

ICT, Strategy & Policy
www.tno.nl

info@tno.nl

 TNO Public

TNO 2024 R11725 3 May 2024

Investigations on Probabilistic
Programming Applications in
Engineering

 TNO Public

Author(s) Alvaro Piedrafita Postigo

Gert-Jan van den Braak

Leonardo Barbini

Classification report TNO Public

Title TNO Public

Report text TNO Public

Number of pages 45

Number of appendices 0

Project name Probabilistic Programming Applications

Project number 060.60544/01.01

Contacts alvaro.piedrafitapostigo@tno.nl

gert-jan.vandenbraak@tno.nl

leonardo.barbini@tno.nl

 TNO Public TNO 2024 R11725

 TNO Public

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,

microfilm or any other means without the previous written consent of TNO.

© 2024 TNO

 TNO Public TNO 2024 R11725

 TNO Public 3/45

Contents

Contents .. 3

1 Introduction ... 4
1.1 Organization of the document .. 5

2 State of the art .. 6
2.1 Literature review ... 6
2.1.1 Probabilistic programming: a very short introduction .. 6
2.1.2 Libraries, tools & software .. 9
2.1.3 Applications .. 11
2.2 Interviews ... 12

3 Example applications... 14
3.1 Biased coin ... 15
3.2 If-else example ... 16
3.3 Mass-spring-damper system ... 18
3.4 RC filter .. 20
3.5 State machine ... 22
3.6 2D convolution .. 23

4 Diagnostic cases ... 25
4.1 Conveyor belt ... 25
4.1.1 Simulation model ... 25
4.1.2 Inference model ... 26
4.2 Print quality .. 27
4.2.1 Simulation model ... 28
4.2.2 Inference model ... 29

5 Summary and conclusions ... 31
Conclusions.. 31
Connections to industry and future work ... 31

6 Appendix ... 32
6.1 Biased coin ... 32
6.2 If-else models.. 32
6.3 Mass-spring-damper system ... 33
6.4 RC filter .. 34
6.5 2D convolution .. 36
6.6 State machine ... 37
6.7 Conveyor belt ... 38
6.8 Print quality .. 39
6.8.1 Simulation .. 39
6.8.2 Inference .. 41

7 Acknowledgements ... 43

8 References .. 44

 TNO Public TNO 2024 R11725

 TNO Public 4/45

1 Introduction

Engineering companies employ a multitude of deterministic and stochastic simulation

models, instantiated as computer code, to compute outputs from specified inputs. These

models are, for instance, utilized to predict system performance under a range of parameter

configurations.

A prevalent engineering challenge, however, is the inverse problem of determining the

required inputs that yield desired outputs. This involves for instance, calibrating system

parameters to achieve predefined performance targets. Due to the intrinsic complexity and

randomness within these engineering simulation models, their direct mathematical or

computational inversion is usually impractical, and often infeasible.

Figure 1-1 Inverting complex engineering models is needed but cumbersome

An alternative approach to perform such computations without model inversion is statistical

inference. If the simulation model is specified as the joint probability distribution

𝑃(𝑂𝑢𝑡𝑝𝑢𝑡𝑠|𝐼𝑛𝑝𝑢𝑡𝑠)𝑃(𝐼𝑛𝑝𝑢𝑡𝑠)

then the quantity of interest 𝑃(𝐼𝑛𝑝𝑢𝑡𝑠|𝑂𝑢𝑡𝑝𝑢𝑡𝑠) can be computed using Bayes theorem as

𝑃(𝑂𝑢𝑡𝑝𝑢𝑡𝑠|𝐼𝑛𝑝𝑢𝑡𝑠)𝑃(𝐼𝑛𝑝𝑢𝑡𝑠)

𝑝(𝑂𝑢𝑡𝑝𝑢𝑡𝑠)

This approach is in principle generic but not always numerically tractable, and cumbersome

to implement from scratch. Probabilistic programming (PP) is a paradigm designed exactly

to facilitate the specification and evaluation of such statistical inference problems. Thus

making statistical inference generically applicable.

Furthermore, PP exhibits robustness against measurement uncertainty, data scarcity, and

data incompleteness, which are common situations encountered in industrial engineering.

These aspects, combined with recent advancements in PP libraries, result in a significant

potential for the application of PP to the types of inverse engineering challenges described

above.

This report explores the topics introduced above, offering an initial assessment study of the

feasibility of PP for engineering applications and providing an understanding of its core

principles. It also gives a literature review and shows several coding examples of PP.

 TNO Public TNO 2024 R11725

 TNO Public 5/45

1.1 Organization of the document
This document is organized as follows:

• Section 2 gives an overview of the literature on PP. It covers generic references to

the mathematical and implementation foundations of PP, as well as references to

available SW libraries for PP. It also contains available references to applications of

PP in engineering inference tasks.

• Section 3 contains examples of PP applied to several inference tasks. In this section

we implement small toy examples to make the reader familiar with the concepts of

PP. We use different open-source SW libraries for PP. The code used in the examples

is shared as Appendix to this document.

• Section 4 applies PP to diagnostics cases from current TNO-ESI projects. The first

example focusses on centring a belt around two cylinders, the second example

focusses on print quality in a professional printer. Relevant code snippets from these

examples can also be found in the Appendix.

• Section 5 concludes this document, summarising the findings and paving the road

towards further research.

How to read this document

This document summarizes the work done in the Kennisinvesteringsproject 1 (KIP) Feasibility

study of probabilistic programming applications in industrial engineering. It has been written

with the twin goals of serving as an accurate repository of activities and an informative

report on probabilistic programming for those unfamiliar with the technology.

For the reader interested in a high-level or strategic overview of probabilistic programming,

sections 2 and 5 contain all necessary information and conclusions. A superficial reading of

section 3 will suffice, and the appendix can be omitted.

For the reader interested in the technical details, sections 3 and 4 contains detailed

explanations of the examples studied and the rationale behind their probabilistic

programming approach. The code provided in Appendix A should be sufficient to replicate

the results presented. The reader is encouraged to contact the authors via email for any

questions or comments regarding implementation.

1 Knowledge investment project

 TNO Public TNO 2024 R11725

 TNO Public 6/45

2 State of the art

In order to capture the state of the art in probabilistic programming (PP) a literature review

was conducted for which the results are summarized in Section 2.1. Also experts in the field

of PP from the Eindhoven University of Technology and the University of Amsterdam were

interviewed, as discussed in Section 2.2.

2.1 Literature review
The literature review into PP is split in three parts: Section 2.1.1 describes probabilistic

programming and discusses different approaches to PP, Section 2.1.2 discusses various

programming languages and software libraries for PP, and finally Section 2.1.3 highlights

some applications in which PP is used.

2.1.1 Probabilistic programming: a very short introduction
Probabilistic programming is a programming paradigm specifically designed to facilitate

statistical inference: [Probabilistic programming] is fundamentally about developing

 from [1]. Probabilistic programming also enables the modelling

and reasoning over complex relationships among variables and accomplishes tasks involving

statistical analysis and the handling of uncertainty across diverse domains.

Several methods have been introduced to perform statistical inference, sampling-based

methods like Markov Chain Monte Carlo [1], gradient-based methods like automatic

differentiation variational inference [2] and analytic methods like message passing [3], or

combinations thereof [3].

Probabilistic programming has been successfully applied to various areas of science and

engineering such as particle physics [4], geological modelling [5], captcha solving [6] and

constrained simulation [7]. There are libraries in different programming languages

supporting probabilistic programming such as Stan in C++ [8], Pyro [9] in Python and RxInfer

[10] in Julia.

The general picture

In industrial settings, processes are often tightly controlled, and their outputs generally well

understood. A perfect industrial process is thus akin to a mathematical function that reliably

transforms inputs, denoted as �⃗�, into outputs, �⃗�, for which we can explicit a (data)

generation procedure, 𝑓, often in the form of computer code, such that �⃗� = 𝑓(�⃗�).

In reality, some of the variables affecting a process will be unobserved. These variables are

denoted as ℎ⃗⃗, and often called hidden or latent variables. In such settings, the quantity and

nature of these hidden variables, and the different ways in which ℎ⃗⃗ affects �⃗�, are generally

well understood. What remains unknown, then, is the value of the latent variables.

 TNO Public TNO 2024 R11725

 TNO Public 7/45

And so, it is possible to write an explicit procedure, which can be deterministic or

probabilistic, known as a generative model, that can generate the output �⃗� as a function of �⃗�

and ℎ⃗⃗.

Mathematically, we describe these as hidden random variables, and the outputs as observed

random variables. This means that generative models are probabilistic processes:

�⃗� ∼ 𝑔(�⃗�, ℎ⃗⃗),

Where the symbol ∼ denotes that the probability distribution of the left-hand side is a

function of the right-hand side.

Inference in the probabilistic programming setting does not assume a single set of hidden

variables ℎ⃗⃗ that work for all (�⃗�, �⃗�) pairs, but rather it starts with a known model 𝑔(�⃗�, ℎ⃗⃗), and

infers the probability distribution of ℎ⃗⃗ for a given set of observed inputs �⃗� and outputs �⃗�. In

concrete terms, a probabilistic program takes a generative model and some data and

performs an operation Γ such that:

{
�⃗�, �⃗�

�⃗� ∼ 𝑔(�⃗�, ℎ⃗⃗)
 → ℎ⃗⃗(�⃗�, �⃗�) ∼ Γ(x⃗⃗, �⃗�)

This operation of computing an estimate for the hidden variables, be it a probability

distribution or a single point, given a model and a pair of observed inputs �⃗� and outputs �⃗� is

called performing inference.

By contrast, in most data-driven learning tasks a parametrized model 𝑓𝜃: 𝑦 = 𝑓𝜃(𝑥) is

proposed and many pairs of (�⃗�, �⃗�) are used to infer the best parameters 𝜃 for the model.

This task is usually known as learning the function 𝑓.

