
COMPREHENSIVE REVIEW

Cold weather operations: Preventive strategies in a military context
Lisa Klous a, Hilde Teienb, Sarah Hollisc, Koen Levelsd, Appie Boonstrae, Wendy Sullivan-Kwantesf, 
François Hamang, John W. Castellanih, Milène Catoirea, and Boris Kingmaa

aDepartment of Human Performance, Unit Defence, Safety and Security, Netherlands Organization for Applied Scientific Research (TNO), 
Soesterberg, the Netherlands; bTotal Defence Division, Norwegian Defense Research Establishment (FFI), Kjeller, Norway; cRegional 
Occupational Health Team (ROHT) Catterick, UK Defence, Catterick, UK; dTraining Medicine & Training Physiology (TGTF), Royal Netherlands 
Army, Utrecht, The Netherlands; eMaritime Warfare Center, Royal Netherlands Army, Den Helder, the Netherlands; fOperational Health and 
Human Performance, Defence Research and Development Canada-Toronto Research Center, Toronto, Canada; gFaculty of Health Sciences, 
University of Ottawa, Ottawa, Canada; hThermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, 
Natick, USA

ABSTRACT
Military cold weather operations (CWOs) introduce a range of challenges, including extreme 
temperatures, strong winds, difficult terrain, and exposure to snow, ice, and water. Personnel 
undertaking these missions face a heightened risk of cold weather injury (CWI), such as hypother
mia, freezing cold injuries, and non-freezing cold injuries. The risk of these injuries is influenced by 
various factors, including age, sex, and body composition. To ensure optimal and safe perfor
mance in CWOs, it is crucial to implement effective preventive measures against CWI. This article 
emphasizes the most pertinent strategies for CWI prevention in CWOs. Initially, it is important to 
assess individual vulnerability to CWI. Education and training on CWI prevention should be 
provided before deployment in CWOs. During CWOs, attention should be given to crucial 
behaviors such as using a proper layered clothing system, recognizing the risks associated with 
prolonged stationary periods in cold conditions, consuming adequate calories, and staying 
hydrated. Additionally, environmental monitoring using tools like the windchill index and regular 
checks on physical status are essential. Although monitoring by itself does not prevent CWI, it can 
prompt necessary behavioral adjustments. Education and behavioral modifications are central to 
preventing CWI. Given the limited research on CWI prevention in military settings, despite the 
frequent occurrence of these injuries, there is a pressing need for further studies to evaluate 
effective preventive strategies within this specific operational framework.
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Introduction

Cold environments, marked by low ambient tem
peratures, high wind speeds, and unique terrains, 
often pose significant challenges to soldiers. 
During cold weather operations (CWOs), soldiers 
are exposed to the elements, but also to factors 
such as physical exhaustion and sleep deprivation, 
which may make them more susceptible to cold 
weather injury (CWI) [1]. This article’s main 
objective is to offer an overview of preventive 
strategies for CWI within the context of 
a hierarchy of controls.

CWI can broadly be categorized into whole 
body hypothermia and/or peripheral CWI. 
Although individual responses can be highly vari
able, in general hypothermia is a state in which the 
body’s core temperature (Tc) drops <35°C. It is 

categorized by severity: from mild hypothermia 
(Tc 32–35°C) which impairs operational effective
ness to moderate hypothermia (<32°C) and severe 
hypothermia (Tc <28°C), potentially resulting in 
death or long-term neurological damage [2–5]. It 
should be noted that these Tc thresholds relate to 
isolated hypothermia and may be higher in those 
with co-existent trauma. Peripheral CWI is more 
prevalent but not as life-threatening. However, 
they can result in acute and chronic functional 
impairment and in severe cases amputation affect
ing acute and long-term operational performance 
and effectiveness. Peripheral CWI is classified into 
two categories: freezing cold injuries (FCIs) and 
non-freezing cold injuries (NFCIs) [6,7]. The dis
tinction between FCIs and NFCIs relates to the 
temperature of the exposed skin. FCIs, also 
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known as frostbite, occur below the freezing point 
of tissue (<–0.55°C), whereas NFCIs occur when 
skin is exposed to low temperatures and often 
moisture for prolonged periods of time (several 
hours to days) [8–12]. Historically, NFCI has 
been referred to as “trench foot,” is often seen in 
military settings, and has influenced the outcome 
of many military campaigns [10]. NFCIs also 
occur on other body regions, but hands and feet 
that are most commonly affected. NFCIs are char
acterized by an inability to maintain skin tempera
ture often involving prolonged peripheral 
vasoconstriction. The exact mechanism behind 
NFCIs is poorly understood but is thought to 
include direct damage from cold, hypoxia or ische
mia, and the liberation of reactive oxygen com
pounds during reperfusion [8–12], which variously 
affects small fiber nerves and microvasculature. 
While the mechanisms behind NFCIs are not 
fully understood, the overarching principle for 
preventing hypothermia, FCIs and NFCIs is to 
reduce the rate and degree of whole-body and 
local cooling.

