tional traces [5]. Event logs often record general information at a high level, such as an entire
software (sub)system, whereas traces are more detailed and record information at the level of
sub-units (e.g., components, classes). As one software operation or action can be completed in
milliseconds, new information can be logged every few milliseconds. Therefore, even if a system
runs for several minutes, the recorded, in both event logs and functional traces, information
can consist of thousands of entries or more. For instance, Google systems generate hundreds of
millions of entries monthly, consuming tens of terabytes daily [6, 7]. Thus, obtaining specific
information manually can be significantly time-consuming and tedious. To improve this process,
various tools and methodologies have been proposed [8, 9, 10, 11, 12, 13]. Despite the differ-
ences between event logs and traces, proposed methodologies and tools used for their analysis
are very similar. Regardless, such tools and techniques are seldom used in the software industry
as developers mainly rely on unspecialised tools such as text editors and self-made scripts [5].
One possible explanation for this limited adoption might be the limitations and prerequisites
of the state-of-the-art tools. Some of these tools require modifying the source code to produce
logs to be used as input [14]. Such modifications can require excessive amounts of work due to
the size and complexity of software. Other tools accept event logs and traces in specific formats
[11], which can be too restrictive (e.g., contents-wise and size-wise). Finally, an extensive setup
or configuration might be needed before a tool can be used [8]. Such factors can discourage
the use of state-of-the-art tools and methodologies. As a result, many industry professionals
still analyse event logs and traces manually or with minimal tool support, often in the form of
keyword searching provided by text editors, and/or filtering on field values (e.g., Timestamp,
entry description. message, etc.). Furthermore, the data in logs and traces is commonly repres-

1also referred to in the literature as software faults
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1.1. THESIS CONTEXT CHAPTER 1. INTRODUCTION

ented as millions of lines of text. Processing such voluminous data is both very time-consuming
and tedious. The development of more intuitive and easy-to-use tools may be one approach to
alleviate this problem. Furthermore, event log and functional trace analysis could be acceler-
ated by representing the logged information in different views and enabling the users to interact
with them [12, 9]. Such views may consist of textual representations which aggregate and ab-
stract information or advanced visualisations that condense thousands of entries into intuitive
and interactable (e.g., filter, resize, search, etc.) figures and plots. Other techniques, such as
(automated) stream abstractions [4], can facilitate the comprehension of the information in the
logs by reducing the amount of data to process. This thesis investigates whether the domain
knowledge about the contents of event logs and traces, that developers possess, can be used to
provide a visual and interactive event log and functional trace analysis. For the sake of brevity,
in the following sections, we shall refer to both event logs and functional traces as logs, unless a
distinction is required.

1.1 Thesis context

Previous studies have explored ways to support log analysis by incorporating concepts such as
patterns [14], intervals [11] and motifs [15] into the analysis. While these terms are closely related,
there can be semantic differences between them. In this study, we opt to use the term structure
to encapsulate the aforementioned concepts. The large recorded data in logs often contains
inherent structures. Some structures can be explicit, having a clear beginning and end, visible
in the log. An example of such a structure could be the information logged during a function
execution. In this case, the structure would consist of two entries marking the beginning and the
return of the function, as well as all logged entries in between. Figure 1.1 presents an example
of such a structure. A structure could be also implicit. For example, a system that is being
turned on must go through the same startup steps. In this, case the entries logged during this
startup can be considered as an implicit structure (Figure 1.2). Domain knowledge of logs, such
as the presence of structures, lives in the minds of developers experienced with the source code
producing the logs [16].

The goal of this thesis is to observe what types of structures exist in logs, in particular
structures of which developers are aware. Then given these structures, to investigate whether
the domain knowledge about them can be leveraged during log analysis in order to facilitate it.

Figure 1.1: Example of an explicit structure in a log

2 Encoding domain knowledge of logs during log analysis
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Figure 1.2: Example of an implicit structure in a log

1.2 Research questions

Before considering how the process of log analysis can be improved, first, we need to understand
what structures are present in analysed files and what is their current impact on log analysis
(RQ1)While there can exist many collections of log entries which can be considered as a structure,
we are interested in structures which are known by developers, as those could possibly be utilised
to facilitate the analysis process. Obtaining relevant information easily with tools would allow
developers to direct their effort on the engineering work, rather than on looking through the logs
and traces. Therefore, we need to understand what tool support can exploit the knowledge of
these structures (RQ2) to achieve this goal. Hence, we pose the following research questions:

RQ1: What structures are present in event logs and traces analysed at Philips?

RQ2: Given these structures, what tool features can support an interactive analysis of these
event logs and traces?

As the objective of this study is to ultimately improve the experience of performing log and
trace analysis, we are interested in the impact of features described as an answer to the previous
research question. Thus, we lastly pose this question:

RQ3: How do these tool features impact log analysis?

1.3 Case study: Philips

To address our research questions we conduct an exploratory case study [17] in Philips Image
Guided Therapy Systems (IGTS). While previous studies have investigated the exploitation of
patterns, intervals and similar concepts in log analysis, many such studies focus on techniques
for automatic pattern detection [15] while others lack visualisations and interactivity [11]. Other
previous works that discuss visualising and interacting with patterns consider analysis on col-
lections of logs [9, 12, 13] and are not meant for the analysis of a single log such as the one
commonly performed by software engineers. In Chapter 2, we present the aforementioned stud-
ies. To the best of our knowledge, there are no previous studies that investigate how knowledge
of such concepts can be encoded in a visual and interactive way, to facilitate the analysis of logs
for the purpose of software fault analysis, in an industrial setting.

Encoding domain knowledge of logs during log analysis 3
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Philips IGTS provides software and services for interventional imaging systems and smart
devices used in the field of healthcare. As such, robustness and reliability are crucial for their
systems and products. Therefore, Philips IGTS has defined internal procedures for finding soft-
ware bugs and resolving them. To that end, event logs and traces are regularly used in the
context of investigating software bugs, both internally reported (referred to as engineering issues
or EIs) and field issues (referred to as product defects). However, processing relevant logs and
localising the specific information leading to the source of the bug can be very time-consuming.
While some software engineers within Philips IGTS have developed self-made tools to visual-
ise and facilitate the processing of logs, frequently developers resort to re-implementing similar
features, with only minor variations. Hence, a generic solution applying advanced techniques is
needed. We believe that as a leading technological company in the field of healthcare, Philips
IGTS provides a suitable context for conducting our investigation.

1.4 Thesis outline

The remainder of this study is structured as follows. Chapter 2 presents some relevant back-
ground on log entries and discusses relevant literature by separating the related tools and tech-
niques on methodology. Then in Chapter 3, we discuss the methodology and results of our
interview study. Chapter 4 describes our implemented solution and the rationale behind our
design and implementation choices. Chapter 5 presents the evaluation setup for our solution and
the results of the evaluation. Chapter 6 outlines possible threats to the validity of this research.
Finally, Chapter 7 summarises our findings and discusses possible directions of future work.

4 Encoding domain knowledge of logs during log analysis



Chapter 2

Background & Related work

2.1 Background

2.1.1 Log format

Log entries found in event logs or functional traces are produced by placing logging statements in
specific locations in the source code. This process of modifying the source code with the inclusion
of logging statements is often referred to as instrumentation [18]. Depending on the technologies
behind the software system or component and the technology used for instrumenting the code the
logged entries can differ in their contents, verbosity and format. Regardless of these differences,
an entry is generally composed of fields. One field that is frequently present in logged entries is
the Timestamp field, others may vary depending on the context but may include, category of
the event, message and the location of the logging statement which produced the entry [19, 20].
These fields can be separated by different delimiters (e.g., white space, semi-colon, comma, etc.)
[19, 20]. Figure 2.2 presents an example log entry.

Figure 2.1: Log entry format

The contents of some fields are static, in the sense that they do not change from one occurrence
of the entry to another. ComponentId can be thought of as such a field, as it should only change
if the logging statement is moved to another component. Fields, however, can also contain
dynamic values. For example, in the Message field in Figure 2.1, the ”startProcessId” and the
”threadId” are dynamic as their values may change depending on the execution of the system.
This is illustrated in Figure 2.2

Figure 2.2: Entry field format

Encoding domain knowledge of logs during log analysis 5
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2.2 Related work

In the following section we discuss related work categories by methodology. Table 2.1 contains a
summary of all discussed works.

2.2.1 Pattern-based tools and techniques

Multiple works have leveraged the use of patterns for supporting log analysis. The most closely
related systems are Nfer [11] and TeSSLa [10]. Both of these systems enable practitioners to
define specifications and abstract the contents of logs based on the specifications. Both the
specification and the results produced by Nfer are based on temporal intervals that can carry
data. Therefore, users need to specify the temporal intervals to which Nfer should abstract, by
writing rules. While the syntax for these rules is basic, users need to learn it in order to use Nfer,
as there is no visual interface for it. TeSSLa is a temporal stream-based specification language
for Stream Runtime Verification (SRV). The language is designed to monitor a specific class of
real-time signals. Both of these systems require extra efforts from practitioners in learning how to
write the specifications as well as writing and maintaining the specification files which can consist
of tens or hundreds of lines of text. The system we present in this study provides an interactive
and visual way to define to search for such patterns. Furthermore, both systems require the
traces to be provided in a very specific log format which is not standard. On the contrary, our
approach accepts logs in JSON format1, a widely used format in the field of software engineering.

