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1 Introduction 

Engineering companies employ a multitude of deterministic and stochastic simulation 

models, instantiated as computer code, to compute outputs from specified inputs. These 

models are, for instance, utilized to predict system performance under a range of parameter 

configurations.   

 

A prevalent engineering challenge, however, is the inverse problem of determining the 

required inputs that yield desired outputs. This involves for instance, calibrating system 

parameters to achieve predefined performance targets. Due to the intrinsic complexity and 

randomness within these engineering simulation models, their direct mathematical or 

computational inversion is usually impractical, and often infeasible. 

 

 

Figure 1-1 Inverting complex engineering models is needed but cumbersome 

 

An alternative approach to perform such computations without model inversion is statistical 

inference. If the simulation model is specified as the joint probability distribution 

 

𝑃(𝑂𝑢𝑡𝑝𝑢𝑡𝑠|𝐼𝑛𝑝𝑢𝑡𝑠)𝑃(𝐼𝑛𝑝𝑢𝑡𝑠) 
 

then the quantity of interest 𝑃(𝐼𝑛𝑝𝑢𝑡𝑠|𝑂𝑢𝑡𝑝𝑢𝑡𝑠) can be computed using Bayes  theorem as 

    
𝑃(𝑂𝑢𝑡𝑝𝑢𝑡𝑠|𝐼𝑛𝑝𝑢𝑡𝑠)𝑃(𝐼𝑛𝑝𝑢𝑡𝑠)

𝑝(𝑂𝑢𝑡𝑝𝑢𝑡𝑠)
  

 

This approach is in principle generic but not always numerically tractable, and cumbersome 

to implement from scratch. Probabilistic programming (PP) is a paradigm designed exactly 

to facilitate the specification and evaluation of such statistical inference problems. Thus 

making statistical inference generically applicable.  

 

Furthermore, PP exhibits robustness against measurement uncertainty, data scarcity, and 

data incompleteness, which are common situations encountered in industrial engineering. 

These aspects, combined with recent advancements in PP libraries, result in a significant 

potential for the application of PP to the types of inverse engineering challenges described 

above. 

 

This report explores the topics introduced above, offering an initial assessment study of the 

feasibility of PP for engineering applications and providing an understanding of its core 

principles. It also gives a literature review and shows several coding examples of PP. 
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1.1 Organization of the document 
This document is organized as follows: 

• Section 2 gives an overview of the literature on PP. It covers generic references to 

the mathematical and implementation foundations of PP, as well as references to 

available SW libraries for PP. It also contains available references to applications of 

PP in engineering inference tasks. 

• Section 3 contains examples of PP applied to several inference tasks. In this section 

we implement small toy examples to make the reader familiar with the concepts of 

PP. We use different open-source SW libraries for PP. The code used in the examples 

is shared as Appendix to this document. 

• Section 4 applies PP to diagnostics cases from current TNO-ESI projects. The first 

example focusses on centring a belt around two cylinders, the second example 

focusses on print quality in a professional printer. Relevant code snippets from these 

examples can also be found in the Appendix. 

• Section 5 concludes this document, summarising the findings and paving the road 

towards further research. 

 

How to read this document 
 

This document summarizes the work done in the Kennisinvesteringsproject 1 (KIP) Feasibility 

study of probabilistic programming applications in industrial engineering. It has been written 

with the twin goals of serving as an accurate repository of activities and an informative 

report on probabilistic programming for those unfamiliar with the technology.  

 

For the reader interested in a high-level or strategic overview of probabilistic programming, 

sections 2 and 5 contain all necessary information and conclusions. A superficial reading of 

section 3 will suffice, and the appendix can be omitted. 

 

For the reader interested in the technical details, sections 3 and 4 contains detailed 

explanations of the examples studied and the rationale behind their probabilistic 

programming approach. The code provided in Appendix A should be sufficient to replicate 

the results presented. The reader is encouraged to contact the authors via email for any 

questions or comments regarding implementation. 

_______ 

1 Knowledge investment project 
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2 State of the art 

In order to capture the state of the art in probabilistic programming (PP) a literature review 

was conducted for which the results are summarized in Section 2.1. Also experts in the field 

of PP from the Eindhoven University of Technology and the University of Amsterdam were 

interviewed, as discussed in Section 2.2. 