CWI risk varies between individuals, and there 
is no “one-size-fits-all” solution for preventing 
CWI [8]. Predisposing factors for the development 
of CWI are extensively described and summarized 
in earlier work by Haman et al. [8], Castellani et al. 
[13], Giesbrecht and Wilkerson [14], and White 
and Sullivan-Kwantes [2], and can be categorized 
into environmental (e.g. temperature, wetness, 
windchill, exposure duration), mechanical (e.g. 
inadequate clothing and shelter, cramped position
ing, tight boots), physiological (energy depletion, 
poor physical conditioning, body morphology), 
medical (e.g. Raynaud’s, preexisting injuries, vaso
constrictive drugs), and psychological (e.g. severe 
mental stress) factors [15]. To optimize military 

operational effectiveness in the cold, being aware 
of, and using appropriate preventive strategies for 
development of CWI is essential [16,17]. Although 
the human body has several physiological mechan
isms to counteract mild cold environments, either 
insulating (i.e. peripheral vasoconstriction) or 
metabolic (i.e. shivering) responses in an effort to 
prevent significant reductions in core temperature, 
it is crucial to understand that relying on physiolo
gical cold defense mechanisms is unlikely to be 
a successful strategy to prevent CWI [17,18]. 
A brief overview of the strength of physiological 
cold defense mechanisms and their behavioral 
equivalent (i.e. changing activity or clothing) is 
shown in Table 1. The table shows that behavioral 
cold defense has the greatest impact with a wider 
range of options than physiological cold defense 
mechanism [17].

To guide commanders in implementing the 
most effective preventive measures against CWI, 
it is beneficial to consider a suggested hierarchy of 
controls [23]. De Castro’s hierarchy of controls 
categorizes risk control strategies to workplace 
hazards from the most effective at the top to the 
least effective at the bottom (Figure 1), which has 
been adapted to CWOs in this article. 
Understanding this hierarchy helps commanders 
make informed decisions and prioritize interven
tions. This article primarily covers evidence for the 
items that can be implemented in the lower part of 
De Castro’s hierarchy of controls (Tier 4 alter and 
Tier 5 personal protective equipment). While not 
the strongest preventive measures, they are the 
ones most frequently utilized in tactical training 
and deployment.

● Tier 1 Remove: the most effective control is 
to completely remove the hazard. However, 

Table 1. Overview of physiological cold defense mechanisms, impact, and their behavioral cold defense equivalent (i.e. activity 
or clothing-wise). SFT: subcutaneous fat thickness.

Thermogenic response Impact (i.e. heat equivalent) Source Activity equivalent

Non-shivering thermogenesis 0 – 30 W [19] Fidgeting
Shivering thermogenesis 300 – 500 W [20] Moderate activity
Diet induced thermogenesis 6 – 20 W over 2 hours [21] Fidgeting

Maximal tissue insulative response Insulation equivalent Source Clothing equivalent

At rest 0.10 m2K W−1 or 0.645 clo thin SFT 
0.32 m2K W−1 or 2.065 clo thick SFT

[22] Summer wear 
Winter attire

At high activity level 0.01 – 0.03 m2K W−1 or 0.065 – 0.194 clo [22] Underwear
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in military operations, elimination of expo
sure to cold is often not possible. An example 
of elimination is that below a certain tem
perature, depending on each country’s policy, 
routine training will stop and drop down to 
essential training only.

● Tier 2 Replace: in the context of CWOs, this 
might involve substituting a training that 
includes immersion during winter with one 
that does not, holding it in summer instead. 
The overriding principle is to replace an 
activity with another where risk is high and 
exposure to additional cold is not essential for 
training at that time.

● Tier 3 Adapt: these involve modifications to 
the environment or equipment. Examples 
include establishing windbreaks and using 
heated tents.

● Tier 4 Alter: this includes ensuring soldiers 
are well-educated and well-trained, fit, well- 
rested, well-nourished, hydrated, and beha
viorally acclimated before and during 
training.

● Tier 5 Personal Protective equipment 
(PPE): this is the last line of defense. It 
involves protective clothing and gear.

Mitigation strategies employed are frequently 
a combination of tier 4 and 5 strategies, despite 

these being the least effective, possibly because 
other options may not be militarily feasible. For 
example, providing clothing with appropriate 
insulative properties for a specific situation in 
combination with behavior modification. This 
article begins with a discussion on hazard and 
risk assessment. The practice of identifying hazard, 
assessing risk, and implementing control measures 
is itself an activity that falls within Tier 4. This 
should be taken into consideration when reading 
this article.

Hazard and risk assessment

Education and training

First and foremost, it is essential to ensure that all 
personnel have received an appropriate level of 
education and training on operating in the cold 
and identification and management of CWI. It is 
essential they can identify hazards and assess and 
mitigate risk at a level commensurate with their 
rank and role. Armed with this knowledge, mili
tary personnel are more capable of staying warm 
enough to operate effectively and subsequently 
reduce CWI. Education and training should 
include all factors known to impact performance 
in the cold such as the environmental, mechanical, 
physiological, medical, and psychological factors. 

Figure 1. Graphical illustration of the hierarchy of controls, based on [23]. PPE: personal protective equipment.
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After identifying optimal strategies for maintain
ing warmth in specific roles, military personnel 
should practice in temperate climates and become 
proficient at certain activities, for example, con
ducting tasks while wearing gloves or mittens, 
before doing these tasks in a cold environment.

While preventive measures will vary between 
different corps (or units) and roles, some educa
tion and training can be centralized. However, it 
is crucial to provide customized training that 
aligns with each soldier’s specific circumstances 
and mission. This training should be regularly 
reviewed and updated as each winter approaches 
and prior to cold weather deployments, especially 
for nations that do not have an Arctic climate. 
Education and training must also include CWO 
survival techniques and provide first aid for CWI. 
As Whayne expounded: “The prevention of cold 
injury is primarily a function of command from 
the highest to the lowest echelon. It requires the 
assumption of responsibility by all personnel, 
including the medical corps, which, though its 
role is purely advisory, must nonetheless assume 
the responsibility for making its advice forceful as 
well as correct” [24]. A short summary of all 
topics covered in this chapter and the next chap
ter on controls can be found in Figure 2.

