European Journal of Operational Research 320 (2025) 115-131

o p—

EUROPEAN JOURNAL OF

Contents lists available at ScienceDirect e S O

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Production, Manufacturing, Transportation and Logistics ' N

Check for

Exact and heuristic approaches for the ship-to-shore problem

M. Wagenvoort®", P.C. Bouman ?, M. van Ee", T. Lamballais Tessensohn ¢, K. Postek ¢

a Erasmus University Rotterdam, Erasmus School of Economics, Econometric Institute, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
b Netherlands Defence Academy, Faculty of Military Sciences, Het Nieuwe Diep 8, 1781 AC Den Helder, The Netherlands

¢ TNO, Military Operations, Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands

d Independent researcher, Rotterdam, The Netherlands

ARTICLE INFO ABSTRACT

Keywords:

OR in defence
Ship-to-shore problem
Branch-and-price

Integer linear programming
Computational complexity

After a natural disaster such as a hurricane or flooding, the navy can help by bringing supplies, clearing roads,
and evacuating victims. If destinations cannot be reached over land, resources can be transported using smaller
ships and helicopters, called connectors. To start aid on land as soon as possible this must be done efficiently.
In the ship-to-shore problem, trips with their accompanying resources are determined while minimising the
makespan. Limited (un)loading capacities, heterogeneous connector characteristics and constraints posed by
priority of the resources and grouping of the resources (resource sets) all require that the connector trips are
carefully coordinated. Despite the criticality of this coordination, existing literature does not consider resource
sets and has only developed heuristics. We provide a formulation that incorporates resource sets and develop
(i) an exact branch-and-price algorithm and (ii) a tailored greedy heuristic that can provide upper bounds. We
find that 84% of our 98 practical instances terminate within an hour in on average 80 s. Our greedy heuristic
can find optimal solutions in two-thirds of these instances, mostly for instances that are very constrained in
terms of the delivery order of resources. When improvements are found by the branch-and-price algorithm,
the average gap with the makespan of the greedy solution is 40% and, in most cases, these improvements are
obtained within three minutes. For the 20 artificial instances, the greedy heuristic has consistent performance
on the different types of instances. For these artificial instances improvements of on average 35% are found
in reasonable time.

1. Introduction ships, and deliver them to the shore. Hence, it can be seen as a
pick-up and delivery vehicle routing problem (PDVRP) (Zachariadis
et al.,, 2016). However, large naval operations typically require the
coordinated delivery of various types of resources, which we identified
based on various interviews with experts on military operations at the

Defence and Security unit of the Netherlands Organisation for Applied

After a natural disaster such as a hurricane, the navy can provide
aid by bringing supplies, helping to clear roads, and evacuating victims.
In case of coastal areas, the navy provides support by transporting
supplies from ships to the shore using smaller ships and helicopters,
called connectors. For example, the US military delivers supplies in
relief missions through a floating dock from which smaller and lighter
vessels make deliveries to the pier (Debusmann Jr., 2024). This has to
be done efficiently for the help on land to start as soon as possible.

Scientific Research (TNO), a Dutch national research institute. To en-
sure this coordinated delivery, additional decisions on how to load the
heterogeneous resources on the connectors are needed. Compared to

As the planning of such an operation may depend on various situa-
tional parameters, such as weather conditions, the planning of such an
operation has to be done fast. In addition to humanitarian purposes,
this problem can be encountered in other military operations such
as assault, withdrawal, raid, or support of other operations (Maritime
Warfare Centre, 2019).

Planning such an operation is known as the ship-to-shore problem,
which is a type of transportation problem. In the ship-to-shore problem,
connectors pick-up resources, such as personnel and vehicles, from

* Corresponding author.
E-mail address: wagenvoort@ese.eur.nl (M. Wagenvoort).

https://doi.org/10.1016/j.ejor.2024.08.017
Received 11 January 2023; Accepted 15 August 2024
Available online 19 August 2024

the traditional PDVRP, the ship-to-shore problem focuses on including
the various types of coordination required within large scale operations,
while reducing the movement of connectors to round-trips between the
various loading and unloading spots at the ships and the shore.

One way in which coordination between the deliveries of the re-
sources is imposed is through priority levels. Resources with a lower
priority can only be delivered after items with a higher priority have
arrived on the shore. This helps ensure that the command-and-control

0377-2217/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
mailto:wagenvoort@ese.eur.nl
https://doi.org/10.1016/j.ejor.2024.08.017
https://doi.org/10.1016/j.ejor.2024.08.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2024.08.017&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Wagenvoort et al.

structure remains clear and ensures there are clear phases in the execu-
tion of the plan. Between these phases, resources should not be mixed,
as it is imposed that preparatory measures should be completed before
expensive equipment can be safely deployed. Strict priority orderings
can also exist in other related problems. For example, consider the
installation of a wind farm where resources should be brought from the
shore to the sea. Here it is preferable to deliver expensive components
only after the foundation is completed. Another way coordination is
imposed is by requiring groups of resources to be delivered at the same
time or immediately after each other. Namely, units may have trained
with particular vehicles and other units. They can be temporarily
separated while being transported, but should be able to work together
on the shore. These types of coordination do not exist in the PDVRP.
Despite their importance in practical operations, these coordinating
constraints have not been considered in prior research on the ship-
to-shore problem (Christafore Jr., 2017; Danielson, 2018; Strickland,
2018).

The aim of the ship-to-shore problem to minimise the duration of
the operation, such that all resources are on land as soon as possible.
In the operation, connectors are loaded at a ship, called the sea base
(SB), after which the resources are transported to a landing area (LA) to
be unloaded such that the connector can return to a (possibly different)
SB for its next trip. Note that only one SB and one LA is visited in each
trip for safety reasons. The SBs and LAs accommodate different types
of connectors. For example, helicopters can only be loaded at a landing
platform on the deck of the ship, while surface connectors cannot
use this landing platform. Connectors also have different dimensions,
fuel capacities, fuel consumption rates, speeds and weight capacities.
Furthermore, the speed of a connector depends on its design speed,
whether it is loaded or not, and the state of the sea, i.e. the wind and
the waves.

The ship-to-shore problem can include various operational con-
straints that require coordination between the schedules of the different
connectors. Our problem formulation has three such constraints. Firstly,
there is limited (un)loading capacity, as there is a limited number of
(un)loading spots, putting a constraint on the number of connectors
that can be (un)loaded at the same time. Secondly, we consider a
heterogeneous fleet of connectors with varying speeds, fuel capacity
and consumption, and dimensions, affecting the set of resources that
can be transported simultaneously. Thirdly, we require coordination
between the delivery of the resources in the two ways described before.
Namely, we consider priority levels and groups of resources, called
resource sets, that should be delivered together. The time period in
which the resources from a resource set are delivered is called a delivery
wave for that resource set. There is no ordering imposed between the
different waves with the same priority and these delivery waves can
(partially) overlap. Note that this implies that the minimum number of
connectors should be such that each resource set can be delivered using
each connector at most once.

An input to this problem are the ways in which connectors can be
loaded during a trip. In the ship-to-shore application, there are very
specific practical constrains that are very challenging to incorporate
in the model. We therefore focus on optimising the transportation
schedule and take the ways connectors can be loaded as input.

The main contributions of this paper are as follows. First, we
develop a formulation for the ship-to-shore problem that allows for
coordination between the resources, and we prove the ship-to-shore
problem to be NP-hard. We then develop two solution methods: An
exact branch-and-price algorithm in which heuristic pricing is used
in combination with an exact pricing method, and a tailored greedy
heuristic that can also be used as an upper bound in the formulation
and algorithm. A branch-and-price algorithm is used as preliminary
results showed that the integrated problem did not work well. We
conduct computational experiments with instances from practice to
show that the branch-and-price algorithm is able to solve the majority
of these instances within an hour. Finally, we investigate under which

116

European Journal of Operational Research 320 (2025) 115-131

circumstances which method is preferred. We observe that the greedy
algorithm performs particularly well on instances where resource set
constraints exist, but no priorities are defined. We furthermore observe
that the exact method has the highest potential to improve solutions
when resource set constraints are not present. We additionally use 20
artificial instances to compare with our practical instances. These show
that for general instances there is no difference in the performance
of the greedy heuristic. The artificial instances confirm the ability of
the branch-and-price algorithm to find improvements compared to the
solution of the greedy heuristic fast.

The paper is organised as follows. In Section 2, we formally intro-
duce the ship-to-shore problem and the time-space network which we
use to solve this problem. Section 3 gives an overview of the related lit-
erature and how the problem differs from a PDVRP. Our mathematical
model and proof of NP-hardness are given in Section 4. Our branch-
and-price algorithm is provided in Section 5 and our greedy heuristic
is described in Section 6. In Section 7, we describe the experimental set-
up and analyse the performance of our exact algorithm and heuristic.
We end with a conclusion in Section 8.

2. Problem definition

In this section, we formally define the problem and its notation.
An overview of the notation can also be found in the supplementary
materials.

In the ship-to-shore problem we have a set of sea bases X and a set
of landing areas A that each have a set of (un)loading locations, P; for
i € X and D, for i € A, respectively. The set of loading locations and
unloading locations can then be defined as P = U,csP; and D = U,c4D;,
respectively. We denote the set of connectors, i.e., smaller ships and
helicopters used for transporting the supplies, as C. Let M be the set of
resource types for which the dimensions are known, and #,, the demand
for resource type m € M. Here, we aggregate resources with the same
origin, destination, priority level, and resource set, if assigned any. It is
not possible to aggregate resources that are not identical in the origin,
destination, priority, and/or resource set, as, for example, personnel
should stick together with their unit and it is therefore specified what
their origin is. Personnel with different priority levels, origins, and/or
destinations, are thus considered different resource types. We define
the meaning of priority level and resource set later in this section.

For each connector ¢ € C, £¢ denotes the set of feasible ways
connectors can be loaded, called loadings. Here | € L¢ is a vector of
length | M| representing the number of resources of each type m € M
that can be transported together, ie., they can feasibly fit together on
connector ¢, and have the same priority level, origin and destination.
This implies that exactly one loading needs to be selected for each trip
made by a connector from an SB to an LA. Travel times between the
locations are denoted by #;,, fori,j € PUD and ¢ € C. When i € P
and j € D, t;;, is determined using the speed of connector ¢ € C
while it is loaded, and when i € D and j € P, using the speed while
it is empty. The (un)loading time for a connector ¢ € C at location
i € PUD is denoted by 7/ . For each connector ¢ € C we denote the
fuel capacity, fuel consumption rate, and refuelling rate by Q., 4., and
g, respectively.

Due to the (un)loading capacities, at most one connector can be
located at each i € P U D at all times. Furthermore, the fuel level of
a connector should be non-negative at all times. All resources have a
priority level and our convention shall be that the lower the number,
the higher the priority. Hence, all priority = € {1, ..., Il — 1} resource
types should be delivered at their destination, before the unloading of
priority = + 1 resource types starts. Furthermore, we have a collection
of resource sets s € S, where S is a partition of (a subset of) M, ie.
not all resources are necessarily part of a resource set. The delivery
of resource types within a resource set should start within ¢ time of
each other. Namely, if unloading of a connector with resources from
resource set s starts at time ¢ and takes ¢ time, then unloading the

M. Wagenvoort et al.

next connector containing resources from resource set s should start
at time ¢ + ¢ + ¢ at the latest. We call these requirements the resource
set constraints. If a resource type is not assigned to any resource set,
there is no requirement to link the delivery of these resources to the
delivery of other resource types, but only to those of that same type.

