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The incidence of MASLD and MASH-associated fibrosis is rapidly increasing worldwide. Drug therapy is
hampered by large patient variability and partial representation of human MASH fibrosis in preclinical
models. Here, we investigated the mechanisms underlying patient heterogeneity using a discovery
dataset and validated in distinct human transcriptomic datasets, to improve patient stratification and
translation into subgroup specific patterns. Patient stratification was performed using weighted gene
co-expression network analysis (WGCNA) in a large public transcriptomic discovery dataset (n =216).
Differential expression analysis was performed using DESeq2 to obtain differentially expressed genes
(DEGsS). Ingenuity Pathway analysis was used for functional annotation. The discovery dataset showed
relevant fibrosis-related mechanisms representative of disease heterogeneity. Biological complexity
embedded in genes signature was used to stratify discovery dataset into six subgroups of various sizes.
Of note, subgroup-specific DEGs show differences in directionality in canonical pathways (e.g. Collagen
biosynthesis, cytokine signaling) across subgroups. Finally, a multiclass classification model was
trained and validated in two datasets. In summary, our work shows a potential alternative for patient
population stratification based on heterogeneity in MASLD-MASH mechanisms. Future research is
warranted to further characterize patient subgroups and identify protein targets for virtual screening
and/or in vitro validation in preclinical models.
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Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition closely
linked to the rise of obesity, metabolic syndrome, and type 2 diabetes mellitus!. MASLD is associated with
hepatocellular damage, inflammation? and fibrosis development3. Moreover, recent studies have identified liver
fibrosis stage as an independent predictor of long-term mortality, regardless of other risk factors of MASLD
or metabolic dysfunction-associated steatohepatitis (MASH)*°. Despite intensive research to identify an anti-
fibrotic drug, to our knowledge there is currently only one FDA approved drug (Resmetirom) in the market to
combat liver fibrosis®.

Liver fibrosis, marked by the fibrous scar formation and tissue rigidity, is the result of the activation of
hepatic stellate cells (HSC) into collagen-producing myofibroblasts, which increase extracellular matrix
proteins deposition in the liver microenvironment. In the context of metabolic syndrome, MASLD manifests
through increased de novo lipogenesis, lipotoxicity, glucotoxicity which in combination with hepatocellular
damage, apoptosis, cytokine signaling and inflammation trigger repair mechanisms and liver fibrosis onset’~1C.
Considering the multifactorial pathogenesis of the disease, genetic predisposition, and environmental
factors, there are multiple processes that can be deranged, thus highlighting the pathogenesis complexity and
interindividual variability!'.

To explore disease heterogeneity and unveil patient variability, recent studies have used omics datasets
to identify patient subgroups both dependent'? and independent'® of disease severity. Undoubtedly, these
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approaches pave the way in deeper understanding of patient variability, nevertheless there are still big challenges
for the drug development process especially to functionally annotate patient subgroups (gene and pathway level)
and find representative preclinical models'“. In line with this observation, preclinical models such as organoid
systems recently highlighted that mechanistic insight is important to define anti fibrotic treatment!®.

To better understand the large patient variability seen in MASLD-MASH on a molecular level, we used
publicly available transcriptome data and pathology scores of individual patients to identify patient subgroups
and characterize them on the pathway and gene-level. Subsequently, a predictive model that can classify
unseen data into the distinct patient subgroups was trained. By stratifying MASLD'® or diabetic!” patients into
subgroups that reflect the disease heterogeneity, a more realistic disease characterization of the patients and
improved diagnosis can be achieved; thereby supporting therapeutic options and drug development.

Methods

Data preprocessing

Three public datasets from the GEO repository were re-analyzed, including GSE135251 (216 samples)'s,
GSE130970 (78 samples)!'® and GSE240729 (55 samples)?. Each gene count data matrix was normalized relative
to fibrosis stage 0 and log2 transformed (Rlog2). Inclusion and exclusion criteria and corresponding revisions by
Ethical committees were specific for each study!'®-2°.

Weighted gene co-expression network analysis

The “WGCNA” package in R software was used to construct gene modules that are co-expressed (modules) in
the discovery dataset GSE135251%!. As explained above, the gene expression matrix was normalized and used
as input to choose the optimal soft power threshold maximizing the scale-free network topology to generate
gene modules (minimum 30 genes) based on hierarchical clustering method. Modules were refined by merging
similar modules (those with a correlation > 0.8 of their eigengene values).

