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Multi-way modelling of oral microbial
dynamics and host-microbiome
interactions during induced gingivitis
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Gingivitis—the inflammation of the gums—is a reversible stage of periodontal disease. It is caused by
dental plaque formation due topoor oral hygiene.However, gingivitis susceptibility involves a complex
set of interactions between the oral microbiome, oral metabolome and the host. In this study, we
investigated the dynamics of the oral microbiome and its interactions with the salivary metabolome
during experimental gingivitis in a cohort of 41 systemically healthy participants. We use Parallel
Factor Analysis (PARAFAC), which is a multi-way generalization of Principal Component Analysis
(PCA) that can model the variability in the response due to subjects, variables and time. Using the
modelled responses, we identified microbial subcommunities with similar dynamics that connect to
the magnitude of the gingivitis response. By performing high level integration of the predicted
metabolic functions of the microbiome and salivary metabolome, we identified pathways of interest
that describe the changing proportions of Gram-positive and Gram-negative microbiota, variation in
anaerobic bacteria, biofilm formation and virulence.

Microbial oral diseases, such as dental caries and gum inflammation, are a
global public health burden1–3. Together, they are the most prevalent health
condition world-wide, impacting quality of life and imposing a significant
economic burden with 5-10% of public health expenditure in most indus-
trialized countries3,4. Prevention of oral diseases is therefore of critical
importance.

Gingivitis is a reversible stage of periodontal disease marked by
inflamed, bleeding gums5–7. It is caused by dental plaque accumulation
due to poor oral hygiene8,9 and is present in a substantial part of the
global population3,10. The pathogenesis of gingivitis involves a complex
set of interactions between the oral microbiome, the oral metabolome
and the host5,11. These are in turn dependent on many factors11,12,
including host diet13, life-style14, and genetics15. Therefore, the oral
microbiome alone does not determine whether and to what extent
gingivitis develops, as can be seen by the high degree of individual
variation in gingivitis susceptibility seen in experimental gingivitis
models after refraining from toothbrushing5,6,11,16–18.

While there is nomonocausalmicrobial agent in gingivitis, the gingival
crevice microbiota underneath the gums shifts to a dysbiotic state7,19,20. The

depletion of Gram-positive bacteria, such as Rothia dentocariosa, and
enrichment in Gram-negative bacteria such as Porphyromonas gingivalis,
Prevotella spp. and Selenomonas spp. is frequently observed in case-control
comparisons, despite this shift being less pronounced compared to peri-
odontitis progression5,7,21,22. Additionally, increasing subgingival anaero-
biosis during gingivitis progression promotes the growth of
pathobionts7,23,24.

Being themedium throughwhich the host and themicrobiota interact,
the salivarymetabolome is often studied as a non-invasive diagnostic of oral
disease25,26. A well-known host-microbiome interaction is the relation
between host sugar consumption and the production of acids by the dental
plaque microbiota. This lowers the local pH and shifts the microbiota fur-
ther towards dysbiosis27,28.However,manyother dynamicmicrobe-microbe
and host-microbiome interactions that occur throughout gingivitis onset
and progression are not well understood.

Here, we investigate the spatially resolved oral bacterial microbiome
and its interactions with the salivary metabolome during experimental
gingivitis to (1) identifymicrobial subcommunitieswith commondynamics
and (2) pinpoint potential impacts on biochemical pathways. Reversible

1Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. 2Preventive Dentistry, Academic
Centre for Dentistry, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands. 3Microbiology and Systems Biology, TNO Healthy
Living and Work, Leiden, The Netherlands. 4Paediatric Dentistry, Academic Centre for Dentistry, Vrije Universiteit Amsterdam and University of Amsterdam,
Amsterdam, The Netherlands. 5Cariology, Academic Centre for Dentistry, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Nether-
lands. e-mail: a.u.s.heintzbuschart@uva.nl

npj Biofilms and Microbiomes |           (2024) 10:89 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-024-00565-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-024-00565-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41522-024-00565-x&domain=pdf
http://orcid.org/0009-0007-5204-3386
http://orcid.org/0009-0007-5204-3386
http://orcid.org/0009-0007-5204-3386
http://orcid.org/0009-0007-5204-3386
http://orcid.org/0009-0007-5204-3386
http://orcid.org/0000-0002-1155-1989
http://orcid.org/0000-0002-1155-1989
http://orcid.org/0000-0002-1155-1989
http://orcid.org/0000-0002-1155-1989
http://orcid.org/0000-0002-1155-1989
http://orcid.org/0000-0003-1597-2948
http://orcid.org/0000-0003-1597-2948
http://orcid.org/0000-0003-1597-2948
http://orcid.org/0000-0003-1597-2948
http://orcid.org/0000-0003-1597-2948
http://orcid.org/0000-0002-4049-2914
http://orcid.org/0000-0002-4049-2914
http://orcid.org/0000-0002-4049-2914
http://orcid.org/0000-0002-4049-2914
http://orcid.org/0000-0002-4049-2914
http://orcid.org/0000-0003-1432-6194
http://orcid.org/0000-0003-1432-6194
http://orcid.org/0000-0003-1432-6194
http://orcid.org/0000-0003-1432-6194
http://orcid.org/0000-0003-1432-6194
http://orcid.org/0000-0002-9780-1933
http://orcid.org/0000-0002-9780-1933
http://orcid.org/0000-0002-9780-1933
http://orcid.org/0000-0002-9780-1933
http://orcid.org/0000-0002-9780-1933
mailto:a.u.s.heintzbuschart@uva.nl
www.nature.com/npjbiofilms