A solution to this problem defines for each connector ¢ € C, a
sequence of trips from a loading location i € P to an unloading location
j € D where for each trip a loading is assigned, such that the makespan
is minimised and all constraints are met.

2.1. The time-space network

To solve the problem, we make use of a time-space network. In
the time-space network we work with discrete time periods. This time
discretisation results in loss of exactness unless the time period length
is set to the greatest common divisor of all (un)loading times and travel
times (Boland et al.,, 2019). However, when the time period length
decreases, the number of required time periods increases and so does
the size of the network. Hence, there is a trade-off between the size of
the time-space network and solution quality. In practice, the distances
between the SBs and LAs are quite large. Thus, the travel times are
relatively long compared to the (un)loading time. Therefore, the length
of a time period is chosen such that (un)loading can occur in one time
period (Amrouss et al., 2017). In the remainder of this section, we
explain how the time-space network is constructed.

Due to (un)loading capacities, there is a maximum number of
connectors that can be (un)loaded at the same location simultane-
ously. Furthermore, as we are considering a heterogeneous fleet of
connectors that can reach different loading spots, the type of connectors
(un)loading at a location has to be taken into account. Moreover, it
is possible that the same connector visits the same location multiple
times. Thus, we have to model the movement of connectors over time
and allow them to visit the same location multiple times. To model
this problem, we therefore opt for the usage of a time-space network
inspired by the approach of Chardaire et al. (2005). To construct a
time-space network for an instance, an upper bound on the number
of required time periods is required. To this extend, we will use the
upper bound obtained using the greedy heuristic described in Section 6
denoted by T.

Let G = (W, A) be the time-space network with W the set of nodes
and A the set of arcs. The nodes in the time-space network are a
combination of a location and a time period and the arcs denote a
transition through time and space.

There are four types of nodes: starting, ending, (un)loading, and
waiting nodes. The starting and ending nodes denote the starting and
ending locations of the connectors which are denoted by z, and 7/ for
connector ¢ € C, respectively. Hence, the set of starting and ending
nodes is defined as © = {(r,,1) | c€C} and 7/ = {(z/,T)| c e},
respectively. (Un)loading nodes correspond to (un)loading locations at
the SBs and LAs and are defined as P’ = {(i,7) | i€ P,t=1,...,T} and
D' = {(i,t)|ieD,t=1,...,T} for loading and unloading activities,
respectively. The interpretation of node (i,7) is that the connector is
(un)loaded at location i during time period ¢. Waiting nodes are added
to model that a connector waits for a free (un)loading spot or travels
below maximum speed. The set of waiting locations is denoted by
W = {(i,c) | i € ZUA,c €C} and the corresponding nodes by W’
{G,0)|ieWw,t=1,...,T}. The total set of nodes can then be defined
aaN =P uDuwurur.

The set of arcs A consists of four types of arcs: starting, ending,
travelling, and waiting arcs. The starting and ending arcs denote the
departure and return of a connector from its starting or ending location
and are defined as {(i,j)|i€r,j€P'} and {(i,j)|ieD, jer'},
respectively. Furthermore, we include the option of not using a con-
nector by including an arc from node (z,, 1) to (z.,T). Travelling arcs
correspond to a feasible transition in both time and space between a
loading location i and unloading location j. A feasible transition in

117

European Journal of Operational Research 320 (2025) 115-131

space implies that i and j can both be accessed by one of the available
connectors. A transition is feasible in time when the time difference of
node i and j is at least equal to the travel time 7;;. for some connector
¢ € C. It is possible that a connector does not directly proceed to the
next location due to the priority, resource set, and capacity constraints,
but either waits for a spot to be free or travels below maximum speed.
For a travel time of #,;. between loading location i and unloading
location j, or vice versa, by connector ¢ € C, let A be the equivalent
number of time periods. Then, arcs would have to be added from time
period ¢ to t+A+1,1+4+2, ..., T. To avoid adding all possible transitions
between the different locations, we use the previously defined waiting
nodes. With the use of these waiting nodes, we only have to add the
shortest arc between locations. Namely, from each loading node an
arc is added to an unloading node or waiting node at an LA when
feasible in time and space, and from each unloading node an arc is
added to a loading node or waiting node at an SB when feasible in
time and space. Finally, waiting arcs are added between waiting nodes
to allow for a connector to stay at a waiting location, namely the arcs
{G,0),(G,t+1) | jewW,t=1,...,T —1}. Hence the number of arcs in
the network is linear in the number of SBs, LAs, connectors, and time
periods.

Example 1. An example of a time-space network for one connector
with one SB containing one dock and one LA containing one beach is
given in Fig. 1. In this example, the connector needs two time periods
to travel from the SB to the LA and one time period to travel from the
LA to the SB. The dashed and thick lines represent all arcs and the thick
lines correspond to one feasible path through the network. We see that
the connector is loaded with resources at the SB in time period 1, travels
to the beach during time periods 2 and 3 to arrive for unloading in time
period 4. After visiting the beach, the connector does not immediately
proceed to the SB, but waits for one time period before proceeding.
After loading at the SB in time period 7, the connector ends its last trip
after unloading in time period 10.

Finally, we have to define the deliveries of resources from resource
sets in terms of the time—space network. For a resource set, it is imposed
that in a delivery wave, deliveries of its resources take place within e
time of each other. In the time-space network, we therefore impose
that resources from a resource set should be delivered in consecutive
time periods.

The above described time-space network can be used to model
the movement of connectors through both time and space. A solution
for the ship-to-shore problem consists of, for each connector, a path
through the time-space network and for each trip from an SB to an LA,
the loading that should be transported. Which loadings can be used on
a specific arc while satisfying the priority and resource set constraints,
will depend on the loadings that were assigned in the trips preceding
that arc. Therefore, simply duplicating all arcs from an SB to an LA
node for each loading would result in some paths through the time-
space network being infeasible with respect to these constraints. We
describe how loadings are considered in Section 5.2.

3. Literature review

We first focus on the literature related to the ship-to-shore problem.
Thereafter, we link it to some other practical problems with similar
characteristics and we describe how the ship-to-shore problem can be
interpreted as a special case of the pick-up and delivery vehicle routing
problem.

3.1. The ship-to-shore problem
The ship-to-shore problem has been addressed in some research. Vil-

lena (2019) solves the ship-to-shore problem using an Integer Linear
Programming model to minimise the makespan. The author considers

M. Wagenvoort et al.

Time period 1 2 3

Start location

Dock (SB)

Waiting (SB)

Waiting (LA)

Beach (LA)

End location

European Journal of Operational Research 320 (2025) 115-131

Fig. 1. Example of a time-space network for one connector with one SB containing one dock and one LA containing one beach. Here all possible arcs are given (the bold and
dashed lines combined) for a connector that takes two time periods to travel from the SB to the LA and one time period to travel from the LA to the SB. The bold lines are an

example of a path through the network.

the priority levels of the connectors, however, the author does not
consider (un)loading capacities and the fact that some resources are
complementary and should belong to the same wave. Fuel capacities
are imposed by defining a maximum distance that the connectors can
travel and thus, refuelling is not allowed.

Christafore Jr. (2017), Danielson (2018) and Strickland (2018)
generate schedules for the ship-to-shore problem using a three-phase
approach. In the first phase, a quickest flow problem is considered.
In this problem, the aim is to maximise the total demand satisfied
given a fixed number of time periods. If the actual demand is higher
than the satisfied demand, the number of time periods is increased.
When the number of time periods is large enough for all demand to
be satisfied, the corresponding number of connector trips per connec-
tor type can be determined. In this phase, capacity constraints are
disregarded and hence no direct schedule can be constructed from
these trips. In the second phase, trips are assigned to connectors in
an assignment problem using a heuristic. Finally, in the last phase,
a schedule is constructed from the output of the assignment problem
such that the makespan is minimised and (un)loading capacities are
satisfied. Christafore Jr. (2017) and Strickland (2018) only consider
the transport of fuel, while Danielson (2018) extends this framework
to multiple commodities.

In the three-phase approach from Christafore Jr. (2017), Danielson
(2018) and Strickland (2018), (un)loading capacities are disregarded
when the set of trips to be executed are determined in the first phase.
Therefore, this set of trips could be suboptimal compared to the set of
trips that result from an integrated approach. Furthermore, resource
set constraints are hard to impose as the set of trips selected in the first
phase could result in an infeasible solution.

3.2. Related problems

There exist problems that have a similar structure to the ship-
to-shore problem. First, two specific examples are given. Second, its
relation to the pick-up and delivery vehicle routing problem is ex-
plained.

An example of a problem with similar characteristics to the ship-
to-shore problem is an evacuation where people are located at one or
multiple locations and have to be brought to one or multiple shelter
locations. Some locations might have to be evacuated first because they
are more in danger and hence have a higher priority. The question

118

is then what trips the vehicles, e.g. buses, have to make to evacu-
ate the area as quickly as possible. Kulshrestha et al. (2014) aim to
minimise the evacuation time by assigning buses to pick-up location,
while incorporating uncertainty in the demand. They do not consider
priorities, resource sets, fuel capacities, and (un)loading capacity at
the locations and assume that buses only travel to a fixed pick-up
point. Zhao et al. (2020) use a heuristic to determine the allocation
of buses to trips with the aim of minimising both the in-bus travel time
and the waiting time of the evacuees. They incorporate time-windows
in which each location should be visited, which can be seen as a strict
type of priority constraints. They do not consider resource sets, and fuel
and (un)loading capacities.

Another example of a problem with similar characteristics is the
installation of a wind farm. Components of the wind mills and the un-
derlying wind farm infrastructure have to be transported from the shore
to the sea using vessels. Priorities arise since certain components are
required at the start, while others are only required later on. Resource
set constraints can be interpreted as the delivery of components that
have to be used together in the next step in the installation process.
Vessels are rented and hence to minimise the costs, the installation of
the wind farm has to be completed as fast as possible. Ursavas (2017)
uses a Benders decomposition approach to determine the time at which
a particular vessel should start a certain building process and what
loading is selected in each tour. Weather predictions are included as
the weather has a big influence on the time that certain steps in the
building process require.

Another related problem is the pick-up from and delivery to offshore
platforms. Here, vessels have to be scheduled to visit offshore oil and
gas platforms to execute deliveries and pick-ups, e.g the delivery of
equipment and collection of waste. The vessels have capacity con-
straints, but also capacity constraints for (un)loading at the offshore
platforms can exists. This problem is studied by Gribkovskaia et al.
(2008) and Cuesta et al. (2017) and solved using a tabu search and
adaptive large neighbourhood search, respectively.

More generally, the ship-to-shore problem can be linked to a pick-
up and delivery vehicle routing problem (PDVRP), where items should
be collected at a pick-up location and then delivered to its delivery
location. However, the location that is visited determines the resource
that is transported, while in the ship-to-shore problem it has to be
determined which resources are picked-up each time a connector visits
the location. Therefore, unless the general PDVRP is extended to a split

M. Wagenvoort et al.

delivery problem, each location is visited exactly once as opposed to the
ship-to-shore problem in which trips are made back and forth between
a limited set of locations (Nowak, 2005). In general, this problem
does not contain priorities, resource sets, refuelling constraints, and
(un)loading capacities at the locations. For each of these aspects, we
briefly explain the difference between related aspects of the PDVRP and
the ship-to-shore problem.