Figure 2-1 illustrates the difference between probabilistic programming and standard data-

driven machine learning (ML) approaches. The main difference is that in standard ML, the

unknown quantities (model parameters 𝜃) are assumed to be constant for all (�⃗�, �⃗�) pairs

and learned from many instances of data, while in probabilistic programming, the unknown

quantities (hidden variables ℎ⃗⃗) are allowed to depend on the given data and inferred on a

case-by-case basis.

Figure 2-1: Data-driven learning (left) versus model-driven learning. The purple box indicates the parts that

are inferred (𝜃 or ℎ⃗⃗). In the data-driven example, learning the parameters teaches little about the difference
between cats and dogs. In model-driven learning, the learned parameters relate to a physical model, and

thus inform us about the real world.

 TNO Public TNO 2024 R11725

 TNO Public 8/45

Architecture of a probabilistic program

The way a probabilistic program manages to define the inference operator Γ is to:

1. Use the generative model to encode a joint probability distribution.

𝑃(�⃗�, ℎ⃗⃗|�⃗�) = 𝑃(�⃗�|ℎ⃗⃗, �⃗�)⏟
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

⋅ 𝑃(ℎ⃗⃗)⏟
𝑝𝑟𝑖𝑜𝑟

, where 𝑃(⋅) denotes the probability distribution, and

(𝑦|𝑥) denotes the conditioning of the probability distribution of 𝑦 on a particular

value of 𝑥.

2. Condition the joint probability distribution above on both the observed values of �⃗�

and �⃗�.

3. Compute the posterior distributions of ℎ⃗⃗ given �⃗�, �⃗�, defined as 𝑃(ℎ⃗⃗|�⃗�, �⃗�), by somehow

computing the likelihood and applying Bayes rule. This is the step that requires

extensive computation.

The workflow of a probabilistic program follows this scheme, splitting the specification of the

model, the conditioning of the model, and the inference, automating the latter two. This is

depicted in Figure 2-2.

Approaches to inference
The only step that requires extensive computation is the last one, since the computation of

posteriors requires the computation of the likelihood function, which is often

computationally intractable. An implementation of the architecture above is called a

Probabilistic Programming Language (PPL). These are often distinguished on the basis of

their approach to inference. There are roughly three ways to approach the problem of

inference.

1. Use sampling techniques to approximate the likelihood function.

2. Use stochastic variational methods to approximate incomputable true posteriors

with proposed computationally tractable surrogates.

3. Use analytic methods to simplify the intractable posterior.

Figure 2-2: Workflow of probabilistic programming. The model creation is a manual process
requiring expertise in statistical modelling. Inference tasks are mostly automated. Conditioning is

usually automated and inference is a matter of choosing among a set of existing inference
algorithms and hyperparameters.

 TNO Public TNO 2024 R11725

 TNO Public 9/45

These methods have pros and cons, which can be seen in Table 1.

Method Pros Cons

Sampling

Universal: Can infer posteriors of any

shape.

Precise: Can approximate posteriors to

arbitrary precision.

Mature: These methods have the longest

history and are well understood.

Challenging to scale to high

dimensions.

Computationally expensive.

No guarantee of convergence.

Stochastic

Variational

Inference

Scalable: Can handle high-dimensional

problems.

AI compatible: Variational methods can be

merged with deep learning techniques.

No guarantee of convergence.

Bounded precision: Can struggle to

approximate difficult posteriors.

Analytic methods,

message passing

Scalable and efficient. Limited to the subset of analytic

models (exponential families, discrete

models).

Table 1: Pros and Cons of different approaches to inference.

2.1.2 Libraries, tools & software
Since the introduction of the first probabilistic programming software over 30 years ago [11],

the space of probabilistic programming has seen the introduction of over 50 different

libraries, languages and tools addressing different aspects of probabilistic programming and

statistical modelling. A non-exhaustive list can be found on Wikipedia2

The introduction of the first universal probabilistic programming language in 2012, STAN

[12], marked a turning point in the field, and development has accelerated since then. In

Figure 2-3 we can see the growth in citations to a selection of the most modern PPL libraries.

All the selected libraries are written for the Python programming language except Turing.jl

[13] and Gen.jl [14], which are for Julia, and Stan, which is written in C++. One of the

reviewed libraries, RxInfer [10], is not included in the figure since its introduction is too

recent (2023) for a discussion of growth or trends.

2 https://en.wikipedia.org/wiki/Probabilistic_programming

 TNO Public TNO 2024 R11725

 TNO Public 10/45

All of the libraries in the figure support sampling methods as well as stochastic variational

inference (SVI) in their inference engines, with the exceptions of Turing.jl, which is exclusively

sampling-based, and SBI [15], which has a deep learning approach to inference.

In sections 3 and 4, we discuss example applications of probabilistic programming

implemented in a subset of the libraries discussed in Table 2. Our selection is motivated by a

balance between ease-of-use for the authors, performance, and breadth of approaches.

Library Language Inference engine Year Other features

NumPyro Python Sampling, supports

SVI

2019 Fastest inference. Together with

Pyro, preferred libraries of the ML/AI

community.

PyMC Python Sampling, supports

SVI

2016 Latest iteration of PyMC3. Most used

and documented Python library.

Some use in engineering areas. Lags

in performance.

Turing.jl Julia Sampling 2019

differentiation packages means it

can readily be used for solving

probabilistic differential equation

models.

RxInfer Julia Message passing in

factor graphs

2023 Still in early stage. Developed at

TU/e. Established working

relationship with the developers.

Very scalable under certain

conditions.

0

500

1000

1500

2000

2500

2015 2016 2017 2018 2019 2020 2021 2022 2023

Number of citations of most used PPLs 2015-2023

PyMC3 PyMC Pyro Numpyro TF Probability

STAN sbi Gen.jl turing.jl

Figure 2-3 : Number of citations of the most commonly used PPLs in the years 2015-2023. Of
special interest is the accelerating increase trend between 2015 and 2020. In the last three

years, the number of citations has stabilized around 2000 per year.

 TNO Public TNO 2024 R11725

 TNO Public 11/45

SBI Python Deep learning on

surrogate neural

networks

2020 Radically different approach. Almost

entirely automated inference step

means much lower statistics

expertise required.

Gen.jl Julia Sampling, SVI 2019 Very flexible inference algorithms.

Highest degree of customization.

Stan C++ Sampling, SVI 2015 Preferred use in bioscience

applications. Slow inference.

TF Probability Python Sampling, SVI 2019 Similar to NumPyro and PyMC, but

built around TensorFlow.

Table 2: Overview of probabilistic programming libraries considered in this KIP

2.1.3 Applications
Probabilistic programming is used extensively in various fields of research. Especially in

astrophysics and sub-atomic particle physics research, probabilistic programming is used to

map observations to a model. Also in (computational) biology PP is used often. In

engineering probabilistic programming is used less. When applied it is often used for

reliability analysis, model fitting or defect detection. A couple of examples are mentioned in

this section.

A common use of probabilistic programming is mapping results from a small experiment to

a distribution in order to get the whole distribution characteristics. Lamont et al. employ a

Bayesian reliability analysis to estimate reliability and expected life-time of encapsulated

implanted electronics based on an accelerated aging experiment [16]. 36 samples were

tested at three temperature levels for over 300 days after which only 4 samples had failed.

Meng et al. analyse failures in a ship electromechanical system using a Bayesian method

[17]. Based on the often incomplete error reports on ships a model is made which can be

used for suggesting preventive maintenance.

Probabilistic programming can also be used to estimate parameters for a model. Tada uses

Bayesian estimation to create an equivalent circuit of a solar cell [18]. The benefit over

classical methods like nonlinear least-squares methods is that also estimation errors are

computed, although the probabilistic programming approach requires a long computation

time. Sun et al. use Bayesian computing to estimate the aircraft drag polar (the relationship

between the drag on an aircraft and other variables, such as lift, angle-of-attack or speed)

based on flight data for 20 common aircraft types [19]. Schön et al. model a nonlinear

spring-

coefficients from observed (simulated) data [20]. This paper was used as inspiration for the

Mass-spring-damper system example of section 3.3.

Steffelbauer et al. use probabilistic programming to model the acceleration of sea-level rise

(SLR) in the North Sea [21]. Data acquired between 1919 and 2018 from seven tidal stations

in the Netherlands and one in Germany are used to find the breakpoint where the sea-level

rise increased from SLR1 mm/year to SLR2 mm/year. Various -

into account, such as seasonal changes (lunar cycle and yearly variation), atmospheric

pressure and wind direction and wind stress. The model is implemented using PyMC3 [22]

and consists of approx. 100 lines of Python code:

https://github.com/steffelbauer/sea_level_rise_acceleration.

https://github.com/steffelbauer/sea_level_rise_acceleration

 TNO Public TNO 2024 R11725

 TNO Public 12/45

It is also possible to find defects using probabilistic programming. Tamaki et al. create a

probabilistic model of cast iron parts [23]. By only sampling known correct parts broken parts

can be identified when they fall outside the confidence interval. Wang et al. model the out-

of-roundness (OOR) of metro wheels [24]. The probabilities resulting from the model are

linked to the Sperling index, which can be used to evaluate vehicle comfort and

consequently a maintenance threshold. Similarly, Boyali et al. use Simulation Based

Inference (SBI) to identify vehicle (car) dynamics parameters [25].

2.2 Interviews
In the course of this study, we have reached out to academics in the Netherlands with

expertise in the field of probabilistic programs, and interviewed research groups in the

Netherlands who have developed or are actively developing probabilistic programming

libraries. A summary of the interviews is given below.

On the strengths of probabilistic programming for industrial application, interviewees

pointed the following:

• Probabilistic programs do best in settings where there is a clear model for data

generation. In this regard, they seem well suited for industrial applications where

processes can be modelled easily.

• Probabilistic programming is a favoured approach for parameter estimation

problems with uncertain and/or missing data.

•

model capable of computing it. Problems with inference are often caused by

On the current state of practice in the field of probabilistic programming:

• Developers of probabilistic programs usually have data science/AI, biomedical, or

problems. Most effort has been put to modern computer science problems such as

image recognition, clustering, classification of noisy data, epidemiology, etc.