Identify cold hazards

Before applying suitable and sufficient controls, 
it is important to identify the hazard and recog
nize soldiers at heightened risk. The windchill 
index is commonly used in cold weather envir
onments to express the level of cold and the 
corresponding risk for FCIs that can be experi
enced (Figure 3) [26]. The works of Antarctic 
geographer Siple and geologist Passel are often 
credited as the beginning of the windchill index 
[27]. The current windchill index represents 
a person moving about 5 km·h−1 against the 
wind at face level [25] and indicates the risk 
of getting FCIs on bare skin of the cheek [25]. 
In practice, this chart is easy to use and can be 
brought along in military settings. It should be 
noted, however, that the windchill index does 
not account for solar radiation, protective gear, 
other body areas that are more susceptible to 
FCI, high activity levels or other individual 

characteristics that attenuate the susceptibility 
for CWI [8,25]. Nor does it take into account 
the wide range of weather conditions that can 
occur within a small area (other than making 
repeated readings). Tikuisis and Keefe also cre
ated a windchill table for exposed skin of the 
finger. While not currently widespread in use, it 
might be relevant for military operations [28].

Screening for individuals at risk (but not 
selecting)

As well as identifying hazard and assessing risk for 
the average soldier, it is also important to identify 
individuals who may be at a heightened risk for 
CWI. This allows for implementing additional 
measures to ensure effectiveness and safety. It has 
long been thought that individuals who “feel the 
cold” more than others may be at greater risk of 
cold injury than others, and because this is non- 
modifiable, researchers since the Second World 
War have been keen to understand whether this 
inherent propensity to feel cold confers 
a heightened risk of CWI. On the other hand, 
feeling the cold more could be protective if beha
vior is adjusted earlier and appropriately. Daanen 
et al. proposed a finger immersion test to gauge 
peripheral tissue’s cold induced vasodilation 
(CIVD) response and the risk of CWI which fol
lows the Yoshimura method [29]. CIVD is 
a phenomenon characterized by cyclic rewarming 
(i.e. few minutes) of the skin during cold exposure 
and is driven by vasodilation through the opening 
of arteriovenous anastomoses. The sudden vasodi
lation cycles could increase peripheral tempera
tures. This phenomenon is evident at the 
extremities including the face, ears, hands and 
feet [30] and seems at least to be dependent on 
core and skin temperatures, but potentially only in 
a certain range (i.e. sufficiently warm core). The 
exact underlying mechanism of the CIVD 
response is a topic of debate. This method showed 
that a less efficient CIVD response had a weak 
association with CWI incidence in military set
tings [31,32]. The Norwegian Army studied hand 
rewarming rates after a cold weather exercise to 
assess if cold exposure attenuated the CIVD 
response [33,34]. They found a tendency for 
slightly faster rewarming following CWOs. 
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Figure 2. Summary of risk assessment and controls in military cold weather operations in terms of problem, research add, and 
mitigation.
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Though a limited number of injuries occurred, in 
their military training Brändström and colleagues 
found that slower rewarming rates were evident in 
4 of 5 CWI [32]. Other studies found the test 
nonspecific, with more CWI stemming from 
poor decisions, extreme cold exposure, or wet 
clothing [35]. There is evidence that a less efficient 
CIVD response may confer a heightened risk, 
especially in women and individuals of African 
race, but the magnitude of this risk in relation to 
sustaining CWI has not yet been defined [15]. It 
has also been postulated that the cold sensitivity 
test or CIVD response can be used as an entry 
standard for military service in cold regions, 
selecting out those who display a less efficient 
response. However, without a direct link to sub
stantially increased risk of CWI and with signifi
cant intra-individual variability between tests, it is 
unlikely that the test would meet the requisite 
standards for employment law in many countries. 
Overall, the evidence suggests behavioral factors 
are more indicative of CWI risk than biological 
ones.

Controls

Alter

Preventing is better than curing and ensuring 
that soldiers are ready and capable of operating 
in cold weather is of paramount importance. 
Alter, tier 4 in De Castro’s hierarchy of controls 
focuses on procedural and operational measures 
to ensure the best possible physical and mental 
condition of soldiers, ultimately reducing their 
susceptibility to CWI. Central to these controls 
is the emphasis on identifying hazards, compre
hensive training, optimal fitness level, sufficient 
rest, proper nourishment, hydration, appropriate 
use of PPE that fits properly, and fostering beha
vioral acclimation to cold environments both 
prior to and during operations. Of important 
note, there are considerable individual differ
ences in the mechanisms and processes men
tioned in the previous sentence that will be 
described in more detail in the paragraphs that 
follow. A short summary of all topics covered in 
this chapter can be found in Figure 2.

Figure 3. Windchill factor that indicates the risk of freezing injury on bare skin based on air temperature and wind strength. Blue 
shading indicates temperature at which frostbite can occur, based on [25].
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Fatigue
Fatigue has historically been linked with NFCI 
[36,37], but although some studies support this 
association, few have clearly defined fatigue. 
Commonly, Fatigue is variously used as a term to 
describe sleep deprivation or exertional tiredness 
or both, and there have usually been other risk 
factors such as nutrition or hydration at play.

