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Robustness of Machine Learning Systems Chapter 1

Alan Turing once said: “A computer would deserve to be called intelligent if it could deceive 
a human into believing that it was human”. Currently, we cannot confirm that any system 
successfully deceived a human into believing that it is a human. However, there are plenty of 
cases of computers deceiving other computers, for example by fooling it into thinking a picture 
of a hamster is actually a burrito (Anley, 2022). The ability to deceive Artificial Intelligence (AI) 
models has sparked discussion among researchers about their robustness and safety. In order 
to counter the risks that come with Adversarial AI attacks, a novel study branch has emerged 
that deals with defence methods against such attacks.

Introduction

by the 3848 and 5415 papers published 
in 20223 and 20234 respectively. However, 
this increase is proceeding in a less 
structured manner: scholars often present 
breakthrough techniques which in reality 
are existing methods with relatively small 
alterations. This results in a diverse range 
of terminology in this field of research, 
making it difficult to discern general 
trends and promising results. Providing 
a structured overview of AML defence 
methods is a crucial step towards enabling 
developers to identify the most popular 
and promising ways to defend AI-based 

3 Scopus search term: ( ALL ( adversarial AND machine AND 
learning ) ) AND ( cyber ) AND PUBYEAR = 2022 AND ( LIMIT-TO 
( DOCTYPE , “ar” ) OR LIMIT-TO ( DOCTYPE , “cp” ) OR LIMIT-TO ( 
DOCTYPE , “re” ) ).

4 Scopus search term: ( ALL ( adversarial AND machine AND 
learning ) ) AND ( cyber ) AND PUBYEAR = 2023 AND ( LIMIT-TO 
( DOCTYPE , “ar” ) OR LIMIT-TO ( DOCTYPE , “cp” ) OR LIMIT-TO ( 
DOCTYPE , “re” ) ).

As the world is rapidly becoming aware of 
the increasing capabilities of AI, promising 
new applications are expected and being 
implemented in a plethora of domains. 
The cyber domain is no exception: 
cybersecurity applications, including in 
cyber-physical systems such as factories, 
power plants, and oil and gas facilities, 
are being deployed with AI components 
(Alotaibi & Rassam, 2023). However, the 
introduction of AI and specifically Machine 
Learning (ML) technologies could create 
new attack vectors that can be exploited 
through Adversarial Machine Learning 
(AML) techniques (Brink, et al., 2023).

In 2023, the authors of this whitepaper 
provided an overview of the academic 
literature on AML and identified five main 
methods through which ML models may 

be attacked (Brink, et al., 2023).1 This 
overview showed that research on attack 
methods is developing quickly, and yet 
we might only be seeing the tip of the 
iceberg, as some studies may not be 
published due to confidentiality. Adding 
to that, there is scant public knowledge 
about which attacks are being carried out, 
in the wild, making it difficult to create an 
accurate depiction of the actual threat 
landscape. At the same time, the number 
of studies on defensive methods against 
AML attacks is increasing rapidly, as the 
24 papers published in 20142 are dwarfed 

1 See https://www.tno.nl/en/newsroom/2023/02/first-overview-
cyberattack-techniques-ai/. This framework was based on 
predictive ML models. Recent research suggests that Generative 
AI may be vulnerable to different, newer types of attacks, such 
as abuse attacks (Vassilev, Oprea, Fordyce, & Anderson, 2024). 
The focus of this whitepaper is on more ‘traditional’, predictive 
ML models.

2 (Brink, et al., 2023)

systems in the emerging threat landscape, 
improving the robust and secure use of AI 
(Brink, et al., 2023).

This whitepaper takes up this challenge 
by structuring existing AML defence 
mechanisms in the cyber domain, 
answering the following two research 
questions:

1. Which defence mechanisms are being 
discussed in academic literature, and 
how can they be structured?

2. What are the general trends in AML 
literature?

This whitepaper first gives a brief overview 
of the different AML attacks mentioned 
earlier.

