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Quantum Computing has emerged as a promising alternative, utilising quantum mechanics for 
faster computations. This paper explores the nearest neighbour compliance (NNC) Problem in Gate-
based Quantum Computers, where quantum gates are constrained to operate on physically adjacent 
qubits. The NNC problem aims to optimise the insertion of SWAP-gates to ensure compliance with 
these constraints while minimising their count. This work introduces Quantum Annealing to tackle 
the NNC problem, proposing two Quadratic Unconstrained Optimisation Problem formulations. The 
formulations are tested on a contemporary Quantum Annealer, and their performance is compared 
with previous methods. It shows that the prospect of using Quantum Annealing is promising, however, 
the current state of the hardware makes that finding the embedding is the limiting factor.
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Contemporary devices such as smartphones and computers, as we know them today, would not be possible 
without the continuous advances in microchips, or more specifically, semiconductors. They play a pivotal 
role in modern society by facilitating communication across vast distances and enabling seamless access to 
information, transforming how we connect, acquire knowledge, and make decisions. Subsequently, advances in 
semiconductor technologies are a key source of increased productivity which in turn has been a primary driver 
for economic growth1–3.

Over the last 50 years, the number of transistors on a microchip has grown exponentially, following the 
predictions by Moore4, known as Moore’s law. However, this growth has slowed down in recent years as the 
technology is soon to reach its fundamental physical limits5–7.

In that context, Quantum Computing has emerged as an alternative paradigm to computing that harnesses 
the intricacies of quantum mechanics to perform certain computations more quickly and provide algorithms 
with an improved complexity scaling. Most prominently, there is Grover’s algorithm8 to more efficiently search 
large databases and Shor’s algorithm to factor large integers9.

Currently, there are two main realisations of Quantum Computers, the Quantum Annealer (QA) such as 
the Advantage Series by D-Wave Systems, and the Gate-based Quantum Computers (GQC) such as IBM’s 
Quantum System Two. While the QA is purpose-built to solve a specific class of binary optimisation problems, 
the GQC is universal and can theoretically perform any computation or algorithm that a classical computer 
could. Specifically, the GQC performs computations by executing a quantum circuit that applies a sequence of 
quantum gates to a set of quantum bits (qubits)10.

The potential advantages that GQC offers, in theory, are accompanied by limitations of physical 
implementations of such computers. In the context of this work, two such limitations are of direct relevance. 
Firstly, qubits can not store information indefinitely due to an inevitable exchange of energy with their 
environment11. This process is referred to as quantum decoherence and is a direct consequence of the imperfect 
isolation of quantum computers from their surroundings. Consequently, any computation performed on a GQC 
has to be completed before the quantum system loses its coherence which ultimately implies that it is desirable to 
physically implement any quantum algorithm with as few gates as possible. Secondly, in many common physical 
implementations of GQCs, qubits are only coupled with their nearest neighbours, that is, a limited set of adjacent 
qubits12. This limitation gives rise to Nearest Neighbour Constraints which indicate that quantum gates can 
solely be applied to physically adjacent qubits.

To ensure the compliance of each two-qubit gate in a circuit with the nearest neighbour constraint, one 
can insert so-called SWAP-gates that swap the information contained by two adjacent qubits to effectively 
interchange the qubits’ location in the coupling graph12. Moreover, given the limited lifetime of the qubits due 
to decoherence, it is highly desirable to satisfy the constraints by inserting as few SWAP-gates into the circuit as 
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possible. The resulting optimisation problem is the “Nearest Neighbour Compliance Problem” (NNC)13, which 
is also known under other names like qubit routing and circuit compilation14.

Nearest Neighbour Constraints have been considered in a wide variety of contexts, including specific circuit 
types and qubit architectures15. In the latter case, which is of interest in this work, the meaning of adjacency is 
defined by a coupling graph. Again, various cases of coupling graphs have been considered where qubits are 
placed on either a linear array (see Fig. 1), two-dimensional grid, three-dimensional grid, or manufacturer-
specific architectures. Moreover, different research areas either focus on a global or local perspective on the 
reordering of the qubits16. While the global perspective aims to reduce the problem’s difficulty by producing 
an, on average, optimal initial ordering of qubits, the local reordering problem searches for a permutation of 
qubits before each gate in the circuit, so that the total number of swaps between all consecutive permutations is 
minimised. Therefore, local reordering allows for overall better solutions17 at the cost of an often exponentially 
growing number of variables in the model, often resulting in intractable running times for exact methods on 
large instances.

Given the combinatorial and discrete nature of the NNC problem arising in GQC, another form of quantum 
computing, quantum annealing, is a natural candidate to tackle this difficult optimisation problem18. Even in 
its current, early stages, QA can solve some first real-world problems and is seen as a soon-to-be-competitive 
machine heuristic to solve quadratic problems formulated as a Quadratic Unconstrained Binary Optimisation 
Problem (QUBO). Therefore, an efficient QUBO formulation that is solved on a QA has the potential to be an 
efficient general-instance heuristic optimisation method, which does not yet exist in the NNC literature15. To 
the best of the author’s knowledge, Quantum Annealing has not yet been applied to solve the NNC problem as 
is done in this work. However, Quantum Annealing has been applied to a variety of relevant problems in recent 
years, including the Nurse Scheduling Problem19, Traffic Flow Optimisation20, Portfolio Optimisation21, Energy 
System Optimisation22,23, and Job Scheduling24.

This work proposes two novel reformulations of the NNC problem as Quadratic Unconstrained Binary 
Optimization (QUBO) instances, which are subsequently tackled using a contemporary Quantum Annealer 
developed by D-Wave Systems. This builds upon the method introduced by13, which provided an exact Integer 
Linear Programming (ILP) formulation for the local-reordering NNC problem on a linear array, thus avoiding 
the factorial scaling in qubit count suffered by previous approaches. The primary innovation lies in proposing 
a quantum-compatible formulation for a problem already addressed classically. Currently, this approach faces 
two main limitations: it is only applicable to linear architectures, precluding direct usage on most existing 
quantum processors, and it yields results inferior to both exact and heuristic classical solutions, either in quality 
or runtime. Nonetheless, the authors suggest that these limitations might be mitigated with the advent of more 
potent and scalable Quantum Annealer processors. The central contribution of this work is the transformation 
of an existing ILP model, proposed in reference13, into two QUBO formulations, where one achieves variable 
reduction for improved efficiency.

The remainder of this paper is organised as follows. "Literature" section reviews relevant literature on the 
reordering and NNC problem. "Quantum annealing" section introduces Quantum Annealing as an optimisation 
method and the QUBO problem formulation. "Modelling approach" section reviews the ILP formulation for 
the NNC problem on a linear graph proposed by13 and proposes two QUBO formulations of the same problem. 
"Experimental results" section presents and analyses the results obtained from applying both formulations to 
instances from the25 dataset and compares those to the results obtained by13 and others. Finally, "Conclusions 
and further research" section concludes and points out ideas for further research. This paper is based on a thesis 
written by the first author.

Literature
The NNC problem on a linear array has been studied comprehensively. The methods with which the problem 
has been approached can be subdivided into two groups, exact methods and heuristics. The use of heuristics is 
motivated since the size of most exact models scales exponentially in the number of qubits17,26.