Sleep deprivation
One night of sleep deprivation (i.e. 29 hours total 
sleep deprivation) was found to reduce finger skin 
temperature (Tsk) and vascular conductance in 
a laboratory setting using cold water hand immer
sion [38,39]. In a more ecologically valid setting, 
Peng and Sullivan-Kwantes [40] found that CWI 
were not associated with sleep duration during 
a 5-d Canadian Arctic operation. Sleep duration 
varied from 4 to 8 hours daily and was reduced 
during the operation. There is a paucity of valid 
field studies on the isolated effect of sleep depriva
tion. Young and colleagues [41] looked at the 
combined effect of sleep deprivation (~4 h of 
sleep per day), exertional fatigue and insufficient 
caloric intake on cold thermoregulatory responses. 
Forty-eight hours after ceasing arduous work, the 
suppressive effect of sleep deprivation on the ther
moregulatory system was almost abolished. What 
is becoming increasingly clear is that recovery time 
between periods of arduous training or deploy
ment is important for overall health although 
again, this has not been definitively linked with 
incidence of CWI [40–42]. Collectively, sufficient 
sleep together with adequate rest appears to 
improve thermoregulation and may mitigate the 
risk for the development of both hypothermia and 
peripheral CWI.

Caloric intake
Caloric intake in the cold should increase in 
response to the significantly higher energy expen
diture mainly elicited by the type of activities 
usually performed in the cold (i.e. walking in 
snow, skiing). Energy expenditure (i.e. corre
sponding to total metabolic rate) of soldiers in 
the cold seems to be ~10–40% higher and there
fore caloric intake should be higher as well [43,44]. 
Previous studies show that energy expenditure 
during military operations can be as high as 

5,000–10,000 kcal (20,000–40,000 kJ) per day 
[13,43–47] depending on how demanding the 
CWOs are and the activity levels. Irrespective of 
need, what has been found during research is that 
it appears extremely challenging to increase caloric 
intake over about 5000 kcal per day. Thurber and 
colleagues found evidence for an alimentary 
energy supply limit of ~2.5× basal metabolic rate 
[48]. Assuming a basal oxygen consumption of 
~0.25 L·min−1 for men and ~0.2 L·min−1 for 
women and considering the human body burns 5 
kcal·L−1 oxygen [49], the alimentary energy supply 
would be ~4500 kcal·d−1 for men and ~3600 
kcal·d−1 for women. Contributory factors to this 
ceiling effect include not being hungry, no time to 
eat and the difficulty of preparing food in the cold 
and eating whilst wearing gloves [50,51]. The 
potential size of the energy deficit can be estimated 
using the difference between sustained metabolic 
scope (~3× basal metabolic rate [48]) and nutri
tional limit (Δ of ~0.5× basal metabolic rate) and 
would be 900 kcal·d−1 and 720 kcal·d−1 for men 
and women, respectively. With these deficits, it 
would take 8–9 d for men and 10–11 d for 
women to lose 1 kg of fat (7700 kcal·kg−1 [52]). 
Research by Margolis et al. [43,44] showed that 
over a three-to-seven-day period, caloric deficits 
were found to be as high as 3000 kcal per day. 
There have been efforts to identify nutritional 
interventions to minimize energy deficit. One 
study of Norwegian soldiers revealed that they 
chose not to consume ~34% of their rations 
[43,44,53], and supplementing these soldiers with 
additional carbohydrate (CHO)- or protein-based 
snacks was also ineffective since the soldiers con
sumed ~85% of the snacks but compensated for 
this by eating less from their rations. To allow 
for an increased caloric intake up to the energy 
supply limit, food intake should be trained and/or 
monitored by leadership, i.e. think of forced food 
breaks. The importance and benefits of leadership 
amongst others are emphasized by recent insights 
from the French Army [54–56]. Charlot and col
leagues [54,55] intervened during a Greenland 
expedition using easy-to-use, highly palatable and 
familiar food supply and a planned schedule to 
stimulate spontaneous energy intake. A very pro
mising observation was that soldiers reached neu
tral energy balance in <10 d. Noteworthy, as the 
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expedition was not very demanding, this strategy 
should still be verified in more types of exercises.

Chronic negative energy balance impairs ther
moregulation and impacts on inflammatory pro
cesses, and this inability to increase caloric intake 
proportionate to activity is very important [57]. As 
energy demands for maintaining Tc are high, calo
ric restriction has been shown to reduce Tc [58]. 
Soldiers able to manage energy intake close to 
energy expenditure have been shown to have 
a better protein balance and less inflammation 
compared to soldiers with a caloric deficit 
[43,44,53]. Recently, Margolis & Pasiakos sum
marized that protein balance can be maintained 
if individuals eat >40% of their caloric deficit and 
consume 1.6 g·kg−1·d−1 protein [59] (Unpublished 
data). Yet, and most important, direct evidence 
regarding the correlation between (just enough) 
caloric intake and risk for CWI lacks.

Fluid intake
Working in cold environments can lead to hypo
hydration through decreased thirst, cold-induced 
diuresis, sweating, and rations that tend to be high 
calorie but with low water content. It is estimated 
that when relying on cold weather rations, indivi
duals need to drink up to an additional 1 L water 
per day to compensate for the lower water content 
compared to regular rations [13]. An added diffi
culty is that even though the water is needed, the 
person may not feel thirsty. The US Military have 
propounded scheduled water breaks where sol
diers are required to drink, for example, half 
a canteen cup (0.25 L) with breakfast, lunch, din
ner and before going to sleep and half a canteen 
cup every hour during the day, equaling ~5 L 
per day [60]. The Norwegian Armed Forces 
recommend similar measures, aiming for 0.6–1 L 
of water per hour during physical activity [61]. 
Furthermore, they advise water should be con
sumed in small and frequent quantities at a rate 
of 0.1–0.2 L every 10 min [61]. What must also be 
taken into account is that drinking at this rate 
produces added difficulties: water must be kept 
from freezing by keeping bottles next to the body 
or other methods, breaks are needed to encourage 
drinking, and there will inevitably need to be more 
toilet breaks which may be hazardous at night and 
in some situations there might be the need of 

adding extra salt. Sub-optimal hydration is likely 
to affect physical performance but evidence that it 
leads to CWI is weak. It is likely that any relation
ship in the mild dehydration generally found in 
soldiers exercising in the cold is coincidental 
rather than causative [62–64].

