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Successful implementation of remote monitoring of vital signs outside of the hospital setting hinges 
on addressing three crucial unmet needs: longer-term wear, skin comfort and signal quality. Earlier, 
we developed a Health Patch research platform that uses self-adhesive dry electrodes to measure vital 
digital biomarkers. Here, we report on the analytical validation for heart rate, heart rate variability 
and respiration rate. Study design included n = 25 adult participants with data acquisition during a 
30-minute exercise protocol involving rest, squats, slow, and fast cycling. The Shimmer3 ECG Unit 
and Cosmed K5, were reference devices. Data analysis showed good agreement in heart rate and 
marginal agreement in respiratory rate, with lower agreement towards higher respiratory rates. The 
Lin’s concordance coefficient was 0.98 for heart rate and 0.56 for respiratory rate. Heart rate variability 
(RMSSD) had a coefficient of 0.85. Participants generally expressed a positive experience with the 
technology, with some minor irritation from the medical adhesive. The results highlighted potential of 
this technology for short-to-medium term clinical use for cardiorespiratory health, due to its reliability, 
accuracy, and compact design. Such technology could become instrumental for remote monitoring 
providing healthcare professionals with continuous data, remote assessment and enhancing patient 
outcomes in cardiorespiratory health management.

Remote monitoring including biometric parameters, vital signs as well as other biophysical and biochemical 
biomarkers is revolutionising healthcare enabling prevention, improving patient outcomes, reducing 
hospitalisations and hospital re-admissions as well as healthcare personnel workload1. The development and 
validation of digital biomarkers, actively relying on remote and continuous monitoring of biophysical and 
biochemical read-outs, is gaining a momentum and further accelerates the healthcare transformation2. A 
digital biomarker is defined as “an indicator of a (patho)physiological process, or a response to a (therapeutic) 
intervention collected by a wearable or a system of sensors and processed by algorithms, generating a real-
time digital signal and enabling frequent, (quasi) continuous non-invasive monitoring under daily life 
conditions”3. In recent years, digital biomarkers have emerged in various fields such as cardiovascular disease, 
neurodegenerative diseases, diabetes, sleep medicine, oncology, and more. Some digital biomarkers are relatively 
straightforward, e.g., using pulse rate to detect atrial fibrillation4. Patterns of more than one vital signs (quasi)
continuously and non-invasively collected over daily life could conceptually provide additional information on 
(patho)physiological processes5, e.g. continuous data collection on heart rate patterns over daily life can define a 
digital inflammation biomarker6. Key vital signs such as heart rate (HR) and heart rate variability (HRV), already 
can shed light on a patient’s cardiovascular health, autonomous nervous system and stress levels7–9. Expanding 
beyond HR and HRV, respiration rate (RR) is likely a useful biomarker for assessing respiratory and pulmonary 
health and overall well-being10. While these vital signs are viewed as standalone digital biomarkers, in a clinical 
context, they can be used synergistically to define intricate, multimodal digital biomarkers that can indirectly 
indicate various health conditions, such as inflammation and disease progression11.
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Over the last decade, medical-grade patch technology has emerged, allowing for wearable, wireless, 
user-friendly ECG monitoring12. Other wearable designs have also been explored, including a watch or ring 
format13,14 and integration into textiles15. Essentially, innovation in vital signs patches for remote monitoring 
of ECG and vital signs has three key unmet needs: longer-term wear to capture the signals for two weeks’ time 
and longer, skin comfort and high quality medical-grade signal. However, currently available medical grade vital 
signs patches mostly rely on gel electrodes and therefore have limited skin wear time, can cause skin irritation 
and discomfort and are prone to motion artefacts16,17. Self-adhesive dry electrode technology, designed for 
capturing bio-electric signals without using gel, shows promise in meeting these requirements. It can extend 
electrode wear time and enhance comfort compared to gel electrodes, and reduce motion artefacts via more 
secure skin attachment. Previously, a Health Patch research platform has been developed featuring self-adhesive 
dry electrodes for acquisition of ECG and bioimpedance for estimation of the heart rate and respiration rate. 
The Health Patch also includes three-axis accelerometry allowing activity monitoring and registration of motion 
artefacts. The ECG signal quality of the Health Patch has been evaluated and compared to the gold standard 
in a small pilot18. However, no analytical validation of the heart rate and respiration rate vs. gold standard was 
reported, while such validation is essential for medical-grade requirement before deriving digital biomarkers 
of cardiorespiratory health. To overcome these limitations and to further unveil the potential of such research 
platform for the development of medical-grade digital biomarkers, the primary objective of this study was to 
perform analytical validation of the Health Patch for monitoring of the heart rate vs. the gold standard reference 
devices on a larger cohort of participants, balancing where possible in key demographics such as gender. The 
secondary objective was to evaluate the accuracy of the device to measure heart rate variability and respiration 
rate vs. gold standard reference devices. Finally, the usability and experience of wearing and removing the Health 
Patch were evaluated.