2.2.2 Visual tools and techniques

QBE[21] is a query language for querying relational data that provides a graphical user interface
(GUI) to facilitate the creation of queries. In QBE, users are able to construct queries by
specifying example tables. Our proposed solution enables users to query structures in logs in
a similar way - by defining the specific structure from an example (i.e., entries in the analysed
log). This similarity between our solution and QBE stems from the goal of both works to provide
easy-to-learn and use functionality. Nonetheless, there are several important differences. While
a log can be represented as a relational table, QBE queries cannot used to query structures as
the queries can only express conditions based on equality or inequality. Hence, it is not possible
to specify conditions on individual rows of the table. (e.g., construct an example table in which
different conditions apply to different rows). Moreover, as logs consist of sequential data, the
ordering of entries is integral. Relational databases however may not be able to capture the full
richness of such sequential data.

Previous studies have investigated analysing logs through the use of visualisations and in-
teractivity [13, 12, 9, 22]. Cappers et al.[9] describe Eventpad, as a system for visual analytics
that provides users with visuals to explore existing and discover new patterns in a collection
of event sequences (i.e., logs). Eventpad provides an interface consisting of glyphs (i.e., grey
squares) to represent log entries. Eventpad users can specify rules, based on regular expressions,
to explore particular patterns in the collection of logs. These rules can be applied for the discov-
ery of new patterns, the verification of certain existing patterns and/or the removal of obsolete
ones. Additionally, EventPad offers several views that can be used for the comparison and/or
alignment of the different sequences. but the tool is meant for analyzing a collection of logs,
not a single log, which is the common scenario for software engineers investigating bugs. Several
other tools such as EventFlow [13] and (s|qu)eries[12] provide interactive visualisations similar
to those in Eventpad, however, both of them have been evaluated only on specialised event data

1https://www.json.org/json-en.html
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(patient records and shopping website log) and their usability on software produced event logs
and functional traces is not investigated. and At the time of writing Eventpad, Eventflow and
(s|qu)eries are not publicly available.

Wininger et al. [8] present an extension to the open-source (OS) tool TraceCompass2 allowing
developers to create a custom analysis of an execution trace. Users of the extension can define
a state machine in a domain specific language and visualise the result of the stateful analysis
in custom Gantt charts or XY charts. While the extension provides flexibility by supporting
a range of log formats, it requires users to write extensive specifications that contain the state
machine definitions and details of the desired visualisations. In our work, we prioritise the ease
of use and convenience of users so that they are not deterred by excessive efforts.

Beschastnikh et al. [14] describe ShiViz, a visualisation tool that helps developers debug
distributed systems. As a distributed system consists of multiple nodes (i.e., computers) that
may operate concurrently and interact with others, event logs and traces produced by these
systems tend to be large and overwhelming to programmers. ShiViz provides a visualisation
consisting of a log view and an interactive sequence diagram in which developers can easily
follow sequences of events through the different nodes and distinguish between the events from the
different nodes. Furthermore, the sequence diagram lets developers easily hide entire nodes and
events occurring on them. Furthermore, ShiViz provides developers with the ability to search for
specific patterns by drawing sequence diagrams in which they could specify a particular sequence
of events occurring between nodes with node names constructed with regular expressions.

Other studies present techniques and tools for automatically visualising the contents of logs
[23, 24, 15]. Sabalan, presented by Alimadadi et al. [15] is the most closely related tool to
our solution as it explores the presence of patterns in logs. However, the purpose of the tool
is to enhance software comprehension. Sabalan infers ”motifs” (i.e., patterns) from traces by
applying a generic technique inspired by bioinformatics which captures patterns in a hierarchical
model. This captured model is then output in a visualisation which allows users to view the
patterns and interact with them. Sabalan is implemented in JavaScript and can be utilised only
to analyse software written in JavaScript. Our implementation differs from Sabalan in both
intended purpose and scope. Specifically, our goal is to facilitate the analysis of software bugs
through user-defined patterns, not to improve software comprehension through automatically
inferred ones. Moreover, our solution does not require source code to be instrumented and can
be used with software written in different languages.

2https://eclipse.dev/tracecompass/

Encoding domain knowledge of logs during log analysis 7



2.2. RELATED WORK CHAPTER 2. BACKGROUND & RELATED WORK

Table 2.1: Summary of related work

Authors Year Tool / Technique Purpose

Jerding et al. [23] 1997
Interaction Scenario

Visualizer (ISVis)

Reveal interactions taking place during program

execution

S Johnson [21] 1999
Query-by-Example

(QBE)

query language for relation data for constructing

queries through a GUI

Fails et al. [22] 2006 PatternFinder

Provide a visual interface for querying temporal

patterns within multivariate and categorical data

sets.

Wongsuphasawat et al. [25] 2011 LifeFlow Provide interactive overview of event sequences

Monroe et al. [13] 2012 EventFlow
Explore point and interval event patterns in

event sequences

Zgraggen et al. [12] 2015 (s|q)uerries
Query and explore event sequences through

regular expressions

Kauffman et al. [11] 2016 nfer Provide user defined event stream abstractions.

Cappers et al. [9] 2017 EventPad Event sequence exploration

Wininger et al. [8] 2017 Trace Compass
Provide user defined stateful analysis of execution

traces

Alimadadi et al. [15] 2018 Sabalan
Infer hierarchical motifs (i.e., patterns) from execution

traces

Convent et al. [10] 2018 TeSSLa
Provide a temporal stream-based specification

language for stream runtime verification

Jonk et al. [24] 2019
measurement-based

approach

Propriety tool for inferring Time Message Sequence Charts

(TMSCs) from execution traces of large-scale

component-based software systems.

Beschastnikh et al. [14] 2020 ShiViz Visualise distributed systems executions

Zhou et al. [26] 2021
debugging

methodology

Debugging methodology for microservice systems

combined with visualisations created with ShiViz
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Chapter 3

Interview Study

3.1 Methodology

To answer the first research question (Section 1.2) and to refine all our research questions we
conducted an exploratory interview study. Due to the limited amount of literature relevant to
visualisation and interaction with structures and the lack of documented information on the topic
at Philips IGTS, this study was based on grounded theory [27], a method used to generate theory
rather than to validate or test existing ones. Using grounded theory, theories are generated
inductively from data such as unstructured text (e.g., field notes, interview transcripts, etc.),
structured text, as well as images and diagrams. In our interview study, we conducted interviews
with 8 employees from several departments within Philips IGTS. The transcriptions from these
interviews were analysed using open and categorical coding.

The rest of this chapter is structured in the following way. Section 3.1.1 describes the data
collection process. The data analysis is presented in Section 3.1.2. Then Section 3.2 contains
our findings.

3.1.1 Data collection

We collected our data through the use of semi-structured interviews, a frequently used data
collection technique in the field of software engineering [28]. In semi-structured interviews,
questions are prepared prior to the interviews and posed as written, however, additional questions
can be asked during the interviews, if needed. This method of data collection provided us with
the needed flexibility to obtain both contextual information about the log analysis performed
by software engineers at Philips IGTS, as well as specific information related to our research
questions. We conducted a pilot interview with a software engineer which took 50 minutes.
This interview resulted in the removal of one question from our initial pool, as we deemed it
was too difficult to answer. The interview questions (Table 3.1) were approved by the Ethics
Review Board of Eindhoven Technical University (TU/e) (Ref: ERB2023MCS9) and Philips
IGTS management. Furthermore, we followed the ethical guidelines described by Strandberg
[29]. During the interviews, Microsoft Teams was used to record the conversation and obtain
initial transcripts.
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Interview question decisions

In the process of designing the interview questions, we chose to avoid using the word ”structure”
explicitly to avoid biasing the participants. As the aim of the study was exploratory, instead, we
decided to include questions focused on two aspects of log analysis - the information used during
the analysis as well as the workflow. By understanding which parts of the logs (i.e., timestamps,
textual description, etc.) provide the most value during analysis and what actions are performed,
we could observe whether participants utilise structures, explicitly or implicitly. However, if
an interviewee mentioned ”structure” or related terms such as ”pattern” and ”interval”, we
posed follow-up questions by using the mentioned term. Table 3.1 presents the final selection of
questions used during the interviews.

Participants

In order to select the participants, convenience sampling [30], a form of non-probability sampling,
was applied. A representative of Philips IGTS management provided us with a list of twenty-three
employees from multiple departments, occupying different positions who work with event logs and
traces. Because our study was based on grounded theory, we selected and approached participants
from this list iteratively (i.e., selecting and contacting an employee based on the previously
conducted interview) in an attempt to apply theoretical sampling (i.e., the identification of further
sources of data, based on gaps in the emerging theory). This approach could be applied to a
certain degree as our data sources were predetermined by the initial list of employees. Regardless,
it proved advantageous by allowing us to select participants based on the gaps in our theory.
Each participant was contacted via an introductory email which provided the participant with a
short description of the research project and a call to action: a link to a form containing a quick
way to indicate interest in interview participation, as well as more detailed information about the
data collection and analysis procedure. We interviewed eight participants before deciding that
theoretical saturation was reached. At that time, we had contacted twelve employees of which
one was not interested and three did not reply. Background information on the eight participants
can be found in Table 3.2.

3.1.2 Data analysis

Coding

Each interview transcript was refined and shared with the corresponding participant to provide
the opportunity for corrections or addition/removal of information. Only two of the participants
provided modifications to the original transcripts. Both included additional clarifications. We
did not obtain responses from the other participants. Each transcript was anonymised and coded
[31] using the qualitative data analysis software ATLAS.ti1. The coding was done in three steps.
Initially, we performed open coding by employing a combination of in-vivo codes and constructed
codes [31]. We opted for in-vivo codes as our interest lay in the experiences of the participants
and in-vivo codes are used in studies which prioritise the participant’s voice. Emerging codes
were compared and refined. Then codes were grouped into categories. Finally, the categories
were organised in themes which were motivated by our research questions.