Using the chooseTopHubInEachModule() function from the WGCNA package, hub genes were extracted
as representative genes from each gene module. In the discovery dataset GSE135251, 15 gene modules were
identified. The grey module was discarded as it contained uncorrelated genes. Using a matrix of 216 patients by
14 hub genes, hierarchical clustering was performed based on the Euclidean distance between rows and columns
using the pheatmap function in R software??. The patient population was split into six patient subgroups
independently of pathology scores (NAFLD associated score and Fibrosis score) based on literature reporting
3-8 patient subgroups’23-2,

Differential expression and pathway analysis

Log2fold change values of genes related to fibrosis stage (Fibrosis 4 vs Fibrosis 0) and change values of each
patient subgroup versus the rest (e.g. Subgroup 1 vs Rest) were calculated using the DESEq2 package in R%.
Genes were considered significantly differentially expressed (DEGs) if adjusted p-values were lower than 0.05.
The extracted WGCNA gene modules, DEGs and important gene lists were analyzed using Ingenuity pathway
analysis (IPA) for functional annotation on the pathway level and upstream regulators to obtain a mechanistic
overview.

Data augmentation techniques

As explained above, six patient subgroups were defined in the discovery dataset GSE135251 with varying group
sizes. To define a predictive model data augmentation methods SMOTE (Synthetic Minority Oversampling
Technique)*® and ADASYN (Adaptive Synthetic Sampling Approach)? were used to improve the performance
and generalizability of machine learning models in the six patient subgroups multiclass classification. The
original dataset size (N=216 samples) was divided into six patient subgroups 1-6 (57, 64, 46, 15, 27 and 7,
respectively) as explained above. Data augmentation was applied to the training split (70%), using over-under
sampling strategy 1 (SMOTE-1 and ADASYN-1, subgroups 1 =25,2=25,3=25,4=20, 5=20, 6=20) and over-
under sampling strategy 2 (SMOTE-2 and ADASYN-2, subgroups 1=15, 2=15, 3=15, 4=15, 5=15, 6=15).
Both SMOTE and ADASYN were used from the imbalanced-learn package in python®. Five training input
datasets were evaluated to optimize 4 machine learning algorithms (random forest, decision trees, xgboost and
k-nearest neighbors).

Performance was evaluated using nested cross validation (CV) with stratified inner (k=2) and outer (n=5)
fold CV with the metrics Matthews correlation coefficient (MCC) and balanced accuracy (BA). Metrics were
obtained 5*10 iterations resulting in 50 values per score for each model using the randomsearch() in scikit-
learn®!. ML models were fitted using a multiclass approach and 800 genes which were identified with a
model-based feature selection approach. Model-based feature selection was obtained from statistical methods
(multinomial logistic regression) using R32. For model refinement an extensive gridsearch was performed with
dataset ADASYN-1 and the Random Forest algorithm for final model.

Results

Patient stratification

WGCNA was applied to the discovery dataset to identify gene modules. This resulted in 14 gene modules of
correlating genes independent of fibrosis staging. Using the 14 representative hub genes from the gene modules,
the total patient population in the discovery dataset (216 samples) was clustered into six subgroups of different
sizes using a hierarchical clustering method (See Figs. 1 and 2). Interestingly, these patient subgroups were
defined independent of individual pathology scores (See Figs. 2 and 5, fibrosis label and NAS score), which
might indicate that patient specific patterns are not completely related to disease severity (pathological scores).
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Fig. 1. General workflow in the identification, characterization, and classifier construction of patient
subgroups. Abbreviations: UMAP, Uniform Manifold Approximation and projection, WGCNA, weighted gene
co-expression network analysis, SMOTE, Synthetic Minority Oversampling technique, ADASYN, Adaptive
Synthetic Sampling Approach.
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Fig. 2. Patient stratification in the discovery dataset in 6 patients subgroups using 14 hub genes. The discovery
dataset was stratified into 6 patient subgroups using 14 hub genes from gene modules. Hierarchical clustering
was performed using Euclidean distance between rows (gene modules) and columns (patients). Each gene
module is represented by the absolute expression of the corresponding hub gene. Subgroup 1 (n=#57),
subgroup 2 (n=#64), subgroup 3 (n=#46), subgroup 4 (n=#15), subgroup 5 (n=#27) and subgroup 6
(n=#7).

The patient distribution across the subgroups is as follows: Subgroup 1 (n#=57), Subgroup 2 (n#=64),
Subgroup 3 (n# =46), Subgroup 4 (n#=15), Subgroup 5 (n# =27), and Subgroup 6 (n# =7) with their respective
pathology scores (See Table 1). Subgroup-specific scores reveal minor variations across the patient subgroups
which indicates no statistical differences of fibrosis and NAS scores per subgroup.