Results
Study participant demographics
Demographics of the study participants are shown in Table 1. In total n = 25 participants were included, with 
the age range between 24 and 58 years and a body mass index (BMI) range of 20–29 kg/m2. The number of male 
participants was slightly higher versus that of females (14 vs. 11, respectively), however the difference (n = 3 male 
subjects) is below one standard deviation of the sample size, assuming normal distribution. Most of the recruited 
subjects completed all the steps of the study and no drop offs occurred. Eight persons did not complete squats 
and another person did not complete fast cycling.

ECG and bioimpedance data processing flow
A representative sample of the raw ECG and bioimpedance data acquired on one participant is shown in Fig. 1. 
A drift was observed in the ECG data and an overflow was observed in certain areas of the data which was 

Fig. 1.  Representative sample of raw ECG sensor output (A) and bioimpedance sensor output (B) from one 
participant (volunteer #12) during the entire period of the test, consisting of rest, squats, slow and fast cycling.

 

Quantitative parameters Min-max Mean ± SD

Age (years) 24–58 36 ± 11

Height (cm) 158–196 180 ± 11

Weight (kg) 50–104 77 ± 13

BMI (derived, kg/m2) 20–29 24 ± 3

Categorical parameters Category Tally (%)

Gender
M 14 (56%)

F 11 (44%)

Table 1.  Demographics of the volunteers recruited for the study.
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corrected during processing. An increase in magnitude of the bioimpedance signal was observed during the 
exercise period, compared to the resting period (Fig. 1B).

The heart rate and respiratory rate signals are shown in Fig. 2, where in particular a section of the normalised 
data is shown for one of the participants (volunteer #8). The peaks of the ECG signal corresponded to heart beats 
(see Fig. 2E) and the peaks of the respiratory rate data were assumed to be one breath (see Fig. 2F). It should be 
noted for clarity that the respiration rate data acquired by measuring bio-impedance does not take into account 
the volume of breath inhaled or exhaled.

Heart rate and respiration rate data
An exemplary and a representative dataset of extracted heart rate and respiration rate for one study participant 
(volunteer #8) during the study is shown in Fig. 3. Visual observation showed that the HR and RR acquired 
using a Health Patch follow that of reference devices, both during the resting and exercise periods. A visual good 
agreement was observed for the heart rate acquired using the Health Patch and the Shimmer reference. In case 
of the respiratory rate, the Cosmed reference measurement followed reasonably well (average trends), but both 
showed more scatter.

Heart rate and respiratory rate distributions combined over n = 25 participants for each of the performed 
activity (rest, squats, cycling slow, cycling fast) are shown in Fig. 4 in violin plots, illustrating data distribution, 
spread and symmetry. For heart rate the combined data yielded reasonably good accuracy and statistical 
distributions similar to that of the reference method (r2 = 0.96; mean absolute error (MAE) with 5th – 90th 
percentile = 2.6 (0.9–4.3) bpm). Higher heart rate values acquired using the Health Patch were consistent with 
that of the reference method (Shimmer) showing MAEs with their 5th – 90th percentiles of 1.6 (0.5–3.3) bpm, 
4.7 (0.9–15.2) bpm, 5.8 (0.8–14.0) bpm, and 3.7 (0.5–6.4) bpm during all of the performed activities, i.e., rest, 
squats, cycling slow, and cycling fast, respectively.