Then, the results of the literature review 
into the defences against AML attacks are 
presented in the AML Defence Framework, 
presented below. This framework was 
used to uncover overarching trends in 
the literature, which are described after 
the AML Defence Framework. The paper 
finalises with a section of conclusions 
regarding the research field of defences 
against AML attacks. 

https://www.tno.nl/en/newsroom/2023/02/first-overview-cyberattack-techniques-ai/
https://www.tno.nl/en/newsroom/2023/02/first-overview-cyberattack-techniques-ai/
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Background Knowledge: Adversarial ML Attacks

According to Brink et al. (2023), AI-based 
systems in the cyber domain could 
be attacked using AML attacks. They 
furthermore divided those AML attacks 
into five categories:

1. Poisoning: manipulating the training 
data. 

2. Backdoor: adding code to the model 
that ensures normal operation until a 
specific input is given by the attacker.

3. Evasion: manipulating the input to 
mislead the model. 

4. Membership inference: using access to 
the model to learn characteristics about 
the training data. 

5. Model stealing: creating a copy of the 
original model by exploiting access to it. 

The different attacks were plotted on 
the European Telecommunications and 
Standardisation Institute’s (ETSI) ML 
lifecycle model, which outlines the six 
stages of a ML model’s development, 
operation, and updates. In this whitepaper, 
we map the defensive techniques on 
the ETSI ML lifecycle model in a similar 
manner. This categorisation aims to create 
a understanding of the various possibilities 
for mitigating existing threats to machine 
learning models, bringing to light general 
patterns in the defences. When plotting 
possible defences onto this model, one 

must keep in mind that defences in a 
specific phase do not solely counter 
attacks that target that specific phase. 
They may also mitigate different attacks. 
For example, by using multiple models 
to collectively vote on the main model’s 

Figure 1: Possibilities to attack the ML life cycle (Brink, et al., 2023), supplement to (ETSI, 2020, p. 11).

output, one could prevent model stealing 
attacks, but potentially also evasion and 
poisoning attacks. Thus, this defence in the 
operational phase could mitigate attacks in 
the output, input, and preparation phases.
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AML Defence Framework

As presented above, AML attacks against 
machine learning models can be mapped 
to the phases in the ETSI ML life cycle 
(ETSI, 2020). We propose an extension of 
ETSI’s framework by plotting the defence 
mechanisms found in the literature 
onto their ML life cycle. To allow for the 
analysis of the most relevant papers in 
this quickly developing field, we collected 
a large sample of papers through a 
Scopus database. Next, we assessed them 
using ASReview, a ML tool for conducting 
systematic literature reviews (ASReview 
Lab, 2022). Figure 2 shows the result of this 
analysis: a set of AML defence categories 
(or 'families') for each of the ETSI ML life 
cycle phases. Each of the categories is 
colour-coded according to the attack type 
that it is described to protect against.

The following sections explain the ML life 
cycle phases, the categories of defences 
within them, and builds on those by 
adding the specific defences within those 
categories. The most relevant defences 
will be explained in more detail in the text, 
but for those that are not, the papers are 
also included in the bibliography. Note that 
the current research has not empirically 
verified the effectiveness of these defences 
in practical applications. However, advances 
in research since the introduction of 

these attacks allowed us to draw certain 
conclusions about their effectiveness.

AML defence categories

Preparation Training Operational Input Output Improvement

Randomising 
training data 

collection

Sanitising 
training data

Discarding 
features

Regularisation

Data 
augmentation

Obfuscation

Data curation 
techniques

Introducing 
add-ons

Sanitising
training data

Information-
hiding 

techniques

Introducing 
additional 

models

Protects against
Backdooring
Poisoning
Evasion
Membership inference
Model stealing

Figure 2: AML defence categories within the ML life cycle.
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Preparation phase
The preparation phase consists of data 
acquisition, data curation, and model 
design. The end-objective is obtaining a 
dataset of sufficient quality and a correct 
format of inputs for the model (ETSI, 2020). 
In this context, sufficient quality refers to 
the state in which the dataset represents 
the phenomenon to a sufficient extent, 
and which allows the model to produce 
meaningful and accurate results. 

Preparation

Sanitising
training data

Discarding
features Regularisation

Randomised
sources for 

training data 
collection

Feature 
selection

Causal 
unlearing

Parseval 
networks

Spectral norm
regularisation

Jacobian
regularisation

Randomising
training data

collection

Figure 3: AML defences in the preparation phase.