2.1 Literature review 
The literature review into PP is split in three parts: Section 2.1.1 describes probabilistic 

programming and discusses different approaches to PP, Section 2.1.2 discusses various 

programming languages and software libraries for PP, and finally Section 2.1.3 highlights 

some applications in which PP is used. 

2.1.1 Probabilistic programming: a very short introduction 
Probabilistic programming is a programming paradigm specifically designed to facilitate 

statistical inference: [Probabilistic programming] is fundamentally about developing 

 from [1]. Probabilistic programming also enables the modelling 

and reasoning over complex relationships among variables and accomplishes tasks involving 

statistical analysis and the handling of uncertainty across diverse domains. 

 

Several methods have been introduced to perform statistical inference, sampling-based 

methods like Markov Chain Monte Carlo [1], gradient-based methods like automatic 

differentiation variational inference [2] and analytic methods like message passing [3], or 

combinations thereof [3]. 

 

Probabilistic programming has been successfully applied to various areas of science and 

engineering such as particle physics [4], geological modelling [5], captcha solving [6] and 

constrained simulation [7]. There are libraries in different programming languages 

supporting probabilistic programming such as Stan in C++ [8], Pyro [9] in Python and RxInfer 

[10] in Julia. 

The general picture 
 

In industrial settings, processes are often tightly controlled, and their outputs generally well 

understood. A perfect industrial process is thus akin to a mathematical function that reliably 

transforms inputs, denoted as �⃗�, into outputs,  �⃗�, for which we can explicit a (data) 

generation procedure, 𝑓, often in the form of computer code, such that �⃗� = 𝑓(�⃗�). 

 

In reality, some of the variables affecting a process will be unobserved. These variables are 

denoted as ℎ⃗⃗, and often called hidden or latent variables. In such settings, the quantity and 

nature of these hidden variables, and the different ways in which ℎ⃗⃗ affects �⃗�, are generally 

well understood. What remains unknown, then, is the value of the latent variables. 
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And so, it is possible to write an explicit procedure, which can be deterministic or 

probabilistic, known as a generative model, that can generate the output �⃗� as a function of �⃗� 

and ℎ⃗⃗. 

 

Mathematically, we describe these as hidden random variables, and the outputs as observed 

random variables. This means that generative models are probabilistic processes: 

 

�⃗� ∼ 𝑔(�⃗�, ℎ⃗⃗), 

Where the symbol ∼ denotes that the probability distribution of the left-hand side is a 

function of the right-hand side. 

Inference in the probabilistic programming setting does not assume a single set of hidden 

variables ℎ⃗⃗ that work for all (�⃗�, �⃗�) pairs, but rather it starts with a known model 𝑔(�⃗�, ℎ⃗⃗), and 

infers the probability distribution of ℎ⃗⃗ for a given set of observed inputs �⃗� and outputs �⃗�. In 

concrete terms, a probabilistic program takes a generative model and some data and 

performs an operation Γ such that: 

 

{
�⃗�, �⃗�

�⃗� ∼ 𝑔( �⃗�, ℎ⃗⃗)
   →   ℎ⃗⃗(�⃗�, �⃗�) ∼ Γ(x⃗⃗, �⃗�)   

 

This operation of computing an estimate for the hidden variables, be it a probability 

distribution or a single point, given a model and a pair of observed inputs �⃗� and outputs �⃗� is 

called performing inference.  
 
By contrast, in most data-driven learning tasks a parametrized model  𝑓𝜃: 𝑦 = 𝑓𝜃(𝑥) is 

proposed and many pairs of (�⃗�, �⃗�) are used to infer  the best parameters 𝜃 for the model. 

This task is usually known as learning the function 𝑓. 

 

Figure 2-1 illustrates the difference between probabilistic programming and standard data-

driven machine learning (ML) approaches. The main difference is that in standard ML, the 

unknown quantities (model parameters 𝜃) are assumed to be constant for all (�⃗�, �⃗�) pairs 

and learned from many instances of data, while in probabilistic programming, the unknown 

quantities (hidden variables ℎ⃗⃗) are allowed to depend on the given data and inferred on a 

case-by-case basis. 