For respiration rate, the differences between the two devices appeared larger (r2 = 0.35; MAE with 5th – 95th 
percentile = 2.8 (1.2–4.5) rpm). Interestingly, respiratory rates acquired using the Health Patch were consistently 
lower vs. Cosmed, i.e. MAEs with their 5th – 90th percentiles of 2.6 (1.2–4.6) rpm, 4.1 (1.1–8.4) rpm, 3.3 (0.8–
6.1) rpm, and 3.5 (1.1–9.1) rpm during rest, squats, cycling slow, and cycling fast, respectively.

Figure 5 presents the level of agreement for heart rate (Fig. 5a) and respiratory rate (Fig. 5b) in Bland-Altman 
plots to visualise a direct comparison of measurement error and to identify outliers and trends. A reasonably 
good level of agreement was observed for the heart rate (bias: 0.38 bpm, 0.15 bpm, 2.00 bpm, 1.83 bpm, 0.47 bpm; 
95% SD LoA (limits of agreement) ± 9.9  bpm, ± 5.4  bpm, ± 14.9  bpm, ± 18.7  bpm, ± 9.8  bpm) overall, rest, 

Fig. 2.  Representative section of a recording sample (volunteer #8) from the study, taken during rest, showing 
(A,B) – raw ECG and bioimpedance signals, respectively; (C,D) – filtered ECG and bioimpedance signals; 
(E,F) - zoomed-in sections with pre-processed (grey) and processed (purple) data with drift eliminated, 
for ECG and bioimpedance signals; the detected peaks (light blue) were used to count the heart rate and 
respiratory rate, respectively. RMS normalized signal refers to scaling of the raw signal among the participants.
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squats slow cycling and fast cycling, respectively. An acceptable level of agreement was observed for respiratory 
rate, with a slight underestimation by the Health Patch (bias: − 1.90 rpm, − 0.92 rpm, − 2.09 rpm, − 3.21 rpm, 
− 3.78 rpm; 95% LoA ± 8.6 rpm, ± 6.7 rpm, ± 12.2 rpm, ± 8.2 rpm, ± 10.2 rpm), also in the same respective 
order. While the agreement is consistent over the full range of measured heart rates, a small decreasing trend is 
observed towards higher respiratory rates (Fig. 5b).

Next, a comparison of the heart rate and respiratory rate as acquired using the Health Patch and reference 
devices using Lin’s concordance correlation coefficient (CCC) is shown in Fig. 6. The CCC provides a quantitative 
measure of agreement that accounts for bias, precision, variability and potential nonlinearity on a scatter plot, 
with a line of reference with perfect agreement as a red dashed line. The correlation of the heart rate measurements 
appeared highly in agreement amongst the two devices at 0.98 (95% CI 0.98–0.98), 0.95 (95% CI 0.95–0.96), 0.88 
(95% CI 0.83–0.91), 0.85 (95% CI 0.81–0.88), 0.97 (95% CI 0.97–0.98) for overall, rest, squats, cycling slow and 
cycling fast respectively (Fig. 6a). The Lin’s concordance correlation coefficient for the respiration rate measured 
using the Health Patch and the Cosmed were 0.56 (95% CI 0.53–0.58) overall, 0.53 (95% CI 0.49–0.56) rest, 0.28 
(95% CI 0.14–0.41) squats, 0.33 (95% CI 0.23–0.42) cycling slow and 0.42 (95% CI 0.36–0.48) cycling fast.

Fig. 4.  Violin plots of combined data from 25 participants showing the spread of the (a) heart rate and (b) 
respiratory rate readings for each activity.