NNC: exact methods
A naive approach, formalized by26, enumerates all possible permutations of qubits for all gates and then selects 
the solution that requires the minimum number of inserted SWAP-gates. Having N  qubits and K gates in a 
circtuim this entails generating all (N !)K solutions which is intractable even if the corresponding solution values 
can be computed efficiently.

Other approaches make use of graph theory by constructing Adjacent Transposition and Caley Graphs as 
in15 and27 respectively. Both methods hinge on generating graphs where nodes correspond to qubit orders and 
subsequently identify a shortest path that corresponds to the solution of the NNC problem. While the shortest 
path can be found in polynomial time in terms of the size of the graph, the constructed graphs contain O(N !K) 
nodes. Therefore, these methods result again in the factorial-time scaling in terms of the number of qubits of the 
initial NNC problem.

Fig. 1.  Linear coupling graph with n qubits. Figure from:15.
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In17, the authors propose a Pseudo-Boolean Optimisation (PBO) model to solve the NNC problem. The 
qubit permutations are encoded into binary variables xkij, indicating if qubit i is located at location j before gate 
k. Moreover, the objective of counting the number of required SWAP-gates is then encoded by enumerating 
all permutations (and their corresponding costs) at each gate. Consequently, this method also fails to avoid 
the factorial scaling. However, their formulation paved the way for the following Integer Linear Programming 
(ILP) approach by13, which, for the first time, avoids the factorial scaling and produces a polynomial-size model. 
Ultimately, this ILP formulation will serve as the basis of the two polynomial-size QUBO formulations proposed 
in this work which will be presented in "Modelling approach" section).

NNC: heuristics
Numerous heuristics approaches have been proposed for the NNC problem. For relatively larger instances, these 
methods remain the only practical options. The proposed methods include: greedy searches where one qubit 
is moved toward another28, a greedy heuristic similar to 2-opt29, Sliding Window Search heuristics where only 
the next fixed number of gates are considered for the reordering30,31, and a Fast Sliding Window Search where, 
additionally, only a restricted number of qubit orders are considered28. Another Sliding Window approach uses 
the concept of the circuit tail32, in which only part of the tail is used to determine local optimal solutions, 
which are later on combined to obtain a complete strategy. Other attempts include the use of templates for 
circuits in the Multiple Control Toffoli (MTC) library33. A divide and conquer technique, where the circuit is 
split into clusters that are considered separately, was developed in34. Also35 gives a decomposition approach. In36, 
a solution method is proposed, based on a combination of MTC library templates and the heuristic method of31.

Quantum annealing
In order to solve the NNC problem, which arises within the context of Gate-based Quantum Computing, this 
work intends to exploit another form of Quantum Computing, namely Quantum Annealing, as the optimisation 
method of choice. A detailed explanation of QA, its advantages, limitations, and the quantum mechanics behind 
it is beyond the scope of this work. This section is limited to a brief description of Quantum Annealing as an 
optimisation method and a few examples of applications, while providing references for interested readers.

In contrast to Gate-based QC where universal computation is performed by a series of Quantum gates, 
Quantum Annealing is a hardware heuristic to specifically minimise an Ising Hamiltonian, or equivalently, solve 
Quadratic Unconstrained Optimisation (QUBO) Problems.

Definition 1   (QUBO Problem) Given a vector of n binary decision variables x ∈ {0, 1}n and a n× n coefficient 
matrix Q, the QUBO is defined as:

	 minx xTQx.� (1)

Note that x2i = xi. Generally, the QUBO problem is NP-hard37.
The QUBO problem’s (from now referred to as QUBO) objective function can equivalently be described by an 

Ising Hamiltonian (more commonly used in physics)18. This Hamiltonian effectively encodes the objective value, 
or energy, for any given solution. The challenge here is to reformulate the initial optimisation problem such that 
the minimum energy ground state of the Hamiltonian (that is, the QUBO’s optimal solution), corresponds to the 
optimal solution of the original optimisation problem.

Now the optimisation process, as performed by one of the most advanced Quantum Annealers, such as the 
D-Wave Advantage Systems, can be outlined as follows. Initially, the quantum system in the annealer starts from 
a simple, well-known Hamiltonian. Then, the initial Hamiltonian is slowly perturbed by applying magnetic 
fields until the problem Hamiltonian is obtained. If this process was successful, the system remained within 
the ground state throughout and the optimal solution to the optimisation problem is encoded in the final state 
of the system38. There are claims of analytical and numerical evidence suggesting that Quantum Annealing 
can outperform classical methods such as Simulated (Thermal) Annealing for some problems39,40, potentially 
offering a quadratic speedup41,42. A more comprehensive analysis is given by43.

The Quantum Processing Unit (QPU) of the D-Wave Advantage System has around 5600 qubits which are 
arranged in a Pegasus Graph structure18. This QPU graph and the qubits therein are not to be confused with the 
Gated-based Quantum Computer whose qubit ordering is optimised in the linear NNC problem. Note that the 
connectivity of the Advantage QPU is (at most) 15, indicating that each qubit is connected to and can interact 
with 15 others18. Therefore, to encode the QUBO on the QA, each logical variable in the QUBO is mapped 
to at least one or more qubits on the QPU. Specifically, multiple qubits are needed to present a single logical 
variable if that variable is connected to, or interacts with more than 15 others in the QUBO. A variable i is said 
to (quadratically) interact with another variable j if the corresponding off-diagonal entry in the Q matrix is non-
zero. This process of mapping the QUBO onto the QA hardware is called embedding.

While the limited connectivity and number of qubits available pose a hard limit on QUBO instance sizes that 
can be solved on the QA, there are other factors that adversely impact the annealer’s performance as the instance 
size increases. First, Integrated Control Errors cause the representation of the QUBO on the hardware to be 
imprecise18. Secondly, the minimal energy gap between the ground-state and the first-excited state decreases as 
the problem size increases which in turn increases the probability to move away from the ground-state (optimal 
solution) during the anneal process44.

Finally, the interested reader is referred to10 for the Quantum Mechanics involved, and to18,45,46 for more 
information on Quantum Annealing as a heuristic optimisation method.
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Modelling approach
This section discusses the polynomial-size ILP formulation of the linear NNC problem by13 and then proposes 
one QUBO formulation based on their ILP (referred to as QUBO1 in the remainder of this paper). Subsequently, 
another improved QUBO formulation with fewer variables and constraints is proposed afterwards (referred to 
as QUBO2).

NNP problem
The ILP formulation of the linear NNC proposed in15 and the companion paper13 serves as the basis of the 
QUBO formulations proposed in this work. Consequently, their model and some of their key definitions, 
including a formal definition of the NNC problem on a linear array, are summarised in this and the next section.

•	 Q = 1, ..., n denotes the set of n qubits
•	 L = 1, ..., n denotes the set of n locations on the linear array which the qubits can occupy
•	 A permutation τ ([n]) ∈ Sn is a bijective mapping of qubits to locations, f : Q → L. Here, [n] denotes the 

vector (1, .., n) and Sn denotes the permutation group (of all permutations).
•	 A SWAP-gate applied to a qubit ordering τ  interchanges the location of two adjacent qubits (by swapping the 

qubit’s states or information).
•	 Given two permutations τ1, τ2, qubits i, j are said to be inverted if τ1(i) < τ1(j) and τ2(i) > τ2(j).