 

 
 

Figure 2-1: Data-driven learning (left) versus model-driven learning. The purple box indicates the parts that 

are inferred (𝜃 or ℎ⃗⃗). In the data-driven example, learning the parameters teaches little about the difference 
between cats and dogs. In model-driven learning, the learned parameters relate to a physical model, and 

thus inform us about the real world. 
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Architecture of a probabilistic program 
 

The way a probabilistic program manages to define the inference operator Γ is to: 

 

1. Use the generative model to encode a joint probability distribution. 

𝑃(�⃗�, ℎ⃗⃗|�⃗�) = 𝑃(�⃗�|ℎ⃗⃗, �⃗�)⏟      
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

⋅ 𝑃(ℎ⃗⃗)⏟
𝑝𝑟𝑖𝑜𝑟

, where 𝑃(⋅) denotes the probability distribution, and 

(𝑦|𝑥) denotes the conditioning of the probability distribution of 𝑦 on a particular 

value of 𝑥. 

2. Condition the joint probability distribution above on both the observed values of  �⃗� 

and �⃗�. 

3. Compute the posterior distributions of ℎ⃗⃗ given �⃗�, �⃗�, defined as 𝑃(ℎ⃗⃗|�⃗�, �⃗�), by somehow 

computing the likelihood and applying Bayes rule. This is the step that requires 

extensive computation. 

 

The workflow of a probabilistic program follows this scheme, splitting the specification of the 

model, the conditioning of the model, and the inference, automating the latter two. This is 

depicted in Figure 2-2. 

 

 

Approaches to inference 
The only step that requires extensive computation is the last one, since the computation of 

posteriors requires the computation of the likelihood function, which is often 

computationally intractable. An implementation of the architecture above is called a 

Probabilistic Programming Language (PPL). These are often distinguished on the basis of 

their approach to inference. There are roughly three ways to approach the problem of 

inference. 

 

1. Use sampling techniques to approximate the likelihood function.  

2. Use stochastic variational methods to approximate incomputable true posteriors 

with proposed computationally tractable surrogates. 

3. Use analytic methods to simplify the intractable posterior. 

Figure 2-2: Workflow of probabilistic programming. The model creation is a manual process 
requiring expertise in statistical modelling. Inference tasks are mostly automated. Conditioning is 

usually automated and inference is a matter of choosing among a set of existing inference 
algorithms and hyperparameters.  
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These methods have pros and cons, which can be seen in Table 1. 

 

Method Pros Cons 

 

 

Sampling 

Universal: Can infer posteriors of any 

shape. 

Precise: Can approximate posteriors to 

arbitrary precision. 

Mature: These methods have the longest 

history and are well understood.  

Challenging to scale to high 

dimensions.  

Computationally expensive. 

No guarantee of convergence. 

Stochastic 

Variational 

Inference 

Scalable: Can handle high-dimensional 

problems. 

AI compatible: Variational methods can be 

merged with deep learning techniques. 

No guarantee of convergence. 

Bounded precision: Can struggle to 

approximate difficult posteriors. 

Analytic methods, 

message passing 

Scalable and efficient. Limited to the subset of analytic 

models (exponential families, discrete 

models). 

Table 1: Pros and Cons of different approaches to inference. 

2.1.2 Libraries, tools & software 
Since the introduction of the first probabilistic programming software over 30 years ago [11], 

the space of probabilistic programming has seen the introduction of over 50 different 

libraries, languages and tools addressing different aspects of probabilistic programming and 

statistical modelling. A non-exhaustive list can be found on Wikipedia2 

 

The introduction of the first universal probabilistic programming language in 2012, STAN 

[12], marked a turning point in the field, and development has accelerated since then. In 

Figure 2-3 we can see the growth in citations to a selection of the most modern PPL libraries. 

All the selected libraries are written for the Python programming language except Turing.jl 

[13] and Gen.jl [14], which are for Julia, and Stan, which is written in C++. One of the 

reviewed libraries, RxInfer [10], is not included in the figure since its introduction is too 

recent (2023) for a discussion of growth or trends. 

_______ 

2 https://en.wikipedia.org/wiki/Probabilistic_programming 
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All of the libraries in the figure support sampling methods as well as stochastic variational 

inference (SVI) in their inference engines, with the exceptions of Turing.jl, which is exclusively 

sampling-based, and SBI [15], which has a deep learning approach to inference. 