 

Fig. 3.  An exemplary and a representative dataset of extracted heart rate (a) and respiration rate (b) for one 
study participant (volunteer #8). Scatter plots and moving average trendlines are shown for the data acquired 
using the Health Patch and using reference devices Shimmer for HR and Cosmed for RR, respectively. 
Activities performed by a participant, such as rest (red), squats (blue), slow cycling (green), fast cycling 
(purple) are annotated by the respective colours in the timeline on the X-axis.
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Heart rate variability
We also performed analysis on the heart rate variability (HRV), more specifically, the R-R intervals variability 
using the data acquired with the Health Patch and compared it to that of the reference apparatus (Shimmer). 
This resulted in r2 = 0.82, MAE = 9.1 ms and a bias of − 8.2 ± 19 ms overall, − 6.58 ± 14.8 ms rest, − 14.1 ± 29.2 
ms squats, -9.2 ± 13.1 ms cycling slow and − 11 ± 26.1 ms cycling fast. Figure 7a shows a Bland-Altman plot 
of the HRV as acquired using the Health Patch and the reference equipment (Shimmer). One can see that 
most of the data points are located below zero with some beyond the 1 SD threshold, meaning that the HRV 
calculations using the Health Patch results into lower HRV values vs. the reference for the same paired dataset. 
Good correspondence can also be seen in the CCC graph (see Fig. 7b) and while there is bias, still a good degree 

Fig. 6.  (a,b) Lin’s concordance coefficient plots of the Health Patch vs. the reference devices for heart rate and 
respiratory rate, respectively.

 

Fig. 5.  Bland-Altman plots showing differences of (a) heart rate and (b) respiratory rate, measured with both 
the Health Patch and the respective gold standard device. The x-axes show the mean measurements, while the 
y-axes show the differences between the two devices. The horizontal dashed lines refer to the 95% limits of 
agreement.
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of overall concordance was obtained (0.85). For rest, squats, cycling slow and cycling fast, these were reported 
as 0.91, 0.19, 0.53 and 0.14 respectively. In the same order, CIs were 0.79–0.89, 0.86–0.94, − 0.28-0.58, − 0.09-
0.80, − 0.06-0.33.

Respiration rate variability was unable to be compared due to the reference equipment (Cosmed) which only 
provides averaged data (updated every 3–5 min).

Health Patch wear and removal comfort
Health Patch comfort during its wear and removal was assessed using an in-house developed questionnaire. 
A summary of the self-reported responses is given in Table 1. Of the 25 participants, skin dryness, sensitivity, 
discomfort, and pain during Health Patch removal were minor (all below 3 on the scale from 1 to 10 ranging from 
‘not at all’ to ‘very much so’). Itching due to the adhesive was reported by 5 participants, and the average score for 
itch given by them was 3.4 out of 10. It was also observed that during this short exercise protocol, approximately 
a third of the participants’ Health Patch adhesive became wet through sweating by visual observation. All but 
one participant responded positively on the question if they would use the device again (Table 2).

Discussion
The objective of this work was to evaluate the accuracy of heart rate, heart rate variability, and respiratory rate 
acquired by the novel Health Patch featuring self-adhesive dry electrodes technology. To achieve this goal, a 
study was designed and performed on 25 healthy male and female adult volunteers comparing the estimation 
of HR, HRV and RR acquired using the Health Patch with clinical reference devices (Shimmer and Cosmed) 
under both under resting and different exercise conditions. This is an important assessment for the monitoring 
of cardiovascular health and the prediction of (patho) physiological conditions19.

Comparison of the estimated HR by the Health Patch acquired by ECG followed by the signal processing/
de-noising and R-R peak detection vs. the reference equipment (Shimmer) resulted in high level of agreement 
(98% based on Lin’s concordance correlation coefficient, MAE = 2.6 bpm overall). This compares well to several 
other wearable devices using different type of sensors for heart rate that reported MAEs. For example, a study 

Parameter Number of answers given (max 25) Average score (from not at all (1), to very much so (10), or yes/no ratio

Skin dryness (mean ± SD)
25

2.0 ± 1.3

Skin sensitivity (mean ± SD) 1.6 ± 1.4

General discomfort during Health Patch removal (mean ± SD) 24 2.9 ± 2.3

Itch (y/n) 24 5/19

Extent of itch if reported (mean ± SD) 5 3.4 ± 1.9

Pain during Health Patch removal (mean ± SD) 24 2.0 ± 2.2

Willingness to wear a Health Patch again (y/n) 25 24/1

Health Patch adhesive wetness through perspiration (y/n) 25 8/17

Table 2.  A summary of the participants’ responses to the use of the Health Patch post exercise protocol.