gingivitis was induced in a cohort of 41 systemically healthy participants by
omission of oral hygiene during a two-weekgingivitis challenge18,29 (Fig. 1a).
Previously reported plaque levels, gingival bleeding upon probing, and red
fluorescent plaque quantification allowed grouping of the participants into
identified low, mid and high responders based on the last day of the
intervention18 (Fig. 1b). During a two-week baseline period at two time
points (day -14 and day 0), a challenge period at four time points (day 2 to
day 14), and one week resolution period at one time point (day 21), the oral
microbiomewas determined at six sites: tongue, saliva, supragingival plaque
at the lower andupper lingual surfaces and supragingival plaque at the lower
and upper interproximal surfaces (Fig. 1c). To identify the individual var-
iation in the time-resolved response of the oral microbiome to the challenge
and describe commonly responding (groups of) microbiota, we employ
Parallel Factor Analysis (PARAFAC)30,31, for modelling the subjects, time,
and microbial abundances at each site (Fig. 1d). The salivary metabolome

dynamics, assessed in unstimulated saliva during the challenge, is likewise
modelled and integrated with microbiome models at the biochemical
pathway level. These analyses should yield insights intomicrobial processes
that underlie individual gingivitis responses.

Results
PARAFAC describes clinically relevant variation in oral micro-
biomes between subjects
To describe the microbial dynamics of each oral site for all subjects
across time, we analysed 16S rRNA gene amplicon sequencing data for a
total of 14,014 amplicon sequence variants (ASVs). After removal of
sparse ASVs, we created separate PARAFAC models for each oral site,
choosing the most appropriate number of PARAFAC components by
inspecting the number of iterations needed to converge32, the core
consistency diagnostic33, the variation explained32, and the tucker

Fig. 1 | Overview of the study design and analysis. a Timeline of experimental
gingivitis challenge with analyses. bGingivitis responses: three groups of responders
were identified based on redfluorescent dental plaque (RF%) at day 14: low (0-1.7%),
mid (1.8-6.0%) and high (6.0%+). c Oral sampling sites (Image source: Ανώνυμος
Βικιπαιδιστής, “The human mouth”, 2016. Accessed via https://commons.
wikimedia.org/wiki/File:Human_mouth.jpg. CC BY-SA 3.0). d Data analysis

approach: Parallel factor analysis (PARAFAC), a multi-way generalization of
Principal Component analysis, decomposes amulti-way data cube into components
with three loading vectors each: one for the subjects, one for the variables (here:
microbial relative abundances) and one for time. This approach allows us to identify
the individual variation in the time-resolved response to the challenge and to
describe commonly responding groups of microbiota.
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congruence coefficient per mode34,35 (Supplementary Data). This yiel-
ded two-component models for the upper jaw lingual plaque (19.7%
explained variation) and upper jaw interproximal plaque (16.5%),
tongue (31.5%) and saliva (17.5%) microbiomes (Fig. 2). Lower jaw
lingual and interproximal plaquemicrobiomes were best represented by
one-component models (explaining 11.4% and 7.2% of the variation,
respectively). The model of the lower jaw interproximal plaque
microbiome was not investigated further due to the limited amount of
explained variation and due to the model not describing biologically
meaningful information.

To interpret themodels, we tested the correlation between the time-
resolved subject loadings of each component with the measured para-
meters of gingivitis. This approach revealed correlation of components
with one or more clinical parameter for the three plaque microbiomes
(Table 1). Overall, the PARAFAC models describe the variation that
exists between subjects, rather than the variation within a subject (one-
sided Wilcoxon rank-sum test: p = 0.020, Supplementary Figs. 1 and 2).
Furthermore, subject age was found to be significantly described by the
first component of the model corresponding to the tongue microbiome
samples (p = 0.035) and the second component of the model corre-
sponding to the saliva microbiome samples (p = 0.038) (Supplementary
Table 1). Gender was not significantly described by any model (Sup-
plementary Table 1). We also performed Pearson correlation tests of the
time-resolved subject loadings per component with richness and even-
ness. All microbiome models were found to contain at least one com-
ponent that significantly described richness or evenness (p ≤ 0.05;
Table 1). In conclusion, the PARAFAC models represented clinically
and ecologically relevant parameters.

PARAFAC describes microbial subcommunities with common
gingivitis responses
Building on the interpretability of the subjectmodes (Table 1), we identified
microbial subcommunities with common responses per sampling site by
selecting and then clustering well-modelled ASVs based on their fitted
response (Fig. 2, for cluster membership see Table 2). Per sampling site, at
least one subcommunity containing mainly pathobionts or pro-
inflammatory genera such as Actinomyces, Campylobacter, Capnocyto-
phaga, Fusobacterium, Leptotrichia and Porphyromonas5,21,22,36,37 and one
subcommunity containing mainly commensal genera such as Kingella
oralis19, Streptococcus spp.38,39, and Veillonella spp.40 were identified.