 

In sections 3 and 4, we discuss example applications of probabilistic programming 

implemented in a  subset of the libraries discussed in Table 2. Our selection is motivated by a 

balance between ease-of-use for the authors, performance, and breadth of approaches. 

 

Library Language Inference engine Year  Other features 

NumPyro Python Sampling, supports 

SVI 

2019 Fastest inference. Together with 

Pyro, preferred libraries of the ML/AI 

community. 

PyMC Python Sampling, supports 

SVI 

2016 Latest iteration of PyMC3. Most used 

and documented Python library. 

Some use in engineering areas. Lags 

in performance. 

Turing.jl Julia Sampling 2019 

differentiation packages means it 

can readily be used for solving 

probabilistic differential equation 

models. 

RxInfer Julia Message passing in 

factor graphs 

2023 Still in early stage. Developed at 

TU/e. Established working 

relationship with the developers. 

Very scalable under certain 

conditions. 

0

500

1000

1500

2000

2500

2015 2016 2017 2018 2019 2020 2021 2022 2023

Number of citations of most used PPLs 2015-2023

PyMC3 PyMC Pyro Numpyro TF Probability

STAN sbi Gen.jl turing.jl

Figure 2-3 : Number of citations of the most commonly used PPLs in the years 2015-2023. Of 
special interest is the  accelerating increase trend between 2015 and 2020. In the last three 

years, the number of citations has stabilized around 2000 per year. 
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SBI Python Deep learning on 

surrogate neural 

networks 

2020 Radically different approach. Almost 

entirely automated inference step 

means much lower statistics 

expertise required. 

Gen.jl Julia Sampling, SVI 2019 Very flexible inference algorithms. 

Highest degree of customization. 

Stan C++ Sampling, SVI 2015 Preferred use in bioscience 

applications. Slow inference. 

TF Probability Python Sampling, SVI 2019 Similar to NumPyro and PyMC, but 

built around TensorFlow. 

Table 2: Overview of probabilistic programming libraries considered in this KIP 

2.1.3 Applications 
Probabilistic programming is used extensively in various fields of research. Especially in 

astrophysics and sub-atomic particle physics research, probabilistic programming is used to 

map observations to a model. Also in (computational) biology PP is used often. In 

engineering probabilistic programming is used less. When applied it is often used for 

reliability analysis, model fitting or defect detection. A couple of examples are mentioned in 

this section. 

 

A common use of probabilistic programming is mapping results from a small experiment to 

a distribution in order to get the whole distribution characteristics. Lamont et al. employ a 

Bayesian reliability analysis to estimate reliability and expected life-time of encapsulated 

implanted electronics based on an accelerated aging experiment [16]. 36 samples were 

tested at three temperature levels for over 300 days after which only 4 samples had failed. 

Meng et al. analyse failures in a ship electromechanical system using a Bayesian method 

[17]. Based on the often incomplete error reports on ships a model is made which can be 

used for suggesting preventive maintenance. 

 

Probabilistic programming can also be used to estimate parameters for a model. Tada uses 

Bayesian estimation to create an equivalent circuit of a solar cell [18]. The benefit over 

classical methods like nonlinear least-squares methods is that also estimation errors are 

computed, although the probabilistic programming approach requires a long computation 

time. Sun et al. use Bayesian computing to estimate the aircraft drag polar (the relationship 

between the drag on an aircraft and other variables, such as lift, angle-of-attack or speed) 

based on flight data for 20 common aircraft types [19]. Schön et al. model a nonlinear 

spring-

coefficients from observed (simulated) data [20]. This paper was used as inspiration for the 

Mass-spring-damper system example of section 3.3. 

 

Steffelbauer et al. use probabilistic programming to model the acceleration of sea-level rise 

(SLR) in the North Sea [21]. Data acquired between 1919 and 2018 from seven tidal stations 

in the Netherlands and one in Germany are used to find the breakpoint where the sea-level 

rise increased from SLR1 mm/year to SLR2 mm/year. Various -

into account, such as seasonal changes (lunar cycle and yearly variation), atmospheric 

pressure and wind direction and wind stress. The model is implemented using PyMC3 [22] 

and consists of approx. 100 lines of Python code: 

https://github.com/steffelbauer/sea_level_rise_acceleration. 