The efficient encoding of the objective in the ILP formulation by13 builds on recognising that the minimally 
required number of SWAP-gates to transform one permutation into another is equal to the total number of 
inversions between the two permutations, or equivalently the Kendall-tau distance:

Definition 2  (Kendall-tau distance) Given two permutations τ1, τ2 ∈ Sn, the Kendall-tau distance between the 
two permutations is

	 I(τ1, τ2) ≡ |{(i, j)|1 ≤ i, j ≤ n, τ1(i) < τ1(j), τ2(i) > τ2(j)}|.� (2)

The Nearest Neighbour Constraints of the NNC problem require that each quantum gate can only act on qubits 
that are neighbours, or adjacent, to each other in the corresponding topology graph. Since the meaning of 
adjacency is only well-defined for pairs of qubits, it only makes sense to consider two-qubit gates. Therefore, 
multiple-qubit gates are decomposed into two-qubit gates as described in13. Notably, such a decomposition is 
always possible10. Moreover, Nearest Neighbour Constraints do naturally not apply to gates acting on individual 
qubits, so these gates can be ignored in the context of the NNC problem. Additionally, the function of a gate is 
not relevant in this context either, but only the two qubits i, j that a gate acts on. Consequently, a two-qubit gate 
g = gi,j = {qi, qj} is completely defined for this purpose by specifying these two qubits qi, qj ∈ Q. Finally, this 
allows the definition of a quantum circuit in terms of only two-qubit gates and the subsequent formulation of 
Nearest Neighbour Compliance:

Definition 3  (Quantum circuit) Let Q be a set of n qubits and G = (g1, ..., gm) a sequence of m two-qubit gates. 
Then, the tuple QC = (Q,G) is a quantum circuit.

Definition 4  (Nearest Neighbour Compliance) Given a quantum gate gti,j ∈ G and a corresponding qubit order τ t 
before that gate, the Nearest Neighbour Constraint requires qubits qi, qj  to be adjacent, namely |τ t(i)− τ t(j)| = 1
, or equivalently (τ t(i)− τ t(j))2 = 1. Finally, given a sequence of qubit orders, where each qubit order τ t corre-
sponds to a quantum gate gti,j  in the gate sequence G of the QC, the circuit QC is compliant with Nearest Neigh-
bour Constraints if the above constraint holds for each pair of qubit order and gate (τ t, gti,j).

Ultimately, the formal definition of the NNC problem is as follows: Given a quantum circuit QC = (Q,G) with 
|Q| = n qubits and |G| = m gates, we have to find a sequence of qubit orders τ = (τ 1, ..., τm), one for each gate 
g ∈ G, that minimises the sum of Kendall-tau distances between consecutive qubit orderings

	

m−1∑
t=1

I(τ t, τ t+1),

such that the quantum circuit is compliant with Nearest Neighbour Constraints. Note that the NNC problem on 
a linear graph is conjectured to be NP-hard26, while the NNC problem on a general graph is a known NP-hard 
problem47.

Building a first QUBO
In this subsection we will introduce the variables and build QUBO1 based on the objective functions and the 
constraints as introduced in13.

Variables
To work of13 introduces the following variables:

	 xti ∈ L = {1, ..., n} indicates the location of qubit i at gate t.� (3)

Scientific Reports |        (2024) 14:23340 4| https://doi.org/10.1038/s41598-024-73882-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
ytij =

{
1 if qubit i is located before qubit j at gate t: xti < xtj,

0 otherwise. � (4)

Note that the ytij  variables keep track of the relative ordering of qubits and that |ytij − yt+1
ij | determines wheth-

er qubit i and j are inverted between permutation t and t + 1. This key observation allows13 to count the total 
number of SWAP-gates while avoiding the explicit n! scaling of the model in the number of variables and 
constraints. Moreover, describing an ordering of qubits by these ytij  variables, while efficiently being able to 
count the required SWAP-gates, will be the enabling observation for the significantly more efficient QUBO2 
introduced later in this section.

Objective function
Clearly, the objective is to minimise the sum of Kendall-tau distances between every two consecutive qubit 
orders, that is:

	

min
∑

i, j ∈ Q

i < j

∑
t∈[m−1]

|ytij − yt+1
ij |.

� (5)

This function is neither linear nor quadratic and thus had to be linearised by13 for their ILP. However, since the 
variables are binary and the QUBO allows quadratic interactions, we can equivalently write:

	

min
∑

i, j ∈ Q

i < j

∑
t∈[m−1]

(ytij − yt+1
ij )2.

� (6)

This expression will serve as the objective for both QUBO1 and QUBO2.

Ordering constraints
The following constraints relate the x-variables to the y-variables by enforcing the definition of the y-variables. 
Moreover, they also ensure that no two qubits can be located at the same location at the same time. For more 
details, see13.

	 xtj − xti ≤ Mytij − 1 ∀i, j ∈ Q, i < j, t ∈ [m], � (7)

	 xti − xtj ≤ M(1− ytij)− 1 ∀i, j ∈ Q, i < j, t ∈ [m], � (8)

where M = n + 1. Due to the QUBO being an unconstrained problem, all constraints have to be incorporated 
into the objective function. This can be done by adding additional terms to the objective that either penalise 
infeasible solutions or favor feasible solutions by increasing or decreasing the objective value respectively.

In QUBO1, all penalty terms are constructed such that they are precisely zero if the corresponding constraint is 
satisfied and strictly positive if they are not satisfied. The following penalty term (added to the initial objective) 
achieves exactly that:

	 +λo · (xtj − xti −Mytij + 1 + stij)
2 ∀i, j ∈ Q, i < j, t ∈ [m],� (9)

where λo > 0 is a constant and stij  represents an integer-valued slack variable that can take on values in [0,M − 2]
. It can easily be verified that there only exists a value for stij ∈ [0,M − 2] that sets this term to zero if both Eq. (7) 
and Eq. (8) are satisfied. Finally, to encode the integer variable stij ∈ [0,M − 2] in binary variables (as the QUBO 
requires), we can do as Section 2.4 of37 and write:

	
s →

K−1∑
k=0

2kak + (U + 1− 2K)aK,� (10)

using K + 1 binary variables ak, where U is the maximum value that s can take, such that 2K ≤ U < 2K+1. The 
same holds for the encoding of the xti-variable. Throughout the remainder of this paper, we will refrain from 
explicitly writing out this encoding when specifying (parts of) a QUBO for the sake of readability. Therefore, 
whenever an integer variable appears in a QUBO formulation, this encoding is implied.
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Nearest neighbour constraints
To ensure that the Nearest Neighbour Constraint is satisfied at each gate13, also added the following constraints 
to their ILP:

	 −1 ≤ xti − xtj ≤ 1 ∀gtij ∈ G.� (11)

The corresponding penalty terms in QUBO1 are:

	 +λnn ·
(
(xti − xtj)

2 − 1
)

∀gtij ∈ G,� (12)

where λnn > 0. Note that this expression favours xti = xtj, which implies that qubits i and j are located in the 
same position in the ordering at gate t, corresponding to an infeasible solution. However, the penalty terms of 
Eq. (9) penalise this behaviour. Therefore, we can resolve this issue by requiring λo > λnn.