The sum of the relative abundances of the ASVs in each cluster was
determined to test the difference between the microbiomes of indivi-
duals in the low and high response groups at every time point per oral
site (Benjamini-Hochberg corrected permutation test of mean differ-
ence: p ≤ 0.05; Supplementary Table 2). This approach revealed sig-
nificant differences in the relative abundance of most plaque-associated
ASV clusters in high responders compared to the low responders at
baseline (day -14; Fig. 3, Supplementary Fig. 3). As such, the PARAFAC
models of plaque microbiomes describe microbial subcommunities
with common dynamics that connect to the magnitude of the gingivitis
response.

We further investigated the robustness of the ecosystem during gin-
givitis onset and progression by comparing the sum of the relative abun-
dances per cluster at the start and the end of the intervention
(Supplementary Table 3). We found significant differences between the
relative abundances of some ASV clusters at the start and end of the gin-
givitis challenge in lower jaw lingual (ASV cluster 1) and upper jaw inter-
proximal (ASV cluster 4) plaque microbiomes in all response groups
(Benjamini-Hochberg corrected two-sidedWilcoxon rank sum test:p ≤ 7.2e
−13 and p ≤ 2.6e−6, respectively). For a further three ASV clusters (upper
jaw lingual ASV cluster 1 and upper jaw interproximal clusters 1 and 3), we
found the sumof relative abundances to be significantly different (p = 0.002,
p = 0.0025, p = 0.0039, respectively) in high responders, but not in low
responders. These results suggest that ecosystem stability is different
between high and low responders in several oral niches.

Integration of the microbiome and metabolome PARAFAC
models identifies host-microbiome interactions at the
pathway level
With the established connection between the clinical parameters of gingi-
vitis and the variation in the plaque microbiomes as modelled by PAR-
AFAC, we investigated host-microbiome interactions at the biochemical
pathway level. We obtained functional predictions of the microbiome per
oral site using Tax4Fun241,42. We then created separate PARAFAC models
of the salivary metabolomics data and of the functional prediction of the
microbiomes at each oral site. Despite correcting for correlation between
most salivary metabolite levels, likely due to variable water content of the
saliva (seeMethods), the subject loadings of both components of themodel
corresponding to the salivary metabolome were found to correlate with the
correcting factor (p = 2.0e−14 and p = 2.0e−5, respectively). Regardless, we
expected the salivarymetabolomicsmodel to have sufficient freedom to also
describe variation related to the gingivitis response.

The well-modelled molecular functions (KEGG orthologous groups
belonging to pathways that produce or consume the salivary metabolites)
and well-modelled salivary metabolites were combined in a ranked list.
KEGG-pathway enrichment was identified using SetRank, which is a
functional enrichment algorithm that corrects for multiple pathway
membership43. This revealed that the microbiome and metabolome
responses to the gingivitis challenge reflected differences in carbon and
energy metabolism, as well as cell wall structure (Fig. 4, Supplementary
Fig. 5, Supplementary Table 4). For example, the tongue microbiome and
salivarymetabolomewere involved in a joint response in the biosynthesis of
cofactors and carbon metabolism (p = 0.0045 and p = 0.0052, respectively).
The quorum sensing pathway was significantly enriched in all plaque
microbiomes (p ≤ 0.05). The pathway enrichment results therefore reflect
the microbiome responses and highlight potential metabolic interactions
with the human host.

Discussion
We have shown that the unsupervised modelling approach of PARAFAC
mainly described variation between subjects, as expected from an algorithm
describing themaximumamount of variation that is present in the data. The
modelled variation could be attributed to clinically relevant parameters. In
addition, we have observed that the model corresponding to the salivary
metabolomics samples partly describes the salivary dilution despite cor-
recting for it using ProbabilisticQuotientNormalization44. Thismight be an
artifact due to an incorrect assumption that correcting for water content of
saliva can be done in the same way as for urine metabolomics samples.
Future work on this topic should focus on the appropriateness of using
Probabilistic Quotient Normalization prior to performing a decomposition
analysis. Other multi-way approaches exist to describe a specific type of
variation30–32. For example, inN-way partial least squares (NPLS) themodel
is constrained to regress on an outcome variable45. Additionally, the PAR-
AFAC models of the microbiome and metabolome could be created in a
linked fashion by keeping one of the modes equal to each other, known as
coupledmatrix and tensor factorization46–48. Eachof these approachesmight
yield new insights as the models explicitly look at variation that is common
between the datasets. Further research is needed to compare such methods
to PARAFAC in the context of multi-omics data.