Drink and food temperature
Hot drinks are comforting and often thought to 
“warm people up.” However, to the author’s 
knowledge, the net effect of hot drinks on the 
thermoregulatory system (i.e. losing heat via 
whole-body vasodilation of the skin versus adding 
heat by drinking a hot fluid) has not been quanti
fied in cold environments. Regarding moderate to 
warm environments, the effect of drink tempera
ture on Tc has been established. Some studies 
found that cold drinks could attenuate the rise in 
Tc [65,66]. Others showed no changes in Tc, Tsk or 
heat storage as a result of cold or hot drinks 
[67,68]. However, based on anecdotal accounts, 
hot drinks are important for group cohesion, com
fort, and general well-being. For food this princi
ple would be valid too, but again this has not been 
quantified. Yet research has shown implicit want
ing for warm dishes in a temperate (16°C) over 
a warm (32°C) environment [69]. The authors 
further emphasize the importance of food reward 
to reach energy balance which might be reached 
by allowing warm food preparation again by 
proper leadership.

Physical fitness
Improving physical fitness. It has been proposed 
that endurance training with commensurate 
enhancement of aerobic capacity could be a way 
of improving thermoregulation in the cold via 
increased metabolic heat production, higher Tsk 
and an earlier onset of shivering [70]. Also, high 
aerobic capacity subjects seem to use fat oxidation 
more than CHO (i.e. glycogen) in their total 
energy expenditure during exercise, as glycogen 
stores are used less quickly, and exercise can be 
maintained longer before exhaustion occurs. 
Importantly, glycogen is kept in reserve for heat 
production when needed [71,72]. This response 
has a sex-effect as women tend to oxidize more 
fat and less carbohydrates in general compared to 
men, both reported in controlled as well as field 
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experiment settings [47,73–75]. Whilst this shows 
that those who are physically fit have a more effi
cient thermoregulatory response and tend to uti
lize fats more in energy production; it is tempting 
to suggest that this may reduce CWI. However, 
evidence to prove this is the case is lacking, and 
given the multifactorial nature of CWI and indi
vidual differences in response to the cold (i.e. some 
people cool much more quickly than others) it is 
unlikely to be a principle determining factor.

Increasing fat or lean body mass. High subcuta
neous fat mass may be beneficial in military per
sonnel operating in the cold by reducing surface-to 
-volume ratio and thus the ratio between heat loss 
and heat production. That is why individuals with 
a large surface-to-volume ratio demonstrated 
a greater decline in core temperatures compared 
to those with a smaller ratio [60]. Since the loss in 
muscle mass relates to the loss in fat mass after 
military training [73,76], starting with a relatively 
high fat mass can be beneficial to prevent lean 
body mass loss. However, high subcutaneous fat 
mass is generally associated with low physical fit
ness, which may be a disadvantage. Conversely, at 
rest, subcutaneous fat tends to be advantageous 
through insulative effects [22,77,78]. However, 
about 90% of body tissue insulation at rest is 
explained by nonfat tissues [79]. In line with this, 
a recent study showed that in resting subjects, 
a high lean body mass, and not a high fat mass, 
is the cause of the beneficial cold response [80]. 
During activity, insulative properties of the body 
are reduced once the muscle is perfused and then 
the thickness of the subcutaneous fat layer 
becomes the prime determinant of the tissue insu
lation [22,80]. Studies supporting this statement 
reported reduced heat loss in cold environments 
and less shivering in individuals with higher sub
cutaneous fat mass [81].

Cold acclimation
When preparing for cold exposure, individuals can 
physiologically habituate (i.e. reduced shivering or 
vasoconstriction, following days of exposure) and 
they can show an enhanced insulating and meta
bolic response (i.e. increased shivering and vaso
constriction, following weeks of exposure) [18]. 
Whilst much is spoken of these responses, an 

implementable and sustainable program for this 
has yet to be found. Physiological acclimation has 
been induced in laboratory conditions but requires 
an intense and extensive protocol, does not always 
produce benefits [18,82,83], and thus has limited 
potential for use in the military context on current 
evidence. There may also be drawbacks to cold 
acclimation as it seems to involve 
a downregulation of skin cold sensing and 
a commensurate reduction in metabolic response 
on exposure to cold [18,82,83], thus paradoxically 
increasing the conditions in which CWI is more 
likely to occur. What has been shown to be of 
great importance is behavioral adaptation to living 
and working in cold environments which links 
into the benefits of training for cold environments 
[18].

Physical activity
Inactive soldiering is arguably the most potent risk 
factor for CWI in CWOs for the military. When 
soldiers are inactive and still (e.g. standing on 
guard or in shooting position), cooling will pro
gress, and mitigation measures will merely slow 
the rate at which this happens. Physical activity 
not only slows cooling, but also rewarms; muscles 
produce heat while generating power and even the 
coldest feet can be rewarmed with sufficient activ
ity [84]. Increased blood circulation can occur 
several hours after physical activity [85,86] due to 
transport of metabolites and waste products from 
muscle. It is appreciated that exercise is not always 
militarily possible and may need to be reduced to 
small movements (i.e. exercise extremities by, for 
example, sticking heels into the ground or spin
ning arms), and that the individual must be ade
quately fed, hydrated and uninjured to use 
physical activity as a treatment for cold or indeed 
maintaining warmth for optimal performance.