After coding each transcript we recorded the changes to the codebook - the collection of
our codes [32]. The codes and categories obtained after each interview provided us with an
indication of whether theoretical saturation, the point at which no new findings emerge [33], was
achieved. We did not have an apriori definition of saturation. Therefore, we used a stopping

1https://atlasti.com/
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criteria inspired by the one described by van Breukelen et al. [34], in a study which employed
interviews in a similar fashion. Our stopping criteria consisted of two additional interviews, and
a 95% threshold, meaning that at any point, if the last two interviews had introduced 5% or less
to the total number of codes, saturation would be reached. Therefore, after the eight interviews,
we deemed that saturation was reached, because the seventh and eighth interviews combined
introduced 3% of the total number of codes in the codebook.

Comparison with Artificial Intelligence (AI) Coding

During coding the meaning behind the words of an interviewee is interpreted by the researcher.
Thus, there is a risk of misinterpretation [35]. One commonly used method for lessening this risk
is member checking [36]. We considered using this validation method by sending the codes with
their corresponding explanations to participants. However, given the required efforts to do so,
the availability of our participants and the low response rate to the shared transcripts we opted
not to use member checking. Instead, in an attempt to mitigate possible misinterpretations, we
decided to apply AI coding, a novel feature of ATLAS.ti, to one of our transcripts and compare
our codes with the AI-generated ones. After coding the selected transcript we obtained 142 codes,
while the AI produced 73 codes. While some of the AI codes conveyed similar interpretations to
our own, the AI codes were more general. For example, the following quote:

”Of course, normally when they indicate that there was something wrong with the
system, there is always a time, for example, ”it started around three” and that’s a
good starting point to search for errors and any error from that point on, that is an
indication of something went wrong. It might not be the root cause of the issue you’re
looking at, but it can be a clue. Then I go and see whether is some logical log that
could be the root cause of that description. Then I start using the software.” (P1)

resulted in the AI code ”Process improvement: Problem-solving strategies” while our corres-
ponding code is ”Investigation Scope: using timestamp as a starting point”. While both codes
are applicable, our code is aligned with one of our topics of interest - information used during log
analysis. In contrast, when AI codes are generated there is no specific context or research goal.
Therefore, the resulting codes are generic. As many of the AI codes were not aligned with our
interests, we found AI coding to be disadvantageous for our analysis. Consequently, we coded
manually all of the other interviews. However, we altered three existing codes as we found the
AI-generated ones more appropriate.

In the following section, we present our explanation of the derived codes by referring to quotes
by our interviewees.
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Table 3.1: Interview questions.

Background questions

1. What is your job title?

2. What kind of systems is your unit responsible for?

3. What is your role and responsibility within your team as X (i.e., current job title)?

Questions about logs and traces (RQ1)

4. For what purpose do you use event logs and traces?

5. How many different types of event logs do you work with?

6. How many different types of traces do you work with?

7. What is the difference between the logs and the traces?

8. What information within the logs is most relevant for your purposes?

9. What information within the traces is most relevant for your purposes?

Questions about workflow (RQ2)

10. How often do you analyse logs for your purposes?

11. How often do you analyse traces for your purposes?

12. Can you describe your workflow when analysing a log for X (i.e., purposes mentioned by the participant)?

13. What challenges do you face when analysing logs?

14. How do you cope with these challenges?

15. Can you describe your workflow when analysing a trace for X?

16. What challenges do you face when analysing traces?

17. How do you cope with these challenges?

Ending

18. Having discussed some topics about log and trace analysis, would you like to add some thoughts?

19. How many years of experience do you have as a X(i.e., current job title)?

20. What is your educational background?

21. Do you have any questions?
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Table 3.2: Background information on participants.

Department ID Participant ID
Educational

Background
Position

Years

of

Experience

1

P1 UCS Software Developer 22

P2 UCS Product Owner 18

P3 UCS Software Developer 6

2
P4 GCS Software Developer 2

P5 UCS Senior Software Developer 20

3
P6 GOth System engineer 6

P7 GOth Chief engineer 42

4 P8 GCS Software Designer 22

GCS: graduate degree in computer science UCS: undergraduate degree in computer science,
GOth: graduate degree in other science subjects (e.g.. physics)
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3.2 Results

3.2.1 Observed types of Structures (RQ1)

We observed that the concept of a structure is present in the minds of our participants and is
utilised during log analysis. Some participants have extensive experience with a specific part
of the code base and are aware of most of the processes and the information logged during
their execution. They are conscious of an implicit high-level structure occurring in a log: ”So,
normally, there is a structure in the trace files and when I know that something is going wrong
in this part and this [other part] it is not interesting for me” (P1). The recognition of such
a high-level structure is beneficial for developers when navigating the file and establishing the
scope of a fault investigation: ”There is a structure. It’s a logical flow, so you get structure and
you will recognise it after a while that some parts aren’t interesting [during investigation].” (P1).
Another type of structure which we observed more frequently was a sequence of entries logged
during the execution of a particular process, commonly referred to as a flow or a sequence by
the interviewees. While both event logs and traces can consist of thousands of such sequences
of entries, developers are aware of specific structures, the knowledge of which they utilise when
analysing event logs and traces: ”The flow will always be the same across processes, except if
there’s an issue. You can really use that flow...” (P3).

This knowledge proves to be beneficial to software engineers in several ways:

Defining an investigation scope using structures

Many interviewees often use event logs just as a starting point in their investigation, as the scope
of the information there covers an entire (sub)system containing multiple components: ”So from
the event log you get the high-level picture...Then you go to one level below that’s the traces and
then you look at what are the [specific details] that information you can get from the unit specific
trace files.” (P4). In the event log they localise the problematic component, generally employing
simple strategies such as referring to a timestamp or performing a quick keyword search. Then
they thoroughly analyse the traces of that component: ”If you really have to know the details,
then you have to look at the trace files” (P1). This top-down approach concurs with the findings in
a study about the use of logs performed by Yang et al. [5]. Because traces contain information
about a single component, they are much more detailed. As a result, engineers struggle to
navigate through large amounts of irrelevant to the particular case information: ”...also that’s
one of the problems. We have just too much tracing and even for some process we are not actively
developing anymore so we don’t want to remove them” (P4). Hence, finding the point of failure
is a challenge: ”The other challenge is finding out where is the issue. If you have a clear tracing
and a good tracing and you can find your way quickly and you can have it, for example, in an
hour you have a decision, but sometimes it takes days to go through the tracing, going back to
the code, checking again, asking precisely [about] this scenario, when it happens and then the
challenge here is to reduce the time, that overhead for finding out the issues.” (P5). To cope with
this challenge engineers utilise their knowledge of a structure: ”use the flow of the trace because
you know at certain steps, this and this should happen and so on.” (P3). Thus, they are able to
restrict the scope of their investigation to certain files or certain parts of the files. Regardless
this scope could still contain hundreds or thousands of entries.

Building stories using structures

A large amount of the knowledge about the logged entries lives in the minds of the developers
[16]. This knowledge lets them pinpoint which entries could be relevant to an investigation and
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should be further inspected. Developers actively seek ways to separate these relevant entries
from the rest. By doing so they are able to build stories and form mental models of what
occurred in the software that produced the log: ”then I can also filter on that interface because
I know I’m investigating some problem with it. Then I can also see the interface calls which are
happening only for that interface... then you can easily form that mental model from the traces.
For example, first, it was in moving and then it went to stopped. Then whether the position was
reached or not, all that information.” (P5). While in some cases this separation can be achieved
by a keyword search, in others, the contents of the interesting entries are heterogeneous and
cannot be simply searched for. In such cases, the approach participants take relies heavily on
the availability of tooling.

Engineers who do not have access to, or choose not to use tooling develop different strategies
such as manually inserting bookmarks in the files and then searching for those bookmarks: ”Yeah,
let’s say if it is heterogeneous, right? If it is, if I’m only looking at ”ABC”, then I can simply
search for that. But let’s say if it is a combination of ”ABC” with something else. Then I cannot
find that. Then I can actually add my initials to those lines. This one [entry] I need from ”ABD”.
And OK, I need something else, some other function, I need to add from something. I’ll just
mark this [entry] and then I only get that list [containing all the marked entries].” (P5). Another
common strategy is to open several instances of the same file in a text editor, focused on different
entries: ”you can imagine one is at the top of the file and the second one I’m interested is at the
bottom. Sometimes I also put two files next to each other because that’s the old trick. Then I can
see this process put next to each other” (P5). Such strategies, however, require several manual
steps to be taken (e.g., opening files, scrolling to specific parts, etc.) and can be inconvenient: ”
...this is still very cumbersome but these are all the tricks we have to do” (P5)

Participants who have access to tooling rely on the use of features that let them pin entries
which can then be seen in a separate view or filtering features that let them define custom filters
on the fields of the entries: ”So you can really pin and if I pin this again, so you can you can
build a story from here” (P3), “so to categorise them I can right here . . . filter the steps of the
happy flow” (P4), ”...there is a pinning functionality. Yeah, we use it because you have a lot of
entries and at a certain moment you will have to filter your entries and by pinning the filtered
entries then you have reduced view of the tracing and you can follow better the relevant entries.
For example, a process which is taking too long to start. You will start by the start of the main
and the constructor of the instances within that process and you will filter on that. Based on
the construction of all instances during the startup, you can check how long this construction
takes and where is the delay for example.” (P8). However, many of these tools are self-made and
contain many hard-coded parameters which limits their use to a single participant or a team of
engineers.