Time windows, which are a common extension of the basic PDVRP
(Ticha et al., 2017), can be seen as a type of priority ordering between
the resources. However, the difference is that there is no strict ordering,
but only a partial ordering when using time windows. Furthermore, the
time windows impose the constraint that the pick-up and delivery occur
during a certain time window, which is not necessarily the case in the
ship-to-shore problem.

Resource set constraints could be interpreted as requiring all items
with the same pick-up and delivery pair to be delivered at the same
time, while allowing for split deliveries. Synchronised visits in a ve-
hicle routing problem (VRP) have been considered to allow for driver
transitioning or executing tasks to be performed by more vehicles, but
differ from the ship-to-shore problem where visits should be synchro-
nised in a delivery wave that can contain multiple consecutive time
periods (Bredstrom & Ronnqvist, 2007; Drexl, 2012; Liu et al., 2019).

Fuel is sometimes considered in transportation problems with the
aim of minimising these costs (Xiao et al., 2012) or the emissions
(Behnke et al., 2021). Refuelling options have been studied in relation
to the VRP since the introduction of alternative fuel-powered vehicles
that have a more limited driving range and more limited and costly
refuelling options compared to traditional vehicles. We can model
the fuel level in the ship-to-shore problem in a similar way as is
done in the electrical VRP. Desaulniers et al. (2002), Hiermann et al.
(2016), Schneider et al. (2014) assume vehicles remain at a charging
location until the batteries are full. However, in the ship-to-shore
problem, refuelling can occur simultaneously with loading a connector,
and can be terminated before the connector is fully refuelled, which
requires an additional constraint.

The (un)loading capacities are essential in the ship-to-shore prob-
lem, as disregarding them can lead to infeasible schedules where the
capacities are exceeded. A limited number of (un)loading spots is
realistic for routing problems, as loading capacity might be limited at
a depot. However, these are usually disregarded in the basic vehicle
routing problem. In practice, depots have a limited number of loading
bays at which vehicles can be loaded, resulting in the vehicle routing
problem with docking constraints (Rieck & Zimmermann, 2010).

4. Mathematical model and complexity

In this section, we discuss the computational complexity of the ship-
to-shore problem defined in Section 2. In Section 4.1, the computational
complexity of the ship-to-shore problem and two special cases are
determined to be NP-hard. Thereafter, we provide a mathematical
model in Section 4.2 to solve the problem using the time-space network
approach defined in Section 2.1.

4.1. Computational complexity

To proof that the ship-to-shore problem defined in Section 2 is NP-
hard, we consider the decision version of the problem. In this problem,
the question is whether all resources can be transported in at most N
periods while adhering to all previously mentioned constraints.

First, we consider the special case in Theorem 1. In this case we
have one sea base, one landing area and one connector.

Theorem 1. The decision version of the ship-to-shore problem with a single
sea base, landing area, connector and priority level; with zero (un)loading
times, fuel consumption rates and resource sets; and with unit travel times
and multiple resource types, is strongly NP-complete.

119

European Journal of Operational Research 320 (2025) 115-131

Proof. This special case is in NP as it can be checked in polynomial
time whether demand is satisfied and the makespan is at most N.

We will use a reduction from Set Cover, which is known to be
strongly NP-complete (Karp, 1972), to prove that this special case is NP-
complete. In Set Cover, we are given a set of elements E = {e,,...,e,}
and some subsets of those elements S, ...,.S,,, where each S; C E.
We say that an element is covered if at least one subset containing the
element is chosen. The question is whether we can cover all elements
by choosing at most K subsets.

Given an instance of Set Cover, create a resource type for each
element, and set its demand equal to 1. Furthermore, create a load-
ing for every subset, where the loading contains the resource types
corresponding to the elements from the subset. Finally, set N = 2K — 1.

If the instance of Set Cover is a yes-instance, we can use the loadings
corresponding to the chosen subsets. Therefore, the created instance of
the ship-to-shore instance is also a yes-instance. Similarly, if the ship-
to-shore instance is a yes-instance, it naturally follows that the instance
of Set Cover is also a yes-instance. W

Second, consider the special case in Theorem 2. In this case we
have one sea base. The resource types that have to be transported
only differ in the destination to which they have to be transported,
e.g., only fuel has to be transported from the sea base to different
locations. Connectors can have various capacities of transporting this
resource, e.g., one connector can transport 1000 gallons of fuel at a
time, while another connector can transport 2000 gallons. There is one
priority level, i.e., the delivery of the resource at one location is not
prioritised over other locations, and there are no resource sets, i.e., it is
not required to deliver the demand at one location at the same time
or directly after one another. This problem can thus be interpreted
as the delivery of fuel to petrol stations from a central depot. This
special case differs from the special case in Theorem 1 as it contains
multiple destinations and connectors, but resources that only differ in
their destination.

Theorem 2. The decision version of the ship-to-shore problem with one sea
base, resource types that only differ in their destination, multiple connectors,
(un)loading times equal to zero, unit travel times between the sea base and
the landing areas, one priority level, no resource sets, and a fuel consumption
rate equal to zero, is strongly NP-complete.

Proof. This special case is in NP as it can be checked in polynomial
time whether demand is satisfied and the makespan is at most N.

We will use a reduction from 3-Partition, which is known to be
strongly NP-complete (Garey & Johnson, 1979), to prove that this
special case is NP-complete. In 3-Partition, we are given 3m numbers,
ai,...,as,. Each number q; satisfies B/4 < a; < B/2, where B
iZ?;"l a;. The question is whether we can partition the numbers in
subsets of size 3 with equal sum. More formally, do there exist sets
Sis..., S, €{1,...,3m} with |S;1=3 for all j, S;nSy = ¢ for all j, j’,
and Z,Esj a; = B for all j?

Given an instance of 3-Partition, create m landing areas, each with
a demand of B. Hence, there are m resource types with demand B
that only differ in the destination. Then, create 3m connectors, where
connector i can ship g; units of a resource per trip. Finally, set N = 1.

Suppose that the instance of 3-Partition is a yes-instance. If we send
the connectors corresponding to the numbers in S, to landing area j, all
demand is satisfied within one time unit. Therefore, the ship-to-shore
instance is also a yes-instance. Conversely, suppose that the ship-to-
shore instance is a yes-instance. This means that all demand is satisfied
within one time unit. Therefore, the connectors visiting landing area j
have a total capacity of B. Furthermore, because B/4 < g; < B/2, we
know that each landing area is visited by exactly 3 connectors. Hence,
the instance of 3-Partition is also a yes-instance. [l

M. Wagenvoort et al.

European Journal of Operational Research 320 (2025) 115-131

Table 1

List of sets, variables and parameters for the Integer Linear Programming formulation.
Set Explanation
C Set of connectors
P Set of loading nodes
D Set of unloading nodes
M Set of resource types
N Set of nodes
R Set of routes
s Set of resource sets
Variables Explanation

xrt‘

Vit A binary variable equal to 1 if priority z € {1,..., T} resources are delivered in time period 1 € {1,...,T}
T3t Time period at which the first resource with priority = € {1,..., 11} is unloaded
T;’"” Time period at which the last resource with priority = € {1,...,IT} is unloaded

Vg

A binary variable equal to 1 if route r € R is assigned to connector ¢ € C, 0 otherwise

A binary variable equal to 1 if resources from set s € S are delivered in time period 7 € {1,...,T}

whert A binary variable equal to 1 if a wave of unloading resources from set s € S starts in time period 7 € {1,...,T}
werd A binary variable equal to 1 if a wave of unloading resources from set s € S ends in time period 7 € {1,...,T}
s pan The makespan, ie. the duration of the operation
Parameters Explanation
d, The last delivery period of route r € R
n, The number of resources of type m € M that have to be transported
Ay The number of resources of type m € M that are transported in route r € R
T The number of time periods
n The number of priority levels
A similar reduction from Partition (Karp, 1972) shows that the Xre < Vit ceCtref{l,....Ty,ne{l,..., I}
problem is (weakly) NP-hard for two landing areas. reR(c.{m.t})
Corollary 1 follows from Theorem 1 and Theorem 2, as the ship-to- 5)
shore problem is a generalisation of the special cases in these theorems. n
Thus, the ship-to-shore problem is NP-hard. Z Y <1 tef{l,...,T}
=1
Corollary 1. The ship-to-shore problem is strongly NP-hard. ©
T3 <ty +T(-y, tefl,....,TY,re{l,..., 1T}
4.2. Integer linear programming formulation @
)) i))) T > ty,, te{l,....,Thze{l,.. 0}
In this section we introduce a linear programming formulation to ®
solve the ship-to-shore problem. To solve the problem, we need to .,
find a route for each connector, which consists of a path through the T > T ref{l,....[1-1}
time-space network, such that a loading to be transported is assigned 9)

for each trip from an SB to an LA. The ship-to-shore problem is then
equivalent to assigning exactly one route to each connector such that
the makespan is minimised, all resources are transported, and all con-
straints regarding (un)loading capacities, resource set constraints, and
priority levels are met. First, some notation is introduced in Table 1.

Furthermore, we introduce the following notation. Let R(c) for ¢ € C
be the set of routes for connector ¢ and R(c, m) for ¢ € C and m € M be
the set with routes for connector ¢ that delivers at least one resource Vg —
of type m. For ¢ € C and i € N, we define R(c,i) as the set of
routes for connector ¢ that visit node i. Finally, R(c, {z,7}) for ¢ € C,
z€{l,....,M1}and ¢ € {1,...,T} denotes the set of routes for connector st sit=1
¢ that deliver priority z resources in time period ¢t and R(c, {s,t}) for
ceC,seSandte{l,.., T} is the set of routes for connector ¢ that
deliver resources from resource set s in time period 7.

Now, an Integer Linear Programming (ILP) formulation can be
defined as follows:

2 2

ceCreR(c.{s.t})

ey

M=

start
wS! < 1

min £, 1) R
s.t. z z Ay Xpe 2 My meM
ceC reR(c.m) %, €B
@
2 X, =1 cecC v, €B
3
2 X, < | e N T’.:ILIVI’T:V!H' e N+
ceC reR(c,i)
(€3]

120

wstart + wend <1

t.vpanz Z drxrc

/
Xpe S D |U:t

xrc

ceCreR(c,{s.t})

_ o, yStart end
U:,tfl - w» -

ws,t—l

re{l,

ses,tefl,...,T}

(10)

seS,tef{l,...,T}

an

seS,tef{2,...,T}

12

seS,tef{2,...,T}

13

sES

as
ceC

(15)
ceC,reR(c)
(16)

LThae{l,..,)

a7
AT}
(18)

re{l,..

M. Wagenvoort et al.

2 3 4

[] \/ [] \/

Fig. 2. Wave example 1 (infeasible).

Time period 1

Beach (LA)

v, €EB sesS,te{l,...,T}
19)
wit e e B seS,te(l,...T}
(20)
Tspan € NT. (21

span

The objective (1) is to minimise the makespan, i.e. the duration of
the operation. This is set by constraints (15). Constraints (2) ensure
that all resources are transported from a sea base to a landing area.
Constraints (3) assign a route to each connector. Note that a route
can also be a route directly from the start location of a connector
to the end location of that connector, i.e. not all connectors have to
transport resources. To ensure the (un)loading capacities are respected,
constraints (4) are imposed. Constraints (5) force the decision variable
v equal to 1 if a route is selected that transports priority = € {1, ..., IT}
resources in time period 7 € {1,...,T}. Constraints (6) ensure that it is
not possible to unload resource types from different priorities in the
same time period.