Decision support tools
Decision support tools have recently been devel
oped that may help in deciding what clothes to 
procure and wear for a particular exercise or 
deployment [87–90]. For example, CoWEDA is 
a tool that integrates human performance metrics, 
a thermoregulatory model (SCTM), and a database 
of biophysical properties of clothing [89]. The 
application then advises the number of hours 
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that an individual can be exposed to a particular 
situation (environment, activity, clothing) before 
a potentially injurious temperature (body, hand, 
feet) is reached (Figure 4). However, a challenge 
is that decision support tools do not take the 
individual thermoregulatory differences into 
account.

To support proper decision-making, monitoring 
can be of great importance. Given that we have 
thresholds for development of hypothermia 
(Tc <35°C) and FCIs (Tsk <–0.55°C), monitoring of 
temperature (core and skin) appears an attractive risk 
mitigation strategy particularly if the monitoring is 
“real-time” and can thus warn people as they 
approach a potentially injurious temperature [87] 
but it is not without problem. Hence, monitoring Tc 
and Tsk has the potential to contribute to avoidance of 
CWI. However, the gold standard for Tc measure
ment is to use an esophageal probe [91] which is really 
only feasible in a laboratory or clinical setting; second 
best is a rectal probe but readings can be positionally 
variable and it is equally unsuited to a military setting. 
Other devices all have their drawbacks: telemetric pills 
are rather expensive, are influenced by nutrition, and 
come with logistical challenges (i.e. should be ingested 
at least ~1 hour prior to exercise) [92], heat flux 
sensors tend to be influenced by sweating [93], and 
tympanic measurements using infrared-based devices 
are dependent on ambient temperature (if canal is not 
insulated) [94] and ear canal morphology [95]. At this 
moment, telemetric pills appear to hold the most 
promise for monitoring Tc in the military. However, 
this area requires more research. Tsk monitoring is 
even less well established than Tc measurements. 
There are Tsk sensors available on the market (for 
example, cable free i-Buttons® or thermistors with 
cable), but the sensors are currently not capable of 
real-time monitoring. Other difficulties with these 
types of measurements are that the sensors may be 
uncomfortable in boots, produce hindrance in gloves, 
and make personal hygiene more difficult. Further, 
there is a risk that metal in the devices may freeze and 
cause local CWI, as well as the problem of rapid 
battery deterioration in the cold. Infrared imaging 
might have the potential for use in training recruits 
to learn that a certain feeling in the fingers relates to 
CWI risk. Showing the infrared images together with 
the actual Tsk could create more understanding and 
awareness. A NATO workgroup has addressed the 

issue of temperature monitoring. (“Enhancing war
fighter effectiveness with wearable biosensors and 
physiological models”) and came up with a list of 
requirements for monitoring of soldiers [96]: 
“Monitoring devices should be robust, waterproof, 
sustain a cold environment, should not allow conden
sation from temperature shock, have a long battery 
life, should be wireless, small, of low weight, easy to 
use, should produce low noise, have a large data 
capacity and should have no risk for increased cold 
injury and skin irritations.”

Buddying up
In the military, soldiers are often directed to 
“buddy up,” in other words, to work in pairs and 
keep an eye on each other for adverse symptoms 
and signs at an early stage; this can represent a key 
part of risk mitigation at work. In cold environ
ments, they should be taught to look out for signs 
of peripheral CWI such as difficulty with dexter
ous tasks, white patches on skin, or early signs of 
hypothermia (e.g. clumsiness, mild confusion, 
irritability) [97–99]. Furthermore, social vigilance, 
such as buddy checks, not only reinforces aware
ness of emerging CWI symptoms but also 
encourages timely corrective actions.

Personal protective equipment (PPE)

PPE sits at the bottom of the hierarchy of con
trols and is, in theory, the least effective of them. 
However, circumstances do not always afford the 
opportunity to implement higher tiers of control, 
especially in the military, and in these situations 
wearing appropriate PPE may be the most effec
tive measure available. PPE must be appropriate 
for the individual and the task as well being 
properly used and maintained [16,100]. 
Lajeunesse and Lackenbauer [101] stated that it 
is crucial to train military personnel on how to 
effectively use their PPE in the cold. Recently, the 
Norwegian Armed Forces have composed four 
animated videos in Norwegian, English and 
Ukrainian about the threat, prevention and symp
toms of CWI [99].

Wearing appropriate clothing
Clothing is quintessentially important in com
bating cooling and CWI [7]. Typical cold 
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weather clothing configurations consist of 
a three- or four-layered structure based on the 
principles of layering, insulation, and ventilation 
[13], with an inner layer that is in direct contact 
with the skin. This inner layer should preferably 
be lightweight and promote wicking of moisture 
to the outer layers where moisture can evapo
rate; fabric fibers should create a relatively thick 
air layer between skin and fabric. The second or 
mid layer should provide insulation required 
according to environmental conditions and 
activity. The third layer, the outer layer, should 
ideally allow the transfer of moisture to the air 
via evaporation, but protect against wind and 
rain. A fourth camouflage layer may be added 
to the clothing ensemble, common practice in 
many northern countries. During high-intensity 
training activities where sweating is likely, it is 
preferable that layers are removed, to avoid 
moisture collecting in the base and mid layers 
as it will lead to more rapid cooling when inac
tive. However, there is an acknowledgment that 
changing clothing layers during a real combat 
type scenario would be more complicated. 
Outer-layer clothing can also be designed to 
have zippers to promote ventilation and moist
ure removal.