The literature describes four main streams 
of defence in the preparation phase. 
First is randomisation of the way that 
training data is collected. By gathering 
training data from different sources at 
different times, it would be more difficult 
for adversaries to poison a significant 
amount of the training data (Biggio & Roli, 
2018). This is especially challenging for 
the recently developed models that use 
datasets of considerable sizes (millions 

of records). Examples include computer 
vision datasets such as LAION-400M or 
COYO-700M, that contain 400 million and 
700 million images respectively. These 
are hosted as an image’s URL with their 
corresponding labels. Regardless of the 
file referred to by the URL, the URL is 
immutable, whereas the served content 
can be altered. When the domains of the 
hosted images expire, the attacker can 
purchase them and include the poisoned 
samples in the training set for any model 
which uses these datasets (Carlini, et 
al., 2023). Randomisation of the data 
retrieval processes can help to mitigate the 
problem of poisoned data by invalidating 
the attacker’s assumption about the 
records that will be accessed and about 
the time that they will be collected. The 
latter is important in scenarios where 
the dataset maintainer snapshots a data 
collection from a specific source. In this 
case, the attacker can poison the original 
data source just before the snapshotting 
takes place. Wikipedia’s articles and 
database are examples of this, as these are 
periodically updated (Carlini, et al., 2023).

Second, collected training data could be 
sanitised, for example, using techniques 
for analysing the input data distribution. 
One such technique, causal unlearning, 
an anti-poisoning method, aims to detect 
polluted data in the dataset. By removing 
different sets of samples from the dataset 
and observing if a misclassification still 
occurs, the cause of it can be detected 
(Cao, et al., 2018). Third, the attack 
surface of the model could be limited by 
discarding some of the features, which 
would constrain the space for malicious 
perturbations. Finally, one can attempt to 
create a more robust model by introducing 
certain regularisation methods. Apart 
from preventing overfitting and granting 
better generalisability, they can lead to 
better robustness of the models facing 
adversarial examples (Yoshida & Miyato, 
2017; Cisse, Bojanowski, Grave, Dauphin, & 
Usunier, 2017; Hoffman, Roberts, & Yaida, 
2019). One of the most promising defences 
that utilises such a method is termed 
a Parseval network, in which the global 
Lipschitz constant is constrained during 
training. 



7 

Whitepaper

7 

Robustness of Machine Learning Systems Chapter 3

While this method is described as promising, 
it is computationally expensive, which 
increases the difficulty of implementation 
(Cisse, Bojanowski, Grave, Dauphin, & 
Usunier, 2017). Still, when comparing the 
necessary computational load, the novelty, 
and efficacy, this method appears to be the 
most promising out of the three defences in 
the regularisation section. 

Table 1: Defence method sources for the preparation phase.

Defence method Reference 

Randomisation (Joseph, Laskov, Roli, Tygar, & Nelson, 2013)

Causal unlearning (Cao, et al., 2018)

Feature selection (Zhang, Chan, Biggio, Yeung, & Roli, 2015)

Parseval networks (Cisse, Bojanowski, Grave, Dauphin, & Usunier, 2017)

Spectral norm regularisation (Yoshida & Miyato, 2017)

Jacobian regularisation (Hoffman, Roberts, & Yaida, 2019)
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Training phase
The training phase involves three activities: 
the model is built, trained, and evaluated 
upon test time. It can be seen as an 
iterative sequence of these actions. After 
evaluating the model’s performance, 
one might want to make changes to the 
model’s definition – a part of source code 
related to the model – and effectively 
repeat the process until the expectations 
for its performance are met. In a nutshell, 
training is an optimisation process of 
finding model parameter values that 
allows for solving a given task with a 
desired efficacy. The model can find the 
best fit to the training data by controlling 
the change to the objective function, which 
allows for measuring how much error a 
model is producing for its results. Ideally, 

during each iteration of training, this value 
is minimised, and the model improves its 
performance (Fan, 2023). This process is 
of great importance for defenders, since 
an attacker might attempt to manipulate 
or deceive it, specifically in the case of 
poisoning and evasion attacks. 