• Expertise requirements are still very high. Little effort has been made yet to lower

them due to several factors:

o Novelty of the field. Most progress in probabilistic programming is less than

10 years old.

o Inherent difficulty of inference problem. Most practitioners find that

complex models often require customized inference algorithms. No general

inference algorithm exists.

o Unstructured nature of existing applications. Universality and flexibility are

the goal of most probabilistic programming languages. This usually comes

at the cost of usability.

o High expertise among current users. Most practitioners are academics or

have deep expertise in statistics, inference and software engineering.

o Lack of incentives to tailor PPLs to specific applications. Applications of

probabilistic programming outside its original context are still scarce and

there is no push from industry to make them more accessible.

• Lowering expertise requirements can potentially be done for sufficiently bounded

domains. Additional research is needed in this regard. Not just a couple of research

 TNO Public TNO 2024 R11725

 TNO Public 13/45

papers but a comprehensive program requiring several researchers for a handful of

years.

• There is a real slowdown of the field, due mainly to 3 things:

o Emergence of LLMs. Modern LLMs have proven that black-box deep learning

is more powerful than previously thought, and the limitations of that

approach are still unknown, leading to many researchers to shift attention

away from PPLs and towards LLMs.

o The community has done what it set out to do.
that allow specification of any model with continuous variables. Many

inference algorithms are available and customization is possible if needed.
o Universal inference algorithms cannot exist. It is impossible to make a

universal, fully black-box PPL. Therefore, any attempt to automate inference

must be to some extent problem-specific, which is contrary to the

philosophy of PPL developers.

On the research directions that would facilitate adoption in an industrial setting:

• Misalignment between simulation models and inference models. Some things that

 hard to express in an

probabilistic program in ways that make inference tractable. This is both a problem

with PPL language specification as a problem with mathematical robustness.

• Nesting of sub-

Models with many different kinds of variables and variable interactions may benefit

from breaking the problem into sub-problems and using different inference

subroutines. This requires:

o Better understanding of strengths and limitations of different inference

approaches.

o Criteria to select the right tool for the (sub)-job.

o A mathematical framework for fusing these subroutines into a single

inference algorithm.

• Hierarchies and coupling of processes at different scales. The parameters

determining the distribution of random variables can themselves depend on other

random variables. This is known as variable hierarchy.
o Selecting the right level of granularity to infer slow-moving variables from

fast-moving data has a big impact on inference efficiency.
• Hybrid models are particularly difficult. Inference on models with many interacting

continuous and discrete variables is harder than inference on fully continuous or

fully discrete models. Additional research is needed to unify both types.

 TNO Public TNO 2024 R11725

 TNO Public 14/45

3 Example applications

The examples presented in this section showcase the capabilities of probabilistic

programming in tackling inference tasks. We do not investigate the comparison of the PP

approach to classical approaches to solve such tasks. This should be done in future research.

The following concepts and notations will be used in all the examples below:

Simulation model - is a computational model that given some inputs computes some

outputs. In other words, the simulation model is the function which computes

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡𝑠) → 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

This model is used to generate the data on which the inference task will be executed. This

function can be deterministic or stochastic. In an engineering application, the simulation

the phenomena of interest. In this way the data generated by such a model is assumed to

be resembling sufficiently well the real world measurements, given the same values for the

inputs. With data* we will refer to those outputs generated by the simulation model given

the inputs*.

Inference model - similarly to the simulation model is a computational model that given

input parameters computes outputs. The fundamental difference between the simulation

and inference models is on the inputs. In the simulation model these are the actual values

on which function() is executed. On the contrary, in the inference model those are

parameters of probability distributions, e.g. mean and variance of a Normal distribution.

These distributions are referred to as the priors. Some actual values are then sampled from

this distributions and subsequently the function() is executed on those sampled values. In

other words, the simulation model has two steps which read like:

𝑝𝑟𝑖𝑜𝑟_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡𝑠_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) → 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑖𝑛𝑝𝑢𝑡𝑠_𝑣𝑎𝑙𝑢𝑒𝑠
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑖𝑛𝑝𝑢𝑡𝑠_𝑣𝑎𝑙𝑢𝑒𝑠) → 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

This means that the inference model is probabilistic, even if the function of the simulation

model is deterministic. Every time it is executed it will sample different inputs values on

which execute the function. Finally, additionally to the simulation model, the inference

model also takes some data*. This data* is used in the inference routine, described next.

Inference routine - is the computational model that executes the statistical inference. That

is to infer the inputs* from data*, without inverting the function(). The goal of probabilistic

programming is to lower, as much as possible, the effort in defining mathematically and

computationally such inference routine. With some degree of difference, the PP libraries

described in Section 2.1.2 have inference routines which take as inputs the inference model,

the data* and the prior distributions of the input parameters. While returning, the posteriors

distributions on theses parameters, samples from such distributions and some metrics to

describe the accuracy of such inference.

 TNO Public TNO 2024 R11725

 TNO Public 15/45

Below we will present some examples using these concepts and showcasing applications of

PP. The code to reproduce the examples is shared in the Appendix Section of this document.

3.1 Biased coin
In this example we model the toss of a coin n times. We assume that it is already known

that the coin is biased, but that we do not exactly know to what extent. Our goal is to infer

the actual amount of bias from the n tosses. We implement this example in the Julia

programming language using, the RxInfer [10] library for the inference.

The simulation model consists of sampling n times the discrete Bernoulli distribution with

parameter p, i.e. a sample is 1 with probability p and 0 with probability 1-p. This simulation

model is stochastic since every time we execute this model, for the same p and n, the n

values will be different.

The inference model is very similar to the simulation model, with additional information on

the prior distribution of the parameter p. We assume that this prior is a Beta distribution,

which is parametrised by the two parameters p1 and p2. The values of these parameters are

assumed known as part of the prior information. We also assume that the two parameters

are independent. The inference model then proceeds in two steps:

1. take sample p from a Beta with parameters p1 and p2.
2. take n samples from a Bernoulli with parameter p from step 1.

Notice that step 2 above is equivalent to the simulation model.

The inference routine will then use the inference model, together with a set of n samples

from the simulation model and return the posterior distribution for the parameter p of the

Bernoulli.

In the figures below we show some inference results. The parameters used in each figure

are shown in the title, where p* is the actual parameter of the Bernoulli used to generate the

data in the simulation model; p_est is the mean of the posterior distribution; p_naive is the

mean of the n samples. The posterior is the result of the inference. The results depend on

the number of samples n p* and the prior of the Beta.

This dependence is shown in the different figures below. Increasing the number of samples

and minimising the between the p* and the prior of the Beta allows to perform a

more accurate inference.

Figure 3-1 Biased coin. Inference based on 10 tosses. Correct prior. Correct inference.

 TNO Public TNO 2024 R11725

 TNO Public 16/45

Figure 3-2 Biased coin. Inference based on 10 tosses. Wrong prior.

Figure 3-3 Biased coin. Inference based on 5000 tosses. Wrong prior.

Specifically, Figure 3-1

Here correct means that the sample p* (green vertical line) has a high probability to be

sampled from the prior (blue curve). The variance of the posterior distribution (red curve) is

dependent on the number of samples n=10, increasing the number of samples will decrease

the variance of the posteriors. Figure 3-2 shows a less ideal situation in which the prior on

the Beta is off, i.e. the p* is very unlikely to be sampled from this distribution. With a low

number of samples n
beliefs on this coin. Increasing the number of samples to n=5000 as in Figure 3-3 will change

this situation, with the posterior being estimated and peaked around p*.

3.2 If-else example
In this example we model a data-generating process containing logical if-else statements.

This results in discontinuities in the execution trace, meaning that two contiguous

datapoints can be arbitrarily far apart, and input and output distribution of data that exhibits

complex behaviour.

Our simulation model accepts five parameters, 𝑛, 𝑚0, 𝑚1, 𝜎, and 𝑝. Building on the previous

example, we begin by sampling 𝑛 Bernoulli distributions with parameter 𝑝, each taking

values either 0 or 1. However, rather than simply recording the output, we make a second

 TNO Public TNO 2024 R11725

 TNO Public 17/45

sample from a different distribution, a gaussian distribution with mean 𝑚0 (respectively 𝑚1)

if the value of the Bernoulli is 0 (respectively 1) and standard deviation 𝜎 for both gaussians.

This kind of model, where the generated data is the result of a random mixture of two or

more distinct processes, is known as a mixture model.

Figure 3-4 shows a depiction of a dataset generated following this process.

The task of the inference engine is to identify the two different gaussian modes and the

proportion of samples that correspond to each mode. In other words, the task is to identify

the parameters 𝑚0, 𝑚1, 𝜎, and 𝑝.

The inference model proceeds similarly to the simulation model with some slight

modifications. First, we give priors for all inferred parameters. We use rather uninformative

priors for all, with 𝑙𝑜𝑐𝑠 = (𝑚0, 𝑚1) being the vector formed by 𝑚0 and 𝑚1, both drawn from a

gaussian distribution with mean 0 and standard deviation 15. The prior for 𝜎 must only allow

for positive numbers, so we choose to be a half-normal with width 5. The prior for 𝑝 is

uniform. Then we say that each step an 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is generated according to a Bernoulli

distribution with parameter 𝑝 and the data is drawn from a gaussian distribution with 𝑠𝑡𝑑 =

𝜎 and 𝑚𝑒𝑎𝑛 = 𝑙𝑜𝑐𝑠[𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡]. This is the way we express in the inference model the

condition that a sample is drawn from one or the other Gaussian according to the value of

the Bernoulli sample.

Table 3 shows the computed posteriors for the parameters of the simulation. Inspecting the

table it seems that the inference overestimates the values of 𝑚0 and 𝑚1 by about 0.1.

Figure 3-4: Dataset generated by a mixture process with 𝑛 = 2000, 𝑚0 = −4, 𝑚1 = 4, 𝜎 = 2, and 𝑝 = 0.4.