Constraints (7) and (8) set the start and end time of unloading re-
sources from a certain priority while constraints (9) ensure the ordering
in the priorities. The term T'(1 — y,,)in constraint (7) ensures that no
bound is imposed on 7'’ when y,, equals 0, i.e. when no priority =
resource types are delivered in time period . We impose a strict priority
ordering, where priority levels cannot be mixed even if they correspond
to different locations. However, a more lenient interpretation where
priority levels are destination specific is possible in our model. Namely,
we can define variables T/ and T¢" for each destination separately
and add constraints (9) for each separate location.

All resources in a resource set s € S have to be delivered in the
same time period or in consecutive time periods, i.e. in the same wave.
Constraints (10), (11), (12) and (13) ensure that w}'*" and wij’d denote
whether a delivery wave of resource set s starts or ends in time period
t=1,...,T, respectively. Constraints (10) and (11) jointly set v, equal
to 1 if there is at least one route selected that delivers at least one
resource from resource set s in time period ¢. Here |D’| is used as there
can be at most |D’| connectors delivering resources in a single time
period. Constraints (12) and (13) jointly set w/*" and wij’d equal to 1
if period 1 is part of the delivery wave for resource set s and if — 1 is
not or ¢ + 1 is not, respectively. An example of how these constraints
work is given in Example 2. Constraint (14) ensures that there is only
one wave for each resource set.

Example 2. To illustrate, Figs. 2 and 3 present the nodes of a beach
(LA) in a time-space network. The arcs in these figures correspond to
the connectors trips to this beach that deliver resources from resource
set s € S. InFig. 2, vy, vy, w 2" wj;d , and wji‘”’ are forced to one and
all other variables v, and w¢“ are forced to zero. This solution violates
constraint (14) and hence is infeasible. In Fig. 3, v,, v, wi*" and wig’d
are forced to be equal to 1 and all other v, and w® are forced to be
equal to 0. This satisfies constraint (14) and thus forms a feasible wave
for resource set s.

start

5. Branch-and-price algorithm

In the ILP formulation defined in Section 4.2, we consider routes
which are paths through the time-space network where each trip from
an SB to an LA has an assigned loading. To avoid enumerating an

121

European Journal of Operational Research 320 (2025) 115-131

2 3 4

[} \/\/ [J

Fig. 3. Wave example 2 (feasible).

Time period 1

Beach (LA)

exponential number of routes, we resort to column generation within
a branch-and-price framework (Barnhart et al,, 1998). We solve a
restricted master problem (RMP) containing a subset of all feasible
routes and use dual information of the LP-relaxation of this RMP to find
improving routes via a Pricing Problem (PP), until no improving routes
exist. We solve the PP using a fast heuristic labelling algorithm which is
backed up by an exact MIP formulation to ensure we find an improving
column if one exist. As the optimal solution of the LP-relaxation of the
RMP may be fractional, branch-and-price is used to ensure we find an
exact integer solution.

The RMP and PP used in the column generation are explained
in Sections 5.1 and 5.2. Thereafter, the branching strategies will be
explained in Section 5.3. We conclude with some ideas to strengthen
the formulation in Section 5.4.

5.1. Restricted master problem

The aim of the RMP is to assign a route to each connector such
that the makespan is minimised and all constraints are met. However,
contrary to the mathematical model in Section 4.2, we only consider
a subset of the routes, namely R’ C R. The set of routes is extended
using the PP within the branch-and-price framework.

To ensure that a feasible solution can be found for any subset of
routes, variables p,, € Rt for m € M and p, € Rt for ¢ € C are
introduced and added to the left hand side of constraints (2) and (3),
respectively. Assigning positive values to these variables is penalised in
the objective such that all resources are transported by the routes in an
optimal solution, if possible. To ensure that the penalty is high enough
to avoid using them if possible, their costs are set to the upper bound
on the number of time periods in the time-space network.

5.2. Pricing problem

After solving the LP-relaxation of the RMP, the dual variables can be
used to find new routes that will improve the solution, if any remain.
Thus, the objective of the PP is to find routes with negative reduced
costs. These routes can then be added to the set of available routes in
the RMP, such that it can be solved again with a larger set of routes.
From the RMP defined in Section 5.1, the reduced costs for a route r
by connector ¢ € C can be found as:

. 4
RC(x,) == Y n,a@+20+ Y ¥
meM(r) ieN)\{r,7'}
7
5) (10) 11 15
£ Y Ay Y (A=) a0 e
n=11€T (n,r) SES teT (s,r)

where Af,,z), /153), 154), /lf,)r, ASO) and /1515) are the dual values of the LP-
relaxation of the RMP and 7 (i) corresponds to the set of time periods in
which resource types with characteristic i are delivered. Here it holds
that ﬁf,,z), /154), AE,?,)[, /12 O), AE]S) € R*, while /153) € R as these correspond
to equality constraints.

The PP can be solved using a mixed-integer programming model
using the formulation provided in Appendix A. Alternatively, it can be
solved as a shortest path problem with resource constraints (SPPRC) on
the time-space network using an appropriate labelling algorithm (Ir-
nich & Desaulniers, 2005). Since solving the PP in an exact manner as
an SPPRC is very time-consuming when all resources/constraints are
considered, we opt for a hybrid approach. First, we use a heuristic

M. Wagenvoort et al.

pricing method, where we limit the number of labels we store in
each node. Second, once this heuristic procedure fails at finding routes
with reduced costs below some threshold, we switch to exact pricing
using the mixed-integer programming model until the node is solved
to optimality.

In the labelling algorithm, we define a label as L(c, f, =, .S), where
¢ denotes the reduced costs, /' denotes the current fuel level, = denotes
the current priority level, and S C S denotes the set of resource sets of
priority level = of which at least one resource has been delivered. Labels
are created by extending paths through the time-space network and
appropriately updating the reduced costs based on the dual variables,
the fuel level, the current priority level and the current set of resource
sets covered. Whenever a path is extended from a node at an SB to a
node at an LA, a label is constructed for each possible loading. Namely,
if the current priority level is z, it is only possible to assign loadings
with priority level z’ > x. Furthermore, due to the delivery waves, if
resources of a resource set in S C S are already delivered in a route, it
is not possible to assign a loading that contains resources of a resource
set in .S as this route cannot be used. Label L,(c,, f},7,,.S;) then strictly
dominates label L,(c,, f5,m,,.5,) if () ¢| < ¢y, (1) f; = f5, (iii) 7 = 7,
>iv) S| € S, and (v) at least one of these conditions is strict.

We use this labelling algorithm heuristically by limiting the number
of labels at each node (Desaulniers et al., 2002). Here we use a different
parameter for the sink and the bound on the number of labels at the
other nodes in the network. Furthermore, to limit the number of routes
that are added to the RMP in each iteration, a similarity score is used to
select routes that are disjoint in the nodes that it visits and/or resources
that it delivers (Breugem, 2020). Namely, we sort the candidate routes
in ascending order of reduced costs and select the first route. Then,
for each following candidate route x, we compute its similarity score
with all routes y that are already selected. The route x is selected if
none of the similarity scores exceeds 0.5, i.e. each route is at least 50%
dissimilar to the other routes. We define the similarity score of routes
x and y as an overlap coefficient known as the Szymkiewicz—-Simpson
coefficient which is based on both the nodes visited and resources
delivered (Simpson, 1947; Szymkiewicz, 1934):

|N(X)0N()’)| ZmEM min{nxm’nym}
min {IN L INOI} 2 min {X,cui foms Dmert Pym |
for N'(x) the set of nodes in route x, and n,,, the number of resources
of type m delivered in route x. We perform this step for each connector

separately and do not compare routes of different connectors as the
demand of a resource can be fulfilled by different connectors.

1 1
2 2 23

5.3. Branching strategies

To complete the branch-and-price algorithm, branching strategies
have to be defined that will exclude the fractional solution we obtain
at a branching node, but do not exclude any feasible integer solutions
in that branch.

Let a;; be a binary variable representing the usage of an arc from i
to j and z;; a binary variable representing the delivery of loading / to
location i. We then apply branching on the arcs g;; and the deliveries
; used. We need to branch on both variables as solely branching on
one of them does not guaranteed an integer solution: branching on the
arcs only can mean that a connector is assigned to a set of routes that
use the same arcs, but executes different deliveries in different routes;
branching on the deliveries only can mean that deliveries are split by
the different connectors. We choose to first branch on the arcs until
a solution with integer q;;’s is found, whereafter we branch on the
deliveries.

When branching on an arc (i, j), one of the children nodes is not
allowed to use this arc whence all routes using (i, j) are removed from
the corresponding RMP and (i, j) is removed from the PPs. In the other
child node, the usage of arc (i, j) is imposed by which, all routes that

21

122

European Journal of Operational Research 320 (2025) 115-131

use arcs (i, j/) for j' # j or (i,) for i’ # i are removed, and these arcs
are not used in the corresponding PPs.

Branching on a delivery implies branching on a combination of a
loading / € £ and a delivery node i € D’. When a combination (/, i)
is forbidden, all routes that deliver loading / to node i are removed
from the RMP and the delivery of / at i is forbidden in the PPs. When
a combination (/,i) is obligatory, all routes that deliver loading !’ for
I” # 1 to node i are removed from the RMP and the delivery of /’ to i is
forbidden in the PPs.

For imposing an arc or a delivery, the arc/loading removal opera-
tions above are not sufficient yet as they affect only variables a;;/z;,
and do not enforce the fact that in the RMP, only x,. decisions have to
be allowed that respect the a;;/z;; impositions. For this reason, in the
corresponding child nodes, we require constraints that would not be
needed, e.g in the classical vehicle routing problem where each node
should be visited. These constraints ensure that among the available
routes, at least one is selected that respects the given arc/delivery
imposition:

(i,j)e A° 24)
ceC reR/(c,{i,j})

2 X

cEC reR’ (c.{1i})

>1,

(1,iecr’ (25)

where A° is the set of obligatory arcs and £° the set of obligatory
loading and delivery pairs.

Adding constraints (24) and (25) to the restricted master problem
changes the objective function of the pricing problem. Hence, the
following terms are added to the objective in (27):

> DI

(i,j))eA° (LieLe

(24)
A ay =

(26)
where 151.24) and /151.25) are the dual variables of constraints (24) and (25),
respectively.

There are multiple ways to select which arc or delivery to branch
on. Here, the least, i.e. closest to 0 or 1, and most, i.e. closest to
0.5, fractional arc or delivery strategy will be used. Ties are broken
arbitrarily.

As with arc or loading selection, different methods exist to deter-
mine which node in the branching tree to branch on next. Here, after
preliminary experimentation, the depth first approach is used. Again,
ties are broken arbitrarily.

5.4. Strengthening the formulation

The objective for the ship-to-shore problem is to minimise the
makespan. The makespan is determined by constraints (15) in the RMP.
However, in the branch-and-price algorithm, decision variables can
be fractional and hence constraints (15) bound the makespan by the
weighted average of the last delivery period of the assigned routes.
Minimising this weighted average gives incentives to combine long
routes in which many resources are transported with very short routes
to reduce the bound on the makespan. This negatively affects the
quality of the solution at a node in the branching tree. Therefore, with
the aim of strengthening the formulation, bounds on both the length of
routes and on the makespan will be used.