NAFLD heterogeneity

The question arises whether various relevant MASLD-MASH related mechanisms and upstream regulators
can be linked to the 14 gene modules. To answer this question, an Ingenuity pathway analysis was applied.
Interestingly, this tool showed highly relevant liver-pathology-related processes such as cholesterol metabolism,
immune pathways, extracellular matrix processes among other processes such as Eukaryotic initiation factor
(EIF) signaling and mitochondrial dysfunction, indeed linked to these 14 gene modules (See Fig. 3). Of note,
various modules have well-defined pathogenesis-related pathways and respective upstream regulators such as
module 9 on cholesterol pathway and upstream regulator SREBF1. Additionally, modules relate to immune
mechanisms and fibrosis mechanisms. First, modules 4 and 13 show immune mechanisms (Th1-Th2 pathway,
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Subgroup# | F-score [u+ SD] | NAS score [p+ SD]
Sub 1 142+1.22 3.68+2.21
Sub 2 1.45+1.08 3.73+1.55
Sub 3 1.93+1.48 3.53+1.64
Sub 4 1.98+1.17 520+1.70
Sub 5 1.85+1.32 4.29+1.87
Sub 6 2.85+0.69 6.57+£0.97

Table 1. Pathology score per patient subgroup. Average pathology scores per patient subgroups. Abbreviations:
F-score, Fibrosis score, NAS, NAFLD activity score.
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Fig. 3. Canonical pathways and upstream regulators in 14 gene modules. (A) Top50 ranked canonical
pathways and (B) Top 50 upstream regulators for each gene module from discovery dataset. Coloring indicates
-logp-value (scaled 0-1). A higher enrichment corresponds with higher -logp-value.

IL-8 signaling) and immune regulators (TNF, IFNG, CSF1, IL-10, IL-4, STAT3). Second, modules 4 and 7 show
hepatic fibrosis signaling and upstream regulator TGFp1 (Fig. 4).

Furthermore, other modules depict disease-related pathways such as stress-related signals in module 12 with
EIF signaling pathway and upstream regulator RICTOR. Interestingly, AMPK signaling (modules 6 and 10) may
be of interest in the context of MASLD. In addition to the fibrosis signaling processes, SP1 transcription factor
and VEGF growth factor are relevant in both modules 4 and 7, therefore overlapping with canonical fibrosis
signaling. To investigate the directionality in fibrosis gene modules the genes from module 4 (448 genes) and
module 7 (260 genes) were compared to the DEGs (F score 4 vs F0, 247 genes) shared in the discovery dataset
(Govaere) and other datasets (Hoang and FFPE). The DEGs lists from the three datasets were compared with the
genes in gene module 4 and 7. Interestingly, various upregulated DEGs were present in module 4 (e.g. COLIAI,
PLVAB, PAPLN, LAMC3) and module 7 (e.g. THY1, AEBP1, EPCAM, ITGBLI, EFEMPI, CFTR, SOX9, LOXL4)
(Fig. 4). This was predominantly visible in module 7 as module 4 overlaps with immune processes.All patients
were visualized in a UMAP plot using the 14 hub genes from the discovery dataset to evaluate whether the
patient population in the discovery dataset forms specific patient subgroups. The plot shows the six patient
subgroups separation and their respective fibrosis label distribution in a 2D space (Fig. 5). In addition, to identify
the biological patterns in the six patient subgroups, differential expression analysis was performed with a one
versus rest approach (e.g. subgroup 1 vs all). This resulted in subgroup-specific DEGs, which were mapped to
the canonical pathways from IPA analysis (See Fig. 6). These showed distinct patterns in various key fibrotic
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Fig. 4. Directionality of genes in fibrotic gene modules 4 (448 genes) and 7 (260 genes) in the discovery
dataset. Genes representing fibrotic core genes in clusters 4 and 7 were compared to differentially expressed
genes (DEGs) shared in the three datasets (F4 vs FO fibrosis scores, 246) including the discovery dataset and
Hoang/FFPE datasets. Module 4 and Module 7 contain 44 and 90 DEGs, respectively.
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Fig. 6. Canonical pathways in patient subgroups. DEGs from one versus rest DESeq2 analysis were analyzed
using Ingenuity Pathway Analysis. A manually selected list of relevant canonical pathways in fibrosis pathology
was used. Colors indicate directionality Z score, where a higher enrichment indicates higher value.