 

Fig. 7.  Health Patch vs. Shimmer (a) HRV Bland-Altman plot; (b) Lin’s concordance correlation coefficient 
(RMSSD) of the, axes shown as log(2).
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by Bent et al. to consumer-grade wearable devices using an optical sensor for PPG, from which the heart rate 
was extracted mentioned MAE between 7 and 14 bpm (rest and activities)20. Nelson and Allen investigated a 
wearable watch and an optical sensor for heart rate reported MAE between 1.8 and 3.5 bpm (rest and activities 
– sitting, walking, running, chores)21. Morgado Areia et al. used the FDA cleared and CE marked VitalPatch for 
ECG recording with a subsequent heart rate extraction reported an MAE of 0.72 bpm at rest and minor activities 
– sit to stand, tapping, drinking, turning pages and using a tablet22.

Comparison of the estimated respiratory rate by the Health Patch acquired by bioimpedance followed by 
the signal processing/de-noising and R-R peak detection vs. the reference equipment (Cosmed) resulted in 
acceptable level of agreement (51% based on Lin’s concordance correlation coefficient, MAE 3.2 rpm). MAE 
values are close, but higher as compared with other studies. One study reported a home sleep measuring device 
with an MAE of 0.93 rpm23, while another study reported an MAE of 2.7 rpm in a consumer device vs. laboratory 
device test24. The VitalPatch reported a MAE of 1.89 rpm for RR, when compared to their chosen gold standard 
device, the Philips MX 450 22. The authors of the VitalPatch study also pointed out similarly on higher scatter in 
the respiratory rate data when compared to their gold standard device. The aggregated respiratory rate generally 
exhibited fair agreement within a reasonable range and the larger disagreements tended to appear in the higher 
ranges of the measured values – during exercise where motion artefacts25 and tissue conductivity changes are 
present, and thus impacts bioimpedance measurements and as a result also respiratory rates values. We suggest 
that inertial measurement unit (IMU)-based motion sensing of respiration (or a combination of both IMU and 
impedance) may allow for motion artefact compensation and for additional redundancy, improved signal clarity 
and improvement for derivation of respiratory rate. Furthermore, the sensing modality (bioimpedance vs. air 
flow) and thus the sensitivity to breathing patterns between the control and Health Patch devices are different. 
Others have combined multiple sensing modalities based on lung volume with bioimpedance, intrathoracic 
pressure reflected in PPG, and chest movements based on IMU sensors, leading to more accurate estimations 
of respiratory rate under resting conditions. In addition, Cosmed only provided averaged data over 1-minute 
intervals. This implies that the data may have been smoothed out and direct comparisons are therefore not 
straightforward. Nevertheless, numerous studies have demonstrated that bioimpedance based respiratory 
rate measurements is comparable to airflow-based methods, including those from Cosmed, and suitable for 
measurements at home25–27. We believe that the main reason for the discrepancy is related to the suboptimal 
position of the patch under the armpit, which was based on usability and comparability with other studies 
focusing on continuous heart rate monitoring. This position is suboptimal for bioimpedance-based respiratory 
monitoring, as only a small part of the lung is covered and sensitivity to respiration may be compromised, 
especially in some individuals that showed a high degree of bias. Given the clean raw bioimpedance signal, it 
is expected that proper positioning of the patch, i.e. on the middle of the chest, will significantly improve the 
sensitivity of the two bioimpedance electrodes to respiration and, hence, the underestimation of respiratory 
rate estimation from the Health Patch. In any case, it is important to highlight that the studies mentioned in 
this context were using different gold standard devices, making direct comparison challenging due to different 
methodologies.