Defences deployed in the training 
phase can generally be divided into 
two categories: data augmentation 
techniques and obfuscation techniques. 
The most researched variation of the first 
category is adversarial training, in which 
adversarial examples are included in the 
training dataset so the model can learn to 
differentiate them from benign examples. 
In an ideal situation, where all (future) 
adversarial samples are known, this is a 

promising technique – we simply train 
the model to recognise which inputs are 
malicious. However, in reality, we cannot 
know the complete set of adversarial 
examples that the model currently is and 
will be subjected to. Therefore, the main 
challenge when using adversarial training 
is selecting the adversarial samples that 
are representative of the range of the 
adversarial samples that the model could 
encounter. Ideally, this process should be 
repeated periodically, including previously 
unknown adversarial samples. Another 
proposed method is Gaussian data 
augmentation, which adds noise to the 
inputs of a model. That noise consists of 
values which are drawn at random from 
a Gaussian distribution (Rochac, Liang, 
Zhang, & Oladunni, 2019). By assumption, 

such noisy inputs enhance the capabilities 
of a model to be more robust to AML 
attacks. The benefit of data augmentation 
techniques is that, in addition to showing 
promising results, they also allow for 
relatively easy security improvements 
to the running model, since they can be 
applied during model retraining.

The defences present in the second 
category rely on gradient obfuscation 
(Athalye, Carlini, & Wagner, 2018). Since 
white-box attacks rely on the gradient of 
the model, the efficacy of these attacks 
normally decreases when obfuscation 
methods are used. However, novel attack 
techniques have been developed that 
render this defence mechanism ineffective 
(Athalye, Carlini, & Wagner, 2018). 

Training

Obfuscation

Data 
augmentation

Gradient 
masking

Adversarial
training

Blocking
transferability

Fine-pruning
defence ZK-GanDef Direct 

classification
Supervised adversarial 
conservative learning

Feature-based 
adversarial training

Gaussian data
augmentation

Provenance
defence

Hybrid 
adversarial 

training

Figure 4: AML defences in the training phase.
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Hence, when the attack is indeed white-
box, gradient obfuscation is not deemed 
useful, as attackers can circumvent this 
defence method. Additionally, this defence 
method could also be circumvented if 
the attacker is able to develop a black-
box substitute model to craft adversarial 
examples (Papernot, et al., 2017). Still, 
this defence method provides protection 
against certain attacks, more if defenders 
can prevent attackers from obtaining 
a substitute model, and the underlying 
techniques could provide for novel defence 
mechanisms. 

Table 2: Defence method sources for the training phase.

Defence method Reference

Adversarial training (Goodfellow, Shlens, & Szegedy, 2015)

Blocking transferability (Hosseini, Chen, Kannan, Zhang, & Poovendran, 2017)

Fine-pruning defence (Liu, Dolan-Gavitt, & Garg, 2018)

ZK-GanDef (Liu, Khalil, & Khreishah, 2019)

Gaussian data augmentation (Rochac, Liang, Zhang, & Oladunni, 2019)

Direct classification
(Grosse, Manoharan, Papernot, Backes, & McDaniel, 
2017)

Provenance defence (Baracaldo, Chen, Ludwig, & Safavi, 2017)

Supervised adversarial contrastive 
learning

(Li, et al., 2023)

Hybrid adversarial training (Ryu & Choi, 2022)

Feature-based adversarial training (Ryu & Choi, 2022)

Gradient masking (Tramèr, et al., 2018)



10 

Whitepaper

10 

Robustness of Machine Learning Systems Chapter 3

Operational phase
Once the model is developed and 
evaluated successfully, it can be released 
to the production environment. Regarding 
the model’s deployment, one should 
consider the model itself, as well as its 
embeddings. This includes the way the 
model will be interacted with and how  
it will operate. 

Defences in the operational phase 
generally consist of introducing an add-
on to the target model or introducing 
additional models to detect or block 
AML attacks. An add-on to the model 
could mitigate attacks by monitoring the 
behaviour of the model, for example, by 
focusing on monitoring changes in the 
value of the loss function. This defence 
method, called loss-based defence, 
monitors deviations from the expected 
values, which are marked as suspicious, 
triggering the termination of the model’s 

operations (Chen, Zou, Su, & Zhang, 2020). 
Additionally, one may add additional 
models to counter attacks, creating a sort 
of layered defence strategy. For example, to 
prevent model stealing attacks, ensemble 
defence methods can be implemented, in 
which the output is determined through a 
voting scheme between different models. 
Within this scheme, the output that the 
models collectively determine to be the 
best is returned as final output by the 
model (Chen, Zou, Su, & Zhang, 2020). 
For an adversary to succeed in attacking 
this model, they would have to devise an 
attack that can account for all the different 
models in the ensemble.