 TNO Public TNO 2024 R11725

 TNO Public 18/45

Interestingly, this is not because the inference engine is wrong but because the data is

slightly skewed to the positive numbers.

This becomes clear when one computes the sample average of the data in Figure 3-4 and

finds it to be 0.699, rather than the theoretical value of 0.8. This betrays an important

property of simulation models with internal randomness, namely that the data they

generate can be affected by random fluctuations. In reality, no random process is perfectly

unbiased, and random fluctuations in the simulation data will be considered intrinsic by the

inference engine because it only has access to the data.

Table 3 Parameter posteriors for mixture models.

Parameter Est. Mean Est. 5% Est. 95% Real value

𝑚0 −3.91 −4.01 −3.81 −4

𝑚1 4.11 3.98 4.23 4

𝜎 2.00 1.94 2.06 2

𝑝 0.4 0.38 0.42 0.4

Another important property of most probabilistic programs is that they generate posterior

distributions, not simply point estimates for mean and variance of variables. Moreover, they

can generate the joint posterior distribution over all variables, which can be used to discover

correlation (or independence) between variables.

3.3 Mass-spring-damper system
In this example we consider a 1-D mass spring damper system schematically represented in

Figure 3-5 below and mathematically modelled by the following second order differential

equation:

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑐

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 0

Figure 3-5 Schema of the mass spring damper system. From Wikipedia3.

The inference task is to infer the posterior of the parameters k and c given their priors and n

samples from the measured position at dt time intervals.

 𝑦[𝑖] = 𝑥[𝑖 ⋅ 𝑑𝑡] + 𝜂[𝑖].
Where 𝜂[𝑖] are measurement noise terms sampled independently from a Normal

distribution. The mass m is assumed to be known and equal to 1. Here we implement this

inference task in Julia using the probabilistic programming library Turing.jl [13]. The

inference task is executed using a Markov chain Monte Carlo (MCMC) [13] sampling

approach.

3 https://en.wikipedia.org/wiki/Mass-spring-damper_model

 TNO Public TNO 2024 R11725

 TNO Public 19/45

Figure 3-6 shows the simulated data used in the inference task. Blue line is the continuous

time series representing the position of the mass m. The red dots represent the noisy

measurements of such position, every dt.

Figure 3-6 Mass spring damper system. Example simulated data for the position x(t) and its noisy
measurement y[i]

Figure 3-7 and Figure 3-8 show the inference results for the k and c parameters respectively.

Where 𝑘∗ and 𝑐∗ are shown as a vertical green line, the uniform prior distribution is shown

as a horizontal blue line and the posterior as a red line. The uniform prior distributions for k

and c are both in the range 0 and 2. These priors are the most uninformative as possible, to

represent a situation when little knowledge is known on the system. Notice how the

estimate of the parameter k is more accurate than the c parameter. This is because we only

use measurements of the position of the mass. Using the velocity would results in opposite

precision.

Figure 3-7 Mass spring damper system. Inference result for the k parameter. k* = 0.60 k_est = 0.59. 201 Data
samples. 100 MCMC samples.

 TNO Public TNO 2024 R11725

 TNO Public 20/45

Figure 3-8 Mass spring damper system. Inference results for the c parameter. 201 Data samples. 100 MC
samples.

Finally, Figure 3-9 show the results for the inference of the parameters c by increasing the

number of samples used in the Markov chain in the MCMC inference algorithm from 100 to

1000 which results in a more accurate estimation of the parameter.

Figure 3-9 Mass spring damper system. Inference results for the c parameter. 201 Data samples. 1000 MC
samples.

3.4 RC filter
An RC-filter is an electric circuit which consists of resistors and capacitors. The simplest RC-

circuit is a first order RC-filter consisting of one resistor and one capacitor as shown in Figure

3-10. The output voltage Vc can be computed as a function of the input voltage Vin and the

values of the resistor R and capacitor C using the following differential equation:

𝑉𝐶 = 𝑉𝑖𝑛 − 𝑅𝐶
𝑑𝑉𝐶
𝑑𝑡

The goal of this example is to find the values for the resistor R and the capacitor C given a

time series of input signal Vin and output signal Vc. In practice this can be done by applying a

known signal as Vin and measuring Vc and computing the values of R and C. In the previous

Mass-spring-damper system example a single input value was provided: the start position

while in this example the input is a time series of Vin and Vc.

 TNO Public TNO 2024 R11725

 TNO Public 21/45

Figure 3-10: RC circuit configured as a low-pass filter. From Wikipedia4.

The RC-circuit is modelled in Julia using DifferentialEquations.jl [26] as an Ordinary

Differential Equations (ODE). Given a differential equation, an input signal and a start- and

stop time a time series of results is computed. The differential equation for Vc can be written

in Julia as follows:

dVc .= (Vin(t) .- Vc) / (R * C)

Note that dotted operators (.= and .-) are used to indicate these operations are broadcasted,

meaning they operate on time-series which are called vectors in Julia.

The selected input signal Vin is a (single) block wave as shown Figure 3-11. The output signal

is the typical shark-fin created by low-pass filtering a block signal, also shown in Figure 3-11.

Random measurement noise is added to the filtered signal as indicated by the blue circles.

Figure 3-11 input and output signal for RC filter

The data points with measurements noise are used in the inference step where the values of

the resistor (R) and capacitor (C) are estimated. This is done using Turing.jl [13], a Julia

library for general-purpose probabilistic programming. Their website has an example

dedicated to parameter estimation using Bayesian inference of differential equations:

https://turinglang.org/dev/tutorials/10-bayesian-differential-equations/

During the inference potential values for R and C are sampled from a Normal distribution.

The tolerances (deviations from the nominal value, calculated as 𝜎/𝜇, where 𝜎 is the

standard deviation and 𝜇 is the mean) of the resistor and capacitor are known to be 1% and

4 https://en.wikipedia.org/wiki/RC_circuit

https://turinglang.org/dev/tutorials/10-bayesian-differential-equations/

 TNO Public TNO 2024 R11725

 TNO Public 22/45

10% respectively. However, specifying the variance in the Normal distribution to match the

tolerance gives a narrow sample range. This causes the inference to be very slow. A better

approach is to allow the Normal distribution to sample from a (much) larger range than can

be expected from the tolerance. This speeds-up the inference significantly and also improves

the end result (closer to the original value for R and C in the simulation).

Since the values for the resistor and capacitor (R and C) only appear as a product in the

differential equal, the inference only finds a value for this product, and not for the individual

values of R and C. However, because the variance of the Normal distribution of the capacitor

is larger than of the resistor (to mimic the larger tolerances of capacitors), the results of the

inference does favour the capacitor to deviate from the designed value.

The results of an inference on a low-pass RC-filter as shown in Figure 3-10 can be found in

Figure 3-12. The design values of resistor and capacitor are ,

which we use to create our priors for these parameters. The prior distributions of the design

values are shown in blue in Figure 3-12. One instance of this filter is simulated in with value

R* C* = 45 µF. Based on the simulation results the values for R and C are

estimated using inference, which results in Rest (+1.4% overestimation) and Cest =

44.3 µF (-1.5% underestimation). Observe that the estimated value of both R and C are

closer to the true values than the design values, and the posterior tolerance for C is now

much smaller (1.5%) than the prior tolerance (10%), while the posterior tolerance of the

resistor is marginally bigger than the design value, due to its interaction with the far more

imprecise capacitor in the RC circuit.

Figure 3-12 inference results of estimating the values for R and C in the RC-filter.
The actual values of the resistor and capacitor are given by R* and C*. The prior distribution around the
designed value is shown in blue, the posterior distribution around the estimated value is plotted in red.

3.5 State machine
In this example we consider a simple probabilistic state machine with two states 𝑠1 and 𝑠2

and transition probabilities 𝑝1 = 𝑝𝑟𝑜𝑏. 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠1 → 𝑠2 and 𝑝2 = 𝑝𝑟𝑜𝑏. 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠2 → 𝑠1.

With the probability of staying in a state given as 1 − 𝑝1 , 𝑝2 respectively for 𝑠1, 𝑠2. Given a

sequence of N states, starting from the initial state 𝑠1, the inference task is to infer the

transition probabilities 𝑝1, 𝑝2. We solve this inference task using the Python library Simulation

Based Inference (SBI) [15]. An advantage of SBI in respect to other probabilistic

programming libraries is that inference model consists of a wrapper around the simulation

model. Therefore, no additional coding is required to define the inference model.

 TNO Public TNO 2024 R11725

 TNO Public 23/45

Figure 3-13 show the results for the SBI inference for a sequence of N = 100 states with 𝑝1
∗ =

0.6 and 𝑝2
∗ = 0.4. The priors for the transition probabilities are uniform distributions in the

range [0.3, 0.8]. The posterior for 𝑝1 is shown in blue, on the top left plot, with in red a

vertical line for 𝑝1
∗. Similarly for 𝑝2 on the bottom plot. The top right plot shows the joint

posterior distribution, with an orange dot at (𝑝2
∗, 𝑝1

∗).

Figure 3-13 SBI inference results for transition probabilities of a probabilistic state machine, where dim 1, dim

2 correspond to 𝑝
1
, 𝑝
2
 respectively.

3.6 2D convolution
Image filtering, like with a blur-, sharpening-, or edge-detection filter, is usually done using a

2D convolution. In this application the input image and convolution kernel are known, and

the output image is computed. Another application is to determine the convolution kernel

from a known input and a measured output image, for example during the calibration of an

imaging system.

In this example probabilistic programming is used to reconstruct the convolution kernel

from a known input pattern and an acquired output image. The input pattern and the

output image can be found in Figure 3-14. In this example the output image is simulated by

applying a Gaussian blurring kernel on a slightly noisy input pattern and adding

measurement noise.