Leadership can play a big part in the effective
ness of PPE. There is considerable variation in 
how individuals respond to the cold, some people 
cool more quickly than others. Therefore, it makes 
no sense to direct everyone to wear the same 
clothing. Subordinates should be encouraged to 
judge for themselves what their individual needs 
are to keep warm and, once educated on the use of 
PPE, combine this with experience to choose opti
mal layering. When training military personnel it 
can be useful to use acronyms to support learning. 
One used for clothing in cold environments is: 
“COLDFEET” (see also Figure 5): Keep it Clean, 
Prevent Overheating, Wear it Loose and in 
Layers, Keep it Dry, Appropriate Fit, Exercise 
your extremities, Eat your rations, Tight boots 
are terrible.

ISO11079 [102] provides several outputs on the 
required clothing insulation (IREQ) given the 
environmental conditions and activity level. For 
example, IREQneutral is the required insulation for 
thermal balance and thermal comfort where 

IREQminimal is the minimal required insulation to 
be able to work at least 8 h. Both are corrected for 
air movement by body or wind that effectively 
reduce the insulation provided by clothing. This 
information can be used as background knowledge 
to be applied in decision support tools as men
tioned in paragraph 3.1.9.

Gloves and mittens
Hand protection is a particularly difficult pro
blem to solve on CWOs. As insulation increases, 
dexterity tends to decrease as a result of the 
thickness of glove or mitten. Thus, there is 
always a balance to be found, and what must be 
guarded against is the instinct to remove hand
wear because a fine task is proving difficult. As 
with all clothing, it is the amount of air trapped 
that governs the insulative property of gloves and 
mittens. Thus, mittens which trap a lot of air and 
allow heat transfer between digits, tend to be 
warmer than gloves of the same insulative qual
ity. Claw mittens have the thumb and forefinger 
separate allowing a little more movement for 
tasks, and other constructs have gloves with 
a mitten flap that covers the fingers when possi
ble. External heating such as heated pads, gloves, 
and insole may have some use in combatting 
cooling [103–105], but may not be ideal because 
of weight, short battery life in cold settings, dif
ficulties of recharging, and uncertain perfor
mance in wet conditions. Moreover, adding 
such equipment works against the “fight light” 
principle. Carrying this type of supportive equip
ment is feasible when vehicles are near to pro
vide power and carriage. It may be that in the 
future, as technology advances, practical inte
grated heating systems may become available. 
A further argument against soldiers using heated 
pads is that they should learn how to successfully 
cope with the cold without technology as there is 
always a risk that heating devices could stop 
working. However, there are certain specific 
roles where they are useful now, such as medics 
keeping casualties warm through use of heated 
pads or heated blankets. In summary, each of 
these clothing items may be useful to some peo
ple in some settings, but their applicability and 
suitability are very context dependent.
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Shoes and socks
Feet, like hands, are prone to CWI as they have 
a small muscle mass, and commensurately low 
levels of local heat production. Combined with 
a relatively large surface area, feet are susceptible 
to CWI. On top of that, since military duty 
involves both static as well as dynamic tasks, 
selecting appropriate footwear that will prevent 
CWI can be challenging. Footwear should ideally 
be insulated, waterproof (but vapor permeable), 
absorbing (but quick drying) and lightweight. It is 
difficult to encompass all these characteristics 
within a single boot. There is not a single solution 
for all circumstances, and conditions (i.e. envir
onment, activity, duration of exposure) should 
dictate which characteristics to prioritize and the 
knowledge and experience of when to use the 

different footwear is very important. To meet 
the insulation requirement, the inside of footwear 
should be made from materials with low thermal 
conductivity. The outermost layer should in most 
cases be made from windproof, waterproof, and 
breathable [106] materials or leather with a water- 
repellent finish for the waterproof but vapor 
permeable requirement, yet the ideal outer layer 
depends on the environmental conditions and 
mission. In the northern countries in extreme 
cold, snowy, or wet conditions, for instance, woo
len insoles and insulative polyester over boots are 
recommended. In addition, footwear should have 
a loose fit to allow for internal heat exchange by 
free air movement [86,107–109]. Neither should 
footwear be too roomy to allow for a pumping 
effect that promotes convective heat loss.

Figure 4. Example of a widely used decision support tool, cold weather decision aid (CoWEDA) that advises the number of hours 
that an individual can be exposed to a particular situation (environment, activity, clothing) before a potentially injurious temperature 
(body, hand, feet) is reached. Time to injury is based on skin temperatures reaching 5°C and core temperatures reaching 36°C.
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It is further recommended to wear two pairs of 
socks; first, a thin layer to protect against blisters 
and a second insulative layer [110]. Two pairs of 
thin socks insulate better than one pair of thick 
socks [86,107,108]. There does not seem to be 
a single solution that fits all users and all condi
tions. Depending on activity level, certain material 
properties are recommended over others. When 
active, socks' desirable properties include wicking, 
insulation, and quick drying properties [86,107– 
109]. When static for long periods, based on anec
dotal accounts, the northern countries recommend 
two layers of wool socks. Such recommendations 
of materials with conflicting nature highlight the 
importance of defining user conditions to be able 
to select appropriate clothing ensembles. Soldiers 
should make sure to always bring a pair of dry 
socks. Feet should be dried whenever possible and 

socks should be changed during breaks, post- 
exercise, and prior to sleep if they are damp or 
wet. If drying possibilities are restricted, it is 
recommended to “work wet but rest dry,” for 
example, wearing waterproof and breathable 
socks when in a rest area. Finally, individuals 
should have their boots fitted wearing the socks 
they intend to use in the cold so that fit is optimal. 
Adherence to personal administrative routines is 
essential in the military field to help guard 
against CWI.