With or without tools, developers generally constrict the scope of their investigation to mul-
tiple logged entries: ”...maybe max ten in worst case. Otherwise, if I’m pinning many entries
then it doesn’t make sense. Maybe then I’m not doing the right investigation also.” (P4), ”...it
usually this is four max, maybe five [entries]” (P5) which describe actions the system took when
a fault occurred. We consider these entries to be representative of a structure.

Comparison of logs through structures

Some software faults occur intermittently: ”The system behaves OK and at certain time the
issue may happen or it may not happen, and sometimes you have a very intermittent issue which
happens once in a thousand times and sometimes it happens one in ten times.” (P8). Such bugs
cannot be easily reproduced, which is why developers generally use another approach: ” Mostly
when we have an intermittent issue, for example, you will compare the good or the right tracing,

Encoding domain knowledge of logs during log analysis 15



3.2. RESULTS CHAPTER 3. INTERVIEW STUDY

and the tracing when it [the issue] happens.” (P8). By comparing a log produced during the
occurrence of an (intermittent) fault with one representative of the normal execution, developers
expect to find the origin of the fault. However, performing such a comparison is not trivial
as there can be a large number of differences between two logs describing different executions
of the same system or component. Not only can the timestamps of all the entries differ, but
so can the order of entries due to concurrency in the software, and some of the contents (e.g.,
different thread and process identifiers, etc.). Therefore, a common way used to perform this
comparison is to open the logs side-by-side and manually inspect them for differences and anchor
points (i.e., entries by which to align the contents of the logs). Engineers utilise their knowledge
of specific structures by implicitly using the structures as anchor points: ”if you don’t have
an accurate enough explanation of what went wrong, then the only thing you can do is have a
similar scenario on the system that does work, put the trace files together and just look at the
differences. If everything was synchronous, then everything would be very easy, because those
steps could be compared, but it’s in parallel and its not easy to put two trace files side by side
and just compare them. It’s not like the trace statements have followed in the exact same way.
Yeah, it’s multi-threaded so trace statements are not really aligned and of course there are some
transitions you can check - ”okay, now I have this transition and it should be similar to that one”
and then you can align those traces again a little bit, but line by line putting them next to each
other, that’s impossible. So you really have to look at state transitions then, to see where they
behave similarly. Those are the synchronisation points, transitions towards another state or an
action towards the hardware, a user action. That is where you can synchronise those trace files.
There are some clusters of around twenty trace statements from network, which should happen
in all trace files, so those combinations of lines can also be used to find similarities.” (P1).

RQ1 Summary: We observed two types of structures that experienced engineers become aware
of. The first type is a high-level structure of a log. The knowledge of such a structure is used
by engineers to constrict the scope of a bug investigation to a log or a certain part of a log.
The second type consists of a sequence of entries often related to a specific process and is often
referred to as a ”flow” of a process or a ”sequence”. This knowledge of such structures is more
prevalent than that of the other type. Engineers often rely on this knowledge when investigating
bugs, to avoid investigating irrelevant entries, forming mental models and comparing logs.

3.2.2 Tool features supporting the use of structure(RQ2)

Observations on the current availability and use of tooling

As previously stated, engineers commonly use of self-made tools and text editors during log
analysis [5]. Before presenting possible features supporting the use of structures, we discuss
several observations on the current state of availability and use of tooling. Most often engineers
have access to a self-made tool used to facilitate the analysis of functional traces or event logs.
However, these tools generally are hardcoded to a specific format of logs and cannot process both
event logs and traces due to the difference in the file formats. Therefore, they are often used
only by groups of engineers working together in a team or in some cases, individuals. Regardless
of the different formats, the tools for both event logs and traces often offer overlapping features
such as: parsing and displaying the contents in a more readable way, searching for keywords,
highlighting entries based on Boolean statements and filtering based on keyword or Boolean
statement. Nevertheless, not all tools implement all mentioned features. We observed a case in
which different teams were using custom tools offering different features and engineers from both
teams desired features implemented in the tool of the other team.

16 Encoding domain knowledge of logs during log analysis



CHAPTER 3. INTERVIEW STUDY 3.2. RESULTS

Engineers who develop or use such tools develop a certain loyalty towards them:”that’s how
I use the tool at least. So I use this tool a lot. I use this functionality as well” (P4), ”I just
said I’m kind of biased, so I like this the most of the functionality” (P6), ”I use only the [tool]
because I used to use it and I like the tool or I am more familiar with it.” (P8). Such loyalty
can harm the workflow of engineers. For example, such tools are often used for long periods
after their development and improvement have ceased. However, the enhancement of such tools
rarely happens because they have been developed and maintained by individuals. In such cases,
engineers using the tools adjust their workflow to cope with certain disadvantages and lack of
features instead of improving the tools or searching for new ones.

Other practitioners opt not to use tools as they require certain prerequisites or are difficult
to use: ”I use just a text editor. I don’t have a special tool. We do have special tools that we’ve
developed ourselves, but normally it’s so hard to set up [the tool] that I immediately go for the
text editor and immediately start searching. It’s mostly faster than using a complex tool that you
have to configure and set up and fill a lot of things in...I think that every software developer is
lazy, so try to grab something that’s the easiest.” (P1), ”I know there is one tooling called [the
name of the tool]. Because that tooling was developed later. I think later, that’s already 3-4 years
back. But before that, we didn’t have any tooling, we just got used to it and then also the tooling
expects the traces to be in a particular format. you know, I already showed you right? Because
we have different ways of tracing. then it’s also a lot of effort to make it the same.” (P5)

Given our observations, we make the two choices for the tool features presented in the fol-
lowing section. First, the features will be implemented in Tracy (Section 4.1), an open-source
platform being developed in the Accelerando project to investigate how log analysis can be
supported. By implementing our solution within Tracy we ensure that it can be further invest-
igated, developed and improved. Second, we prioritise the ease of use of the features to avoid
discouraging software engineers from using our solution.

Feature for encoding domain knowledge during analysis

Although developers utilise their awareness of structures intuitively during analysis, they lack
tooling with which to use this knowledge explicitly. We believe a feature that enables engineers
to define relevant to the analysis structures and highlights their presence or lack thereof may be
advantageous to developers. Such a feature could possibly address one significant challenge of
log analysis, reducing the large amounts of logged entries needed to be checked by highlighting
relevant structures through all the irrelevant entries, also referred to as ”noise” by engineers:
”Yeah and then indeed [the challenge is] finding those right ones [logged entries] and you can get
to them as soon as possible then you’re already there. All the rest is noise...”. Flexibility is an
important aspect of such a tool so that engineers are able to define various structures. Structures
could vary in number of entries as well as specific entry fields. For example, if a specific structure
reoccurs multiple times in a log, the timestamps of the entries in the structure will be different.
Therefore, the timestamp field is not relevant to the structure.

Feature for sharing domain knowledge

While the domain knowledge of software engineers about logs increases with experience, this
knowledge is finite. Furthermore, as software constantly evolves, engineers may have to work
with systems and components with which they are inexperienced. In such cases they struggle
with analysing logs due to lack of knowledge of the source code and the logged information:
”Yeah, it depends on the experience, it depends on which part or which component, which part of
the code. For example, I’m working for a long time now with some code which I never touched and
I don’t know what should be the sequence there and what would basically help me. And also you
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can’t remember all the things which sometimes you know about it and you remember or you can
predict what happened there. Mostly when you have interface calls from one component to another
component.” (P8), ”That’s for me the main challenge. Finding, analysing the logging, getting the
flow right in an unknown unit. Getting the flow without having any input, like if you’re working
with someone that has experience, of course he will say maybe check this first and then from there
you can build up. But if you have no clue about what’s happening, you’re even not sure if this is
part of [the bug], maybe the names... it’s also not clear when you just start, so you have to build
up the knowledge and that building that knowledge is for me the yeah, the main challenge when
starting.” (P3). Thus, a feature providing a way to share domain knowledge of structures could
alleviate this challenge. Furthermore, such a feature could improve collaboration as currently
engineers often resort to copying and pasting text and taking screenshots when collaborating on
investigations: ”OK, I see this PC failing. OK, what happened after that? So I can really pin
that here and also share it with colleagues. It happens a lot that you want to describe or send
my e-mail what will you do. Personally, I just take a screenshot of the storyline that was created
like this and then send it by mail: I see this. I see this, I see this, what do you think? And
then from there you can maybe you say, OK, let’s have a look” (P3), ”So once I finish with the
investigation, I have to capture my findings or observation there and propose, OK, how much is
time, whether this is our unit, who has to fix or whether it should be forwarded to some other
units. So in that I have to capture some information and then I have to mention what is what
are my options then I’ll say, OK, I looked at time this time and then there was a call and I
expected the call should have come, but it has not happened. And then most of the time what I
do, I take a screenshot on because. They’re developers. As I said, it will be also forward if I’m
forwarding it to some other subsystems like [subsystem name]. Definitely, another developer will
be analysing. To save his or her time it is really handy to give the same information where I
have spent time, so I generally select this and add this. But if I can select and copy-paste. That
is also easier, so they also know, OK, this is the time frame [the participant] investigated and he
thinks and then they can take over it easily. But now I use this screenshot and then I sometimes
try to highlight and say, OK, this is the time I’m saying and I was expecting something and this
call was not expected. So it takes time”

RQ2 Summary: Based on the observations on the types of structures and their impact on log
analysis, we propose two features to support the active use of the knowledge about structures
during log analysis. First, a feature enabling engineers to define structures relevant to their
analysis and highlight these structures in the log. Second, a feature for facilitating the sharing
of such knowledge between engineers to facilitate both analysis conducted by inexperienced
engineers and collaboration.
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Chapter 4

Implementation

In the following chapter, we present Tracy, the platform which we extend with the features
described in the previous chapter, as well as the design and implementation choices of these
features.