We observed that the microbiome PARAFAC models partly describe
richness and evenness. This result gives further evidence of a relationship
between oral health and microbial diversity which has been described
before49–51.While themethodology used in this study targeted only bacteria,
while other members of the oral microbiome—such as viruses and fungi—
might also be relevant in gingivitis onset and progression52,53. We identified
several bacterial subcommunities within the oral sites that responded
similarly to the intervention (Table 2). For example, a group of ASVs was
significantly more abundant in individuals in the high responder group
compared to low responders and represented species of known pathogenic
or pro-inflammatory genera such as Actinomyces, Campylobacter, Capno-
cytophaga, Fusobacterium, Leptotrichia, and Porphyromonas5,21,22,36,37.

https://doi.org/10.1038/s41522-024-00565-x Article

npj Biofilms and Microbiomes |           (2024) 10:89 3

www.nature.com/npjbiofilms


Fig. 2 | Overview of the PARAFAC models per sample type. In the rows, the
PARAFAC models per sample type are described: upper jaw lingual plaque, upper
jaw interproximal plaque, lower jaw lingual plaque, tongue and saliva. Variance
explained per model are shown in the sample type labels. In the left column the
loadings of the first and second component in the subject mode are plotted against
each other, with every subject having a unique character to identify them across the
sample types. In the middle column the loadings of the first and second component
in the ASV mode are plotted against each other. We identified microbial

subcommunities (ASV clusters) with common responses per sampling site by
selecting and then clustering well-modelled ASVs based on their fitted response
(Methods, Table 2). ASVs are color-coded by cluster number (or shown in grey if
removed prior to clustering). In the right column, the loadings per time point are
shown per component. The model corresponding to the lower jaw lingual plaque
only has one component. The model of the lower jaw interproximal plaque
microbiome was not investigated further due to the limited amount of explained
variation and due to the model not describing biologically meaningful information.
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Clusters of ASVs that were significantly more abundant in low responders
compared to high responders contained known commensal species related
to oral health, such asKingella oralis19, Streptococcus spp.38,39, andVeillonella
spp.40. It has to be noted that sequencing based only on the V4 region of the
16S rRNA gene may not provide sufficient resolution to correctly assign
pathogenicity or pro-inflammatory traits to all ASVs. Similarly, some ASV
have been assigned to bacterial taxa that are not commonly observed in the
oral cavity. This may indicate that these bacteria were present in the sample
due to problematic hygiene in the host or due to classification errors. Finally,
we observed a difference in ecosystem stability between high and low

responders in some parts of the oral cavity. This suggests that in some
subjects, the ecosystem can withstand the ecological pressure of plaque
accumulation and has some mechanisms that prevents healthy microbiota
from decreasing in abundance. Further research is needed to identify these
mechanisms and the microbiota involved.

By integrating the PARAFAC models of the salivary metabolomics
data and of the predictedmetabolic functions from themicrobiomedata,we
identified enriched pathways that reflected the changing proportions of
Gram-positive and -negative microbiota (cell membrane/wall component
pathways, such as lipopolysaccharide and peptidoglycan biosynthesis).

Table 2 | Overview of all identified species per ASV cluster

Sample type Cluster Number of
members

Identified species

Upper jaw, lingual 1 9 Actinomyces naeslundii/oris/viscosus, Kingella oralis, Rothia dentocariosa, Streptococcus cristatis/
sinensis, Veillonella dispar/parvula, Veillonella atypica/dispar, Veillonella parvula/rogosae/tobetsuensis

2 10 Fusobacterium canifelinus/nucleatum, Fusobacterium massiliense, Granulicetella elegans, Prevotella
nanceiensis, Veillonella massiliensis

Upper jaw, interproximal 1 3 Rothia dentocariosa, Veillonella atypica/dispar

2 12 Abiotrophia defectiva, Aggregatibacter aphrophilus/kilianii, Capnocytophaga sputigena,
Lachnoanaerobaculum cf., Lautropia mirabilis, Rothia aeria/dentocariosa

3 5 Corynebacterium matruchotii, Leptotrichia hofstaii, Leptotrichia shahii/wadei

4 11 Aggregatibacter segnis, Capnocytophaga granulosa, Capnocytophaga leadberri, Cardiobacterium
hominis, Fusobacterium canifelinus/nucelatum, Fusobacterium nucleatum, Leptotrichia buccalis,
Porphyromonas pasteri

Lower jaw, lingual 1 21 Actinomyces georgiae/pacaensis, Aggregatibacter segnis, Campylobacter concisus, Capnocytophaga
granulosa, Capnocytophaga leadbetteri, Cardiobacterium hominis, Corynebacterium matruchotii,
Fusobacterium canifelinus/nucleatum, Fusobacterium nucleatum, Fusobacterium hwasooki/nucleatum/
periodonticum, Lachnoanaerobaculum cf., Leptotrichia hofstadii, Porphyromonas pasteri

2 1 Streptococcus salivarius (putative)

Tongue 1 21 Actinomyces lingnae/marseillensis/pacaensis, Capnocytophaga leadbetteri, Fusobacterium
periodonticum, Granulicatella adiacens/para-adiacens, Lachnoanaerobaculum cf., Oribacterium parvum,
Oribacterium sinus, Peptostreptococcus stomatis, Porphyromonas pasteri, Prevotella nanceiensis,
Veillonella parvula/rogosae/tobetsuensis

2 20 Actinomyces graevenitzii, Alloprevotella rava, Atopobium parvulum, Lachnoanaerobaculum orale/
saburreum, Prevotella histicola, Prevotella jejuni/melaninogenica, Prevotella salivae, Prevotella veroralis,
Rothia mucilaginosa, Stomatobaculum longum