As user comfort is crucial for compliance to wear health monitoring patches, this study also included a 
questionnaire to gather subjective feedback from the participants. Overall, the majority of participants indicated 
a positive perception of the Health Patch during a short wear time as well as during Health Patch removal. 
These findings are similar to what has been previously reported about this research platform in a study with 
a smaller number of participants but for a 5-day duration of use (n = 6), indicating the utility of dry-electrode 
for long-term wear beyond the current maximum of 3 days with standard wet-electrode technology28. In this 
particular study, however, mild skin itch was reported by 5 out of n = 25 individuals. This highlights the need 
for skin compatibility evaluation during prolonged use of the Health Patch research platform in a larger group 
of participants.

This study has several limitations. First, the recruited volunteers all had a military background and therefore 
may differ from the average population, e.g., in terms of body fat content and body shape. These factors might 
influence the ECG and bio-impedance readings and hence might influence the accuracy and precision of the 
heart rate and respiration rate.

Second, the study duration was relatively short, less than one hour with relatively low maximum heart rate 
activities which may not generalize to all other contexts of use, e.g., those of sports medicine. Future research 
should also address accuracy of the respiration rate measurements. It is recommended that clinical studies 
consider including a panel of volunteers representing a wider population demographics eventually extending 
to specific patient groups. Furthermore, it is being recommended that a future study considers a longer Health 
Patch wear period and includes a mixture of high and low intensity activities for the participants.

Conclusions
This study presents a thorough analysis of a novel, dry electrode adhesive-based, wearable Health Patch device for 
long-term monitoring HR, HRV and RR in comparison to clinical reference devices. The results demonstrated 
promising potential of this wearable technology for short-to-medium term clinical use in cardiorespiratory 
health monitoring. The study involved 25 female and male adult participants and showed good agreement with 
a Lin’s CCC of 0.98 for HR and of 0.85 for HRV between the Health Patch and Shimmer reference. RR was 
reported with a Lin’s CCC of 0.56 when compared to the Cosmed. Despite the lower coefficient, especially at 
higher respiratory rates, this study provides valuable insights into the technology’s performance, capabilities, 
limitations, and room for future improvements. Furthermore, user feedback was generally positive with minor 
discomfort reported, confirming earlier results after 5-day monitoring. Together, these findings support the 
use of the Health Patch for digital biomarker development, with the potential for researchers, healthcare 
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professionals and patients that benefit from continuous vital sign monitoring and health management, thereby 
improving patient outcomes.

Methods
Ethics approval statement
The study plan was approved by the Institutional Review Board of TNO (15 August 2022, approval number 
2022-054). All study participants signed an informed consent. The study was conducted in accordance with the 
Declaration of Helsinki in October 2022.

Study design and procedures
Male and female adult participants were recruited via the Centre for Man and Aviation (CML), Soesterberg, 
the Netherlands, from the military personnel. Exclusion criteria from the participation were sensitive skin, skin 
lesions on the upper left chest, known allergy to silicone, acryl, or medical gels, cardiorespiratory disease, or 
wearing cardiac pacemakers or other implantable powered devices. Chest hair was shaved if present prior to 
the test, and a photo of the area prior Health Patch application was taken as a baseline. The Health Patch was 
applied on the left side of the body under the armpit in a modified lead V5 configuration (see Fig. 8). Then, 
the cardiorespiratory measurement system (K5, Cosmed, Pavona RM, Italy) and a 3-lead ECG (Shimmer3 
ECG Unit, Shimmer, Dublin), Ireland were also applied and connected. Health Patch placement was selected 
to capture ECG and respiration rate (due to changing impedance of the thoracic cavity, which varies with each 
inhalation and exhalation) as well as to allow for placement of 3-lead ECG reference device.

The detailed study design and procedures is depicted in Fig.  9a. Participants first remained in resting 
conditions for 15  min (normal breathing, sitting still, no movement). Then, participants executed 10 squats 
followed by 2 min of cycling warming up, 5 min of intensive cycling (heart rate 130–160 bpm) and 2 min of 
recovery period. After the tests, the Shimmer ECG, Cosmed K5 and the Health Patch were removed, after which 
another image of the Health Patch application skin area was taken. The participant fill in an in-house developed 
questionnaire on Health Patch usability and experience during its wear and removal.