mechanisms. For example, collagen biosynthesis is upregulated in subgroup 1 and 3, while downregulated in
subgroup 5 and 6. Additionally, other relevant mechanisms such as cytokine signaling (e.g. IL-6, IL-17 signaling),
MAFLD (NAFLD) signaling, platelet homeostasis, insulin secretion signaling and AMPK signaling show distinct
patterns across patient subgroups.Since the identification of the 14 gene modules was based on many genes
(~11 K genes), a classification model with most relevant features (model-based feature selection) was trained
to predict the six patient subgroups. Therefore, several prediction models were tested and generated to classify
the six patient subgroups. Since the actual group sizes of the patient subgroups is imbalanced (Fig. 7A), we used
over-under sampling strategies (Fig. 7B, C, D and E) to optimize the datasets and generalizability of the models.
Models were evaluated based on Matthew’s correlation coefficient (Fig. 7F) and balanced accuracy (Fig. 7G).
Five different training input datasets (Imbalanced, SMOTE-1, SMOTE-2, ADASYN-1 and ADASYN-2) and
4 algorithms (random forest, decision trees, xgboost, and k-nearest neighbors) were used for hyperparameter
optimization with a randomsearch() implementation. The random forest algorithm and ADASYN-1 training
set were selected (See supplementary Tables 1 and 2) based on metrics and non-parametric paired group
comparisons (See supplementary tables). For further model hyperparameter optimization, random forest and
ADASYN-1 training set were used with a gridsearch() implementation. The final model with the best validation
metrics was tested on the 30% test set, which showed a balanced accuracy above 80%. (See Fig. 7). Using the
final model, two unseen datasets were classified into the six patient subgroups and visualized in a UMAP using
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Fig. 7. Data Augmentation and Hyperparameter Optimization. This figure illustrates the impact of data
augmentation techniques on training input datasets with varying patient subgroup sizes (A-E) and evaluates
the performance of hyperparameter optimization metrics across four machine learning algorithms (F, G).
The datasets include the original imbalanced dataset (A) and augmented datasets generated using SMOTE-1
(B), SMOTE-2 (C), ADASYN-1 (D), and ADASYN-2 (E). Hyperparameter optimization was conducted for
Random Forest, Decision Trees, XGBoost, and k-Nearest Neighbors. Performance was assessed with Matthews
Correlation Coefficient (MCC) and Balanced Accuracy (BA). Evaluation employed nested cross-validation
with stratified inner (k=2) and outer (n=5) fold cross-validation, using metrics obtained from 50 iterations
per model using the randomsearch() implementation. SMOTE-1 and ADASYN-1 adjusted training split
subgroup sizes to (Subgroup 1 =25, Subgroup 2 =25, Subgroup 3 =25, Subgroup 4 =20, Subgroup 5 =20,
Subgroup 6 =20), while SMOTE-2 and ADASYN-2 adjusted them to (Subgroup 1 =15, Subgroup 2=15,
Subgroup 3 =15, Subgroup 4= 15, Subgroup 5= 15, Subgroup 6=15).

the 14 hub genes identified in the discovery dataset. Patient subgroups in unseen datasets showed separation
(See Fig. 8).

Discussion

We investigated the hepatic expression patterns in a large population to obtain mechanistic insight into biological
complexity and stratify a patient population of MASLD-MASH into patient subgroups. MASLD disease and
comorbidities are increasing hepatic complications worldwide with a significant health burden and long-term
consequences. Currently, there is only one available FDA approved drug (Resmetirom recently accepted)
possibly linked to the absence of a precise patient stratification®®. Our work shows a potential alternative for
patient population stratification into patient subgroups based on commonalities in gene expression in patients
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Fig. 8. Patient subgroup predictions in the unseen dataset using the 14 hub gene space from the discovery
dataset. A) Patient subgroups predictions in the FFPE dataset. Subgroup 1 (n=+#2), subgroup 2 (n=#48),
subgroup 3 (n=#6), subgroup 4 (n=#1), subgroup 5 (n=#4) and subgroup 6 (n=+#6). B) Patient subgroups
predictions in the Hoang dataset. Subgroup 1 (n=#3), subgroup 2 (n=#52), subgroup 3 (n=#22) and
subgroup 6 (n=+#1).

using hub genes signature of representative MASLD-MASH mechanisms. Additionally, patient subgroups were
characterized on the gene and pathway level to further pinpoint potential therapies to combat MASLD-MASH
manifestations.