Saliva 1 9 Granulicetella adiacens/para-adiacens, Porphyromonas pasteri, Rothia aeria/dentocariosa

2 21 Actinomyces graevenitzii, Atopobium parvulum, Campylobacter concisus, Lachnoanaerobaculum orale/
saburreum, Prevotella histocola, Prevotella jejuni/melanogenica, Prevotella salivae, Rothia mucilaginosa,
Stomatobaculum longum, Veillonella atypica/dispar

ASVswithin the same cluster show a similar response over time to the gingivitis intervention. Clustered ASVs are only reported here if two criteria weremet: (1) the taxonomic classificationwas resolved to
species level by DADA2 using the SILVA (v138) and HOMD (v15.22) databases and (2) the annotation agreed with a separate best hit annotation run using the HOMD (v15.22) database. Cases where the
classification was resolved to species level by the DADA2 run but only to the genus level by the separate HOMD run are also reported.

Table 1 | Overview of the correlation test results between the time-resolved subject loadings of the PARAFACmodels and the
clinical parameters of gingivitis and microbiome diversity metrics

Sample type Component Plaque% Bleeding% RF% Richness Evenness

Upper jaw, lingual 1 0.024* 0.49 8.5e−6*** 0.015* 0.032*

2 0.002** 0.26 4.2e−7*** 0.78 1.1e−6***

Upper jaw, interproximal 1 0.0015** 0.032* 8.1e−4*** 4.4e−9*** 7.0e−9***

2 0.53 0.15 0.95 0.61 0.94

Lower jaw, lingual 1 4.9e−4*** 0.14 1.2e−8*** 1.6e−17*** 1.5e−12***

Tongue 1 0.78 0.48 0.30 0.024* 0.057

2 0.85 0.057 0.15 5.3e−11*** 0.028*

Saliva 1 0.66 0.20 0.11 0.61 0.78

2 0.78 0.81 0.78 7.3e−14*** 8.5e−6***

Red fluorescencewas assessedat every timepoint. Plaque andbleeding scoreswere only assessedat day -14, 0, 14 and21of the study. Plaque%: thepercentageof sites in themouth thatwere covered in
plaque. Bleeding%: the percentage of sites in themouth that bled uponprobing. RF%: the percentageof sites that fluoresced red. Richness: the number of nonzero counts in a sample. Evenness: Shannon
diversity divided by log(richness). Benjamini-Hochberg corrected p-values of Pearson correlation tests between the subject loadings of one component and the clinical parameters are reported (*p ≤ 0.05;
**p ≤ 0.01; ***p ≤ 0.001).
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Fig. 3 | Overview of the sums of relative abundances per ASV cluster and sample
type, separating subjects by response group. Error bars correspond to the standard
error of the mean (SEM). The mean difference between the high and low response
groups per time point was tested using a Benjamini-Hochberg corrected

permutation test of 999 iterations (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001). Mid
responders and ASV clusters 3 and 4 of the upper jaw interproximal plaque samples
are not shown for visual clarity (Supplementary Figure 3 and 4, respectively). Please
refer to Table 2 for the list of identified species per ASV cluster.
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Quorum sensing systems were found to be significantly enriched in all
plaque sites likely due to the presence of various Streptococcus spp., that
carry genes for oligopeptide binding protein quorum sensing system54,55.
These are known to regulate biofilm formation and virulence56–58. The
strong signal in carbon metabolism and oxidative phosphorylation were
likely reflective of the variation in anaerobic bacteria, which accumulate
during gingivitis59–61. An interesting link between salivary metabolites and
microbiome functional potentialmay have beenobserved in the nucleoside/
purine/pyrimidine biosynthesis pathways: while urea was one of the best
modelled salivary metabolites and is a potential biomarker for oral
health61–64, a role of salivary nucleosides in plaque formation or gingivitis is
as yet unknown. While many of these functions can be identified as
housekeeping activities, we protected ourselves fromwrongfully identifying
such generic activities as enriched by (1) using SetRank to correct for
multiple pathway membership and (2) creating a custom database of
pathway elements and removing very large pathways that often connect to
such activities. Further research is needed to investigate the relevance of
these enriched pathways in the context of dental plaque formation and
gingivitis.

In conclusion, we show that PARAFACmodelling of longitudinal oral
microbiome and salivary metabolomics data can be used to identify clini-
cally relevant variation and similarly respondingmicrobial subcommunities
related to gingivitis. By performing high level integration of predicted
microbiome functions and the salivary metabolome, we highlight bio-
chemical pathways of oral biofilm formation and maturation with a likely
role in gingivitis.

Methods
Data description
The gingivitis challenge study was carried out at the Academic Centre for
Dentistry Amsterdam (ACTA) with 15 systemically healthy males and
26 systemically healthy females between the ages of 18 and 55. Recruitment
details and exclusion criteria were previously described29. Reversible gingi-
vitiswas induced by omission of oral hygiene during the two-week gingivitis
challenge (day 0 to day 14), which was preceded by a two-week baseline
period (day -14 to day 0) and followed by a one-week resolution phase (day
14 to day 21; Fig. 1a). Assessment of plaque formation, bleeding and the
collection of oral samples for microbiome were performed throughout the
baseline, challenge and resolutionphases. Plaque andbleedingwere assessed
clinically in a half mouth randomized contralateral model65. Oral samples
for microbiome analysis were taken at six sites in the mouth: supragingival
plaque at the lower and upper jaw lingual surfaces, supragingival plaque at
the lower and upper jaw interproximal surfaces, tongue and saliva. The
salivary metabolome was only sampled during the challenge phase.