 TNO Public TNO 2024 R11725

 TNO Public 24/45

Figure 3-14 input pattern and output image used in determining the convolution kernel

NumPyro [27], a probabilistic programming library which provides a NumPy [28] backend for

Pyro [9], is used to compute the convolution kernel from the shape, the input

pattern and the output image. The results of the inference are shown in Figure 3-15. Figure

3-15a shows the convolution kernel coefficients used to transform the input pattern to the

output image. A Uniform distribution is used as the input estimation to the inference to not

give a bias to the kernel parameters, hence each coefficient is set to 1/9 as shown in Figure

3-15b. The coefficients resulting from the inference can be found in Figure 3-15c.

Figure 3-15 convolution kernel coefficients
[a] used in the simulation to generate the output image from the test pattern (k*)

[b] as the initial estimate for inference (prior)
[c] results after inference (posterior)

 TNO Public TNO 2024 R11725

 TNO Public 25/45

4 Diagnostic cases

4.1 Conveyor belt
In the context of the Carefree project, we have outlined a methodology for using

probabilistic programs together with simulation models, and applied the methodology to a

an industrial printer. For more detail, see[29]. This subsystem contains a conveyor belt that

rests horizontally on four cylinders. The cylinders rotate at a variable speed and transmit this

movement to the belt. In order to keep the belt at the centre of the cylinders, one of the

cylinders can be tilted by raising or lowering it, see Figure 4-1.

The mechanism responsible for this tilting is driven by a Z-position motor. This tilting causes

the belt to slide up or down the cylinder each revolution by an amount proportional to the Z-

motor position. Every few revolutions the position of the belt is measured and a correction is

computed by a Proportional Integral (PI) controller, resulting in an adjustment of the Z-

motor position. This steering action is necessary to counter the various causes that make the

belt drift away from its intended position.

Our goal here is to discern the unknown causes of this drift and to infer their strength, given

the available data on the belt and motor positions over time.

4.1.1 Simulation model

Every step of the PI-controller begins with a measurement of the belt position. This belt

position must be a function of the previous belt position, the previous motor correction, and

the drift incurred between the current measurement and the previous one. Based on the

current positions of both the belt and Z-motor, the position of the latter is updated by a PI

controller with the goal of returning the belt to its intended position. The equations

modelling this behaviour are:

Figure 4-1: The belt lies on a horizontal plane. By raising the steering roller, the plane is

tilted, and so the belt slides slightly to the side with every revolution due to gravity.

 TNO Public TNO 2024 R11725

 TNO Public 26/45

{

𝑏𝑒𝑙𝑡𝑘 = 𝑏𝑒𝑙𝑡𝑘−1 − 𝛼 ⋅ 𝑚𝑜𝑡𝑜𝑟𝑘−1 + 𝑑𝑟𝑖𝑓𝑡𝑘
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑘 = 𝑐𝑖𝑛𝑡(𝑏𝑒𝑙𝑡𝑘 + 𝑏𝑒𝑙𝑡𝑘−1) + 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑘−1

𝑚𝑜𝑡𝑜𝑟𝑘 = 𝑐𝑝𝑟𝑜𝑝 ⋅ 𝑏𝑒𝑙𝑡𝑘 + 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑘

𝑐𝑖𝑛𝑡 , and 𝑐𝑝𝑟𝑜𝑝 are known proportionality constants and subscripts (·)k corresponds

to the value at sample k.

We conjecture that the drift results from the linear combination of five causes:

o Calibration: the belt might not be completely horizontal when the Z-motor is

at position 0. This results in a constant calibration error 𝑐.

o Misalignment: the belt might not be well aligned with the previous

component of the printer. This results in a constant misalignment error 𝑚

that is present only when the machine is printing.

o Degradation: the belt material might wear out and deform over time,

resulting in a time-dependent drift 𝐷𝑘. We conjecture this degradation to be

exponential and with an unknown deformation direction 𝑠 ∈ {−1,+1} and

degradation exponent 𝛿.

o Sheets: when the pages make contact with the belt, they might cause a

perturbation to its position, depending on the properties of the pages. This

would result in a train of pulses 𝑃𝑘 with varying amplitude and width,

present only when the machine is printing.

o Noise: we finally conjecture that all other sources of error add up to a

Gaussian term 𝜀𝑘 ∼ 𝑁 (0, 𝜎) with unknown variance and zero mean.

These causes are described by the following equations:

𝑑𝑟𝑖𝑓𝑡𝑘 = 𝑐 + 𝑝𝑟𝑖𝑛𝑡𝑘 ⋅ (𝑚 + 𝑃𝑘) + 𝐷𝑘 + 𝜀𝑘

𝐷𝑘 = 𝑠(4
𝛿𝑘 − 1),

where 𝑝𝑟𝑖𝑛𝑡𝑘 is a Boolean variable denoting whether the machine is printing at time 𝑘. In 𝐷𝑘,

the sign parameter 𝑠 determines the direction of degradation (positive or negative), and the

−1 ensures that 𝐷𝑘=0 = 0.

4.1.2 Inference model
Considering the temporal nature of our data and the controlled stepwise nature of the

system, we propose a Bayesian state-space model as the probabilistic description. A

Bayesian state-space model is a dynamical system of equations relating random variables.

The system is determined by the observability and update equations. These equations

describe how the unobserved dynamic variables (degradation 𝐷𝑘, perturbation 𝑃𝑘) evolve

over time as a function of their previous state, the static variables (calibration 𝑐,

misalignment 𝑚) and the observed external variables (𝑝𝑟𝑖𝑛𝑡𝑘), and how the measured

variable 𝑑𝑟𝑖𝑓𝑡𝑘 depends on the above.

Table 4 inference results on simulated data

 TNO Public TNO 2024 R11725

 TNO Public 27/45

The inference algorithms use MCMC sampling to infer both the continuous variables

𝑐,𝑚, 𝐷𝑘 , 𝛿, 𝜎 as well as the discrete variable 𝑠𝑖𝑔𝑛. Moreover, it is possible to make future

predictions. The quality of those predictions, however, depend on the quality of the

underlying assumptions.

We tested the inference model against the simulation model and on real data (see Table 4

for results of inference on simulated data and Figure 4-2 for the results of inference on the

real data).

Figure 4-2 Example of measured data where miscalibration (a), and degradation (b) are the main causes of a
belt position error. The Belt and Z-motor positions are measured, while the causes of belt drift in the bottom

plots are inferred. The sources of drift are shown here in the units of the Z-position motor rather than the belt
for comparison with the former

In this example, the simulation model is compiled using already available knowledge on

failure mechanisms, together with control models, and serves a dual function. On the one

hand, it helps validate the expert knowledge on failures, by comparing the results of

simulations to data from incidents in the field. On the other hand, it is used to validate the

inference models by providing us with a controlled test bench in which to test the ability of

the inference model to distinguish the different causes of errors. The inference model is

derived from the generative model and is used with field data from real incidents to perform

root-cause diagnosis.

4.2 Print quality
In this case study, the printhead array of an industrial printer has a tendency to require too

many service actions, which incurs unscheduled downtime costs and material replacements

costs.

A printhead array, consists of four printheads for four colours: yellow, magenta, cyan, and

black, laid out respectively in the direction the paper moves. Each printhead has ~10k

nozzles which can be in either of three states: {ℎ𝑒𝑎𝑙𝑡𝑦, 𝑠𝑡𝑢𝑐𝑘, 𝑏𝑟𝑜𝑘𝑒𝑛}.

At every print, each nozzle can become stuck because of dust, or become stuck as part of a

cluster that appears when ink dries on the nozzle plate. Additionally, nozzles can be

permanently damaged through usual wear and tear.

Every nozzle is indirectly measured by printing specific markers on (test) pages and scanning

those pages. The result of the test is an {𝑂𝑘, 𝑁𝑜𝑘} value that is logged for each nozzle and

 TNO Public TNO 2024 R11725

 TNO Public 28/45

each test print. Healthy nozzles are always reported as {𝑂𝑘}, while stuck and broken nozzles

are reported as {𝑁𝑜𝑘}.

This is a dynamic system with discrete timesteps. At Every new print the state of the nozzles

can potentially change. When the total number of 𝑁𝑜𝑘 nozzles reaches a threshold (e.g.

100) the system cleans the printhead array, returning the state of 𝑠𝑡𝑢𝑐𝑘 nozzles to ℎ𝑒𝑎𝑙𝑡ℎ𝑦,

and leaving the 𝑏𝑟𝑜𝑘𝑒𝑛 nozzles in the same state. Therefore, stuck nozzles can be

distinguished from broken nozzles because the latter do not reset after a cleaning action.

While there are many effects that can make a nozzle 𝑁𝑜𝑘, for the purpose of this KIP we will

focus on distinguishing ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑠𝑡𝑢𝑐𝑘 and 𝑏𝑟𝑜𝑘𝑒𝑛 nozzles in one printhead from their

measured states and the cleaning information.

4.2.1 Simulation model
The simulation uses a sequence of hidden Markov chains to simulate the behaviour of the

~10k nozzles. The basic block for each nozzle at each time step is depicted in Figure 4-3. The

parameters in the figure are defined below.

The sequence of operations is as follows:

1. At the beginning of the simulation, parameters 𝑝𝑠, 𝑝𝑏 , 𝑝𝑢(denoting the

probabilities of transitioning from ℎ𝑒𝑎𝑙𝑡ℎ𝑦 to 𝑠𝑡𝑢𝑐𝑘, ℎ𝑒𝑎𝑙𝑡ℎ𝑦 or 𝑠𝑡𝑢𝑐𝑘 to 𝑏𝑟𝑜𝑘𝑒𝑛 and

𝑠𝑡𝑢𝑐𝑘 to ℎ𝑒𝑎𝑙𝑡ℎ𝑦 at any point) are sampled from prior distributions.

2. The hidden state𝑥𝑖,𝑡 of nozzle 𝑖 at time 𝑡 is represented by a vector of probabilities

 of size 3. The cluster variables 𝐶𝑖,𝑡 are sampled using a Markov chain.

Every timestep, the hidden state is update by multiplying it with a 3x3 transition
matrix 𝑇𝑖,𝑡 that depends on the cluster variable 𝐶𝑖,𝑡 and the cleaning 𝑐𝑙𝑒𝑎𝑛𝑡.