First, we can explicitly bound the lengths of routes. Short routes
cannot be prohibited because it is possible for a connector to have a
short route in an optimal solution. However, routes longer than the
current upper bound (makespan of the initial greedy solution or the
best integer solution so far) can be prohibited as we know these will
not be chosen in an optimal integer solution.

Second, we can find a lower bound on the optimal makespan by
relaxing the constraints on the (un)loading capacities and resource
sets. This relaxation can be solved as a job-shop scheduling problem
in which resource-transporting trips to the shore are assigned to the
connectors and can easily be solved in a pre-processing phase. Because

M. Wagenvoort et al.

this lower bound can be higher than the optimal value at the root node
of the branching tree, it can improve the estimates of the optimality
gaps of the integer solutions from the branch-and-price algorithm.
Secondly, we can add this bound explicitly in the RMP as a constraint
on the makespan, which will accelerate the solution time per node.

6. Greedy heuristic

The greedy heuristic aims to mimic the current scheduling pro-
cedure and will also serve as an upper bound of the makespan for
the purpose of constructing the time-space network. Routes for the
connectors are extended by iteratively adding new trips, i.e. a visit to
a loading location to pick up a specific set of resources, followed by
a visit to an unloading location to deliver these resources. A forbidden
list is used to denote trips that are not allowed to be added as they have
previously resulted in infeasible solutions.

In the algorithm, we need to use some measure to determine
which trip should be added. Since we are interested in minimising the
makespan, this measure should include the change in the makespan
when the trip is executed. When solely the change in the makespan
is used, faster connectors are preferred over slower, but larger, con-
nectors. We therefore want to compensate a larger change in the
makespan with the quantity of resources that are transported. As there
are both people and large vehicles that can be transported, using the
number of resources that are transported is not an appropriate measure.
This would namely imply that large resources, which can only be
transported by a certain connectors, are left until the smaller resources
are transported. Therefore, we have chosen to use the surface area
measured in square metres, a in Step 2, that is transported as a measure
of the quantity of resources that are transported.

In the greedy heuristic, the following steps are executed:

STEP 0: Let = = 1 be the current priority level and let T = 0 be
the last delivery period.

For every connector determine the first possible delivery
period ¢ for a loading with priority z resources that is
not forbidden. Here both the capacity constraints at the
different locations and the priority constraints are taken
into account. Furthermore, we keep track of the fuel
level of the connector, hence if necessary, the connector
remains one or more additional time periods at the SB for
refuelling purposes.

For each loading with priority level r, determine the total
area in m? of resources that have not been delivered yet,
let this area be a.

Select the connector-loading pair with minimum %,
i.e. the minimum ratio of the change in the makespan
divided by the area of resources that are transported.
Here, ties are broken arbitrarily. Add this trip to the
current schedule and set T = 1.

While there is an incomplete resource set, i.e. a trip was
added in which part of the resources from a resource
set are delivered, the completion of the delivery of this
resource set is prioritised before considering the delivery
of resources that are not part of this resource set. This is
done by repeating versions of Steps 1-3 until all resources
in the resource sets are completed. In Step 1, besides
the capacity and priority constraints, the resource sets
now also have to be considered, i.e. only consecutive
time periods to the current delivery of the incomplete
resource set are considered. In Step 2, only the area of
the resources that belong to the incomplete resource set
are considered. If no feasible pair exists in Step 3, ie.
the resource set constraint cannot be met, the last trip
that was added to the schedule is removed and marked
as forbidden.

STEP 5: If all priority x resources are delivered, = = = + 1.

STEP 6: If all resources are delivered, return T, else go to Step 1.

STEP 1:

STEP 2:

STEP 3:

STEP 4:

123

European Journal of Operational Research 320 (2025) 115-131
7. Computational experiments

In this section we present the results of computational experiments
on both artificial instances and instances constructed using data from
the Royal Netherlands Navy. In these experiments, we first analyse the
effect of using the bounds as explained in Section 5.4 and the heuristic
pricing method as explained in Section 5.2. Thereafter, we analyse the
performance of the branch-and-price algorithm and the greedy heuristic
for different types of instances.

In Section 7.1 we describe the data and instance construction, and
in Section 7.2 the corresponding results are presented.

7.1. Experimental design

We consider both artificial instances and instances constructed using
data from the Royal Netherlands Navy. Each instance consists of a
demand set containing the resources that should be delivered and the
corresponding SBs and LAs, and a supply set in terms of the available
connectors and (un)loading capacities at the SBs and LAs. Furthermore,
an instance is characterised by the operational constraints that are
considered. We define the following naming scheme for instances: d-
s-0, where d denotes the demand set, s the supply set, and o the
set of operational constraints that are considered. We first discuss
each of these three aspects of an instance and then give an overview
of the constructed instances for the instances constructed with data
from the Royal Netherlands Navy. Thereafter, we describe the artificial
instances.

7.1.1. Royal netherlands navy instances

In this section we describe the instances constructed with data from
the Royal Netherlands Navy. The demand at the shore consists of a set
of resource types that have to be transported. For each resource type,
the origin and destination is defined. Furthermore, it is denoted what
the priority number of the resource type is and to what resource set it
belongs to, if any.

To test the performance of the greedy heuristic for different sized
instances, the demand sets have different sizes, where it holds that iA
c iB ciC, fori € {1,2,3}. We thus define nine demand sets d, of which
the descriptive statistics are shown in Table 2. This includes the number
of SBs, LAs, priority levels, resource sets, and the distance between the
SBs and LAs. The table shows that demand sets 1 A and 2 A contain
one priority level, i.e. all resources have the same priority level.

The supply consists of the number of available connectors and
the (un)loading capacity at both the SBs and LAs. There are three
types of loadings spots: docks, davits, and landing platforms, and there
is one type of unloading spot: landing zones. The different types of
(un)loading spots can be used by different connector types. Namely,
landing platforms can only be used by helicopters, while docks and
davits can only be used by surface connectors. Furthermore, not all
surface connectors can access a davit. This can only be used by the
smaller surface connectors. An overview of the supply sets s is given in
Table 3.

The operational constraints consist of, amongst others, constraints
regarding the order of the delivery of the resources. As we are inter-
ested in the performance of our branch-and-price algorithm and our
greedy heuristic under different circumstances, we vary these opera-
tional constraints. These constraints are the priority constraints and
resource set constraints. For instances without a priority ordering, this
implies that all resources have the same priority level. When either
or both of these coordinating constraints are absent from an instance,
there are fewer constraints. This affects the number of choices in each
step of the greedy heuristic and the number of variables and constraints
in the branch-and-price algorithm.

We define four options for o. Let N denote the case in which neither
the priority nor the resource set constraints are considered. Let P denote
the case in which the priority constraints are added to case N, and let W

M. Wagenvoort et al.

Table 2

European Journal of Operational Research 320 (2025) 115-131

Overview of the demand sets containing the identifier, number of SBs, number of LAs, the distance between the SBs and
LAs in nautical miles, the number of priority levels, the number of resource types, and the number of resource sets for each

demand set.
Demand set #SBs #LAs Distance # Priority # Resource # Resource
SB - LA (nm) levels types sets
1A 2 2 15 1 10 1
1B 2 2 15 2 15 2
1C 2 2 15 2 18 2
2A 2 3 15 1 10 1
2B 2 3 15 2 15 2
2C 2 3 15 2 20 2
3A 2 1 15 2 10 2
3B 2 1 15 2 18 3
3C 2 1 15 2 25 3

Table 3

Overview of the supply sets containing the identifier, the number of connectors, the number of different connector types, and the
number of each type of (un)loading spot available at each SB/LA for each supply set.

Supply # Connectors # Connector # Docks # Davits # Landing platforms # Landing zones
set types per SB per SB per SB per LA
1 4 2 1 2 1 2
2 6 2 1 2 1 2
3 12 2 2 4 2 2
4 16 4 2 4 2 2
5 8 3 2 2 2 2
Table 4

Overview of the instances where for each demand set and supply set combination that is used, the corresponding set of
operational constraints is denoted. In total, this results in 96 instances.

Supply Demand set

Set 1A 1B 1C 2A 2B 2C 3A 3B 3C
1 W, N All W, N P, N All P, N

2 W, N All W, N All All All

3 All All All
4 P, N All All All P, N All
5 W, N P, N All W, N All All All All P, N

denote the case in which the resource set constraints are added to case
N. The full and default model we consider contains both constraints,
denoted by F.

Using the demand sets, supply sets, and the set of operational
constraints, we can construct the instances. Large demand sets with
low supply in terms of the number of available connectors can result in
feasibility issues due to the resource set constraints. Namely, it should
be possible to deliver all resources of the same resource set at the same
time or shortly after each other. Since travel times between the SBs and
LAs are large, it is not possible to assign a connector to multiple trips
transporting resources of the same resource set, as this would lead to a
violation of the resource set constraint. Therefore, for each resource set
in a combination of a demand set and a supply set, we verify whether it
is possible to assign loadings to the connectors such that all resources
of this set are transported and each connector is used at most once.
If this is not possible, the instance is not feasible when resource set
constraints are imposed and hence we only consider the instances with
options P and N. On the other hand, small demand sets in combination
with a large supply set, are not realistic. Hence, not all combinations
of demand and supply sets are considered.

Taking both the feasibility as well as the realism of combinations of
demand sets and supply sets into account results in the instances shown
in Table 4. Here ‘All’ implies that all four subsets of the operational
constraints are considered. The instances used for only options P and
N imply that the other combinations of demand set and supply set are
infeasible in terms of the resource set constraints, e.g. for demand set
3C with supply set 5. Demand sets 1 A and 2 A have a single priority
level, hence there is no difference between incorporating the priority
constraints or not. Therefore, for these demand sets only options W and
N are considered. This results in 96 instances.

124

7.1.2. Artificial instances

In this section we describe the artificially constructed instances. The
instances and solutions can be obtained from Wagenvoort (2023). The
artificial instances are constructed from a set of connectors and a set
of available resources. From these sets, five combinations of a demand
and supply set are generated. We consider all four configurations of the
operational constraints, resulting in 20 instances.

We consider four different types of connectors and seven different
types of resources. For the connector types, we consider one type
of helicopter and three types of surface connectors: large, medium,
and small. For each connector type, given in Table 5, we specify the
(un)loading time, capacity, fuel related parameters, speed when loaded
and empty, and at which locations it can be (un)loaded. For each of the
resources, given in Table 6, we specify the size of the resource and for
each connector type whether it can be placed on this connector type.
Note that for simplicity we have defined the capacity of a connector
and the size of a resource in terms of one dimension only. We consider
a loading feasible for a connector type when it does not contain any
resources that are not compatible with the connector type and the sum
of the sizes of the resources in the loading does not exceed the capacity
of the connector.

To construct the artificial instances, we randomly select a set of
connectors, where we always include at least one connector of type
‘Large’ to ensure feasibility. We then randomly select a set of resources,
for which we randomly generate a priority level, resource set, and
quantity. Here we select the smaller resources with a higher probability.
Furthermore, we generate for each resource an origin and destination.
We let there be either one or two SBs and one or two LAs reachable by
surface connectors and at most one LA reachable by helicopters. The
distance between the SBs and LAs is set to 15 nautical miles for each
instance.