Red fluorescence imaging
Acquisition of red fluorescent plaque (RF) photographs has been described
previously18,66,67. Briefly, fluorescence photographs were taken of the ves-
tibular aspect of the anterior teeth (cuspid to cuspid, upper and lower jaw) in
end-to-end position at every time point using a QLF-D camera (Inspektor
Research Systems BV, Amsterdam, the Netherlands). The photographs
were assessed planimetrically for the percentage red fluorescent protein
(RFP) coverage using RFP analysis software (QA2 V1.25, Inspektor

Fig. 4 | Overview of the pathway enrichment results per combination of oral site
microbiome and the salivarymetabolome.Tax4Fun2was used to create functional
predictions from ASV data. Well-modelled metabolites and microbiome molecular
functions were integrated by mapping them to KEGG pathway level. SetRank was

then used to test for pathway enrichment and corrected for multiple-pathway
membership. Pathways were filtered to be significant (p < =0.01) in at least one
sample type and to contain at least two well-modelled KEGG molecular functions
and two well-modelled metabolites. The red vertical line corresponds to p = 0.05.
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Research Systems BV, Amsterdam, the Netherlands). Three response
groupswere determined using the RF%values on day 14: low (0–1.7%),mid
(1.8–6.0%) and high (6.0%+) (Fig.1b)18.

DNA isolation and 16S rRNA gene amplicon sequencing
DNAwas isolated from the samples using a previously describedmethod68.
Samples were mixed with 300 µl lysis buffer (Agowa, Berlin, Germany),
500 µl phenol saturated with tris-HCl (pH 8.0) and 500 µl zirconium beads
(0.1mm; BioSpec Products, Bartlesville, OK, USA), and shaken in a bead
beater for 3min at 2800 oscillations/min. DNA released was purified using
magnetic beads (Agowa, Berlin, Germany) and used for amplicon
sequencing.

The V4 hypervariable region of the 16S rRNA gene was targeted using
primers F515 (5’- GTG CCA GCM GCC GCG GTA A -3’) and R806 (5’-
GGA CTA CHVGGG TWTCTA AT -3’). The primers included Illumina
adapters and a unique 8-nucleotide sample index sequence key69. PCR was
performed using the Phusion Hot Start II High Fidelity PCR Master Mix
(Thermo Scientific, Waltham, MA, USA) with 100 pg template. The fol-
lowing amplification program was used: initial denaturation at 98 °C for
30 s; 30 cycles of 98°C for 10 s, 55 °C for 30 s and 72 °C for 30 s; and final
elongation at 72 °C for 5min. The amplicon libraries were pooled in equi-
molar amounts and purified using the QIAquick Gel Extraction Kit (Qia-
gen, Valencia, CA, USA). Amplicon quality and size were analysed on a
Fragment Analyzer (Advanced Analytical Technologies Inc., Ankeny, IA,
USA). Amplicon sequencing was performed on the Illumina MiSeq plat-
form (Illumina Technologies, San Diego, CA, USA) using 2 × 200 cycle
paired-end settings.

16S rRNA gene amplicon data pre-processing
The 16S rRNA gene sequencing data were pre-processed using DADA270

(version 1.14.0). All microbiome sampling locations except for saliva were
pre-processedwith default DADA2 settings (truncLen= c(100, 100),maxN
= 0, maxEE = c(2,2), truncQ = 2, rm.phix = TRUE, compress = FALSE,
matchIDs = TRUE, multithread = TRUE). The saliva samples were pro-
cessedwith a shorter trimming setting (truncLen= c(200, 215)) due to lower
quality reads. Taxonomic classification of ASVs was performed using the
SILVA (v138) and HOMD (v15.22) reference databases.

Metabolomics sampling and profiling
Saliva sample collection and metabolite profiling were described
previously29. Unstimulated saliva was collected at the intervention time
points. Participants were instructed to allow saliva to accumulate on the
floor of the mouth and to spit at 30 second intervals into a pre-weighted
30ml polypropylene tube. The collection period was 5minutes. Non-
targetedmetaboliteprofiling of the saliva samples for the gingivitis challenge
time points was performed by Metabolon. Samples were processed as
described in Metabolon’s standard method71. Raw data were extracted,
peak-identified and quality controlled using Metabolon’s hardware and
software. Compounds were identified by comparison with Metabolon’s
reference library72. Metabolites were annotated with KEGG compound
IDs73,74.

Assessment of clinical parameters of gingivitis
Plaque and bleeding scores were clinically assessed by two experts in a half
mouth randomized contralateral model, as described previously18. Plaque
was quantifiedusing amodified Silness&LoëPlaque Index at six sites of the
buccal and lingual aspects of all present teeth75. Gingival bleeding was
quantified using the bleeding on marginal probing index on six gingival
areas on the buccal and lingual sides of all present teeth76.