4.1 Tracy

Figure 4.1: Tracy GUI A)LogView component B) Minimap component

The purpose of Tracy is to support the research of event log and trace analysis by providing
a platform on which state-of-the-art features can be implemented and further investigated in
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practice. At the time of writing Tracy supports the integration of state-based reasoning during
log analysis, by providing users with an intuitive way to define simple state machines and visualise
states throughout the analysed event log or trace. Figure 4.1 presents the graphical user interface
(GUI) of Tracy.

Figure 4.2: The Tracy Minimap
zoomed out to provide a ”bird’s
eye view”. The red rectangle cor-
responds to the entries partially
visible in the log to the left of the
Minimap.

Tracy is implemented as a Visual Studio code1 plug-in,
which lets users seamlessly transition between source code and
Tracy. Furthermore, Tracy leverages web technology as it is
implemented using the React2 library to be able to provide
dynamic visualisations and thus support a visual analysis.

Tracy contains two React components: LogView (Fig-
ure 4.1 A) and Minimap (Figure 4.1 B).The former compon-
ent presents the event log or trace as a table in which every
row is an entry in the original file and each column is a field
of the recorded entries (e.g., timestamp, event id, description,
etc.). Tracy requires that the entries in the input log or trace
contain the same fields. As logs can contain too many entries
to be properly rendered, the table is scrollable. The Minimap
contains the same number of columns as the LogView. Each
of the columns contains a number of coloured cells which rep-
resent the values of the cells in the LogView table. The Min-
imap provides an easy way for users to quickly scroll through
the log and see when the values of a field change. Addition-
ally, it can be zoomed out to provide a ”bird’s eye view” over
the log (Figure 4.2). As previously described, Tracy provides
some state-based reasoning. It does so by providing a way to
specify a state machine based on the entries in the file, which
results in the addition of a new column in the table. The
values in this column record when there is a change in the
states of the state machine. Furthermore, this functionality
integrates with the Minimap, as users can quickly spot a state
change in the Minimap, in a column corresponding to the one
in the LogView.

As we are performing our study in the context of the Ac-
celerando project, the functionalities from the findings of our
interview study Section 3.2.1 were implemented in Tracy. In
this way, they can be further studied and developed when Tracy is utilised in future case studies.

4.2 Features

Due to the time constraints of the project, we opted to perform the implementation and eval-
uation iteratively, by implementing one feature and evaluating it (Chapter 5) before continuing
with the next one. This approach would allow us to evaluate our work even in case there is insuf-
ficient time to implement all the functionalities from our interview findings. Moreover, we would
be able to incorporate feedback and observations from the evaluation sessions when choosing
how to proceed with the implementation work. By following this iterative approach we began
with implementing a Structure Matching functionality.

1https://code.visualstudio.com/
2https://react.dev/
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4.2.1 Structure Matching

As previously described in Section 3.2.1 experienced developers recognise the flow of processes
in files they analyse during a bug investigation. However, due to lack of tooling often they do
not benefit to the fullest from this knowledge. To solve this challenge we decided to implement
a feature enabling developers to specify a structure of one or more log or trace entries and be
able to view and traverse through the occurrences of this structure in the entire log or trace. We
envisioned two use cases for this functionality that we call ”Structure Matching”. In the first use
case, the user specifies a structure relevant to a specific bug investigation. That is a structure
containing an entry which contains information revealing the (source of a) software bug. In the
second use case, the user specifies a structure containing irrelevant entries which may reoccur
many times, also referred to as noise by our interview participants. The benefit of this second
use case comes from combining the Structure Matching with another (planned) functionality in
Tracy allowing users to expand and collapse segments of the log or trace. With the combination
of these two functionalities, users could easily collapse structures containing noise, reducing the
investigation scope. The first use case may come as more intuitive, but the second use case may
offer equal value to users because in general developers are able to recognise single entries or
entire parts of the log which are of no value to a case (Section 3.2.1).

Design

In the process of designing the GUI of the Structure Matching feature, we used the ”Eight
golden rules of interface design” by Shneiderman [37] while striving to create a simple and
intuitive interface. Below we split the Structure Matching functionality into three conceptual
parts - defining a structure, modifying a structure and matching a structure, and describe our
design choices.

Defining a structure The process of Structure Matching begins by selecting entries to be
included in the structure. Users are able to select entries from the LogView component by either
clicking on individual ones or shift-clicking (similarly as in most modern operating systems)
to make a selection of multiple entries Figure 4.3. We allow the use of shortcuts, such as the
shift-click (i.e., left mouse click while holding Shift), when possible to follow the second rule of
Shneiderman [37] (i.e., allow the use of shortcuts). After selecting entries users, can define the
structure by a button click. The Structure Dialogue (Figure 4.4 and Figure 4.5) is then displayed.
In this dialogue, the user can see the newly defined structure and modify it. We consciously chose
for this dialogue to be visible only when the user is using the functionality to avoid crowding the
Tracy GUI and to stay consistent with the other functionalities of the platform which were also
implemented through similar dialogues.

Modifying a structure

Adding and removing entries Entries can be added or removed to/from the structure
at any moment to allow users to adapt the structure to their needs during an investigation.

Constraining the distance between entries Entries describing one process do not ne-
cessarily appear together in a log or a trace. Often these entries can be separated by tens or
hundreds of others, as information from multiple components or processes can be logged at the
same time. This distinction gave us an idea for allowing the user to define the distance between
the entries in the structure for more flexibility of use. We opted for three values from which
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Figure 4.3: Selection of entries prior to defining a structure

Figure 4.4: Structure Matching dialogue highlighted
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Figure 4.5: Structure Matching dialogue with highlighted constraints between entries in the
structure. The constraints from top to bottom are: NONE, MIN, MAX

Figure 4.6: Matching with different structure link distances: A) NONE, B) MIN C) MAX

the user could choose, to which we refer to as ”Structure Link distances” because these values
represent the distances between entries in the structure and can be thought of as linking sections.
The values for these structure link distances were chosen based on the implementation approach
(Section 4.2.1). The first and most restrictive value is none, represented in the GUI by an arrow
pointing down to indicate that the second entry should be directly below the first one. The
second value, min, allows for zero or more entries to appear between the two structure entries,
matching an occurrence with a minimal number of entries in between. This value is used as the
default one and is represented as an ellipsis (i.e., three horizontal dots) to indicate the possibility
of entries in between. The last value allows for zero or more entries as well but matches the
occurrence with most entries in between. Figure 4.6 presents an example in which three different
occurrences are found for the same structure consisting of two entries by changing the structure
link distance between them. In part A of the figure, the structure link distance is set to none,
hence the only occurrence matched is the one where the two entries are logged after each other.
In part B, the structure link distance is set to min and the occurrence matched is the one that
contains the minimal number of rows between the two entries. Finally, in part C, the occurrence
with the largest number of entries in between is matched.

Modifying which entry fields are important for the structure Potentially, a struc-
ture consisting of even a single entry could occur many times in a log or a trace with the
timestamp being the single difference between the occurrences. Therefore, the timestamp should
not be used during the matching, unless the user is interested in a single occurrence. For this
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Figure 4.8: A structure consisting of two entries; The first entry should have Maintenance1
mode, the second should have the machine node field ”Example PC 2”

reason, we decided to give the possibility to toggle which fields of the structure entries should be
used during matching. The user can (un)select a single field by clicking on it, or control-clicking
(i.e., left mouse click while holding Ctrl) to (un)select all other fields of an entry. As this action
lets the user make a change to a single field (i.e., a single cell in a row in the structure table)
it was important to visually distinguish between important and unimportant fields because a
single cell may be small and not easily visible. One challenging aspect of visualising this was
that simply using colour (e.g., darkening an unselected cell) might not be distinguishable enough
unless using drastically different colours. Instead of relying on the use of colour, we applied a
principle for generating accessible images described by Katsnelson [38] - to use shapes and line
textures. Therefore, we visualise unselected fields by covering the cells of these fields with diag-
onal stripes. Such a striped pattern is commonly used as a road marking to represent inaccessible
spaces. Figure 4.8 displays a structure consisting of two entries, in which different fields are used
during Structure Matching.

Figure 4.7: Interface for naviga-
tion through structure matches

Matching a structure The user can match the structure
visible in the Structure Dialogue at any time, with a but-
ton press (Figure 4.4). The first occurrence of the structure
is then highlighted and displayed in the LogView compon-
ent. Nevertheless, there could be multiple occurrences of the
matched structure (e.g., one at the top of the log and one at
the bottom). Therefore, a way to inform the user of the num-
ber of matches and a way to easily navigate through them is
needed. For this, we chose to utilise a design similar to the one used in the search functionality
of most modern browsers and integrated development environments (IDEs) (Figure 4.7). This
interface is visible in the Structure Dialogue after the user has attempted to match a structure.
The user is able to see the number of matches as well as the currently highlighted match. By
default, the first match is highlighted in a lighter tint of green from the rest. However, when
the user navigates through the matches, they all get highlighted in turn to reflect the navigation
(e.g., when navigating to the second match, it will be highlighted instead) (Figure 4.9).

Design and purpose validation During early stages of designing the Structure Matching
feature, we presented the design of the interface as well as the purposes of the feature during a
meeting between the Tracy development team and several product owners from Philips IGTS.
We received much positive feedback from the product owners which displayed enthusiasm for
the feature. We considered this feedback as validation towards both the design as well as the
purpose of the tool.