An improved QUBO formulation
The QUBO1 formulation introduces a lot of additional binary variables to model the slack and x-variables 
required in Eq. (9). This is undesirable due to the limited number of 5600 qubits available in the D-Wave 
Quantum Annealer to embed the QUBO and its variables. QUBO2 reformulates the NNC problem only in terms 
of the y-variables to eliminate both the x-variables and the need to introduce slack variables as in Eq. (9).

For this, observe that xti, the location of qubit i in the ordering at gate t, can be obtained by counting how 
many other qubits are located before qubit i, specifically:

	
xti =

n∑
k=1

ytki.� (13)

Since ytij-variables are only defined for i < j, we need to write Eq. (13) more precisely as:

	
xti =

i−1∑
k=1

ytki +
n∑

k=i+1

(1− ytik).� (14)

Nonetheless, for the sake of readability, the notation of Eq. (13) will be used in the remainder of this paper.

Finally, recognising this, we can write QUBO2 only in terms of the y variables. The initial objective function in 
Eq. (6) is unaffected. However, we need to specify a partially new set of constraints. Firstly, we need to ensure that 
the ordering of qubits described by the y-variables is feasible, i.e., each qubit takes exactly one location. Secondly, 
we need to specify the Nearest Neighbour Constraints as before.

Observe that the requirement of each qubit to take exactly one location is equivalent to requiring that any two 
qubits can not be located in the same location. In terms of the y-variables this can be expressed by requiring that 
no two qubits have an equal number of other qubits appearing before them in the ordering, that is:

	

n∑
k=1

ytki ̸=
n∑

k=1

ytkj ∀i, j ∈ Q, i ̸= j, t ∈ [m].� (15)

To incorporate these constraints into the objective of QUBO2 without introducing slack variables, we take a 
different approach than previously. Rather than penalising infeasible solutions, we favour feasible solutions. In 
other words, we add additional terms to the objective that are strictly negative if Eq. (15) is satisfied and strictly 
zero if not. Adding the following terms achieves this:

	
−λo ·

( n∑
k=1

ytki −
n∑

k=1

ytkj

)2

∀i, j ∈ Q, i ̸= j, t ∈ [m].� (16)

In QUBO2, all added terms are zero for infeasible constraints, while taking on strictly negative values to favor 
feasible solutions.

Note that each individual term, corresponding to a specific constraint, is not always the same for all feasible 
solutions. However, it can be shown that the sum of all added terms (all constraints), needs to be identical for 
any feasible solution:

Proof Let τ  be a feasible ordering of n qubits (permutation). Then, the location of the first qubit i and the last 
qubit j differs by n− 1. Moreover, there are exactly two pairs of qubits whose location differs by n− 2, three 
pairs differing by n− 3, and so on. Formally, the following holds for any feasible solution:

	 |{(i, j)|1 ≤ i ̸= j ≤ n, |τ t(i)− τ t(j)| = k}| = n− k ∀k ∈ [n− 1], t ∈ [m].� (17)

Finally, as τ t(i) =
∑n

k=1 y
t
ki,
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∑
i,j∈[n],i̸=j

|τ t(i)− τ t(j)|2 =
∑

i,j∈[n],i ̸=j

( n∑
k=1

ytki −
n∑

k=1

ytkj

)2

=

n−1∑
k=1

(n− k)2 ∀t ∈ [m].� (18)

This is necessary to ensure that the added terms do not affect the ranking of the feasible solutions. In other 
words, we can only guarantee that the optimal solution to the NNC problem will correspond to the optimal 
solution of the QUBO if the sum of added terms is identical for any feasible solution of the NNC problem.

Finally, the Nearest Neighbour Constraints are logically identical with Eq. (12) from QUBO1, we substitute 
the x-variables by Eq. (13):

	
+λnn ·

(( n∑
k=1

ytki −
n∑

k=1

ytkj

)2

− 1

)
∀gtij ∈ G,� (19)

where λo > λnn > 0.

Experimental results
This section analyses and discusses the results obtained from applying the proposed QUBO formulation to 
circuits from the revLib library25 and others, in order to address the remaining research questions. The results 
are compared to the exact method of13 in terms of the time needed to obtain them and to other heuristics in 
terms of solution quality. With consideration of the limitations of the D-Wave Advantage System mentioned 
before, it is also of interest for which instance sizes solutions can be obtained and at which point the solution 
quality starts to decrease significantly.

Experimental setting
We use various instances from different sources. Quantum Fourier Transform (QFT) instances were obtained 
from10, all other instances from the RevLib Library containing reversible circuits25. Moreover, circuits with 
multi-qubit gates are decomposed into two-qubit gates as described in13. Notably, this process is not optimised 
over and can affect the required number of SWAP gates.

The Quantum Annealer D-Wave Advantage 5.3 by D-Wave is used to perform the Quantum Annealing, 
while a Dell XPS 13 2-in-1 7390 with an Intel i7-1065G7 with 4 cores at 1.30GHz and 16GB of RAM is used to do 
the pre-processing such as computing the embedding of the QUBO on the Annealer.

The parameters of the QUBOs were determined experimentally by extensive trial-and-error testing. The 
λ parameters determine how the constraints’ contributions to the QUBO-objective are weighted relative to 
the initial objective. Choosing values too small for this parameter leads to sampling infeasible solutions, while 
setting values too high results in problem misrepresentation due to the limited range and fidelity with which the 
quantum annealer can represent the problem coefficients (see “Error Sources for Problem Representation” in18). 
It was found that setting λo = 2 and λnn = 1 for QUBO1 performed relatively well. For QUBO2, where feasible 
solutions could be obtained for a larger number of instances, it was found that λo ∈ [0.2, 0.7] and λnn = λo − 0.01 
yielded the best results. Notably, as the number of gates m and the instance size increases, larger values in this 
range were found to perform better on average.

For the Quantum Annealer, there are two parameters that were manually tuned by trial-and-error. First, 
the annealing time, which determines the length of the annealing process, was chosen between 100 to 450 
microseconds. Second, the number of samples parameter determines how many solutions are sampled by the 
Quantum Annealer. Chosen values were between 100 and 1250 samples. Obviously, in both cases, larger values 
correspond to longer compute times on the Quantum Annealer. In addition, the improvements in the best 
objective value among samples diminished as the number of obtained samples increased. Thus, exceeding 
1250 samples showed close to no improvements in the obtained solutions. Note that we generally set the 
number of samples parameter lower for small instances, since this was sufficient to find the optimal solution. 
Moreover, since adiabatic theory indicates that the larger problems require longer annealing times to obtain 
good solutions44, we use a higher value for larger instances. Moreover, setting larger values for the annealing 
time generally increased the likelihood to obtain better solutions, again with diminishing returns. Again, it was 
found that larger values within the given ranges produced relatively better results, especially for larger instances. 
Nevertheless, the lower-end values were sufficient for small instances to obtain the optimal solution. The specific 
parameter configurations that were used to obtain the presented results for each instance are given in Table 1.