M. Wagenvoort et al.

Table 5

European Journal of Operational Research 320 (2025) 115-131

Overview of connector types used for the artificial instances. For each connector type we indicate the (un)loading times in minutes, the capacity for resources, the fuel capacity,
the fuel consumption rate (per minute), the refuel rate (per minute), the speed while being (un)loaded in nautical miles per hour, and the type of (un)loading locations it can

access.

Type Loading Unloading Capacity Fuel Fuel Refuel Speed Speed Location
time time capacity consumption rate loaded empty compatibility
(min.) (min.) (per min.) (per min.) (knts) (knts)
Large 15 15 150 10 0.005 0.15 10 12 dock, beach
Medium 10 10 75 10 0.005 0.15 20 25 dock, beach
Small 5 5 25 10 0.01 0.15 30 30 dock, davit, beach
Helicopter 5 5 8 10 0.01 0.15 125 125 landing platform (SB),
landing zone (LA)
Table 6

Overview of resource types used for the artificial instances, their size, and what connector can carry them.

Name Size Connector compatibility
Large Small Medium Helicopter
Pax 1 X X X X
VehA 60 X
VehB 40 X
VehC 35 X
VehD 30 X X
VehE 25 X X
VehF 20 X X

We construct five demand sets Di and supply sets Si for i €
{1,...,5}. The contents of these five demand and supply sets can be
found in the supplementary materials. These can be used to obtain all
20 instances, namely we consider instances Di—Si—o fori € {1,...,5}
and o € {F, P, W, N}. We then consider all maximal loadings for each
connector based on the compatibility of the resources and the size of
the connector. The loadings can be found in Wagenvoort (2023).

7.2. Results

In this section, the computational results are presented. The algo-
rithms are implemented in Java using CPLEX 12.10. The experiments
are executed on the Dutch national SurfSARA Lisa cluster consisting
mostly of nodes with 16 core Intel Xeon 6130 processors and 96 GB
RAM. We choose a cut-off point of one hour for the branch-and-price
algorithm. Whenever we refer to the gap, we mean the optimality gap
between the lower bound and the best integer solution.

For the labelling algorithm, parameters must be defined. Namely,
we have to determine the maximum number of labels to store at
each node, the maximum number of labels to store at the sink, and
the threshold for switching from the heuristic labelling algorithm to
the exact MIP. Based on early experiments, we choose the following
parameters. We allow, in each pricing problem, at most ten labels at
the sink and at most five at all other nodes, i.e. at most ten columns
per connector are added in each iteration. When no route with negative
reduced costs smaller than —0.05 is found by the labelling algorithm,
we switch to the MIP and use the MIP until the node is solved to
optimality.

The remainder of the section is structured as follows. First, the effect
of using the bounds and the labelling algorithm is analysed. Second, the
performance of the branch-and-price algorithm and greedy heuristic
are discussed. Finally, the performance of the artificial instances are
analysed to compare with the findings of the instances from the Royal
Netherlands Navy.

7.2.1. The effect of bounds and labelling

Intuitively, using the bounds to strengthen the formulation as ex-
plained in Section 5.4 and using heuristic pricing in combination with
the exact MIP as explained in Section 5.2, speeds-up the branch-and-
price algorithm. To validate our intuition, some instances with different
characteristics and demand are run for different configurations. We run
each instance for both the most and least fractional branching rule with

125

a cut-off point of one hour and use the result of the branching strategy
with the lowest running time or lowest gap after one hour. The change
in the optimality gap over time for this branching strategy is presented
in Fig. 4.

Fig. 4(a) shows that none of the instances terminate within an hour.
In fact, only for one instance, instance 3C-4-F, the gap decreases within
an hour. For three of the four instances, the lower bound obtained by
solving the machine scheduling problem as explained in Section 5.4,
is better than the initial root node without the bound. Therefore, in
Fig. 4(c), we see a decrease in the gap for these instances. When both
bounds are added, see Fig. 4(b), we see that instances 3C-4-F and 2C-
4-W now terminate within an hour. Note that the gap instantly drops
to zero from the initial gap. Since we are using a depth first approach,
it can occur that the lower bound within the branching tree could not
have been updated before termination of the algorithm. This results
in an instant drop in the gap. We also see that the gap obtained for
instance 3C-4-N when both bounds are used is lower compared to the
gap when only the lower bound is used. Fig. 4(d) shows the change
in the gap over time when the heuristic labelling algorithm is used in
combination with the exact MIP. We see that now also instance 3C-4-N
terminates and that all other instances terminate faster.

7.2.2. Results of the branch-and-price algorithm and greedy heuristic

In this section, the results of the branch-and-price algorithm and
the greedy heuristic are presented. Here both bounds and the labelling
heuristic are used in the branch-and-price algorithm. We analyse the
performance of the branch-and-price algorithm and the greedy heuristic
based on the instance characteristics, namely, the instance type (A, B, or
C), and which operational constraints are present in the instance. Sum-
marising results for the different instance types are given in Table 7,
full results can be found in the supplementary materials.

In Table 7 we see that all small instances (type A) terminate within
an hour and that, with the exception of the instances with only priority
constraints (P), all terminate within a minute. All type B instances
terminate within approximately three minutes, with the exception of
the instances with only priority constraints (P). For type C instances,
all the instances with only the resource set constraints (W) terminate
within an hour. We thus see, both from the percentage of instances that
terminate within an hour and the running times, that the instances with
only the priority constraints are hardest to solve. On average, 84% of
all instances could be solved within an hour of which 75% are solved
in approximately three minutes.

M. Wagenvoort et al.

Gap (%)

(¢) With lower bound and without labelling.

Gap (%)

200

100

50

107t 10° 10t 10* 10° 107
Running Time (sec.)

(a) Without bounds and without labelling.
200

100 t_

100 100 102 10% 10*

Running Time (sec.)

0
1072 107!

200

European Journal of Operational Research 320 (2025) 115-131

150

100

Gap (%)

50

(b) With both bounds and without labelling.

10°
Running Time (sec.)

10

102 108 10*

2C-4-P
2C-4-W

200

150

3C-4-F
3C-4-N

100

Gap (%)

0
1072

107t

10°

10t

102 10% 10*

Running Time (sec.)

(d) With both bounds and with labelling.

Fig. 4. The change in the optimality gap, the gap between the lower bound and best integer solution, over time in the branch-and-price algorithm with a cut-off point of one hour
for different configurations. For the configurations we consider with/without actively using the lower and upper bound as described in Section 5.4, and with/without heuristic
labelling as described in Section 5.2.

Table 7
Performance measures of the branch-and-price algorithm with a cut-off point of one hour. This includes the percentage of instances that terminate within an
hour, the average number of columns generated, the average number of times the labelling heuristic is used per node, the average number of times the exact
MIP is used per node, and percentiles of the total running times. Here o denotes the set of operational constraints regarding the order of the resources that are
present, namely either the full set (F), only the priority constraints (P), only the resource set constraints (W), or neither of these constraints (N).

0 Type Num. Term. Avg. # Avg. # Avg. # Running time (sec.)
Instances <1 h (%) Columns Heur MIP
min 25th 50th 75th max
A 3 100 140.00 5.00 1.00 0.14 0.19 0.24 0.29 0.34
F B 7 100 6422.29 5.50 1.00 0.36 0.43 0.65 2.21 2.84
C 8 87.50 2045.88 7.26 1.12 0.65 0.99 1.23 2.28 3600
Total 18 94.44 3623.71 6.27 1.06 0.14 0.49 1.10 2.45 3600
A 3 100 27 058.50 1.42 1.00 14.81 588.84 1162.87 1736.90 2310.93
P B 12 58.33 15306.13 3.06 1.00 0.42 136.76 3600 3600 3600
C 9 22.22 22156.00 1.31 1.02 10.64 3600 3600 3600 3600
Total 24 50.00 19656.33 2.10 1.01 0.42 714.30 3600 3600 3600
A 9 100 165.60 5.20 1.80 0.13 0.13 0.18 0.70 1.02
W B 7 100 448.33 5.44 1.00 0.42 0.46 0.63 0.74 1.06
C 8 100 960.63 5.92 1.00 0.27 0.55 1.04 291 8.17
Total 24 100 589.63 5.58 1.21 0.13 0.42 0.70 1.10 8.17
A 9 100 7556.00 2.80 1.00 0.05 0.10 4.31 21.08 58.81
N B 12 100 3060.00 1.78 1.01 0.27 1.38 6.80 93.55 182.08
C 9 77.78 182202.30 3.87 1.00 0.31 1.31 88.25 2643.81 3600
Total 30 93.33 66 659.00 2.72 1.01 0.05 0.57 7.65 120.33 3600
Total 96 84.38 23781.08 4.12 1.07 0.05 0.55 1.64 182.08 3600

126

M. Wagenvoort et al.

Regarding the usage of the MIP after heuristic labelling, we observe
that the average number of times the MIP is used is only slightly
above one, indicating that the heuristic labelling algorithm is able to
find good negative reduced costs columns. We see that the number of
generated columns varies a lot. If the number of columns is high, this
can be caused by two things, the number of iterations at a node is high
resulting in many routes, and/or the number of nodes in the branching
tree is high resulting in many nodes that are solved. For the ‘P’ and
‘N’ instances, we see that, although the labelling heuristic is only used
between two and three times on average, the number of columns is
significantly larger compared to the ‘F’ and ‘W’ instances. These results
thus show that, as we would expect, these less constrained instances
have more feasible routes making the problem harder to solve.

Comparing the results of the branch-and-price algorithm with the
solutions of the greedy heuristic, we find that for two thirds of the
instances the greedy solution is proven to be optimal. Table 8 shows
the percentage of instances for which the greedy solution is proven
to be optimal, the percentage of instances for which the branch-and-
price algorithm finds improvement, and the average gap with the
greedy solution and average time to obtain these improvements for
these instances. We see from these results that the greedy heuristic
performs best when there are resource sets (F and W). In the cases with
resource set constraints and no priority levels (W), all greedy solutions
are optimal, and proven to be optimal within an hour. When priority
levels do exist (F), the greedy heuristic finds the best and optimal
solution in almost 90% of the cases. When an improvement is found,
the solution of the greedy heuristic has, on average, a makespan that is
12% higher compared to the optimum. These improvements are found
in a few seconds. Although instances with both constraints (F) are more
constrained compared to instances with only resource set constraints
(W), we observe that improvements are found in F instances while for
all W instances the solution of the greedy heuristic is optimal. As the
greedy heuristic is an iterative method, it does not anticipate on future
trips. Hence, it might select connectors at the end of a priority level
that are required at the start of the next priority level. The branch-and-
price algorithm is then able to find a solution where these essential
connectors are not used at the end of a priority level resulting in a
better solution.