It is important to consider the impact 
of defensive techniques on the runtime 
of the system however. Therefore, these 
methods must be efficient enough not to 
overburden the existing infrastructure.

Table 3: Defence method sources for the operational phase.

Defence method Reference

Loss-based defence (Yang, Wu, Li, & Chen, 2017)

Ensemble defence (Hitaj & Mancini, 2018)

Classifier ensembles (Biggio, Fumera, & Roli, 2010)

Operational

Introducing
additional 

models

Loss-based
defence

Ensemble
defence

Introducing
add-ons

Classifier
ensembles

Figure 5: AML defences in the operational phase.
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Input phase
This phase includes mechanisms for 
submitting and sanitising the input from 
the user. In the case of a server-side 
application, this can include an upload 
functionality with a pre-processing pipeline 
implemented in the back end.

Defences in the input phase are largely 
similar to those in the preparation phase, 
as this phase mainly consists of processes 
related to both data acquisition and data 
curation. 

A promising technique implemented in 
computer vision tasks is termed feature 
squeezing. This technique allows for 
reducing the colour depth and smoothing 
out differences between pixels. This 
effectively shrinks the size of the space 
in which the attacker might introduce 
malicious perturbations. To increase 

the chances of an effective attack, the 
adversary needs to elevate the intensity 
of perturbations, generating more visible 
malicious noise in the altered image. 
Overall, the transformations proposed in 
this technique account for the fact that the 
model is not robust. Some of the tested 
attacks failed or their effect was reduced 
significantly (Xu, Evans, & Qi, 2017). 
Besides the computer vision domain, this 
technique can be introduced to other tasks 
such as automatic speech recognition 
systems, which may utilise spectrograms 
for the audio data representation (OpenAI, 
2023). 

The input phase is also where adversarial 
examples may be detected. One manner 
of achieving this is by comparing the 
prediction of a deep neural network based 
on the original input with the one based on 
the squeezed input (Xu, Evans, & Qi, 2017). 

Another technique, that both detects and 
mitigates adversarial examples, relies 
on an image's compression levels. The 
fact that these compression levels are 
randomly applied to different regions of an 
image allows one to rectify the perturbed 
input (Liu, et al., 2018). 

Clearly, the attempts to suppress the 
malicious effect of perturbations at the 
input phase rely on certain forms of 
transformations, which leads to a reduction 
of the impact of malicious noise. Spatial 
and magnitude alterations, as well as 
compression techniques, seem promising. 
However, at the same time, they re-form 
the original inputs, which raises questions 
on preserving some of the significant input 
attributes. In this context, the defensive 
methods applied in the input phase must 
be validated in terms of information loss, 
in addition to their efficacy. Some of the 

Input Data curation
techniques

Defence 
GAN MagNet

High-Level 
Representation

Guided Denoiser
ME-Net

Feature
squeezing (and 

input processing)
DeepCloak

Sequence
squeezing

Data 
compression

Reformers/
Auto

encoders

Thermometer
encoding

Figure 6: AML defences in the input phase.

operations might result in a decrease 
of data quality, its meaningfulness, 
or intelligibility. Moreover, any form 
of decomposition can result in a less 
interpretable process of classification. From 
an explainable AI perspective of research, 
this might be problematic, as formulating 
conclusions on how the model operates 
and how it produces a specific output 
might become impossible given such an 
obfuscated form of input data.
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Table 4: Defence method sources for the input phase.