First, to obtain mechanistic insight, a WGCNA analysis on a large discovery dataset allowed us to identify
14 gene modules. These gene modules represent pathogenesis-related molecular mechanisms and biological
complexity in individuals with varying degree of biopsy-diagnosed fibrosis and steatosis. Of note, on the
MASLD-MASH continuum spectrum gene modules were linked to multiple well-known key mechanisms
including hepatic fibrosis?, inflammation?, cholesterol biosynthesis*, as well as to recently associated MASLD-
related mechanisms such as AMPK signaling®. Hepatic fibrosis related genes were distributed in both gene
module 4 (COL4A2, COL1A1l and TIMP1) and gene module 7 with the involvement of transcription factor
AEBP1 and downstream genes (EFEMPI, ITGBL1, LAMC3). Of note, transcription factor AEBP1 was
upregulated in F4 advanced fibrosis (see Fig. 4) and has been suggested as a potential drug target candidate
previously®>?’. Altogether, this might indicate that multiple mechanisms in different modules drive patient
population heterogeneity, biological complexity, and have a mechanistic link to fibrosis pathogenesis.

Secondly, considering the biological heterogeneity embedded in the 14 modules their corresponding 14 hub
gene signature was used to stratify the discovery dataset into six patient subgroups and provide a more realistic
patient stratification. Of note, the six patient subgroups remained separate in the 11k gene space used to identify
the gene modules. This suggests a high regulatory property in the hub gene signature and patient subgroup
separation. In support of our stratification methodology, different approaches using clustering methods have
been used to stratify patient populations to circumvent the biological complexity and heterogeneity to find
distinct pathology patterns in patient subgroups”->*-2°.

Thirdly, to characterize distinct pathology patterns and delve into the pathological subtype manifestations
between patient subgroups, subgroup-specific DEGs (e.g. Subgroup 1 vs Subgroup 2-6) were identified using
differential expression analysis. Of relevance, subgroup-specific DEGs were mapped to IPA pathways and showed
differentially expressed canonical pathways. For instance, directionality is opposite between subgroup 1 and
subgroup 6 in both extracellular matrix organization and integrin signaling pathway, suggesting different degree
of pathology across subgroups. Recently, a similar approach, using the proteome signature of inflammatory serum
proteins (e.g. IL6, IL18), patient subgroups with distinct biology were identified, for instance showing differences
in cytokine signaling patterns between MASLD and MASH (tendency for lower Interleukin-6 in MASH)’. In
line with our results, subgroup 6 (highest average pathology scores) showed downregulation of Interleukin-6
signaling. However, relationship between pathology degree and IL-6 signaling may depend on other factors
(e.g. visceral adiposity, body mass index)®°. Collectively, these distinct pathology patterns in patient subgroups
may contribute to the complexity in liver disease manifestations and possibly suggest their consideration to
achieve a successful pharmacotherapy. Finally, the final classification model allowed us to predict the different
six subgroups in two unseen datasets (smaller in population size with mild-moderate fibrosis stages individuals)
showing separation in the 14 hub gene signature space.
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Limitations

These findings should be interpreted with caution in the context of fibrosis development heterogeneity and
the relationship of biological patterns with temporality in the MASLD-MASH continuum. Since the patient
population was stratified only using their liver transcriptome on a single point in time, it was not possible to
capture hepatic expression dynamics. Moreover, this study lacks the access to more metadata as well as other
data from other omics technologies (e.g. proteome, microbiome). In this regard, future studies considering
genetics (SNPs), epigenetic factors as well as relationship with clinical phenotypes and metadata may improve
stratification with a higher fidelity to capture patient variability.

Conclusion

Our work shows a potential alternative for patient population stratification based on hub gene signature of
representative MASLD-MASH mechanisms. We have shown that different gene modules drive patient
heterogeneity which also have a mechanistic link to pathological fibrosis. These findings hold significant
implications for patient stratification in clinical trials assessing potential pharmacotherapies. Moreover, the
findings can be used for patient subgroup-specific consideration in the selection and validation of preclinical
models for novel target discovery and therapeutic intervention design. Future research is needed to validate the
relationship of the subgroup-specific pathway patterns and identify novel protein targets for virtual screening
and/or in vitro validation in preclinical models.

Data availability

The datasets used and/or analyzed during the current study are available from the respective GEO repository.
Code for the data analysis on this article is available in (https://github.com/mangonzalez12/Mechanistic-Pathol-
ogy-NAFLD.git).
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