Statistical analysis—microbiome data processing
The ASV data and taxonomic information were processed usingMATLAB
(version 2022a). The data were separated by oral site. To limit the sparsity
per dataset, ASVs were kept if the sparsity was <50% in any response group
(Supplementary Fig. 6). All other ASVs were removed from the data. By

setting a response group-based sparsity-cutoff per ASV, we avoid removing
biologically relevant ASVs that would occur in only one or two response
groups. ASVs were also removed if they corresponded to chloroplast or
mitochondrial sequences, as these were not relevant for the study. An
overview of the number of ASVs before and after filtering per sample type is
reported in Supplementary Table 5. Subsequently, a centered-log ratio
transformation—using a pseudo-count of 1—was performed to correct for
compositionality77,78. The datasets were then converted to three-way arrays
(Fig. 1d). Missing samples were kept in the data cube as a row of missing
values (Supplementary Table 6). This is possible because PARAFAC
interpolates the missing data automatically in its alternating least-squares
algorithm and maximises the amount of information for the modelling
procedure as the other samples of the subject do not have to be removed
entirely. Subsequently, centering across the subjectmode and scaling within
the ASV mode—ignoring missing values—were performed to make the
samples comparable at every timepoint and the ASVs comparable for all
time points79.

Statistical analysis—salivary metabolomics data processing
The salivary metabolomics data were processed using MATLAB (version
2022a). To limit the sparsity per dataset, metabolites were excluded if they
contained more than 25% values below the detection limit (Supplementary
Fig. 7). Additionally, xenobiotic compounds were manually assessed for
occurrence across response groups and selected if they were prevalent in
most subjects (Supplementary Data). After feature selection, 400 of the 499
metabolites remained (Supplementary Table 5). Values below the detection
limit were imputed with a random value between 0 and the detection limit
per metabolite to preserve their distribution. To correct for the dilution
caused by the amount of water in the saliva samples, Probabilistic Quotient
Normalization (PQN) was performed using the median value of each
metabolite as an artificial reference sample44. Next, the dataset was (natural)
log transformed to stabilize the variance. Thedatasetwas then converted to a
three-way array. Subsequently, centering across the subject mode and
scalingwithin theASVmode—ignoringmissing values—wereperformed to
make the samples comparable at every timepoint and theASVs comparable
for all time points79. All subjects were fully sampled, except for subject
3CN8CB for whom no metabolome data was available (Supplementary
Table 6).

Statistical analysis—Functional profile prediction of
microbiome data
A functional profile prediction based on the microbiome ASV count data
wasperformedusing theTax4Fun2package inR (Tax4Fun2version1.1.5, R
version 4.0.3)41,42. ASVs corresponding to Chloroplast or Mitochondria
were removed. Samples were rarefied to 10 000 reads to make them com-
parable (Supplementary Figs. 8 and 9). Samples with fewer total reads were
removed. This step removed 53 of 1692 samples. ASVs without counts after
rarefying were removed. All steps together removed 6903 out of 14,014
ASVs. Tax4Fun2 was run with default settings against the included
Ref99NR database42 and a custom database based on the HOMD genomes
(v9.14, accessed 2020-11-09)80. Molecular functions of the genomes were
assigned using Tax4Fun2’s DIAMOND wrapper81. HOMD-annotated 16S
rRNA gene sequences were extracted from the genomes, cut to the 515F-
806R fragment used in this study using cutadapt v1.1882. Exact duplication
within genomes were removed, and 16S rRNA gene sequence fragments
were combined with the functional assignments using Tax4Fun’s gen-
erateUserDataByClustering function. The resulting functional prediction
profiles—which contain values between 0 and 1 for each function—were
used for subsequent analysis. The fraction of unused taxonomic units and
the fraction of unused sequences are reported per sample (Supplementary
Figs. 10 and 11).

Statistical analysis—processing of functional profile predictions
The functionally predicted microbiome data were processed in MATLAB
(version 2022a). The data were separated by sample type. Tomake the data
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comparable to the salivary metabolomics data, predicted KEGG ortholo-
gous groups (KOs)were removed if they did not belong to pathways that the
metabolites mapped to. This was done bymapping the KOs andmetabolite
compound IDs to pathways using theKEGGAPI83. To limit the sparsity per
dataset, KOs were removed if the number of zeroes for all response groups
was >50% (Supplementary Fig. 12). Additionally, KOs were removed if the
sum-of-squares was lower than 0.025% of the total sum-of-squares of the
dataset (Supplementary Fig. 13). This latter filter was to ensure that
themodelling procedure focused on relevant variation in the data andmade
the total number of variables comparable to the metabolomics data, while
retaining most information. An overview of the number of KOs remaining
after feature selection is reported (Supplementary Table 5). Subsequently a
centered-log ratio transformation of each dataset was performed to correct
for compositionality77,78. The dataset was then converted to a three-way
array.Missing sampleswere kept in the data cube as a row ofmissing values
(Supplementary Table 6). Subsequently, centering across the subject mode
and scaling within the ASV mode - ignoring missing values—were per-
formed to make the samples comparable at every timepoint and the ASVs
comparable for all time points79.