Data collection and signal processing
Device and data collection
The Health Patch consists of a re-usable recorder unit, and a disposable patch with self-adhesive dry electrodes 
(Fig. 8b). The device allows for battery-powered data logging of electrocardiography (ECG), 4-lead bioimpedance 
(BIO-Z) to derive respiratory rate and 3-axial accelerometer (ACC) for G-force data at 256 Hz, 32 Hz, and 64 Hz, 
respectively. Recorded data is retrieved by connecting the recorder to a computer via a proprietary docking 
station that is connected via USB. When connected, a software can download and export the recorded data. The 
same software is used to setup a new measurement. Alternative to the USB interface, a Bluetooth Low Energy 
interface is also available for live streaming signals.

ECG acquired using a reference device was processed using the corresponding dedicated Consensys software 
(Shimmer, Dublin, Ireland), which returned heart rate values (in bpm) at a sampling frequency of approximately 
256 Hz. Reference respiratory rate (bpm) acquired using a reference method, calculated over 1-minute intervals, 
was retrieved from the generated spreadsheets by the corresponding dedicated software of the Cosmed device. 
Raw signals are processed and analysed as shown in Fig. 9b.

Fig. 8.  (a) The Health Patch research platform adhered to the left side of the chest on a participant. (b) The 
Health Patch components such as a disposable part and re-usable part positioned alongside a coin to illustrate 
their size relative to a scale).
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Performance metrics
To evaluate signal quality acquired using the Health Patch, we used key performance metrics, which included 
Mean Absolute Error (MAE), Bland-Altman analysis (BAA), and Lin’s Concordance Correlation Coefficient 
(CCC). The MAE quantifies the average absolute differences between the measured differences between Health 
Patch and the gold standard measurements. A lower MAE indicates that the Health Patch’s measurements are 
closer to the gold standard, implying higher accuracy. The Bland-Altman analysis plots show the difference 
between the paired measurements on the y-axis against their average on the x-axis to visualise bias or systematic 
error and trends. Finally, the CCC provides how well the data are correlated, and in addition, how well they 
conform to a perfect agreement (closer to 1). These metrics were applied on the heart rate (HR), heart rate 
variability (HRV) and respiratory rate (RR) data.

Heart rate calculation
The raw ECG signal is first processed to remove a baseline drift introduced by respiration, movement, and 
variations in skin conductance to reliably extract R peaks (the R wave in an ECG) values of the QRS complexes 
in varying conditions. To achieve this, a proprietary algorithm was made, based on a modified version of the 
routine from Lee et al.29. In brief, first, the signal baseline is obtained by applying a second order Savitzky-Golay 
filter on the raw ECG signal with a window width of 250 ms. The choice of filter order and window width 
ensured that the smoothing scale is larger than even the widest possible QRS complex so that higher frequency 

Fig. 9.  (a) Timeline of the study protocol and procedures for the participants. (b) Flowchart of the signal and 
data processing for both heart rate and respiratory rate analysis. ECG electrocardiogram, SEE Shannon energy 
envelope, R-peak R wave in an ECG, HR heart rate, HRV heart rate variability, RR respiratory rate.
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information in the QRS complexes is preserved while the slower varying noise components were effectively 
removed. Then, the signal baseline was subtracted from the raw signal, resulting in a baseline-corrected signal. 
The signal was then processed further for R-peak detection. In the first step, the Shannon Energy Envelope (SEE) 
of the baseline-corrected signal was computed by taking the squared absolute real part of the inverse Fourier 
transform of the Hilbert-transform of the baseline-corrected signal.

Next, a fifth-order Savitzky-Golay filter was applied to the SEE to smooth the energy envelope. Our algorithm 
then identified parts of the signal where the filtered envelope exceeds an adaptive threshold. This adaptive 
threshold was calculated by convolution of the filtered energy envelope with a Gaussian kernel. The segments 
that exceeded the threshold corresponded to the extracted QRS complexes. Segments that were within 200 ms 
of each other were regarded as a single QRS complex. Finally, the R-peaks were identified as the point of the 
maximum amplitude in each of the QRS segments.