Mitigation strategies with a high risk

In the following paragraphs, we describe CWI 
prevention strategies that lack strong scientific 
supporting evidence, have significant adverse side 
effects, or may not be allowed in the military, 

Figure 5. The acronym “COLDFEET” to prevent cold weather injury (CWI) explained. The acronym mostly refers to appropriate 
clothing and some other essential aspects in cold weather military operations. In more detail, “C” for keep it clean, “O” for prevent 
overheating, “L” for wear it loose and in layers, “D” for keep it dry, “F” for appropriate fit, “E” for exercise your extremities, “E” for eat 
your rations, “T” for tight boots are terrible.
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depending on the actual setting (i.e. training or 
war). They are included for horizon scanning and 
potential future benefit.

Invasive treatments

Invasive treatments to enhance blood flow may 
have a protective effect against the development 
of CWI. An exhaustive list of such agents is not 
included here, rather a few of the more common 
interventions are highlighted as offering potential 
for further research. First, botulinum toxin injec
tions may reduce cold sensitivity and maintain 
peripheral blood flow due to its “relaxation effect” 
[111,112]. A case study by Norheim and colleagues 
demonstrated reversal of frostbite symptoms 2 
y after the injury, however this should be viewed 
with caution as there were no control cases and to 
our knowledge there is no other research evaluat
ing the benefits of botulinum for prevention or 
treatment of CWI. The question raised is whether 
botulinum toxin given before cold exposure might 
reduce CWI risk through enhancing blood flow. 
The effect of botulinum toxin is relatively long- 
lasting (i.e. 8–14 wk). The required botulinum 
toxin dose varies per individual (up to a factor 
1000) and must be calculated by a suitably quali
fied practitioner. Theoretically, botulinum injec
tions could be administered at different skin sites 
such as feet, nose, and ears (i.e. common CWI 
sites). A potential problem associated with botuli
num is the fact that cold sensitivity is reduced, and 
this lack of awareness may impair an individual’s 
thermoregulatory behaviors (i.e. wear more cloth
ing, look for shelter, exercise). More importantly, 
caution should be taken when injecting botulinum 
toxin as the toxin may spread through diffusion or 
retrograde transport, there might be immunogeni
city and could cause anhidrosis [113,114]. 
A second research area is galvanic current through 
the skin which has recently been shown to 
improve the vasodilatory response of individuals 
suffering from Raynaud’s phenomenon [115]. 
Could this be used to reduce CWI risk? To date, 
there is no evidence to show the same effect in 
healthy individuals. Thirdly, there is weak evidence 
that acupuncture may be of benefit in Raynaud’s 
phenomenon through enhanced capillary flow 
[116] and in recovering skin perfusion after 

freezing cold injury [117]. Due to the limited 
amount of randomized controlled trials and low 
quality of evidence, a meta-analysis only lends lim
ited support for these statements [118]. Again, acu
puncture could prove to be a preventive strategy 
against peripheral CWI in healthy individuals dur
ing cold exposure. Research to establish whether 
botulinum toxin injections, electrical stimulation, 
or acupuncture could guard against CWI in the 
military may be fruitful projects, but potential ben
efits of any such treatment would need to be care
fully weighed against the disadvantages inherent in 
invasive treatments that need to be repeated over 
time.

Prophylactic drugs

Drugs that aid blood flow may offer protection 
against the development of CWI. This article 
does not endorse any drug preventive strategy, 
it seeks only to provide a summary of current 
knowledge of common drugs used in this con
text. Nonsteroidal anti-inflammatory drugs 
(NSAIDs) are the most frequently prescribed 
drugs in modern medicine and can be bought 
over the counter in many countries, for example 
ibuprofen. Considered vasodilators, NSAIDs and 
aspirin may theoretically offer protection against 
peripheral CWI in CWOs [119] but to date there 
is no evidence for this. Furthermore, long-term 
use of NSAIDs has been shown in some to harm 
organs such as the liver (especially in combina
tion with alcohol) and abdomen. Hence, taking 
them for preventative reasons, especially for long 
periods of time could be dangerous and 
damaging.

Conclusions

Following a broader perspective on existing preven
tive strategies for CWI, the operationally most rele
vant strategies that were identified in this article are 
aligned. To start with, susceptibility for CWI should 
be identified. Prior to CWOs, military personnel 
should be highly educated about prevention of 
CWI in CWOs. Thereafter, when on a military 
operation in the cold, they should mainly focus on 
appropriate behavior, including using appropriate 
layered clothing system, understanding that 
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stationary periods in the cold are especially high 
risk, eating sufficient calories, and staying hydrated. 
It is also important to monitor the environment 
using the windchill index and the physical state of 
the body. Monitoring itself does not prevent the 
development of CWI, but it could elicit essential 
changes in behavior accordingly. The most relevant 
preventive strategies for preventing CWI are educa
tion and behavior. As evidence for CWI preventive 
strategies in a military context is scarce, despite 
there being a high prevalence of CWI in the mili
tary context, there is an imperative to develop 
research that evaluates preventive strategies in 
a relevant context.
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