Lastly, we use the heuristic tool minorminer48 to find an embedding for the problem graph in the hardware 
graph. To find a feasible embedding, it might be necessary to represent a single logical variable by a chain of 
qubits on the hardware. If a sampled solution violates the chain, i.e. not all variables in the chain take on the same 
value, we resolve these conflicts by a majority-vote mechanism where the more often occurring value is chosen 
for the logical variable.

Results
The feasibility of all solutions was validated by checking that all penalty terms (corresponding to the constraints) 
indeed do evaluate to zero. QUBO1 failed to obtain feasible solutions for all instances except of QFT_QFT3 and 
peres_8, where it did not obtain the optimal solution. A possible explanation of the poor performance is the 
inefficient encoding of the qubit permutations by the integer x-variables and the inefficient encoding of the 
constraints via slack variables that might significantly decrease the minimal energy gap. The hugely improved 
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performance of QUBO2, which encodes the problem only through the y-variables, provides anecdotal evidence 
for these hypotheses.

Consequently, only for QUBO2 results are reported. The benchmark instances are grouped according to the 
number of qubits in the circuits, n, over multiple tables, starting with Table 2 for n = 3, 4, Tables 3 and 4 for n = 5 
and Table 5 for n = 6− 10. Moreover, tables are sorted by the number of two-qubit gates in the decomposed 
circuits, |G| = m. In each table, column OPT states the optimal minimum number of SWAP gates needed to 
make the circuit compliant (from13, assuming the decomposition procedure used there), column SWAPSQ 
presents the objective value obtained through a single run of QUBO2 on the D-Wave Quantum Annealer, column 
QUBO Time shows the time to compute the QUBO expression, column EmbedT shows the time to (heuristically) 
find an embedding of the QUBO on the hardware graph of the annealer using “minorminer.find_embedding()” 
with default parameters48, and column QPU Time shows the time to perform the actual annealing on the QPU 
following the definition of the QPU access time in18 (which varies depending on the NumReads and Annealing 
Time parameters). Note that all classical timings refer to elapsed time using a single core. The TimeQ column 
shows the overall time of the quantum algorithm (i.e. T imeQ = QUBO Time + EmbedT +QPU Time), 
column TimeE shows the running time of the exact method of13, and column SWAPSH shows the objective 
values obtained by other heuristic approaches. If SWAPSQ is reported to be −2, this indicates that no feasible 
solutions could be obtained, while −3 indicates that no embedding was found by 10 attempts (the default setting) 
of the heuristic tool minorminer48, which usually implies that the instance is too large to fit on the Annealer (yet 
there is no proof due to heuristic nature of minorminer). Consequently, a dash “-” in the TimeQ or QPU Time 
columns is the result of the fact that no feasible embedding was found and thus the problem could not be run 
on the annealer. Subscripts in the SWAPSH column indicate the source of the results, where: c: Kole et al.49, d: 
Shafaei et al.50, e: AlFailakawi et al.51, f: Kole et al.31 and g: Wille et al.32, while a dash “-” indicates that neither 
of c-g reported a result for this instance. Asterisks in column SWAPSH indicate that the number of gates after 
decomposition differs, or that the objective value of the heuristic is lower than that of the exact method. This is 
believed to be the consequence of decomposing multi-qubit gates differently.

Discussion on computation time
The time to perform the Quantum Annealing and to obtain a given number of samples, QPU Time, depends on 
the aforementioned parameter values annealing time and number of samples, rather than on the instance size. The 
choice of these parameters is instance-size-dependent within the practical upper bounds discussed previously. 
The QPU Time peaks at around 0.9 seconds and does not further increase even for large instances. Also the 
QUBO time is in almost all cases lower than 1 second. This means that for the larger instances the Embedding 
time is by far the dominating factor.

As concluded, QPU Time and QUBO time are in the same order of magnitude as the run time of the exact 
method for small instances and significantly smaller for larger instances (n = 4 and m > 30 or n = 5 and m > 20
). Thus, Quantum Annealing as a heuristic has the potential to significantly reduce the running time to obtain 
solutions for large instances if the embedding can be computed efficiently or if no embedding is required at all. 
The latter would be true, for example, if the hardware graph of the Quantum Annealer has a fully-connected 
subgraph of sufficient size. Alternatively, one could pre-compute the embedding of the largest fully-connected 
graph that can be embedded on the hardware in advance, and use this embedding when possible.

However, in practice, this would limit the maximum number of variables too significantly to be a viable 
solution and the computation of the embedding can not be avoided. As the results indicate, the time to 
(heuristically) find an embedding exceeds the run time of the exact method for almost all instances with five or 
more qubits. Therefore, the limited connectivity of the hardware graph and the computational task to find an 
embedding pose two major limitations to the proposed method.

Finally, the authors want to note that the reported compute times for the computations that were performed 
on classical computers highly depend on the hardware configuration of the system and therefore may not be 
directly comparable to other reported run times.

Benchmarks λo NumReads
Annealing 
time (µs)

4mod5-v0_19, alu-v0_27, alu-v1_29, alu-v2_33,  mod5mils_65, QFT_QFT5, ex1_226, graycode6_47,  graycode6_48, xor5_254 0.19 1250 450

4gt11-v1_85, 4gt11_83, 4gt11_84, 4mod5-v0_20, 4mod5-v1_22, 4mod5-v1_24, 4mod5-v1_25, mod5d1_63, mod5mils_71 0.19 250 250

3_17_13, 3_17_14, 3_17_15, ex-1_166, fredkin_5, fredkin_6, fredkin_7, ham3_102, ham3_103, miller_11, miller_12, peres_10, peres_8, 
peres_9, QFT_QFT3, toffoli_1, toffoli_2 decod24-v0_38, decod24-v0_39, decod24-v0_40, decod24-v1_42, decod24-v2_43, decod24-v2_44, 
decod24-v3_46, QFT_QFT4, rd32-v0_66, rd32-v0_67, rd32-v1_68, rd32-v1_69,  toffoli_double_3, toffoli_double_4

0.25 150 150

4gt11_82, 4gt13-v1_93, 4gt13_92, 4mod5-v0_21, alu-v1_28, alu-v3_34, alu-v3_35, alu-v4_37, mod5d2_64, mod5d2_70, rd32_272, 4gt13_91, 
4gt5_75, 4gt5_76, 4gt5_77, 4mod5-v0_18, 4mod5-v1_23, alu-v0_26, alu-v4_36, one-two-three-v2_100, one-two-three-v3_101, rd32_271 0.25 1250 450

4_49_17, aj-e11_168, decod24-v1_41, decod24-v3_45, hwb4_52, 4_49_16, aj-e11_165, mod10_171, mod10_176 0.35 1250 450

4gt10-v1_81, one-two-three-v1_99, 4mod5-bdd_287, alu-bdd_288, decod24-bdd_294, decod24-enable_124, decod24-enable_125, QFT_QFT6, 
QFT_QFT7 0.35 1250 450

hwb4_49, hwb4_50, hwb4_51, mini-alu_167 0.50 1250 450

4gt4-v0_72, 4gt4-v0_73, 4gt4-v1_74, 4gt4-v0_78, 4gt4-v0_79, 4gt4-v0_80, 4gt12-v0_87, 4gt12-v0_86, 4gt12-v1_89, 4gt13_90, mod8-10_178, 
one-two-three-v0_97, mod8-10_177, alu-v2_31, hwb5_55, rd32_273, alu-v2_304gt12-v0_88, 4mod7-v0_94 4mod7-v0_95, 4mod7-v1_96, 
alu-v2_32, one-two-three-v0_98 sf_275

0.70 1250 450

Table 1.  Parameter settings used for the various circuit instances.
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Discussion on solution quality
All instances with three qubits were solved to optimality in run times comparable to the exact method of13. The 
same holds for four-qubit instances with at most 23 gates. For instances with 29 to 42 gates, the deviation from 
optimality remains small with at most four additional SWAP-gates. Then, the deviation rises to around 50% and 
peaks at 100% of OPT for the largest four-qubit instance with 75 gates. Nonetheless, it can be argued that it is 
more insightful to compare the total number of gates in the circuit, m+SWAPSQ, to the total minimum m+
OPT. In this case, the relative deviation rises first to 20% and then peaks at 50%. Figure 2 illustrates this measure 
for the majority of instances.