Use of colours To keep the GUI as simple as possible, we decided to use colours and high-
lighting as a way to visualise the selection of entries prior to the matching and the visualisation
of the results. We chose one blue colour for highlighting the selected entries, and two green
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Figure 4.9: Visualisation of multiple matches. The second of the matches is currently highlighted.
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colours for the matched entries. As we heavily rely on the use of colours, the choice of which to
use was a significant one. Colours could have different meanings and associations for users based
on religious, symbolic, biological (i.e., colour blindness) and other differences. While supporting
customizability can address this issue, we decided to select an initial colour scheme which could
be evaluated and changed at a later point in time. We decided to use colours which can be eas-
ily distinguished from the background colours in Tracy (and Visual Studio Code). Figure 4.10
displays the chosen colours on several Visual Studio themes. Furthermore, we prioritised colours
which can be seen by people with colour blindness, in order to improve the user-friendliness of
the GUI (Figure 4.11).

Blue is used to indicate a selection in Windows and in Visual Studio Code. We decided to
remain consistent with this colour choice for selection, however, we use a bright blue, specifically
turquoise. The reason for this is shades of blue with high contrast and saturation, that do not
contain any red or yellow hues, such as turquoise, are the most visible blues for people with
various types of colour blindness [38]. Similarly, we chose a bright lime green for representing
the currently highlighted matched structure and a darker office green for the other matches.
While, the aforementioned colours can be easily distinguished apart from each other by people
with the most common types of colour blindness, in some rare types of colour blindness such
as in cases of complete achromatopsia [39] (i.e., total absence of colour vision) it could be more
difficult to distinguish between these colours. Nevertheless, following the principles of generating
accessible images proposed by Katsnelson [38] such as checking the visuals in greyscale and using
a simulator - coolors web application3, we decided that these initial colour choices are fitting and
can be further improved if needed. Figure 4.11 depicts how our chosen colours are perceived by
people with different types of colour blindness.

Implementation

Use of Regular expressions To implement the Structure Matching functionality we opted
to use regular expressions [40], a powerful tool for finding and manipulating patterns. We chose
regular expressions for several reasons. First, while through the interview study, we were able
to observe structures in the analysis of our participants, we were unable to specify how complex
could structures used by developers be. As regular expressions are a powerful tool for finding
and manipulating patterns, successfully employed in related state-of-the-art tools [12, 9, 14, 16],
we decided to use them in the initial implementation. There exist several libraries which could
provide an alternative to the use of regular expressions, such as APG-Js4 a library providing
the use of Augmented Backus–Naur Form (ABNF) [41] pattern syntax or a PEG.js5 a library
generating parsers for the Parsing Expression Grammar (PEG) formalism [42]. However, these
libraries are developed by small groups of developers, and contrary to regular expressions, are
not widely used. In order to use regular expressions in our solution, we utilise the standard
JavaScript implementation of regular expressions6.

4.2.2 Wildcards

After evaluating the Structure Matching feature (Section 5.2.1), we opted to improve it by
introducing Wildcards. Wildcards allow users to abstract away business data and technical data
commonly found in various fields of logged entries from the definition of structures. To illustrate
the purpose of wildcards we consider the following example.

3https://coolors.co/ffffff
4https://github.com/ldthomas/apg-js
5https://pegjs.org/
6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/RegExp
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Figure 4.10: Structure Matching related colours on different Visual Studio code themes

Figure 4.11: Colour values used for Structure Matching and how they are perceived by people
with different types of colour blindness. Adapted from the coolors web application.
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A user using the Structure Matching functionality is interested in verifying that software
components have properly initialised, therefore he defines a structure describing the initialisation
of a component. Such a structure definition is presented in Figure 4.12. A single occurrence will
be displayed to the user upon matching the structure while there might be many such structures
logged for different components. Other structures are ignored because the structure definition
explicitly contains the name of the component ”Component-A” while other structures contain
the names of other components. In this example, the technical data (i.e., the name of the
component) must be abstracted in order for the Structure Matching to capture all relevant
structures. Wildcards aim to address this issue by providing an easy to use abstraction.

Figure 4.12: structure definition for a structure containing two entries depicting the initialisation
of a component

Design

We considered several factors when designing Wildcards. First, multiple entries in a structure and
their corresponding fields can contain business or technical data. Thus, the feature must support
the use of multiple wildcards in a structure. Furthermore, the addition of wildcards must be
streamlined. Second, as the purpose of the wildcard feature is to enhance the Structure Matching,
the implementation of the wildcard must be coherent with that of the Structure Matching.
Furthermore, the interface of the feature must be coherent with the previously implemented
interface as per the first rule of Shneiderman [37] (i.e., strive for consistency). Finally, multiple
log entries or fields of an entry can contain the same value. In the aforementioned example
(Figure 4.12), the ”message” field of both entries contains the name of the same component.
Therefore, when abstracting the name of the component, any value should be possible, however,
the value should be the same in both places. Therefore, the wildcard feature must be capable of
handling such a case.

Our approach to designing the interaction with wildcards is inspired by the simple operations
of copying and pasting text through the use of a context menu often referred to as a ”right-click
menu”. These operations are simple and commonly used within text editing software. Therefore,
we believe that this approach would feel intuitive to users. Furthermore, such interaction allows
users to precisely and easily select text from the structure entries and through a context menu
wildcards can be created or removed.

One challenging aspect of this feature was visualising the wildcards. Unknown characters
are represented differently in various software contexts. In the field of databases, the per cent
sign (%) represents zero or more characters and the underscore ( ) corresponds to exactly one
character. In regular expressions, the asterisk (*) corresponds to zero or more characters. We
opted to use the question mark as a symbol of a wildcard, followed by a number to distinguish
between different wildcards (e.g., first wildcard represented by a ”?1”, etc.)

Modifying a wildcard: Users are able to create a wildcard by first selecting the part of the
field contents which must be abstracted. Then, users can right-click to open the Wildcard context
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menu and select the ”Create wildcard” option. The selection will be replaced by a wildcard icon
containing the index of the wildcard. This process is displayed in Figure 4.13. After creation,
the wildcard can be used in other places in a similar manner - by selecting the other places
and choosing the ”Use wildcard” option from the context menu. Wildcards can be removed by
right-clicking on a wildcard and selecting the ”Remove wildcard” option. If a wildcard is used
in multiple places, only the selected instance of the wildcard will be removed.

Figure 4.13: Creating a wildcard. A) an entry field ”Location” without wildcards. B) Selected
part of the field to be substituted by a wildcard and the Wildcard context menu. C) The resulting
Wildcard

Implementation

Because regular expressions were used to implement the Structure Matching functionality, the
wildcards are based on regular expressions as well. Specifically, we benefit from regular expression
capture groups which allow us to substitute the data that needs to be abstracted with any
character. Furthermore, the use of capture groups allows us to use a wildcard in several places
by referencing the capture group for that wildcard

4.3 Components

Our solution is implemented in agreement with the React best practices [43] and the design prin-
ciples documented by the React developers 7 by separating the functionality over several React
components 8. In this way, the solution is modular, clear, and easily maintainable. Further-
more, we prioritise keeping consistent with the code implemented in Tracy by developers of the
Accelerando team, both in terms of naming convention and coding approach). To make sure a
proficient quality of code was reached, we checked our code with ESLint 9, a static code analysis
tool for identifying problematic code and Prettier.io10, a code formatter enforcing consistent code

7https://legacy.reactjs.org/docs/design-principles.html
8https://react.dev/reference/react/Component
9https://eslint.org/

10https://prettier.io/
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format. These tools were not used in Tracy prior to our development, but are popular develop-
ment tools and have been adopted by the Tracy team since. To ensure consistency with the rest
of the source code in Tracy, our work was code-reviewed by two developers from the Accelerando
team. Figure 4.14 presents the component diagram of Tracy following the implementation of
the Structure Matching and the Wildcard Features. Rectangles with rounded corners repres-
ent React components, whereas the ones without represent custom hooks (i.e., Typescript files
containing logic). Arrows signify a parent-child relationship between the components (i.e., from
parent to child) whereas dotted lines represent the use of a custom hook by a component.

Figure 4.14: Component diagram of Tracy
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Chapter 5

Evaluation

To address our final research question (Section 1.2, RQ3), we conducted a user evaluation
study. Due to our iterative approach to implementation and evaluation, we evaluated individual
features. Moreover, because the character of our study is exploratory, we prioritised exploring
the usefulness and usability of our features over other aspects such as performance which can be
assessed in future work. The user evaluation study was approved by the Ethical Review Board
of TU/e (ref: ERB2023MCS9) and Philips IGTS management.

5.1 Evaluation Setup

5.1.1 Participants

Due to a limited pool of available participants at the time, we opted to recruit participants by
using convenience sampling. The participants were selected from the list of employees, provided
to us for our interview study (Section 3.1.1). We approached engineers from various teams by
sending them an introductory email in which we described that we were evaluating a feature
in Tracy, as the platform had been presented in front of many developers from Philips IGTS
prior. We approached 14 people in total out of which three participated in the first round of
evaluations and two in the second, five were unavailable, three did not respond and one declined
to participate. One of the participants of the evaluations also participated in our interviews, while
the other four did not. While conducting evaluations with participants who had been previously
interviewed could support the validity of our interview findings at the time of the evaluation,
only that interviewee was available. Furthermore, we chose to include engineers whom we had
not interviewed to avoid confirmation bias [44].