Defence method Reference

Defence GAN (Samangouei, Kabkab, & Rama, 2018)

MagNet (Meng & Chen, 2017)

High-Level Representation Guided  
Denoiser

(Liao, et al., 2018)

ME-Net (Yang, Zhang, Katabi, & Xu, 2019)

Sequence squeezing (Rosenberg I. , Shabtai, Elovici, & Rokach, 2019)

Feature squeezing (and input processing) (Xu, Evans, & Qi, 2018)

Data compression (Dziugaite, Ghahramani, & Roy, 2016)

DeepCloak (Gao, Wang, Lin, Xu, & Qi, 2017)

Reformers/Autoencoders (Liu, Xie, & Srivastava, 2017)

Thermometer encoding (Buckman, Roy, Raffel, & Goodfellow, 2018)
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Output phase
This phase includes means for presenting 
the results of the model’s task. Based on 
the quality of the output, the developer 
might decide that additional actions must 
be performed to improve the performance 
of the model, a specific module, or the 
entire application. 

Defences in this phase generally aim to 
ensure that only necessary information is 
relayed to users, omitting non-essential 
data that might be useful to attackers. 
Thus, the two threats in the output phase 
are model stealing attacks, as constructing 
a replica model relies on the data produced 

in this very phase, and membership 
inference attacks, as attacks extract the 
data in this stage. To mitigate such attacks, 
we can attempt to hide certain information 
from the potential attacker by reducing 
or eliminating any feedback given by the 
ML model or providing less meaningful 
outputs (Clark Jr & Doran, 2018). This can, 
for example, be done by providing labels 
instead of classes’ probabilities. Since users 
generally do not need this information, 
these strategies could limit an attacker’s 
access to important data without 
significantly compromising the model’s 
usability for other users. 

Table 5: Defence method sources for the output phase.

Defence method Reference

Information hiding (Barreno, Nelson, Sears, Joseph, & Tygar, 2006)

Output

Information
hiding

Information-
hiding 

techniques

Figure 7: AML defences in the output phase.
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Improvement phase
The improvement phase aims to adapt 
the model to allow it to handle previously 
unseen features. ML models require 
updates to their parameters, which are 
achieved by fine-tuning the model with 
newly collected data. The focus can be on 
fine-tuning the last layers of the model, 
which is also a way to achieve transfer 
learning (Fan, 2023). The improvement 
might also focus on the application’s 
performance by optimising the workload of 
the modules (e.g., batching), the scalability 
of operators, finding a more suitable 
framework, or by changing the architecture 
or hyperparameters (Kogan, 2023).

Improvement

Causal 
unlearning

Sanitising
training

data

Figure 8: AML defences in the improvement phase.

As this phase focuses on improving the 
model with new training data, defences 
used in the preparation phase to sanitise 
the training data could also be applied 
here. One could again check for poisoned 
data, for example using causal unlearning 
(Cao, et al., 2018).

Regardless of the specifics of the end-
product, it is important to consider that 
the software accompanying the model 
may be vulnerable to some server-side or 
client-side attacks. This can leave the users 
or the application vulnerable to further 
exploitation by the attackers. Despite the 
focus on adversarial machine learning,  
we emphasise that the security of the end-
product must be evaluated both from the 
perspective of the security of the model, as 
well as the security of all the incorporated 
components.

Table 6: Defence method sources for the 
improvement phase.

Defence method Reference

Causal unlearning (Cao, et al., 2018)
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Overarching trends

Utilising the extensive insights gained 
through our research into the defences, 
we can distinguish five overarching trends. 
These trends highlight the connections 
between the defences in the different 
categories and provide general lessons for 
implementing defences. 

Emphasis on evasion attacks
Firstly, while there are five types of AML 
attacks in the domain of predictive AI, 
most of the defences are geared towards 
evasion attacks. This may be because these 
attacks have received the most attention 
in research, potentially leading to evasion 
attacks being the most likely attack type 
one could encounter. This may also stem 
from the fact that AML attacks, in the 
literature, are often confined solely to 
evasion attacks (Li, Fung, & Charland, 2022; 
AL-Essa, Andresini, Appice, & Malerba, 
2022; Liu, Khalil, & Khreishah, 2019). As 
most literature focuses on evasion attacks, 
papers developing defence methods for 
novel or significant attacks primarily focus 
on evasion attacks as well. 