Benchmark n m OPT SWAPSQ QUBO Time EmbedT QPU Time TimeQ TimeE SWAPSH

QFT_QFT3 3 3 1 1 0.00 0.05 0.05 0.10 0.02 −

peres_10 3 4 1 1 0.01 0.06 0.05 0.12 0.14 −

peres_8 3 4 1 1 0.01 0.05 0.05 0.11 0.06 −

toffoli_2 3 5 1 1 0.01 0.06 0.05 0.12 0.12 −

toffoli_1 3 5 1 1 0.01 0.10 0.05 0.16 0.10 −

peres_9 3 6 1 1 0.01 0.08 0.05 0.14 0.02 −

fredkin_7 3 7 1 1 0.02 0.09 0.06 0.17 0.16 −

ex-1_166 3 7 2 2 0.01 0.07 0.05 0.13 0.08 −

fredkin_5 3 7 1 1 0.01 0.09 0.05 0.15 0.15 −

ham3_103 3 8 2 2 0.01 0.05 0.05 0.11 0.04 −

miller_12 3 8 2 2 0.02 0.46 0.05 0.53 0.14 −

ham3_102 3 9 1 1 0.01 0.09 0.05 0.15 0.05 −

3_17_15 3 9 2 2 0.01 0.09 0.05 0.15 0.04 −

3_17_13 3 13 3 3 0.02 0.14 0.05 0.21 0.12 4∗c, 4d, 3e, 6g
3_17_14 3 13 3 3 0.02 0.15 0.05 0.22 0.15 −

fredkin_6 3 15 3 3 0.02 0.17 0.06 0.25 0.06 −

miller_11 3 17 4 4 0.02 0.17 0.05 0.24 0.15 −

QFT_QFT4 4 6 3 3 0.02 0.25 0.06 0.33 0.17 −

toffoli_double_3 4 7 1 1 0.02 0.24 0.05 0.31 0.11 −

rd32-v1_69 4 8 2 2 0.03 0.37 0.05 0.45 0.16 −

decod24-v1_42 4 8 2 2 0.03 0.27 0.05 0.35 0.12 −

rd32-v0_67 4 8 2 2 0.03 0.32 0.05 0.40 0.07 2c, 2d
decod24-v2_44 4 8 3 3 0.04 0.26 0.05 0.35 0.07 −

decod24-v0_40 4 8 3 3 0.03 0.25 0.06 0.34 0.06 −

decod24-v3_46 4 9 3 3 0.04 0.34 0.06 0.44 0.09 3c, 3d
toffoli_double_4 4 10 2 2 0.04 0.34 0.05 0.43 0.07 −

rd32-v1_68 4 12 3 3 0.05 0.55 0.05 0.65 0.24 −

rd32-v0_66 4 12 3 3 0.04 0.50 0.06 0.60 0.09 −

decod24-v0_39 4 15 5 5 0.04 0.59 0.05 0.68 0.53 −

decod24-v2_43 4 16 5 5 0.05 0.54 0.06 0.65 0.23 −

decod24-v0_38 4 17 4 4 0.07 0.95 0.06 1.08 0.57 −

decod24-v1_41 4 21 7 7 0.08 0.82 0.72 1.62 0.50 −

hwb4_52 4 23 8 8 0.11 1.44 0.71 2.26 0.97 9c, 10d, 9e, 9f
aj-e11_168 4 29 12 13 0.10 1.16 0.79 2.05 5.36 −

4_49_17 4 30 12 12 0.14 1.16 0.73 2.03 6.10 12∗c, 12d, 16e
decod24-v3_45 4 32 13 15 0.10 2.23 0.78 3.11 6.25 −

mod10_176 4 42 15 19 0.16 6.15 0.76 7.07 7.94 −

aj-e11_165 4 44 18 26 0.17 2.34 0.72 3.23 9.36 36d, 33
∗
g

mod10_171 4 57 24 33 0.16 2.88 0.75 3.79 27.18 −

4_49_16 4 59 22 34 0.22 2.92 0.79 3.93 24.23 −

mini-alu_167 4 62 27 43 0.21 20.30 0.82 21.33 23.70 −

hwb4_50 4 63 23 35 0.23 9.63 0.83 10.69 17.61 −

hwb4_49 4 65 23 37 0.22 5.39 0.81 6.42 21.64 −

hwb4_51 4 75 28 64 0.25 6.25 0.82 7.32 75.09 −

Table 2.  Benchmark circuit instances with three or four qubits.
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Tables 3 and 4 show the results for the benchmark instances with 5 qubits. A similar trend as previously can 
be identified here. For smaller values of m, an optimal or near-optimal solution is obtained by the proposed 
method, while for larger values of m the obtained objective values start diverging. This divergence again starts 
at around 20 gates, but is significantly more pronounced for instances with 5 qubits. Nonetheless, up until 24 
gates the obtained results are comparable to other heuristic solutions that were reported. However, for the largest 
five-qubit instance for which a feasible solution was obtained, 4gt12-v1_89 with 44 gates, the obtained number 
of SWAP-gates is more than five times the optimum and more than four times the best heuristic value. For 
instances with more gates, no feasible solutions could be obtained.

Benchmark n m OPT SWAPSQ QUBO Time EmbedT QPU Time TimeQ TimeE SWAPSH

4mod5-v1_25 5 7 1 1 0.11 1.04 0.12 1.27 0.26 −

4gt11_84 5 7 1 1 0.06 1.02 0.11 1.19 0.06 1c, 1d, 1e
4gt11-v1_85 5 7 1 1 0.17 1.62 0.11 1.90 0.09 −

4mod5-v0_20 5 8 2 2 0.08 0.97 0.11 1.16 0.08 −

4mod5-v1_22 5 9 1 1 0.11 0.94 0.10 1.15 0.08 −

QFT_QFT5 5 10 6 8 0.12 1.17 0.68 1.97 0.41 7c, 6d
mod5d1_63 5 11 2 2 0.09 1.63 0.10 1.82 0.12 −