Statistical analysis—Parallel Factor Analysis (PARAFAC)
Details on the creation of PARAFAC models for microbiome84 and
metabolomics data32 have been described elsewhere. The PARAFAC
implementation from the N-way toolbox (version 1.8.0.0, https://nl.
mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox)
in MATLAB (version 2022a) was used to create PARAFAC models for
all datasets. Similar to PCA, the correct number of components of the
PARAFAC model needed to be determined to create an optimal
model33,85. This was done by inspecting the number of iterations needed
to converge32, the core consistency diagnostic (CORCONDIA)33, the
variation explained32, and the Tucker congruence coefficient per
mode34,35. Additionally, a jack-knife approachwas used to determine the
stability of the PARAFAC modelling procedure. These metrics were
inspected per component for every generated model (Supplementary
Data). All generated models are reported in Supplementary Figs. 14-26.
An overview of the model statistics also reported (Supplementary
Table 7). Congruence loadings, which describe the relationships
between the original variables of the dataset and the latent variables of
the correspondingmodel, were calculated for every component in every
sample type86. While the metrics above suggested a one-component
PARAFAC model corresponding to the microbiome data at the lower
jaw interproximal niche, the model described less than 10% of the
variation in the data. Furthermore, manual inspection revealed that the
model did not describe variation that we could explain biologically.
Hence, we did not analyse this model further in subsequent steps.

A transformation of the subject loadings was required for comparison
with the longitudinally measured clinical parameters of gingivitis. The ASV
loading vectors were orthonormalized using the Gram-Schmidt ortho-
normalization procedure in the pracma R package87,88 (version 2.4.2). The
(same) transformation matrix is then applied to the Kronecker product of
the subject and the time loadings to obtain interpretable loadings of every
subject-time combination89. The correlation of the time-resolved subject
loadings with the clinical parameters of gingivitis was then tested (Table 1
and Supplementary Table 1).

Statistical analysis—microbiome ASV cluster analysis
Loading plots of the ASV mode and the subject mode for each of the
microbiomePARAFACmodelswere created (Fig. 2).ASVswerefilteredout
if they had a variation explained lower than the average of the model or a
congruence loading lower than 0.486. ASVs were clustered based on their
fitted abundances according to the PARAFACmodel using the K-medoids
algorithm from the cluster R package (version 2.1.4) with 50 random starts
to be robust against outliers90. The number of clusters was determined using
the within-cluster sum of squares, silhouette width and gap statistic metrics
as reported by the factoextra R package91 (version 1.0.7, Supplementary

Fig. 27). An overviewof the taxonomic information per cluster can be found
inTable 2. Bacteria inTable 2were only reported if two criteriaweremet: (1)
the taxonomic classification was resolved to species level by DADA2 using
the SILVA (v138) and HOMD (v15.22) databases and (2) the annotation
agreed with a separate best hit annotation run using the HOMD (v15.22)
database. Cases where the classification was resolved to species level by the
DADA2 run but only to the genus level by the separateHOMD run are also
reported.

The response to the gingivitis intervention of the ASV clusters was
shown using the relative abundance sum per ASV cluster derived from the
original count data (Fig. 3 and Supplementary Fig. 3). The mean of the
summed relative abundances and standard error of the mean were calcu-
lated per response group for a given sample type and time point. The mean
difference between the high and low responders was tested using a per-
mutationanalysiswhere the response groupmembershipof the subjectswas
permuted (Supplementary Table 2).

Statistical analysis—functional enrichment analysis
The PARAFAC models of the functionally profiled microbiome and
salivary metabolomics data were combined to perform a pathway
enrichment test per sample type. This was done by calculating the
variance explained and congruence loadings per KO or metabolite in
each model86. If the PARAFAC model contained two components, the
maximum of the two congruence loadings per feature was used. The
variance explained and congruences were normalized by the maximum
value per model prior to integration. The normalized variance
explained and normalized congruence per feature were averaged to
obtain a ranking of pathway elements (KOs and metabolites). This
causes the best modelled KO and compound ID to be at the top of this
list. The ranked pathway element list was cut off at 75% of its length to
ensure a good separation between well-modelled and averagely-
modelled pathway elements (Supplementary Fig. 28).

The SetRank R package (version 1.1.0) was used to obtain pathways of
interest43. SetRank is a gene set enrichment algorithm that obtains a high
sensitivity by correcting for multiple pathway membership. A custom
database of pathway elements was created by combining the KO and
compound ID to pathway mappings obtained through the KEGG API
(Supplementary Data). Pathways were removed from our database if they
could not be performed by prokaryotes. Generic, large pathways with more
than 750 elements were removed to ensure that the enrichment results were
specific enough for interpretation (Supplementary Fig. 29). Subsequently
the SetRank analysis was performedwith standard settings per sample type.
The multiple-pathway corrected p-values are reported (p ≤ 0.05, Fig. 4 and
Supplementary Table 4).

Data availability
The ASV abundance data is available at https://github.com/
GRvanderPloeg/TIFN-multiway. Raw sequencing data is available by
request from the authors, in accordance with the informed consent signed
by the study participants.

Code availability
The underlying code for this study is available on GitHub and can be
accessed via https://github.com/GRvanderPloeg/TIFN-multiway/releases/
tag/v1.2.
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