Prominence of certain techniques
Secondly, even though there is a sizeable 
list of defences, some of them gained 
more attention than others. One of 
them is adversarial training, a method 
that involves adding attack samples to 
the training data. As the model is then 
trained to recognise these malicious 
samples, it can better recognise and 
deal with them upon deployment. This 
method’s popularity stems from its ability 
to drastically improve a model’s ability to 
withstand AML attacks and from it being 
relatively straightforward to implement 
even after the model is deployed. This has 
spurred other researchers to explore ways 
to improve adversarial training. Examples 
of this include eliminating the need for real 
malicious samples, and devising ways to 
determine which malicious samples should 
be included for optimal performance. (Liu, 
Khalil, & Khreishah, 2019). However, the 
effectiveness of this defence technique 
is limited by the fact that selecting 
an optimal set of samples remains a 
challenge. 

Other techniques are also featured 
prominently in multiple defence methods, 
such as the usage of autoencoders. These 
neural networks take an input, encode 
a compressed version of the input, and 
output the reconstructed input from the 
code (Dartat, 2017). They achieve this 
by first learning the manifold of benign 
data, so when an evasion attack targets 
the boundary of a benign example, the 
autoencoder reforms the input and pushes 
it to the correct benign sample (Meng 
& Chen, 2017). This demonstrates that 
certain promising techniques could be 
implemented in various ways. 

Incorporation of detection  
methods
Thirdly, a sizeable number of defences 
incorporate methods for detecting attacks 
into the defence method, resulting in 
a mechanism that can both detect 
and mitigate an attack. An example 
of such a defence method is blocking 
transferability (Hosseini, Chen, Kannan, 
Zhang, & Poovendran, 2017). This method 

proposes a solution to the problem of 
the transferability of attacks, meaning 
that if an attacker develops an attack 
using one model, those attacks are likely 
to work against another model, even if 
they differ significantly (Hosseini, Chen, 
Kannan, Zhang, & Poovendran, 2017). The 
blocking transferability method builds on 
this concept, using benign input to train 
the model to learn how benign data is 
distributed, similar to how it knows how 
training data is distributed to create its 
classes (Hosseini, Chen, Kannan, Zhang, 
& Poovendran, 2017). Then, the model 
is trained to discard all inputs whose 
distribution differs from benign inputs, 
discarding the adversarial inputs. 

Focus on security-enhancing  
systems in the cyber domain
Fourthly, there is an important lesson 
regarding defences from the cyber domain 
that demonstrates the importance of 
considering AML defences. Namely, the ML 
applications that were aimed at improving 
security-enhancing systems in the cyber 
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domain introduced new vulnerabilities, 
as their potential susceptibility to AML 
attacks could lead to a compromise of 
the entire system. This is specifically the 
case for security-enhancing systems 
that focus on anomaly detection, 
such as Network Intrusion Detection 
Systems (NIDS) (Mbow, Sakurai, & Koide, 
2022). While these systems functioned 
sufficiently, the advances in ML have made 
them even more accurate in the face of 
rapidly evolving and increasing amounts 
of attacks (Jmila & Ibn Khedher, 2022). 
However, ML models’ vulnerability to 
AML attacks poses new risks which could 
render the NIDS as a whole vulnerable. 
Using maliciously perturbed samples, 
attacks could bypass the NIDS and, for 
example, gain access to the system the 
NIDS was supposed to protect (Alotaibi 
& Rassam, 2023). Given that ML models 
are increasingly being adopted in systems 
such as autonomous vehicles and chemical 
plants (Gu & Easwaran, 2019), this new 
attack vector could cause significant 
damage if exploited. Thus, simply adding 

ML to an existing system may not mitigate 
the current security problems and could 
even create new attack vectors. 

Difficulties of evaluating defences
Lastly, while defences are being developed 
against all AML attack categories, using 
(combinations of) novel techniques, some 
defences may also seem more promising 
on paper than they are in the real world. 
This may stem from the fact that defences 
are often evaluated incorrectly, leading 
to incorrect assumptions about their 
efficacy (Carlini, et al., 2019). For example, a 
promising technique by Papernot, McDaniel, 
Wu, Jha, and Swami (2016), termed 
defensive distillation, was proven to be not 
as robust as the authors claimed (Carlini & 
Wagner, 2017). In this case, the constrained 
set of tests led to an overly optimistic 
evaluation of the network. Thus, one should 
inspect whether defences can achieve 
their claimed efficacy before implementing 
them, and periodically review their efficacy 
in a changing threat landscape.