4mod5-v0_19 5 12 3 3 0.15 1.11 0.80 2.06 0.84 −

4gt11_83 5 12 3 3 0.14 3.02 0.11 3.27 0.15 −

4mod5-v1_24 5 12 3 3 0.13 1.73 0.12 1.98 0.28 −

mod5mils_65 5 12 4 4 0.12 2.55 0.75 3.42 0.26 −

mod5mils_71 5 12 2 2 0.14 1.75 0.11 2.00 0.15 −

alu-v2_33 5 13 4 4 0.16 2.02 0.78 2.96 0.45 −

alu-v1_29 5 13 4 4 0.13 1.73 0.76 2.62 0.61 −

alu-v0_27 5 13 4 5 0.15 3.23 0.70 4.08 0.48 −

mod5d2_70 5 14 5 5 0.16 0.99 0.73 1.88 0.43 −

alu-v3_35 5 14 5 6 0.14 1.89 0.78 2.81 0.38 −

alu-v4_37 5 14 5 6 0.15 4.72 0.73 5.60 0.37 −

alu-v1_28 5 14 4 4 0.16 1.75 0.74 2.65 0.26 −

4gt13-v1_93 5 15 5 7 0.14 4.73 0.77 5.64 0.69 7c∗, 6d, 4e∗
4gt13_92 5 15 6 8 0.17 2.02 0.74 2.93 0.53 −

4gt11_82 5 16 6 8 0.15 3.32 0.75 4.22 0.89 −

4mod5-v0_21 5 17 8 9 0.17 2.67 0.74 3.58 2.84 −

rd32_272 5 18 7 8 0.18 3.68 0.80 4.66 0.94 −

alu-v3_34 5 18 4 5 0.16 3.65 0.74 4.55 0.40 −

mod5d2_64 5 19 6 13 0.22 1.62 0.78 2.62 1.81 −

alu-v0_26 5 21 8 12 0.17 11.54 0.74 12.45 3.56 −

4gt5_75 5 21 6 11 0.18 2.06 0.74 2.98 1.10 9c∗, 12d
4mod5-v0_18 5 23 8 13 0.20 5.02 0.82 6.04 3.35 −

4mod5-v1_23 5 24 9 16 0.19 4.29 0.80 5.28 5.06 9c, 9d, 15e
one-two-three-v2_100 5 24 7 15 0.24 4.81 0.80 5.85 5.37 −

one-two-three-v3_101 5 24 7 11 0.16 7.04 0.78 7.98 2.96 −

rd32_271 5 26 11 24 0.22 3.33 0.78 4.33 7.37 −

4gt5_77 5 28 10 21 0.26 6.68 0.79 7.73 6.20 −

4gt5_76 5 29 10 19 0.21 6.48 0.84 7.53 5.45 −

alu-v4_36 5 30 9 24 0.27 8.60 0.83 9.70 6.34 15c∗, 18d, 17e
4gt13_91 5 30 8 32 0.24 5.15 0.81 6.20 4.46 −

4gt13_90 5 34 12 61 0.60 3.15 0.82 4.57 6.77 −

4gt10-v1_81 5 34 13 50 0.34 23.97 0.82 25.13 12.38 18c∗, 20d, 16e, 24g∗
one-two-three-v1_99 5 36 15 45 0.62 16.11 0.84 17.57 17.27 −

4gt4-v0_80 5 36 19 84 0.39 10.37 0.82 11.58 43.45 34d, 33f
4mod7-v0_94 5 38 12 86 0.33 2.36 0.75 3.44 12.83 −

alu-v2_32 5 38 16 94 0.38 6.70 0.83 7.91 22.05 −

4mod7-v0_95 5 38 14 84 0.48 12.24 0.82 13.54 14.59 19c∗, 21d, 22e
4mod7-v1_96 5 38 14 86 0.33 11.01 0.87 12.21 13.49 −

Table 3.  Benchmark circuit instances with five qubits and less than 40 gates.
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Benchmark n m OPT SWAPSQ QUBO Time EmbedT QPU Time TimeQ TimeE SWAPSH

graycode6_47 6 5 0 0 0.13 2.17 0.72 3.02 0.02 −

graycode6_48 6 5 0 2 0.12 1.77 0.74 2.63 0.02 −

QFT_QFT6 6 15 11 65 0.57 12.75 0.83 14.15 7.43 11c, 12d
decod24-enable_124 6 21 5 64 0.47 25.56 0.84 26.87 1.86 −

decod24-enable_125 6 21 5 71 0.63 13.66 0.82 15.11 1.83 −

decod24-bdd_294 6 24 7 −2 0.87 7.34 0.84 9.05 9.37 −

mod5adder_129 6 71 34 −3 1.03 313.86 − − 534.38 −

mod5adder_128 6 77 36 −3 1.11 1006.92 − − 1103.51 45∗c, 51d, 46
∗
g

decod24-enable_126 6 86 37 −3 1.11 1776.86 − − 1954.28 −

xor5_254 7 5 3 8 0.32 3.44 0.70 4.46 0.61 −

ex1_226 7 5 3 4 0.17 4.51 0.80 5.48 0.25 −

QFT_QFT7 7 21 16 −2 1.12 42.98 0.86 44.96 28.26 28c, 26d, 18g
4mod5-bdd_287 7 23 7 −2 0.94 32.21 0.86 34.01 4.30 −

alu-bdd_288 7 28 8 −2 1.51 115.55 0.88 117.94 20.65 −

ham7_106 7 49 28 −3 1.17 1804.92 − − 495.43 −

ham7_105 7 65 34 −3 0.95 1010.51 − − 1613.33 −

ham7_104 7 83 42 −3 2.10 1012.42 − − 3238.82 56∗c
QFT_QFT8 8 28 23 −3 1.24 1010.09 − − 334.60 32c, 33d, 31g
rd53_139 8 36 11 −3 1.56 1010.33 − − 76.29 −

rd53_138 8 44 11 −3 1.94 1019.52 − − 100.86 −

rd53_137 8 66 35 −3 2.89 1026.47 − − 6271.11 −

QFT_QFT9 9 36 30 −3 2.69 1470.68 − − 1482.53 52c, 54d, 49g

QFT_QFT10 10 45 39 −3 5.15 2484.26 − − 39594.99 64g
mini_alu_305 10 57 23 −3 5.37 1028.15 − − 1711.75 −

sys6-v0_144 10 62 19 −3 8.82 1057.60 − − 887.71 −

rd73_141 10 64 21 −3 5.49 1016.72 − − 845.05 −

parity_247 18 16 14 −3 25.77 1062.65 − − 5762.29 −

Table 5.  Benchmark circuit instances with six or more qubits.