𝑇𝑖,𝑡
 =

{

[

1 − 𝑝𝑏 − 𝑝𝑖,𝑠
 𝑝𝑢 0

𝑝𝑖,𝑠
 1 − 𝑝𝑢 − 𝑝𝑏 0

𝑝𝑏 𝑝𝑏 1

] , 𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 0;

[
1 1 0
0 0 0
0 0 1

] , 𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 1.

 Equation 1

Figure 4-3: Basic building block of the hidden Markov chain used for simulating the system. The
variables 𝑐𝑙𝑒𝑎𝑛𝑡 and 𝑦𝑖,𝑡 are observed, the rest are hidden. Missing is the connection of the

clustering variables across nozzles for a fixed 𝑡.

 TNO Public TNO 2024 R11725

 TNO Public 29/45

Where the probability of becoming stuck 𝑝𝑖,𝑠 depends on the value of the cluster

variable 𝐶𝑖,𝑡 at a particular nozzle location and time step as:

𝑝𝑖,𝑠
 = 𝑝𝑖,𝑠

 (𝑡) = {
𝑝𝑠 𝑖𝑓 𝐶𝑖,𝑡 = 0

1 − 𝑝𝑏 𝑖𝑓 𝐶𝑖,𝑡 = 1

These matrices capture the evolution of the nozzles between cleanings (first case)

and the action of said cleanings (second case). The implicit encoding is that rows

and columns correspond to (ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑠𝑡𝑢𝑐𝑘, 𝑏𝑟𝑜𝑘𝑒𝑛) respectively.

It is also possible to express this operation as a single linear transformation using an

order 4 tensor, rather than a matrix with nested cases.

3. The hidden state 𝑥𝑖,𝑡 is multiplied by a fixed 3x2 observation matrix 𝑂 = [
1 0 0
0 1 1

].

The result is a vector of probabilities that is sampled to obtain the observations 𝑦𝑖,𝑡.

Columns represent the states (ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑠𝑡𝑢𝑐𝑘, 𝑏𝑟𝑜𝑘𝑒𝑛) and rows (𝑂𝑘, 𝑁𝑜𝑘),

respectively.

4.2.2 Inference model
The inference model follows closely the simulation model with only two modifications.

The model contains:
1. A set of hidden three-state categorical random variables {𝑥𝑖,𝑡 , 𝑖 = 1, … , 𝑁, 𝑡 =

0,… ,𝑀}. All nozzles are initialized to be ℎ𝑒𝑎𝑙𝑡𝑦, i.e. 𝑥𝑖,0 = ℎ𝑒𝑎𝑙𝑡ℎ𝑦 ∀𝑖.

2. A random transition matrix 𝑇 drawn from a MatrixDirichlet distribution.
3. A set of observable two-state categorical variables {𝑦𝑖,𝑡 , 𝑖 = 1, … , 𝑁, 𝑡 = 1,… ,𝑀}

4. Fixed matrices 𝑇𝑐 and 𝑂 determining the logic of cleaning and observing hidden

states.

5. The logical structure of the hidden Markov chain, i.e. the identities

Figure 4-4: Output of one simulation with only 100 nozzles. On the vertical axis we have nozzle
number. On the horizontal print number. The top plot displays the hidden states of 100 nozzles. No
color for ℎ𝑒𝑎𝑙𝑡ℎ𝑦, orange for 𝑠𝑡𝑢𝑐𝑘, blue for 𝑏𝑟𝑜𝑘𝑒𝑛. The measured states are black for 𝑁𝑜𝑘 and no

color for 𝑂𝑘.

 TNO Public TNO 2024 R11725

 TNO Public 30/45

𝑥𝑖,𝑡 = 𝑇 ⋅ 𝑥𝑖,𝑡−1 𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 0
𝑥𝑖,𝑡 = 𝑇𝑐 ⋅ 𝑥𝑖,𝑡−1 𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 1
𝑦𝑖,𝑡 = 𝑂 ⋅ 𝑥𝑖,𝑡

The inference model differs from the simulation model in that there is no notion of

clustering, its effects being imputed to the transition matrix 𝑇, and that there is no

assumption on the internal structure of 𝑇 such as in Equation 1.

The results of the inference on 500 nozzles for 100 consecutive prints can be seen in Figure

4-5. The quantities inferred here are the hidden states of the nozzles and the transition

probability.

The transition matrix is not directly comparable to the transition matrix in the simulation,

since it absorbs the effects of dust and clustering into one single process, but its results are

consistent with those of a simulation with parameters 𝑝𝑠 = 0.0002, 𝑝𝑏 = 0.0001, 𝑝𝑢 = 0.0001,

and a probability of being in a cluster of roughly 0.004 ± 0.0045.

𝑇𝑒𝑠𝑡 = [
0.9936 0.0003 0.0
0.0062 0.9984 0.0
0.0001 0.0013 1.0

]

The hidden nozzle states are inferred correctly with probability 99.95%.

Figure 4-5: Right: simulated data, left: Result of inference on the
hidden nozzle states. The accuracy is above 99.95%.

 TNO Public TNO 2024 R11725

 TNO Public 31/45

5 Summary and conclusions

Conclusions

We confirm that probabilistic programming (PP) holds potential for solving inverse problems
relevant in industry, especially when simulation models are already in place. Most promising
is the possibility of using PP for quality control, performance diagnostics, and predictive
maintenance.
However, it remains unclear how PP compares to other methods for solving inverse
problems (see Future Work).

PP libraries are developing rapidly, but they are not yet fully ready to be used by non-experts
for engineering applications. Currently, most applications of PP are found in medicine and
physics/astrophysics, with its use in engineering being relatively scarce.

There is a clear knowledge gap in industry with regards to the skills necessary for
successfully integrating PP into an industrial setting. A strong collaboration with academia is
advised as a means to bridge the gap.

Connecting with the previous point, there is strong interest from academia in collaborating
with industry and TNO to enhance these libraries and explore their applications further.
Dutch academia, in particular, is strong in probabilistic programming.

Connections to industry and future work
During this study we have identified several avenues for future work.

• Comparison to other methods. As stated in the introduction, comparing probabilistic

programming to other methods of solving inverse problems was outside the scope

of this study, yet we believe it is highly recommended to do so in order to fully

assess the utility of PP for industrial applications.

• Investigate industry needs in more detail. In this study we have identified predictive
maintenance, quality control and performance diagnostics of degrading and/or

dynamic systems as promising applications with clear business value.

• Connecting academia and industry on PP. Considering the knowledge gap in industry

and the relative novelty of PP libraries, industrial-academic collaboration is essential

to further mature PP tools and transfer them to industry.

• Investigate application of PP for design space exploration. Design space exploration

is usually characterized as an optimization problem, but can be also described as an

inference problem when the desired properties are assumed as observed and the

design parameters are treated as unknown variables connected to the former by a

model. This has been considered in the literature, see [30], but not explored in this

study

 TNO Public TNO 2024 R11725

 TNO Public 32/45

6 Appendix

This appendix contains the source code of the examples discussed in sections 3 and 4.

6.1 Biased coin
using Plots, RxInfer, Random, Distributions, LinearAlgebra
rng = MersenneTwister(42)# set seed

function simulation_model(p,n)
 data = float.(rand(rng, Bernoulli(p),n))
 return data
end

@model function inference_model(p1,p2,n)
 y = datavar(Float64, n)
 p ~ Beta(p1, p2)
 for i in 1:n
 y[i] ~ Bernoulli(p)
 end
end

function inference_routine(p,n,p1,p2)
 dataset = simulation_model(p,n)
 results = infer(model = inference_model(p1,p2,n),data = (y = dataset,))
 return results, dataset
end

n = 10
p = 0.15
p1 = 20
p2 = 100
res, data = inference_routine(p,n,p1,p2);

6.2 If-else models
from jax import random
import jax.numpy as jnp
import torch
import numpyro
import pyro

import numpyro.distributions as dist
import pyro.distributions as pyrodist
from numpyro.infer import NUTS, MCMC

def simulate(n, m0, m1, sigma, p):
 mean = torch.empty(n)
 y = torch.empty(n)
 c = torch.empty(n)

 TNO Public TNO 2024 R11725

 TNO Public 33/45

 for i in range(n):
 c[i] = pyro.sample('c_{}'.format(i), pyrodist.Bernoulli(p))
 if c[i]==0:
 mean[i] = m0
 else:
 mean[i] = m1
 y[i]=pyro.sample('y_{}'.format(i),pyrodist.Normal(mean[i],sigma))

 return {'m0': m1, 'm1': m1, 'sigma': sigma, 'c':c, 'p':p,
 'observed': y.numpy()}

Run simulation.
sim_data = simulate(2000, -4, 4, 2, 0.4)

def model(data):
 # Global variables.
 p = numpyro.sample('p',dist.Beta(1,1))
 sigma = numpyro.sample("sigma", dist.HalfNormal(5.0))
 with numpyro.plate("components", 2):
 locs = numpyro.sample("locs", dist.Normal(0.0, 15.0))

 with numpyro.plate("data", len(data)):
 # Local variables.
 assignment = numpyro.sample("assignment", dist.Bernoulli(p))
 numpyro.sample("obs", dist.Normal(locs[assignment], sigma),
 obs=data)
Inference
Kernel = NUTS(model)
mcmc = MCMC(kernel,num_warmup=5000, num_samples=5000, num_chains=2)
mcmc.run(random.PRNGKey(1), jnp.array(sim_data['observed']))
mcmc.print_summary()

6.3 Mass-spring-damper system
using DifferentialEquations
using Plots
using Turing
using LinearAlgebra

function simulation_model(ddu, du, u, p, t)
 p1, p2 = p
 ddu .= -p1*u -p2*du
end

@model function inference_model(data::AbstractVector, prob, priors)
 # Prior distributions.
 σ ~ InverseGamma(priors[1], priors[2])
 p1 ~ Uniform(priors[3], priors[4])
 p2 ~ Uniform(priors[5], priors[6])