For instances with no resource set constraints (P and N), we see
that the greedy heuristic performs worse. Furthermore, not all large
instances (type B and C instances) without resource set constraints
terminate within an hour. This is the case for all instances with resource
set constraints. Hence, we see that while there are instances where
no improvement compared to the solution of the greedy heuristic is
found, the solution of the greedy heuristic is also not proven to be
optimal. In 37.50% and 50.00% of the instances with (P) and without
(N) priority constraints, respectively, the greedy solution is known to
be optimal. In 33.33% and 46.67% of the instances, respectively, we
find an improvement. On average, the gaps between the solution of the
greedy heuristic and the solution of the branch-and-price algorithm are
40%. If we compare the gaps for the different instances types (types A,
B and C), we see that the smaller the instances, the larger the gaps.
This can be explained by the smaller makespan, i.e. a difference in the
makespan of one time period gives a larger gap for smaller instances
where the makespans are smaller. When improvements can be found,
these are found within five minutes in most of the cases. Only for the
largest instances (type C) when there are no operational constraints
regarding the order of delivery (N), there are instances where it takes
more than five minutes.

Overall, we thus see that the branch-and-price algorithm is able to
solve the majority of the instances in limited time. We see that instances
with only priority constraints are hardest to solve, while instances with
both constraints or only resource set constraints are easiest to solve.
Although priority constraints restrict the solution space compared to
having neither of these constraints, they do not restrict it as much as re-
source set constraints while still having to consider some coordination

127

European Journal of Operational Research 320 (2025) 115-131

between the schedules of the different connectors. Furthermore we find
that when resource set constraints exist, the greedy solution is often
optimal. When these constraints are not present, improvements were
found compared to the solution of the greedy heuristic in about 40%
of the instances. These improvements are on average found within a
few minutes and have an average gap of approximately 40% with the
solution of the greedy heuristic.

7.2.3. Artificial instances

The results in Section 7.2.2 show that the greedy heuristic performs
well when instances are constrained, especially when resource set con-
straints exist. In this section, we compare the performance of the greedy
heuristic and branch-and-price algorithm for the artificial instances and
compare this finding with the results from the instances from the Royal
Netherlands Navy.

The 20 artificial instances are run under the same configurations
as the instances from the Royal Netherlands Navy. The full results of
the artificial instances can be found in the supplementary materials.
Summarising results comparing the performance of the greedy heuristic
and branch-and-price algorithm can be found in Table 9. The results
in this table show that for some instances the greedy heuristic finds
the optimal solution, but that quite often improvement is found. When
improvement is found, the average gap between the greedy heuristic
and the best solution found by the branch-and-price algorithm is quite
large, on average 35%. Furthermore, generally this solution is found
relatively soon, on average within a couple of minutes.

When we compare the results of the artificial instances in Table 9
with the results of the instances from the Royal Netherlands Navy
in Table 8, we notice the difference in the results for the different
types of instances. Namely, while the greedy heuristic is optimal for
all instances with resource set constraints from the Royal Netherlands
Navy, this is not the case for the artificial instances. A potential reason
is that instances from the Royal Netherlands Navy are constructed by
experts that have knowledge of the capacities and the potential loadings
on the connectors that can be encoded in defining the resource sets.

8. Conclusion

In this paper we provide a formulation for the ship-to-shore problem
that allows for coordination between the connectors. We prove that
the ship-to-shore problem is NP-hard, even in restricted special cases.
We develop (i) a branch-and-price algorithm, and (ii) a tailored greedy
heuristic. Our branch-and-price algorithm makes use of an upper and
lower bound and we incorporate a pricing heuristic that improves the
running time of the algorithm. We investigate, using data from the
Royal Netherlands Navy, under which circumstances, which method is
preferred. We find that the branch-and-price algorithm is able to solve
the majority of the instances within an hour and that it performs best
in very constrained cases in terms of the coordination of delivering sets
of resources. We also find that the greedy heuristic is often able to find
the optimal solution in such restricted cases. However, in less restricted
cases the branch-and-price algorithm finds an improvement compared
to the greedy algorithm in approximately 40% of the instances. For
those instances, the average gap with the greedy heuristic is around
40% and those improvements are found within a few minutes.

We then use artificial instances to compare with the instances from
the Royal Netherlands Navy. We find no difference in the perfor-
mance of the greedy heuristic under different circumstances for these
instances. This shows that potentially the greedy heuristic performs
well when coordination between the resources is required due to a
bias in the instances constructed by experts in the field. The artificial
instances do confirm the ability of the branch-and-price algorithm to
find improvements fast. Namely, for the instances where improvement
compared to the solution from the greedy heuristic is found, the aver-
age gap with the solutions of the branch-and-price algorithm is 35%
and found within a few minutes.

M. Wagenvoort et al.

Table 8

European Journal of Operational Research 320 (2025) 115-131

The effect of priority level constraints and resource set constraints on the performance of the greedy heuristic with a cut-off

point of one hour for the branch-and-price algorithm on the instances from the Royal Netherlands Navy. Here o denotes
the set of operational constraints regarding the order of the resources that are considered, namely either the full set (F),
only the priority constraints (P), only the resource set constraints (W), or neither of these constraints (N). For each set of
operational constraints, we denote for each instance type separately as well as for all instances types combined, the number
of such instances, the % of these instances for which we know the greedy heuristic found the optimal solution, and the % of
instances for which the BP found improvement. For the instances for which improvement was found, the average gap with
the solution from the greedy heuristic is given as well as the average time it took to find the best integer solution.

Instances with improvement

o Instance Num. Greedy BP finds Avg. Gap Avg. T. till
type Instances optimal (%) improvement (%) greedy (%) best Sol. (sec.)
A 3 100 0 - -

F B 7 85.71 14.29 14.29 2.69
C 8 87.50 12.50 10.00 5.85
Total 18 88.89 11.11 12.14 4.27
A 3 66.67 33.33 127.27 14.81

p B 12 50.00 16.67 38.96 91.64
C 9 11.11 55.56 24.89 31.93
Total 24 37.50 33.33 41.21 44.72
A 9 100 0 - -
B 7 100 0 - -

w C 8 100 0 - -
Total 24 100 0 - -
A 9 88.89 11.11 63.64 8.51

N B 12 33.33 66.67 44.35 50.05
C 9 33.33 55.56 24.18 484.24
Total 30 50.00 46.67 38.52 202.15

Total 96 66.67 25.00 37.22 133.19
Table 9

The effect of priority level constraints and resource set constraints on the performance of the greedy heuristic
with a cut-off point of one hour for the branch-and-price algorithm on the artificial instances. Here o denotes

the set of operational constraints regarding the order of the resources that are considered, namely either
the full set (F), only the priority constraints (P), only the resource set constraints (W), or neither of these
constraints (N). For each set of operational constraints, we denote the % of these instances for which we
know the greedy heuristic found the optimal solution, and the % of instances for which the BP found
improvement. For the instances for which improvement was found, the average gap with the solution from
the greedy heuristic is given as well as the average time it took to find the best integer solution.

Instances with improvement

0 Greedy BP finds Avg. Gap Avg. T. till
optimal (%) improvement (%) greedy (%) Best Sol. (sec.)
F 20 40 25.48 1032.01
P 40 20 47.83 104.43
W 20 80 42.05 32.09
N 20 80 30.10 15.00
Average 25 55 35.22 214.25

Therefore, in practice when these coordinating constraints exist,
current practices mimicked by the greedy heuristic, might perform
well. However, the branch-and-price algorithm is able to find large
improvements to the solutions of the greedy heuristic fast, hence it
is worthwhile to try and find a better schedule as large gains can be
made. There are a number of options for further research related to our
model. As distances and therefore travel times are large compared to
the (un)loading times in these instances, we chose to set the time period
length such that (un)loading for all connectors can take place within
one time period. Depending on the application, the loss in exactness
can be more significant and a shorter time period length is preferred.
In that case, this would require small changes to the model, namely,
arcs should be added between a node for an (un)loading location in
time period ¢ and the node corresponding to the same location in time
period 7 + 1. Furthermore, when (un)loading at a location takes n > 1
time periods, constraints should be added that require a connector to
remain at this location for »n time periods if it is visited.

The results show that the greedy heuristic performs well in case the
problem is very constrained, but there may be opportunity for better

128

heuristics in different situations. For less constrained problems, one can
apply additional local search steps to the solution of the greedy heuris-
tic, or running the greedy heuristic multiple times with a randomisation
parameter, can result in better outcomes. To test whether a tailored
heuristic works well for other similar applications, the branch-and-price
algorithm can be used as a benchmark.

By using discrete time periods, some slack occurs in the schedule.
A potential benefit of this slack is that it can serve as a buffer in case
a delay occurs. However, the moments at which this slack occurs are
not chosen and therefore accounting for delays while constructing the
schedule can result in a lower expected makespan. Hence, for future
research, it would be interesting to incorporate the uncertainty about
the travel and (un)loading times to construct schedules with a lower
expected makespan.

CRediT authorship contribution statement

M. Wagenvoort: Conceptualization, Formal analysis, Methodol-
ogy, Project administration, Writing — original draft. P.C. Bouman:

M. Wagenvoort et al.

European Journal of Operational Research 320 (2025) 115-131

Table A.10
List of sets, variables and parameters for the Pricing Problem.
Set Explanation
A Set of arcs
D Set of landing area nodes
L Set of loadings
P’ Set of sea base nodes
T Set of time periods
w Set of waiting nodes
Variables Explanation

A binary variable equal to 1 if arc (i, j) € A is used, 0 otherwise

by The number of resources of type m € M transported

d The last delivery period

fi A binary variable equal to 1 if the connector refuels at node i € P/, 0 otherwise

u; The fuel level upon reaching node i € N'

zy; A binary variable equal to 1 if loading / € £ is delivered to i € D’, 0 otherwise

Parameters Explanation

g The refuelling rate per time period for connector ¢ € C

h, The fuel consumption rate per time period for connector ¢ € C

ki A binary parameter equal to 1 if loading / € £ is available at/heading to location i € N, O otherwise
Ry The number of resources from type m € M in loading / € £

Dir A binary parameter equal to 1 if loading / € £ has priority level = = {1,...,IT}, 0 otherwise
Q. The fuel capacity of connector ¢ € C

7, The starting node of connector ¢ € C

7 The ending node of connector ¢ € C

Methodology, Supervision, Writing — review & editing. M. van Ee:
Methodology, Supervision, Writing — review & editing. T. Lamballais
Tessensohn: Conceptualization, Data curation, Supervision. K. Postek:
Conceptualization, Data curation, Methodology, Supervision, Writing —
review & editing.

Acknowledgements

We would like to thank Dr. Kerry M. Malone from TNO for the
feedback she provided on previous versions of the paper. This research
was made possible by TNO in collaboration with Erasmus University
Rotterdam and the Netherlands Defence Academy.

Appendix A. Mathematical formulation of the pricing problem

In the Pricing Problem (PP), we aim to find a route such that
the reduced costs (22) are minimised. Additionally to the notation
introduced in Table 1, the notation in Table Table A.10 is used in the
PP.