The resulting R-R intervals were then converted to N-N intervals by filtering R-R interval values using a 
combination of filtering strategies adapted from Saleem et al.30. The goal was to remove or mitigate the impact 
of (technical and movement related) artefacts and noise, particularly ectopic beats, without distorting the 
underlying physiological information. This filtering step improved signal to noise ratio in the detected R-R 
intervals, which was important for subsequent accurate HR and HRV estimation. First, a signal-dependent rank 
ordered mean (SDROM) was used to filter spurious R-R intervals caused by ectopic beats and artefacts. The 
SDROM filter algorithm was designed to eliminate impulsive noise in data sequences using a sliding window 
approach.

Our algorithm applied a sliding window of an odd number of samples to the R-R interval data. Within 
these windows, the algorithm calculated a rank-ordered mean, based on the sorted data points excluding the 
centre value. The differences between the centre value and other values within the window were computed. 
These differences were compared against corresponding empirical thresholds. If any computed difference 
surpasses its corresponding threshold, the data point associated with that iteration was deemed anomalous. The 
corresponding R-R interval was then removed from the data, resulting in a sequence of N-N intervals.

The resulting N-N interval data was then used to calculate heart rate. Heart rate in beats per minute was 
calculated by multiplying the reciprocal of the N-N intervals by 60.

Heart rate variability calculation
Heart rate variability for both the Health Patch and Shimmer datasets was calculated as the Root Mean Square 
of Successive Differences (RMSSD). This is the most robust measurement to reflect parasympathetic nervous 
system (PNS) activity with limited influence from respiration from Shaffer & Ginsberg31. It was calculated based 
on the previously obtained N-N intervals for both the Health Patch and Shimmer data as follows in Eq. (1):

	
RMSSD =

√
1

N − 1

∑ N−1

i=1
(NNi+1 −NNi)

2.� (1)

To calculate the heart rate variability, the root mean square of successive differences (RMSSD) calculation was 
applied to continuous five-minute windows of N-N interval data, a common technique used as per Shaffer & 
Ginsberg31. This calculates the square root of the mean squared differences between the adjacent normal to 
normal intervals.

Respiratory rate calculation
To process the respiratory rate data, first a Butterworth bandpass filter was applied to the bioimpedance signal, 
focusing on frequencies between 0.1 Hz and 5 Hz. This range effectively removed unwanted muscle movement 
artefacts, allowing the respiratory information to be extracted. After the filtering process, the resulting signal 
was normalised by dividing it by its root mean square value. This normalisation step ensured that the signal’s 
amplitude was consistent across different recordings, facilitating accurate analysis. The bioimpedance signal 
oscillated around zero and the algorithm used this characteristic for detection of respiratory rate. It determined 
when the normalized signal exceeds zero, indicating potential respiratory events. Within each positive segment, 
the algorithm identified the peak by locating the maximum normalised signal value. After detection of the peak 
values, respiratory rate in respirations per minute (rpm) was calculated by multiplying the reciprocal of the 
peak-to-peak time in seconds by 60. The reason was because respiratory rate is generally reported in rpm instead 
of time between respirations.

Statistical analyses
As the acquisition of the data using a Health Patch and reference standards was not synchronized in hardware, 
time synchronisation after the signal acquisition was necessary. Data from the different devices with different 
sampling rates were synchronised using a 1-minute sliding window with a 20-second overlap. Mean measurements 
of the respective measurements within each window were computed to create a synchronised dataset, allowing 
comparative analysis by aligning the measurements temporally. Subsequently, mean absolute error (MAE) was 
calculated per participant and a Bland-Altman analysis was carried out to investigate the accuracy and precision 
of the Health Patch HR and RR measurements as compared to gold standard measurements. Mean statistics and 
5th and 90th percentiles were reported for the MAE to evaluate the interindividual variation in performance 
of the Health Patch. Lin’s concordance correlation coefficient (CCC) was used to evaluate how well the Health 
Patch dataset conformed to the gold standard device dataset32. It is a modification of the Pearson correlation 
coefficient by not only calculating the spread of the data from the line of best fit, but additionally assessing the 
deviation from the 1:1 line representing perfect agreement. Mean and standard deviation was used to describe 
the usability and user experience of the Health Patch and skin condition after use.
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