 # Simulate model.
 p = [p1,p2]
 predicted = solve(prob, Tsit5(); p=p,
 saveat=delta_t, save_idxs=dimension_interest)

 TNO Public TNO 2024 R11725

 TNO Public 34/45

 # Observations.
 data ~ MvNormal(predicted.u, σ^2 * I)
 return nothing
end

function main_routine(dx0, x0, tspan, p, sigma,priors)
 # Generate data.
 prob = SecondOrderODEProblem(simulation_model, dx0, x0, tspan, p)
 sol = solve(prob; saveat=delta_t)
 data = Array(sol[dimension_interest,:]) +
 sigma * randn(size(Array(sol[dimension_interest,:])))
 # we only measure the position

 # Inference
 model = inference_model(data, prob, priors)
 # Sample 3 independent chains.
 results = sample(model, NUTS(0.35), MCMCSerial(),
 length_MC, 3; progress=false)
 return results,data
end

Only consider position
dimension_interest = 2
Parameters [k,c]
p_star = [0.6,0.3]
sigma_star = 0.3
Initial Conditions
x0 = [.5]
dx0 = [0.5]
Time
tspan = (0.0, 20)
delta_t = 0.1

Priors
sigma_p1 = 2
sigma_p2 = 3
p1_min = 0
p1_max = 2
p2_min = p1_min
p2_max = p1_max
priors = [sigma_p1,sigma_p2,p1_min,p1_max,p2_min,p2_max]

Markov chain parameters
length_MC = 100
results,data = main_routine(dx0, x0, tspan, p_star, sigma_star,priors)

6.4 RC filter
using DifferentialEquations
using Interpolations
using LinearAlgebra
using Turing

 TNO Public TNO 2024 R11725

 TNO Public 35/45

Initial conditions and input signal
Vout0 = [0.0]
tspan = (0.0, 10);
input_a = zeros(50)
input_a[5:30] .= 1.0
xs = 0:(10.0/49):10
input_f = Interpolations.scale(
 interpolate(input_a, BSpline(Linear())), xs);

Design parameters, i.e. typical values
R = 22E3 # 22 kΩ
C = 47E-6 # 47 µF
p = (R, C, input_f)

Function to compute output of RC-filter using a differential equation
function simulation_model(dVout, Vout, p, t)
 R, C, Vin = p
 dVout .= (1.0*Vin(t) .- Vout) / (R * C)
end

Function to fit a model for R and C
@model function inference_model(data, prob)
 σ = 0.1;
 p1 ~ truncated(Normal(R, 0.10*R); lower=0.01*R, upper=10*R)
 p2 ~ truncated(Normal(C, 0.30*C); lower=0.01*C, upper=10*C)

 # Simulate model.
 p = (p1, p2, input_f)
 predicted = solve(prob; p=p, saveat=0.1)

 # Observations.
 for i in 1:length(predicted)
 data[:, i] ~ MvNormal(predicted[i], σ^2 * I)
 end

 return nothing
end

function inference_routine(data)
 p = (R, C, input_f)
 prob = ODEProblem(simulation_model, Vout0, tspan, p)
 model = inference_model(data, prob)
 chain = sample(model, NUTS(0.65), MCMCSerial(), 200, 3);

 R_est = mean(get(chain, :p1)[:p1])
 R_std = std(get(chain, :p1)[:p1])
 C_est = mean(get(chain, :p2)[:p2])
 C_std = std(get(chain, :p2)[:p2])
 return (R_est, R_std, C_est, C_std)
end

Create an ODE of the RC-filter, use it to simulate output with noise
r_star = 21E3 # actual value of the resistor
c_star = 45E-6 # actual value of the capacitor
p_star = (r_star, c_star, input_f)

 TNO Public TNO 2024 R11725

 TNO Public 36/45

prob = ODEProblem(simulation_model, Vout0, tspan, p_star)
sol = solve(prob, Tsit5(); saveat=0.1)
simdata = Array(sol) + 0.05 * randn(size(Array(sol)))

Use the output of the simulation to estimate the value of R* and C*

(R_est, R_std, C_est, C_std) = inference_routine(simdata)

6.5 2D convolution
import numpyro as npr
import numpy as np
import jax.numpy as jnp
from jax import random
import random as rnd

def simulation_model(image: np.ndarray, kernel: np.ndarray, var_noise=0):
 image_size = image.shape
 kernel_size = kernel.shape
 kernel_length = kernel_size[0] * kernel_size[1]
 output_size = tuple(image_size[n] - kernel_size[n] + 1 \
 for n in range(image.ndim))
 output_length = output_size[0] * output_size[1]
 proc_image = np.zeros([output_size[0], output_size[1],
 kernel_size[0], kernel_size[1]])
 conv_image = np.zeros([output_size[0], output_size[1]])
 for y in range(output_size[0]):
 for x in range(output_size[1]):
 proc_image[y][x] = image[y:y+kernel_size[0],x:x+kernel_size[1]]
 conv_image[y][x] = np.sum(proc_image[y][x] * kernel + \
 [[rnd.normalvariate(0,var_noise)
 for xx in range(kernel_size[1])]
 for yy in range(kernel_size[0])])

 proc_image = proc_image.reshape([output_length, kernel_length])
 conv_image = conv_image.reshape([output_length])
 return proc_image, conv_image

def inference_model(data):
 signal,convolved_signal,kernel_size = data[0],data[1],data[2]
 k = [npr.sample('param_' + chr(ord('a') + i),
 npr.distributions.Uniform(low=-3, high=3)) for i in range(kernel_size)]
 kernel = jnp.array(k, dtype=jnp.float32)
 with npr.plate('data', len(signal), dim=-2):
 return npr.sample('obs', npr.distributions.Normal(\
 jnp.sum(signal*kernel, axis=1), 0.1), obs=convolved_signal)

def inference_routine(data, warmup=100, samples=1500, chains=2):
 kernel_shape = data[3]
 npr.set_host_device_count(chains)
 kernel = npr.infer.NUTS(inference_model)
 mcmc = npr.infer.MCMC(kernel, num_warmup=warmup, num_samples=samples, \
 num_chains=chains)
 mcmc.run(key, data)
 samples = mcmc.get_samples()

 TNO Public TNO 2024 R11725

 TNO Public 37/45

 mu = np.asarray([np.mean(samples[k]) for k in samples])
 mu = mu.reshape(kernel_shape)
 var = np.asarray([np.var(samples[k]) for k in samples])
 var = var.reshape(kernel_shape)
 return mu, var

Create a checkerboard pattern
L=4
N=5 * L
image = np.random.rand(N,N) / 10.0
for i in range(0, N-L+1, 2*L):
 image[i:i+L, :] = 1 - image[i:i+L, :]
 image[:, i:i+L] = 1 - image[:, i:i+L]

Create a Gaussian blurring kernel for simulation
img_kernel = np.ones([3,3])
img_kernel[0,1] = 2
img_kernel[2,1] = 2
img_kernel[1,0] = 2
img_kernel[1,2] = 2
img_kernel[1,1] = 4
img_kernel = img_kernel/np.sum(img_kernel)

Create simulated output, including measurement noise
proc_image, conv_image = simulation_model(image, img_kernel,
var_noise=0.02)

Run inference to determine convolution kernel coefficients
data = [jnp.array(proc_image, dtype=jnp.float32),\
 jnp.array(conv_image, dtype=jnp.float32), \
 img_kernel.size, \
 img_kernel.shape]
kernel_mean, kernel_var = inference_routine(data)

6.6 State machine
import torch
import numpy as np
from sbi import analysis as analysis
from sbi import utils as utils
from sbi.inference import SNPE, simulate_for_sbi, infer
from sbi.utils import MultipleIndependent
from torch.distributions import Uniform

def simulation_model(params):
 p1 = params[0].item()
 p2 = params[1].item()

 p_transition = np.array([[1-p1, p1], [p2, 1-p2]])
 states = [initial_state]

 for _ in range(markov_chain_length - 1):
 current_state = states[-1]
 probs = p_transition[current_state]

 TNO Public TNO 2024 R11725

 TNO Public 38/45

 new_state = np.random.choice(
 np.linspace(0,np.shape(probs)[0]-1,np.shape(probs)[0]),
 size=1, p= probs).astype(int)
 states.append(new_state[0])
 return torch.as_tensor(states, dtype = torch.float32)

markov_chain_length = 100
initial_state = 0

#real parameters for simulation
p1_star = 0.6
p2_star = 0.4
p_star = torch.as_tensor([p1_star,p2_star])

#definition of prior
prior = utils.BoxUniform(low=0.3 * torch.ones(2), high=.8 * torch.ones(2))

#inference model
inference_model = infer(simulation_model, prior,
 method="SNPE", num_simulations=1000)
#main routine
posteriors_samples = 40000
data_star = simulation_model(p_star)
samples = inference_model.sample((posteriors_samples,), x=data_star)

6.7 Conveyor belt
def Conveyor_belt_1(y, printing, T0, T1, future=0):
 # Standard deviation of the noise introduced at each step.
 sigma = numpyro.sample("sigma", dist.HalfNormal(5))
 sign_param = numpyro.sample("sign_param", dist.Bernoulli(0.5))
 sign = (2*sign_param)-1
 decay_exp = numpyro.sample("decay_exp", dist.Uniform(0.000, 0.5))
 calibration = numpyro.sample("calibration", dist.Uniform(-30, 30))
 misalign_ampl = numpyro.sample("misalignment", dist.Uniform(-30, 30))

 def transition_fn(carry, t):
 # Update equation
 degradation = carry # Designate hidden vars
 degradation = ((degradation + sign) * (4 ** (decay_exp / 100)) - sign)

 # Observability equation
 mu = calibration + degradation + printing[t] * (misalign_ampl)
 y_ = numpyro.sample("y", dist.Normal(mu, sigma))

 return degradation, y_

 with numpyro.handlers.condition(data={"y": y[T0+1:T1]}):
 _, ys = scan(transition_fn,
 (sign * (4 ** (decay_exp * T0 / 100) - 1)),
 jnp.arange(T0 + 1, T1+future),)

 if future > 0:
 numpyro.deterministic("y_forecast", ys[-future:])