We conducted an individual session with each participant. Each session consisted of four
parts. First, we explained the evaluation procedure, also included in the invitation to the session,
and we obtained written consent for participation from the participant. Then, we gave a short
demo of the evaluated feature, followed by an opportunity for the participant to pose questions.
Afterwards, the participant completed a series of tasks using the feature while thinking-aloud
[45]. With the completion of these tasks, we wanted to observe the impact of our feature on
the process of log analysis. During the completion of tasks, we recorded the screen displaying
Tracy and the voice of the participant. We reviewed the recordings after the session to better
understand and document the experiences of our participants. After the completion of the tasks,
the participant filled in a short questionnaire (Section 5.1.3) regarding the usability of the feature.
Finally, we provided the participant with time to give feedback and pose further questions, before
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concluding the session. Table 5.1 presents a summary of the evaluation sessions.

Table 5.1: Summary of evaluation sessions

Participant ID Position
Use of tools

for log analysis
Available tool functionality

Type of log

used during

evaluation

P1
Product owner /

Sr. Software Engineer
Excel-based self-made tool

- searching and filtering

(full excel functionality)

Functional

trace

P2 Software Engineer self-made tool

- merging several logs,

- searching for text,

- filtering

- showing source code

Functional

trace

P3 Software Engineer self-made tool

- merging several logs,

- searching for text,

- filtering

- showing source code

Functional

trace

P4 Software Engineer UltraEdit
- searching for text

in multiple logs

Functional

trace

P5 Systems Test Engineer Excel-based self-made tool
- searching and filtering

(full excel functionality)
Event log

* ”self-made” refers to tools created by individuals, not tools created by the specific participant

5.1.2 Tasks

With the tasks that participants had to complete, we strived to examine the benefits and dis-
advantages of using the feature when analysing logs during the investigation of software bugs.
Therefore, we asked participants to provide a log file (event log or functional trace) to use during
the completion of tasks, in order to evaluate the impact on representative files. We only spe-
cified two requirements for the files: that it was a file the participant analysed during a recent
investigation and that the file contained information used for locating and fixing the bug.

Each participant was first asked to complete several ”warm-up” tasks that involved perform-
ing all possible actions of that feature. As the participants had no prior experience with the
feature, with these tasks, we aimed to help the participants practice and be able to use the
feature during the main tasks competently. The main tasks are based on the two use cases
envisioned for the Structure matching feature in Section 4.2.1. Participants in the second round
of evaluation completed the warm-up tasks for both structure matching and wildcards. Below
we present all the tasks used during the two rounds of evaluations.

• Structure matching tasks (warm-up)

– Define a structure consisting of one row and search for matching structures.

– Change the field selection and search again.

– Navigate through the results.

– Add an additional row to the structure and search again.
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– Toggle the structure link between the rows and search again.

– Remove one of the rows from the structure.

• Wildcards tasks (warm-up)

– Create a wildcard and search for matching structures.

– Use the wildcard in another field and search for matching structures.

– Remove the wildcard from one of the fields.

• Main tasks:

– M1: Try to define a structure that can help you navigate to the entry showing the
source of the bug.

– M2: Try to define a structure that captures entries reoccurring multiple times that
are irrelevant to the current investigation.

5.1.3 Questionnaire

To improve the objectivity, reliability, replicability and communication of our evaluation results
we used a standardised questionnaire [46]. As the evaluations were conducted iteratively with
the implementation work, we opted for a post-task questionnaire as opposed to a post-study one.
In particular, we employed the Software Usability Scale (SUS) [47] questionnaire. SUS consists
of ten statements for each of which participants must indicate the extent of their (dis)agreement.
To express their opinion, participants select an option out of a five-point Likert scale [48]. We
adapted the original SUS statements to fit better our context, by substituting the word ”system”
with ”feature”. The adapted version of the SUS questionnaire can be found in Appendix A.

All SUS statements indexed with an odd number are written with a positive tone and all
the even statements with a negative tone. The change of tone between statements aims to
alleviate the risk of acquiescence bias [49]. Responses to all statements are required for scoring
the answers. The questionnaire produces a score ranging between zero and a hundred. Lewis
et al. [50] benchmark SUS scores obtained from different studies. Based on that benchmark
the average score across studies is 68 (average usability) while a score above 80 indicates high
usability. Furthermore, there is a significant positive correlation between SUS scores and Net
Promoter Score a metric of customer loyalty [51].

5.2 Evaluation

5.2.1 Structure Matching

For the evaluation of the structure matching, we conducted evaluation sessions with three parti-
cipants from different teams within Philips IGTS. After the third session, we chose to continue
with another implementation round based on several observations described below. All three
participants were aware of Tracy, its GUI and its other features at the time, because of a demo
of the platform, given to engineers from multiple teams at Philips IGTS, several months prior
to the evaluation sessions. Nevertheless, two of them (P2, P3) were completely unaware of the
structure matching feature and its interface before the sessions and one (P1) knew that such a
feature was being developed. To lessen the risk of receiving socially acceptable answers from
the participants, known as social desirability bias [52], we did not reveal to participants P2 and
P3 that we had developed the feature. Instead, we stated that our goal is to evaluate novel
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features of Tracy, developed by the Accelerando team. This approach was not feasible with the
first participant due to his prior knowledge.

All participants were able to successfully complete all previously described main tasks. During
the completion of task M1, all participants were able to use structure matching to reach entries
that displayed the presence of the relevant bug. The origin of the bug was visible in one of the
occurrences of the structure defined by P3. The origin of the bug was not present in the files
prepared by P1 and P2. Both participants reached an entry showing the presence of a bug in
a different component and needed to continue the analysis in logs that they had not prepared
for the evaluation. Interestingly, after receiving the first task warm-up task, all participants
began defining structures relevant to the specific bug. As we had not explained the concept of a
structure or provided any descriptions of the feature apart from the demo given at the beginning
of the evaluation we were surprised to see participants defining a structure relevant to their
investigations immediately. Additionally, all participants were able to combine the structure
matching feature with the text-searching functionality. They did so by searching for text they
knew was contained in entries that they wanted to use in a structure. As a result, all participants
were able to quickly define structures for completing task M1.

Possible improvements All participants expressed the need to abstract away business and
technical data from the fields. This need became apparent during the completion of task M2.
All participants were aware of structures which were irrelevant and occurred hundreds of times
in the files. These structures contained business and technical data and the participants were
unable to match all occurrences of the structures. While the structures defined by P2 and P3
resulted in 100-200 matches, the one defined by P1 produced only 13 matches. In all three cases,
the participants expected more matches.

The structures that were defined during the evaluations consisted mainly of two or three
entries. P1 and P3 attempted to match a structure consisting of four entries. In the case of
P1, that structure consisted of all the steps performed by the process during which the existence
of the bug was visible. In the case of P3, the participant defined a structure consisting of two
entries. Matching that structure resulted in several occurrences that contained several hundred
entries and were difficult to view as the participant had to scroll extensively. Therefore, P3
attempted to add more entries to his structure in an effort to constrict the results of the matching.
Nevertheless, the participant was unable to define a structure resulting in smaller occurrences
that could be easily navigated. After the evaluation session, P3 stated that in hindsight he could
have constricted the structure they defined by changing the used fields. To help new users take
full advantage of the feature we could provide access to a help menu containing short descriptions
of the actions The use of structures consisting of few entries may be because users were using the
feature for the first time. To help new users take full advantage of the feature a help we could
provide access to a help menu containing short descriptions of the actions available to users.

SUS scores

The answers on the SUS questionnaire provided by the participants (Figure 5.1) appear to be
consistent with our observations of their experience during the completion of tasks. P1 was
the most confident and did not experience any difficulties in using the feature, while the other
two participants were unable to completely memorise all the available actions of the feature and
contemplated how to perform certain steps (e.g., remove an entry from the structure definition,
etc.). Participants provided similar answers on all but one statement. While P1 and P2 strongly
disagree with statement eight (”I found the functionality very cumbersome to use.”), P3 agrees
with it. This contradiction may stem from the struggle of P3 to navigate through the results of
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the structure matching, which did not occur with other participants.

Figure 5.1: Answers of all participants evaluating the structure matching on the questionnaire.
The options that are displayed with darker shades of colour were selected more often by the
participants than the options that were displayed with lighter shades of colour.

The calculated SUS scores are presented in Table 5.2. The average score (81.7) indicates
overall high usability for the structure matching feature.

5.2.2 Wildcard

We contacted ten potential participants for the evaluation of the wildcard feature. However, we
held an evaluation session with only two of them as four were away, three did not respond and
one declined to participate. Prior to the evaluation sessions, we decided to investigate the impact
of the structure matching and wildcards in log analysis performed for a different purpose than
investigating software bugs. Therefore, we conducted a session with a Systems Test Engineer
(P5). Such engineers do not investigate bugs, however, they analyse event logs containing tests
performed during the execution of software.

P4 was able to use the structure matching to reach the source of the bug in the log. Although
the structure occurred a single time in the file, the occurrence was large (i.e., many entries were
logged between the entries in the structure) and the participant struggled to scroll through it.
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Table 5.2: Structure Matching feature - SUS Scores

Participant ID SUS Score

P1 95

P2 82.5

P3 67.6

Total 81.7

Furthermore, as there was only one occurrence of the structure the participant did not need to
use wildcards during the structure definition. Nevertheless, the wildcard feature was utilised
during the completion of task M2. P4 knew that hundreds of tests were performed and logged
in the file which were irrelevant to the investigation. By defining a structure consisting of two
entries - one logging the start of such a test and one logging the end, the participant was able to
match 417 occurrences. Wildcards were integral to this result as each test-related entry contained
several technical values such as the identifier of the test and configuration variables.