Defences may not always mitigate all 
(sub)types of attacks. However, as the 
highest level of security is not always 
necessary, this should not be a reason 
to automatically disqualify a particular 
defence mechanism. Since perfect 
defences are impossible, the goal should 
be to increase the cost of attacking to the 
level necessary to deter the adversary. 
This requires comprehensive modelling of 
the expected threat. Generally, scholars 
model the threat according to three axes: 
goals (what outcome does the adversary 
seek), capabilities (what constraints do 
they face), and knowledge (what do they 
know about the model for example) (Biggio 
& Roli, 2018; Duddu, 2018). Additionally, 
there is a fourth axis which is often only 
mentioned implicitly: strategy. This axis 
explores whether the attacker will observe 
and gather information (passive attacks) 
or actively target the model, disrupting its 
functioning (active attacks) (Dasgupta & 
Collins, 2019; Dai, Sthapit, Epiphaniou, & 
Maple, 2021; Rosenberg, Shabtai, Elovici, 
& Rokach, 2021). To reduce implicit 

assumptions clouding the threat modelling 
and to conduce the debate about the 
threat, all four axes should be considered 
when modelling the adversary. Based on 
the outcome of this threat modelling, the 
defenders select the defences that could 
increase the cost of attacking to the level 
necessary to deter the adversary.
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Conclusions

AML research into the cyber domain continues to progress 
rapidly, as evidenced by the rapid increase of the number of 
papers published, including a 40% increase from 2022 to 
2023. While these developments demonstrate the increasing 
importance of this research field and the new findings continue 
to enable new methods, digesting all this information has 
become a task which cannot be performed solely by humans 
anymore. 

Additionally, this increase may also 
indicate that AML attacks are becoming 
more realistic. At the same time, however, 
the development of defences continues to 
significantly lag behind the developments 
occurring on the attack side (Carlini, et 
al., 2019). And even if feasible defences 
exist against expected attacks, selecting 
the appropriate one(s) remains difficult. 
Therefore, one should first seek to analyse 
the threats the model is expected to 
encounter, which will help inform the 
selection of applicable defences.

Despite being less developed than the 
attack methods literature, research on 
defence methods continues to progress 
rapidly. As this whitepaper has shown, the 
academic community presents defences 

that are stated to increase the robustness 
of the model in all stages of the ML life 
cycle. By inventorying the existing defence 
methods and categorising them within 
the ML life cycle, this whitepaper has 
provided a clear and structured overview 
of methods that can be used in an attempt 
to improve ML models' robustness against 
AML attacks. Depending on the stage of 
development (including when the model 
is finished), the presented framework 
outlines the defences that could be 
implemented.

As Brink et al. (2023) concluded, research 
stemming from other domains is largely 
generalisable to the cyber domain. 
This held true for the defences, as 
demonstrated by various authors who 

applied existing defence mechanisms 
to the cyber domain (Apruzzese, 
Andreolini, Colajanni, & Marchetti, 2020; 
Mbow, Sakurai, & Koide, 2022; AL-Essa, 
Andresini, Appice, & Malerba, 2022). Thus, 
future research should also explore the 
developments occurring in the other 
domains to inform research in the cyber 
domain. 

Another challenge pertains to the testing 
of defence mechanisms. As this whitepaper 
has argued, there are various defences 
available, but they do not always perform 
equally well, depending on the testing 
method. While certain defences, such 
as defensive distillation, demonstrated 
promising results in the authors’ testing 
environment, the same defence mechanism 
failed when it was put up against attacks 
in a scenario that was closer to the real 
world (Carlini & Wagner, 2017). A valuable 
contribution in future research would 
be the development of an operationally 
relevant evaluation of the various defence 
methods against AML. This effort could 
also investigate whether defences are 
transferable, just as attacks are. 

By providing a first structured overview of 
AML defences, this whitepaper contributes 
the structure and clarity necessary to 

grasp the developments occurring within 
this rapidly developing research field. The 
next steps in this path towards clarity 
should be verifying which defence methods 
live up to their claimed performance in the 
real world. This would bring us one step 
closer to securely deploying ML models. 
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