 

Benchmark n m OPT SWAPSQ QUBO Time EmbedT QPU Time TimeQ TimeE SWAPSH

one-two-three-v0_98 5 40 15 81 0.40 10.28 0.82 11.50 15.67 −

4gt12-v0_88 5 41 20 87 0.40 17.67 0.83 18.90 34.01 −

4gt12-v1_89 5 44 22 116 0.74 53.92 0.82 55.48 52.36 35d, 26e, 32f
sf_275 5 46 18 −2 0.45 14.39 0.80 15.64 21.42 −

4gt4-v0_79 5 49 22 −2 1.94 12.75 0.84 15.53 80.16 −

4gt4-v0_78 5 53 26 −2 0.21 11.18 0.75 12.14 167.03 −

4gt4-v0_72 5 53 24 −2 0.21 12.13 0.74 13.08 49.70 −

4gt12-v0_87 5 54 22 −2 0.22 28.55 0.75 29.52 45.88 −

4gt4-v1_74 5 57 29 −2 0.23 26.05 0.75 27.03 84.87 −

4gt12-v0_86 5 58 26 −2 0.42 26.04 0.76 27.22 108.35 −

mod8-10_178 5 68 37 −2 0.46 74.41 0.75 75.62 389.47 −

one-two-three-v0_97 5 71 32 −2 0.51 16.25 0.75 17.51 76.80 −

4gt4-v0_73 5 89 40 −2 0.59 88.54 0.76 89.89 699.65 −

mod8-10_177 5 93 48 −2 0.59 64.22 0.76 65.57 3650.26 72d
alu-v2_31 5 100 49 −2 0.64 62.95 0.76 64.35 2906.35 −

hwb5_55 5 101 48 −2 0.67 239.71 0.76 241.14 2264.00 59c, 63d, 60e, 66g
rd32_273 5 104 50 −2 0.71 130.15 0.76 131.62 4631.70 −

alu-v2_30 5 112 55 −2 0.76 162.17 0.76 163.69 13558.87 −

Table 4.  Benchmark circuit instances with five qubits and more than 40 gates.
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For benchmark instances with 6 or more qubits, this trend continues again more extremely, while also 
starting earlier at instances with as little as 15 gates. Moreover, for six-qubit instances with more than 71 gates 
and seven-qubit instances with more than 49 gates, it was not possible anymore to find an embedding due to the 
size of the resulting QUBOs.

To compare these trends graphically, panel (A) of Fig. 3 plots the absolute deviation from OPT (excess) 
against the number of gates m, for instances with 4, 5, and 6 qubits. Moreover, it is expected that these trends 
become more pronounced as the number of qubits n increases since the number of possible permutations at 
each gate scales with n!. Similarly, the number of variables in QUBO2 is n(n− 1)/2 ·m and therefore scales with 
n2. Consequently, it is better to compare instances with the same number of QUBO variables rather than with 
the same number of gates if the number of qubits differs. Therefore, panel (B) plots the excess number of SWAP 
gates against the number of variables in QUBO2. While the previously observed differences in the trends of 4, 5, 
and 6 qubits are now less pronounced, they still do show clearly. They indicate that even for instances, for which 
the size of the resulting QUBO is identical in terms of the number of variables, the instance corresponding to a 
circuit with more qubits is more difficult to solve.

In order to better understand why this is the case, consider the two instances decod24-v0_39, in Table 2 and 
QFT_QFT5, in Table 3. While the former is a circuit with n = 4 qubits and m = 15 gates, and the latter is a 
circuit with n = 5 qubits and m = 10 gates, the QUBOs of both instances have 90 y-variables. However, there are 
n(n− 1)/2ytij-variables for each gate t, which will be (almost) fully connected due cross-terms from the ordering 
constraints, while only one ytij-variable at gate t will be connected to exactly one yt+1

ij -variable at gate t + 1 due to 
the objective function. Therefore, the number of interactions in the QUBO corresponding to a circuit with more 
qubits will be larger even if the number of QUBO variables is identical. Finally, panel (C) plots the number of 
excess SWAP gates against the number of interactions in QUBO2 of the benchmark instances. It can indeed be 
observed that the four- and five-qubit instances follow a now almost identical exponential trend. For the six-qubit 
instances, the number of data points is most likely too low to observe the same trend graphically. Conclusively, 
these results indicate that the quality of the solution obtained with the proposed method inversely scales with 
the number of interactions in the QUBO2 formulation and therefore scales more poorly as the number of qubits 
n increases (compared to the number of gates m). In general, the observed exponential decay of the obtained 
objective values with increasing instance sizes is believed to be the consequence of the previously discussed 
physical limitations of the D-Wave Advantage 5.3 Quantum Annealer.

Conclusions and further research
In this paper we proposed a polynomial-size QUBO formulation of the NNC problem. Both QUBO formulations 
proposed in this work are based on the polynomial-size ILP model by13. It was recognised that the number of 
additionally introduced slack variables in QUBO1 do scale polynomial in n and m. QUBO2 reduces the number 
of variables relative to the ILP formulation by reformulating the NNC problem purely in terms of the relative 
ordering variables y, which can be seen as the main contribution of this work. Therefore, as the number of 
constraints scales polynomially too, both QUBO formulations of the NNC problem, proposed in 4, are of 
polynomial size in n and m.

For all benchmark instances where the number of variables in QUBO2, namely n(n− 1)/2 ·m, did not 
exceed 450, feasible solutions were obtained. The quality of the obtained solutions was competitive with both 

Fig. 2.  For circuit instances with 4,5, and 6 qubits respectively, the y-axis plots the difference between the 
solution’s objective value obtained by our method and the optimal objective value (SWAPSQ−OPT ), as 
a percentage of the minimum number of gates to implement a given circuit instance (m +OPT ), against the 
number of gates m in the non-compliant circuit instance on the x-axis.
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heuristic and exact methods for smaller instances. However, as the problem size increased, the required time 
to compute an embedding of the problem on the Quantum Annealer limited any upside in terms of running 
time, even compared to the exact method by13. Moreover, the solution quality increasingly worsened for large 
instances, so that the proposed method did not remain competitive with other heuristic approaches.

Fig. 3.  For circuit instances with 4,5, and 6 qubits respectively, the y-axis plots the difference between the 
solution’s objective value obtained by our method and the optimal objective value (SWAPSQ−OPT ), 
against (A) the number of gates m in the non-compliant circuit instance, (B) the number of binary variables in 
QUBO2, (C) the number of interactions (quadratic terms with non-zero coefficients) in QUBO2 on the x-axis.
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Lastly, it was graphically demonstrated that the obtained objective values’ absolute deviation from optimality 
seems to increase exponentially with the problem size, specifically, with the number of interactions in the 
resulting QUBO2 formulation of an instance.

Concluding, we can state that while the linear NNC problem can be effectively solved for smaller instances, 
the physical limitations of contemporary state-of-the-art Quantum Annealers are restricting the scalability 
to larger instances where neither an advantage in terms of solution quality or run time compared to existing 
methods could be observed.

Given the relatively strong performance on small instances and the discussed connectivity of the QUBO2 
formulation, the authors see the use of decomposition methods such as the method proposed by52 as an avenue 
of further research. Their method identifies strongly connected components, which should exist in the QUBO2 
formulation, and then splits the overall problem into sub-problems accordingly. This might significantly increase 
the solution quality while also reducing the overall run time due to an reduction in the time needed to find 
embeddings.

Moreover, further research to identify minor-embeddings more efficiently by exploiting the problem-specific 
structure seems of interest, given that this step is the major contributor to the overall runtime.

Data availability
We used various instances from different sources. Quantum Fourier Transform (QFT) instances were obtained 
from [Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge university 
press, Cambridge, UK (2010)]. All other instances come from the RevLib Library containing reversible circuits 
as can be found in [Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for 
reversible functions and reversible circuits. In: International Symp. on Multi-Valued Logic, pp. 220-225 (2008)]. 
RevLib is available at http://www.revlib.org The datasets used and analysed during the current study are available 
at the corresponding author.
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