P5 did not complete tasks M1 and M2 as they were irrelevant to the analysis performed by
Systems Test Engineers. Moreover, the participant used the features on a log he was inexperi-
enced with as the original file he had prepared was corrupted. Therefore, the participant used
the features to explore the log and comprehend the contents. The participant was interested in
the presence of failed test cases. Hence, they defined a structure consisting of an entry describing
the result of a test and used the wildcard to abstract away the test identifier and several other
technical data. By doing so they found 3 failing tests in the log. Then, they wanted to inspect
the entries logged during the preparation of specific tests. They defined a structure the result of
which contained several hundred entries and was difficult to view, similarly as with P3 and P4.

Possible improvements One apparent limitation of our features is that occurrences of struc-
tures could contain tens or hundreds of entries. In some cases, users are interested in viewing
only the entries that they used when defining the structure and the entries logged in between are
of no interest. Therefore, improving the visualisation of the Structure Matching results would
improve the impact and the user experience of using the features. Participants have also sugges-
ted combining the structure matching feature with other Tracy functionalities such as searching
and filtering. One advantage of this combination would be to use structure matching to locate
the parts of the log relevant to an investigation and then use the text search and filter to further
analyse these parts.

SUS Scores

Participants P4 and P5 chose the same or similar answers when answering the SUS questionnaire
on all statements but one (Figure 5.2). While P5 strongly agrees that the feature is easy to use,
P4 disagrees. This disagreement may be caused by the difficulty of P4 in comprehending the
different constraints on the distances between entries in the structure definition (Section 4.2.1).

Figure 5.2 displays the calculated SUS scores during the evaluation of the Wildcard feature.
The average score (75) is lower than that from the previous evaluations (81.7). Nonetheless, it
indicates above-average usability.
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Figure 5.2: Answers of all participants evaluating the wildcard and structure matching on the
questionnaire. The options that are displayed with darker shades of colour were selected more
often by the participants than the options that were displayed with lighter shades of colour.

Table 5.3: Wildcard feature - SUS Scores

Participant ID SUS Score

P4 70

P5 80

Total 75
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5.3 Summary of Evaluation Results

Through the evaluations, we have observed that participants were able to utilise the proposed
functionality to encode their domain knowledge of structures during the analysis of logs. The
Structure Matching and Wildcard features could be used to complete tasks related to both
planned use cases - encoding knowledge of structures relevant to an investigation and structures
containing unimportant entries or ”noise”. Furthermore, participants displayed enthusiasm to-
wards the features and indicated an interest in using them in their current practice. These
emotions were reflected in the resulting scores of the SUS questionnaire, which indicate above-
average usability.

The impact of the features, however, is limited by the knowledge of the users. Therefore,
the features may prove most useful on logs produced by software with which engineers are
experienced. We shortly explored the use of the features in the context of an analysis performed
for a purpose other than bug investigation (i.e., analysing system test cases) and we observed
that the features could be used in a different context. These observations, however, must be
further investigated and confirmed and are an interesting topic for future work.

Finally, we identified a significant limitation of the implemented features in the visualisation
of the results. Specifically, matched structures can contain large numbers of log entries which
hinders the value of such results with no way to easily navigate or through them. Addressing
such visualisation challenges can provide another topic for future work.

38 Encoding domain knowledge of logs during log analysis



Chapter 6

Threats to validity

In the following chapter, we discuss the threats that could impact the validity of the work
presented in this thesis as well as the attempts to mitigate them. We address three categories of
threats - construct, internal and external, in accordance with the categories described by Perry
et al. [53].

6.1 Construct validity

Threats to construct validity concern the relation between the theoretical concepts (i.e., con-
structs) under study and the final observations. One such threat is that participants might hold
certain associations of the concept of structure, as investigated in this work, to certain patterns
or sequences. To mitigate this risk we masked the concept of a structure by excluding questions
about it during our exploratory interviews. Instead, we posed questions about the workflow
steps taken during log analysis as well as the used information, to observe what structures are
inherently present and utilised by participants.

6.2 Internal validity

Threats to internal validity concern the choices made throughout this work and the effects on the
outcome. One possible risk is that participants in our interview study might have misunderstood
the questions. To mitigate this threat we conducted a pilot interview and modified the selection of
questions used for the following interviews accordingly. Additionally, participants could hesitate
to share current log analysis challenges or difficulties with the tooling due to various reasons such
as fear of punishment. We attempted to reduce this risk by guaranteeing absolute anonymity to
our participants and explaining data privacy rights. Furthermore, as the data from the interviews
was analysed by a single researcher there is a risk of misinterpretation. To alleviate this threat,
we compared our results to those produced by an AI model for analysing interview data.

To reduce the risk of implementation errors, we followed best practices both for the chosen
programming language and framework. We utilised widely-used software libraries to improve
the robustness of our implementation. Moreover, our implementation was code reviewed by two
software developers working on Tracy.

Lastly, participants who evaluated our functionality might suffer from the social desirability
bias [52]. For example, they could provide socially acceptable answers. To reduce this risk, we
avoided explaining to participants that we had developed the evaluated functionality. Instead,
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we explained that our goal is to evaluate functionality developed by the Accelerando team. Fur-
thermore, we employed a standardised questionnaire, used widely in user experience research to
avoid the acquiescence bias. Another possible threat is reactivity [54]. For example, participants
might complete the tasks during evaluation in an unusual way because they are asked to vocalise
their thoughts and are being recorded. To prevent reactivity, we explained that the goal of the
evaluations is to evaluate the usability of the software, that the performance of the participant is
not relevant and similarly to the interview study we guaranteed full anonymity. Finally, to ob-
serve the use of the implemented features on logs used by practitioners, participants utilised our
features on logs which they had previously analysed, therefore, there is a risk that the features
could not produce similar results on logs with which participants are inexperienced.

6.3 External validity

Threats to external validity are related to the generalisability of the study findings beyond the
scope of this thesis. First, for our exploratory interviews and our evaluations, we employed con-
venience sampling when recruiting participants. We expect that the knowledge, experience and
challenges of our participants are representative, as Philips IGTS is representative of a large-
scale software development company where complex software systems and services are developed.
Nevertheless, due to the concentrated scope of our investigation and the small number of parti-
cipants we cannot generalise our findings. Further confirmation studies need to be conducted in
different environments to corroborate our findings.

An additional threat concerns the contents and format of event logs and functional traces.
While different formats of logs are used in Philips IGTS, all logs analysed in Tracy are converted
to the Tracy-supported format of JSON1. Furthermore, Tracy imposes several prerequisites on
logs, all logged entries should contain the same fields and the first field should be a timestamp.
These prerequisites guarantee a certain quality of the files. However, in different environments,
the log contents may be significantly different. Hence, there is no guarantee that knowledge
about inherent structures could be exploited in the same manner as in this thesis.

1https://www.json.org/json-en.html
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Chapter 7

Conclusions & Future work

7.1 Conclusions

This thesis explores how to encode and use domain knowledge of logs in a visual and interactive
way to support log analysis. We focus on the inherent structures in logs and how engineers can
leverage their knowledge of these structures during analysis. Previous works propose various
tools and techniques for using patterns and visualising logs, but they are rarely used in the
software industry. Engineers mainly rely on unspecialized tools, such as text editors and scripts.
To understand why and to learn what structures are present in software logs and how are they
used, we conducted an interview study with eight engineers from Philips IGTS. We found that
they use the concept of structures in their log analysis, however available tools do not support
the active use of this knowledge well.

We identified two types of structures that experienced engineers recognise: a high-level struc-
ture of a log and a sequence of entries related to a specific process referred to as a sequence or
flow. The knowledge of the high-level structure helps engineers narrow down the scope of a bug
investigation. The knowledge of the sequences or flows helps them filter out irrelevant entries,
form mental models of the software behaviour, and compare logs. Nevertheless, the utilisation
of such knowledge was limited due to the varying availability and use of tools.

Based on these findings, we implemented two features that enable engineers to define struc-
tures and find their occurrences in logs. We emphasised the ease of use and interactivity of
the features to encourage their adoption. We evaluated each feature with several participants
to assess its impact and usability. We asked them to complete two tasks based on real-world
workflows and challenges. We also used a standardised usability questionnaire to measure their
satisfaction with the features.

We found that the participants were able to encode their knowledge of structures successfully
and use our features to facilitate the investigation of software issues. However, we also discovered
some limitations of the features. First, the usefulness of the features depends on the experience
and knowledge of the users. The features may not be helpful for analysing unfamiliar logs.
Second, the features may not handle well structures that contain a large number of entries.
Specifically, the results may be hard to navigate and use. Despite these limitations, our solution
received above-average ratings for usability from the evaluation participants.
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7.2 Future work

At the time of writing the functionality described in this thesis is fully integrated with Tracy
and so, it is publicly available on the repository of the platform1. A member of the Accelerando
team demonstrated Tracy to several engineers from ASML, a reputable company that produces
lithography machines. The ASML engineers expressed interest in the Structure Matching and
other Tracy features. Therefore, one interesting direction for future work is to explore the use
of structures and our tools in different companies. Other directions for future work can address
the limitations and challenges of this thesis, such as:

• Improving the visualisation and interactivity of structures: Future work can tackle
the challenge of displaying and navigating structures that contain many entries.

• Enhancing the scalability of the solution: Future work can evaluate and improve the
performance of our features for large and complex logs.

• Enabling the sharing of domain knowledge: While we identified the possibility of
supporting the use of structure knowledge by allowing users to share their knowledge,
future work can investigate this functionality and its impact on log analysis.

• Extending the possible structures: While our features allow users to specify structures
that include entries, they do not allow users to specify structures that exclude entries.
Therefore, Future work can expand the range of possible structures.

1https://github.com/TNO/vscode-tracy
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