We can then define the PP for a specific connector ¢ € C as follows:

min — z Afnz)bm+/l(3) + Z z /1,(-4)01'/
mem ieN(¢) JEN (¢): (i,))EA(C)
T I
5)
22 XX A
t=1 n=11€L(c,x) i€D/(c,t)

T

X XXX (VA2 a0 @7
SES IEL(c.s) t=1 i€D/ (c,1)

s.t. > a; =1 (28)
JEN(©):(r.)EA()

a =1 (29)
IT
ieN(0):(i,T)eA(c)

2 a;; — Z aﬁ:O

IEN(0): (i-))EA(C) iEN(€): (j.)EA(C)
jE€ N\ {r,7'} (30)

fi < 2 a;j
JEN(©):(i,/)EA(C)

ieP'(c)
ur = QC
u; Q. — h.(t; = t)a;;

(i) € Ale)

u; < u; +8.fi— hc(tj - l,-)aij +0.(1 - aij)

(i, J) € A(c)

2 a=

1EL(c) i€P! (c)UW' (¢): (i,j)EA(c)

JED (o)
2z); < ki +

i€P! (c)UW' (¢):(i,j)EA(C)

1€ L(c),jeD)
b, <n,

meM

bm < z z M 21

1€L(c,m) i€D’(c)
meM

zlj < YVt
1€L(c,m) jJED! (c\t)

te{l,....T},ne{l,...,11}

m
z Yt < 1
=1

tref{l,...,T}

T3 <ty + T = yp)
te{l,..., Ty, ze{l,...,1I}
T;ndZIy,[,
te{l,.... T}, ne{l,...,11}

start end
Tﬂ+1 2 T7r

(3D
(32)

(33)

(34)

(35)

(36)

37)

(38)

(39

(40)

(41)

(42)

M. Wagenvoort et al.

ze{l,.. 0T} 43
Z zp <1

i€D! (c) 1L (c.s)

sES (44)

tz; <d

i€D’ (c,t) IEL(c)

trefl,...,T} (45)

a; €B

(i, j) € A(c) (46)

b, € N*

meM 47)

d e N* (48)

T;t“”,T;"d c Nt

zell,..., 1T} (49)

fieB

ieP'(c) (50)

u; € R*

i€ N() (G20)]

Wi wsy? € B

sesS,tefl,..., T} (52)

Y €EB

te{l,....T},ne{l,...,1T} (53)

z; €B.

1€ L(),ieD () (54

The aim is to minimise the reduced costs (22) as represented by the
objective (27).

Constraints (28), (29) and (30) ensure that a connector departs
from its starting location, terminates at its ending location and ensure
flow conservation throughout the network. The connector can only be
refuelled at a pick-up location if this location is visited (constraints
(31)). It is assumed that all connectors start with a full tank (constraint
(32)). Constraints (33) and (34) update the fuel level throughout the
network. They ensure that the fuel level is set to min {u; + g., O, } after
refuelling at i € P’(c) and that no constraint is imposed on the fuel
level if the arc is not used, but decreased if an arc is used.

Constraints (35) and (36) ensure that the connector can only be
assigned one loading for each trip from a SB to a LA and that a loading
can only be assigned when the loading is available at the SB and the
connector is heading to the LA corresponding to the destination of the
loading. Constraints (38) set b,, to the number of resources of type
m € M that are transported in the selected loading. This variable is
upper bounded by the number of resources of type m that have to be
transported in constraints (37) to avoid deducting the reduced costs of
the resource in the objective too much.

To satisfy the priority order, constraints (39)-(43) are imposed and
to ensure that there is at most one delivery for each resource set,
constraints (44) are imposed. If within a route, multiple deliveries with
resource types from the same resource set occur, this route cannot
be used as this will violate the resource set constraints. Imposing this
constraint will avoid generating routes that cannot be used in a feasible
RMP solution. The last delivery period of the route is determined in
constraints (45).

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.08.017.

130

European Journal of Operational Research 320 (2025) 115-131

References

Amrouss, A., El Hachemi, N., Gendreau, M., & Gendron, B. (2017). Real-time manage-
ment of transportation disruptions in forestry. Computers & Operations Research, 83,
95-105.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H.
(1998). Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3), 316-329.

Behnke, M., Kirschstein, T., & Bierwirth, C. (2021). A column generation approach for
an emission-oriented vehicle routing problem on a multigraph. European Journal of
Operational Research, 288(3), 794-809.

Boland, N., Hewitt, M., Marshall, L., & Savelsbergh, M. (2019). The price of discretizing
time: a study in service network design. EURO Journal on Transportation and
Logistics, 8(2), 195-216.

Bredstrom, D., & Ronnqvist, M. (2007). A branch and price algorithm for the combined
vehicle routing and scheduling problem with synchronization constraints. NHH
Dept. of Finance & Management Science Discussion Paper, (2007/7).

Breugem, T. (2020). Crew Planning at Netherlands Railways: Improving Fairness,
Attractiveness, and Efficiency Ph.D. thesis, ERIM PhD Series in Research in
Management.

Chardaire, P., McKeown, G. P., Verity-Harrison, S., & Richardson, S. (2005). Solving
a Time-Space Network Formulation for the Convoy Movement Problem. Operations
Research, 53(2), 219-230.

Christafore Jr., R. (2017). Generating ship-to-shore bulk fuel delivery schedules for the
Marine Expeditionary Unit Master thesis, Naval Postgraduate School Monterey United
States.

Cuesta, E. F., Andersson, H., Fagerholt, K., & Laporte, G. (2017). Vessel routing with
pickups and deliveries: an application to the supply of offshore oil platforms.
Computers & Operations Research, 79, 140-147.

Danielson, M. E. (2018). Scheduling amphibious connectors to deliver multiple
commodities Master thesis, Naval Postgraduate School Monterey United States.
Debusmann Jr., B. (2024). How the US military plans to construct a pier and get food
into gaza. British Broadcasting Corporation (BBC), URL https://www.bbc.com/news/

world-us-canada-68534370.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2002). Accelerating strategies in
column generation methods for vehicle routing and crew scheduling problems. In
Essays and surveys in metaheuristics (pp. 309-324). Springer.

Drexl, M. (2012). Synchronization in vehicle routing—a survey of VRPs with multiple
synchronization constraints. Transportation Science, 46(3), 297-316.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Fransisco.

Gribkovskaia, I., Laporte, G., & Shlopak, A. (2008). A tabu search heuristic for a
routing problem arising in servicing of offshore oil and gas platforms. Journal of
the Operational Research Society, 59(11), 1449-1459.

Hiermann, G., Puchinger, J., Ropke, S., & Hartl, R. F. (2016). The electric fleet size and
mix vehicle routing problem with time windows and recharging stations. European
Journal of Operational Research, 252(3), 995-1018.

Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints.
In Column generation (pp. 33-65). Springer.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of
computer computations (pp. 85-103). Springer.

Kulshrestha, A., Lou, Y., & Yin, Y. (2014). Pick-up locations and bus allocation for
transit-based evacuation planning with demand uncertainty. Journal of Advanced
Transportation, 48(7), 721-733.

Liu, R., Tao, Y., & Xie, X. (2019). An adaptive large neighborhood search heuristic for
the vehicle routing problem with time windows and synchronized visits. Computers
& Operations Research, 101, 250-262.

Maritime Warfare Centre (2019). Handboek Surface Assault.

Nowak, M. A. (2005). The pickup and delivery problem with split loads. Georgia Institute
of Technology.

Rieck, J., & Zimmermann, J. (2010). A new mixed integer linear model for a rich
vehicle routing problem with docking constraints. Annals of Operations Research,
181(1), 337-358.

Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem
with time windows and recharging stations. Transportation Science, 48(4), 500-520.

Simpson, G. G. (1947). Holarctic mammalian faunas and continental relationships
during the cenozoic. Geological Society of America Bulletin, 58(7), 613-688.

Strickland, C. W. (2018). Generating efficient and robust schedules to deliver bulk
fuel via amphibious connectors. Master thesis, Naval Postgraduate School Monterey
United States.

Szymkiewicz, D. (1934). Une contribution statistique & la géographie floristique. Acta
Societatis Botanicorum Poloniae, 11(3), 249-265.

Ticha, H. B., Absi, N., Feillet, D., & Quilliot, A. (2017). Empirical analysis for the
VRPTW with a multigraph representation for the road network. Computers &
Operations Research, 88, 103-116.

Ursavas, E. (2017). A benders decomposition approach for solving the offshore wind
farm installation planning at the north sea. European Journal of Operational Research,
258(2), 703-714.

Villena, K. (2019). Ship to shore transportprobleem tijdens amfibische operaties Bachelor
thesis, Nederlandse Defensie Academie.

https://doi.org/10.1016/j.ejor.2024.08.017
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb1
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb1
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb1
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb1
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb1
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb2
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb2
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb2
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb2
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb2
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb3
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb3
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb3
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb3
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb3
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb4
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb4
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb4
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb4
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb4
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb5
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb5
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb5
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb5
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb5
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb6
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb6
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb6
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb6
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb6
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb7
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb7
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb7
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb7
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb7
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb8
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb8
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb8
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb8
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb8
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb9
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb9
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb9
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb9
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb9
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb10
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb10
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb10
https://www.bbc.com/news/world-us-canada-68534370
https://www.bbc.com/news/world-us-canada-68534370
https://www.bbc.com/news/world-us-canada-68534370
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb12
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb12
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb12
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb12
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb12
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb13
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb13
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb13
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb14
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb14
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb14
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb15
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb15
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb15
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb15
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb15
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb16
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb16
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb16
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb16
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb16
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb17
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb17
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb17
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb18
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb18
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb18
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb19
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb19
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb19
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb19
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb19
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb20
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb20
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb20
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb20
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb20
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb21
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb22
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb22
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb22
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb23
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb23
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb23
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb23
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb23
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb24
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb24
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb24
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb25
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb25
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb25
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb26
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb26
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb26
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb26
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb26
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb27
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb27
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb27
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb28
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb28
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb28
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb28
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb28
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb29
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb29
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb29
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb29
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb29
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb30
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb30
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb30

M. Wagenvoort et al.

Wagenvoort, M. (2023). Ship-to-Shore Artificial Instances. Zenodo, http://dx.doi.org/10.
5281/zenodo.10216198.

Xiao, Y., Zhao, Q., Kaku, I, & Xu, Y. (2012). Development of a fuel consumption
optimization model for the capacitated vehicle routing problem. Computers &
Operations Research, 39(7), 1419-1431.

131

European Journal of Operational Research 320 (2025) 115-131

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2016). The vehicle routing
problem with simultaneous pick-ups and deliveries and two-dimensional loading
constraints. European Journal of Operational Research, 251(2), 369-386.

Zhao, X., Ji, K., Xu, P., Qian, W.-w., Ren, G., & Shan, X.-n. (2020). A round-trip bus
evacuation model with scheduling and routing planning. Transportation Research
Part A: Policy and Practice, 137, 285-300.

http://dx.doi.org/10.5281/zenodo.10216198
http://dx.doi.org/10.5281/zenodo.10216198
http://dx.doi.org/10.5281/zenodo.10216198
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb32
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb32
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb32
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb32
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb32
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb33
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb33
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb33
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb33
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb33
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb34
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb34
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb34
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb34
http://refhub.elsevier.com/S0377-2217(24)00640-4/sb34

	Exact and heuristic approaches for the ship-to-shore problem
	Introduction
	Problem Definition
	The Time–Space Network

	Literature Review
	The Ship-to-Shore Problem
	Related Problems

	Mathematical Model and Complexity
	Computational Complexity
	Integer Linear Programming Formulation

	Branch-and-Price Algorithm
	Restricted Master Problem
	Pricing Problem
	Branching Strategies
	Strengthening the Formulation

	Greedy Heuristic
	Computational Experiments
	Experimental Design
	Royal Netherlands Navy Instances
	Artificial Instances

	Results
	The Effect of Bounds and Labelling
	Results of the Branch-and-Price Algorithm and Greedy Heuristic
	Artificial Instances

	Conclusion
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Mathematical Formulation of the Pricing Problem
	Appendix B. Supplementary data
	References