 TNO Public TNO 2024 R11725

 TNO Public 39/45

6.8 Print quality

6.8.1 Simulation
import matplotlib
matplotlib.use('Qt5Agg')
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter(action='ignore', category=DeprecationWarning)

prob_start_clust = 0.001
prob_stop_cluster = 0.2
prob_stuck = 0.0002
prob_break = 0.0001
prob_unstuck = 0.0001

initial_cluster_state = 0

OK = 0
stuck = 1
broken = 2

working = 0
not_working = 1

N = 1000
P = 100
cleaning_treshold = 100

def get_transition_matrix_2_states(p11,p22):
 p_stay = np.array([[1-p11, p11], [p22, 1-p22]])
 return p_stay

def markov_sequence(p_transition, sequence_length, initial_state):
 states = [initial_state]
 for _ in range(sequence_length - 1):
 current_state = states[-1]
 probs = p_transition[current_state]
 new_state = np.random.choice(np.linspace(0,np.shape(probs)[0]-1,

np.shape(probs)[0]), size=1, p=probs).astype(int)
 states.append(new_state[0])
 return states

def cluster(p1,p2,sequence_length, initial_state):
 return markov_sequence(get_transition_matrix_2_states(p1, p2),

sequence_length, initial_state)

def measuring_nozzles(hidden_states):
 measured_states = hidden_states.copy()
 for idx,el in enumerate(hidden_states):
 measured_states[idx] = working if el==OK else not_working
 return measured_states

 TNO Public TNO 2024 R11725

 TNO Public 40/45

def single_print(prev_hidden_states,prev_clean):
 current_hidden_states = prev_hidden_states.copy()
 c = cluster(prob_start_clust,prob_stop_cluster,N,initial_cluster_state)
 c_probs = [prob_stuck if x == 0 else 1-prob_break for x in c]
 if prev_clean:
 for idx,el in enumerate(prev_hidden_states):
 if el == broken:
 current_hidden_states[idx] = broken
 else: #OK or stuck goes back to OK
 current_hidden_states[idx] = OK
 if not prev_clean:
 for idx,el in enumerate(prev_hidden_states):
 c_prob=c_probs[idx]
 if el == OK:
 current_hidden_states[idx] = np.random.choice(
[OK, stuck, broken], size=1, p=[1 - prob_break - c_prob, c_prob,
prob_break])
 if el == stuck:
 current_hidden_states[idx] = np.random.choice([OK, stuck,
broken], size=1, p=[prob_unstuck, 1 - prob_unstuck - prob_break,
prob_break])
 if el == broken:
 current_hidden_states[idx] = broken

 measured_hidden_states = measuring_nozzles(current_hidden_states)
 if sum(measured_hidden_states)> cleaning_treshold:
 current_clean = True
 else:
 current_clean = False
 return current_hidden_states,current_clean,measured_hidden_states,c

def prints():
 hidden_states = np.zeros((P,N))
 measured_states = np.zeros((P,N))
 cleanings = np.zeros(P)

 prev_hidden_states = np.zeros(N)
 prev_clean = False

 for p in range(P):
 current_hidden_states, current_clean, current_measured_states,_ =
single_print(prev_hidden_states,prev_clean)
 hidden_states[p] = current_hidden_states
 measured_states[p] = current_measured_states
 cleanings[p] = current_clean

 prev_hidden_states = current_hidden_states
 prev_clean = current_clean

 return hidden_states,measured_states,cleanings

 TNO Public TNO 2024 R11725

 TNO Public 41/45

6.8.2 Inference
using Pkg
Pkg.activate(".")
Pkg.instantiate()
using RxInfer

Transition matrix prior statistics:
Assumes that broken nozzles can't spontaneously repair;
Transitions are assumed unknown otherwise.
A_T = [1.0 1.0 0.01;
 1.0 1.0 0.01;
 1.0 1.0 100.0]

Known transition matrix when cleaning:
Assumes that stuck nozzles always become operational after cleaning;
Broken nozzles always remain broken.
T_c = [1.0 1.0 0.0;
 0.0 0.0 0.0;
 0.0 0.0 1.0]

Observation matrix:
Assumes that stuck and broken nozzles are always detected as failures.
O = [1.0 0.0 0.0; 0.0 1.0 1.0]

@model function batch(M, N)
 h_0 = randomvar(N) # Initial state per nozzle
 h = randomvar(M, N) # Hidden states per nozzle over time
 w = datavar(Vector{Float64}, M, N) # Obs. states per nozzle over time

 T ~ MatrixDirichlet(A_T) # Transition matrix prior
 for n = 1:N # For each nozzle
 h_0[n] ~ Categorical([1.0, 0.0, 0.0]) # initially operational

 h_min = h_0[n]
 for m = 1:M # For each timepoint
 if cleaning[m]
 # Transition model is known when cleaning
 h[m, n] ~ Transition(h_min, T_c)
 else
 # Transition model under matrix T
 h[m, n] ~ Transition(h_min, T)
 end
 w[m, n] ~ Transition(h[m, n], O) # Observation model

 h_min = h[m, n] # Reset previous state
 end
 end
end

Assume a structured factorization of the free energy
constraints = @constraints begin
 q(h_0, h, T) = q(h_0, h)q(T)
end

 TNO Public TNO 2024 R11725

 TNO Public 42/45

Initialization for the iterative variational Bayes algorithm
initmarginals = (T=MatrixDirichlet(A_T),)

Keep only the posteriors at the last iteration
returnvars = (h = KeepLast(),
 T = KeepLast())

n_iterations = 5; # Number of iterations of the variational algorithm

result = inference(
 model = batch(M, N),
 data = (w = m_one_hot,),
 constraints = constraints,
 initmarginals = initmarginals,
 returnvars = returnvars,
 iterations = n_iterations,
 free_energy = true
);

 TNO Public TNO 2024 R11725

 TNO Public 43/45

7 Acknowledgements

The research is carried out as part of the Kennisinvesteringsproject (KIP) Feasibility study of

probabilistic programming applications in industrial engineering, under the responsibility of

TNO-ESI. The research is supported by the Netherlands Organisation for Applied Scientific

Research TNO.

 TNO Public TNO 2024 R11725

 TNO Public 44/45

8 References

[1] J.-

[2]
J. Mach. Learn. Res., vol. 18, pp. 1 45, 2017.

[3]
Int. J. Approx. Reason., vol. 104, pp. 185

204, 2019, doi: 10.1016/j.ijar.2018.11.002.
[4] A. G. Baydin et al.

Int. Conf. High Perform. Comput. Networking, Storage Anal. SC,
2019, doi: 10.1145/3295500.3356180.

[5]
J. Mach.

Learn. Res., vol. 15, pp. 770 778, 2011.
[6]

Proc. 20th Int. Conf. Artif. Intell. Stat. AISTATS 2017, 2017.
[7]

modeling programs with stochastically- ACM Trans.
Graph., vol. 34, no. 4, 2015, doi: 10.1145/2766895.

[8]
-stan.org/

[9] E. Bingham et al. J. Mach. Learn.
Res., vol. 20, no. Xxxx, pp. 0 5, 2019.

[10] -
J. Open Source Softw., vol. 8, no. 84, p. 5161, 2023, doi:

10.21105/joss.05161.
[11]

[12] B. Carpenter et al. J. Stat. Softw., vol.

76, no. 1, 2017, doi: 10.18637/jss.v076.i01.
[13]

Available: https://turinglang.org/
[14] M. F. Cusumano- -

Proc. ACM
SIGPLAN Conf. Program. Lang. Des. Implement., pp. 221 236, 2019, doi:
10.1145/3314221.3314642.

[15] A. Tejero-Cantero et al. -- A toolkit for simulation-
[Online]. Available: http://arxiv.org/abs/2007.09114

[16]
Int. IEEE/EMBS Conf. Neural Eng. NER, vol.

2019-March, pp. 730 733, 2019, doi: 10.1109/NER.2019.8717034.
[17]

2017 Progn. Syst. Heal.
Manag. Conf. PHM-Harbin 2017 - Proc., pp. 3 9, 2017, doi:
10.1109/PHM.2017.8079220.

[18]
Using JAX- Electron., vol. 12, no. 17, 2023, doi:
10.3390/electronics12173631.

 TNO Public TNO 2024 R11725

 TNO Public 45/45

[19]
SESAR Innovation Days, 2018.

[20]
Mech. Syst. Signal Process., vol.

104, pp. 866 883, 2018, doi: 10.1016/j.ymssp.2017.10.033.
[21] D. B. Steffelbauer, R. E. M. Riva, J. S. Timmermans, J. H. Kwakkel, and M. Bakker,

- Environ. Res. Lett.,
vol. 17, no. 7, 2022, doi: 10.1088/1748-9326/ac753a.

[22] O. Abril-Pla et al.

[23]
Constructing an Empirical Discrimination Model for Hammering Inspection of Cast-

SICE J. Control. Meas. Syst. Integr., vol. 12, no. 6, pp. 228 236, 2019, doi:
10.9746/jcmsi.12.228.

[24] T. Wang et al. -based probability analysis framework to obtain railway

Probabilistic Eng. Mech., vol. 75, no. July 2023, p. 103587, 2024, doi:
10.1016/j.probengmech.2024.103587.

[25]
Parameters Using Simulation- IEEE Intell. Veh. Symp. Proc., pp.
306 312, 2021, doi: 10.1109/IVWorkshops54471.2021.9669252.

[26] A Performant and Feature-Rich
J. Open Res. Softw., vol. 5, no. 1,

p. 15, 2017, doi: 10.5334/jors.151.
[27]

10, 2019, [Online].
Available: http://arxiv.org/abs/1912.11554

[28] C. R. Harris et al. Nature, vol. 585, no. 7825, pp.
357 362, 2020, doi: 10.1038/s41586-020-2649-2.

[29]
Diagnostics of Cyber-
605 611. [Online]. Available: https://doi.org/10.36001/phme.2024.v8i1.4055

[30]