 

https://github.com/steffelbauer/sea_level_rise_acceleration
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It is also possible to find defects using probabilistic programming. Tamaki et al. create a 

probabilistic model of cast iron parts [23]. By only sampling known correct parts broken parts 

can be identified when they fall outside the confidence interval. Wang et al. model the out-

of-roundness (OOR) of metro wheels [24]. The probabilities resulting from the model are 

linked to the Sperling index, which can be used to evaluate vehicle comfort and 

consequently a maintenance threshold. Similarly, Boyali et al. use Simulation Based 

Inference (SBI) to identify vehicle (car) dynamics parameters [25]. 

2.2 Interviews 
In the course of this study, we have reached out to academics in the Netherlands with 

expertise in the field of probabilistic programs, and interviewed research groups in the 

Netherlands who have developed or are actively developing probabilistic programming 

libraries. A summary of the interviews is given below. 

 

On the strengths of probabilistic programming for industrial application, interviewees 

pointed the following:  

 

• Probabilistic programs do best in settings where there is a clear model for data 

generation. In this regard, they seem well suited for industrial applications where 

processes can be modelled easily. 

• Probabilistic programming is a favoured approach for parameter estimation 

problems with uncertain and/or missing data. 

• 

model capable of computing it. Problems with inference are often caused by 

 

 

On the current state of practice in the field of probabilistic programming:  

 

• Developers of probabilistic programs usually have data science/AI, biomedical, or 

problems. Most effort has been put to modern computer science problems such as 

image recognition, clustering, classification of noisy data, epidemiology, etc. 

• Expertise requirements are still very high. Little effort has been made yet to lower 

them due to several factors: 

o Novelty of the field. Most progress in probabilistic programming is less than 

10 years old.  

o Inherent difficulty of inference problem. Most practitioners find that 

complex models often require customized inference algorithms. No general 

inference algorithm exists. 

o Unstructured nature of existing applications. Universality and flexibility are 

the goal of most probabilistic programming languages. This usually comes 

at the cost of usability. 

o High expertise among current users. Most practitioners are academics or 

have deep expertise in statistics, inference and software engineering. 

o Lack of incentives to tailor PPLs to specific applications. Applications of 

probabilistic programming outside its original context are still scarce and 

there is no push from industry to make them more accessible. 

• Lowering expertise requirements can potentially be done for sufficiently bounded 

domains. Additional research is needed in this regard. Not just a couple of research 
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papers but a comprehensive program requiring several researchers for a handful of 

years. 

• There is a real slowdown of the field, due mainly to 3 things: 

o Emergence of LLMs. Modern LLMs have proven that black-box deep learning 

is more powerful than previously thought, and the limitations of that 

approach are still unknown, leading to many researchers to shift attention 

away from PPLs and towards LLMs. 

o The community has done what it set out to do. 
that allow specification of any model with continuous variables. Many 

inference algorithms are available and customization is possible if needed. 
o Universal inference algorithms cannot exist. It is impossible to make a 

universal, fully black-box PPL. Therefore, any attempt to automate inference 

must be to some extent problem-specific, which is contrary to the 

philosophy of PPL developers. 

 

On the research directions that would facilitate adoption in an industrial setting: 

 

• Misalignment between simulation models and inference models. Some things that 

 hard to express in an 

probabilistic program in ways that make inference tractable. This is both a problem 

with PPL language specification as a problem with mathematical robustness. 

• Nesting of sub-  

Models with many different kinds of variables and variable interactions may benefit 

from breaking the problem into sub-problems and using different inference 

subroutines. This requires:  

o Better understanding of strengths and limitations of different inference 

approaches. 

o Criteria to select the right tool for the (sub)-job.  

o A mathematical framework for fusing these subroutines into a single 

inference algorithm. 

• Hierarchies and coupling of processes at different scales. The parameters 

determining the distribution of random variables can themselves depend on other 

random variables. This is known as variable hierarchy. 
o Selecting the right level of granularity to infer slow-moving variables from 

fast-moving data has a big impact on inference efficiency.   
• Hybrid models are particularly difficult. Inference on models with many interacting 

continuous and discrete variables is harder than inference on fully continuous or 

fully discrete models. Additional research is needed to unify both types.  
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3 Example applications 

The examples presented in this section showcase the capabilities of probabilistic 

programming in tackling inference tasks. We do not investigate the comparison of the PP 

approach to classical approaches to solve such tasks. This should be done in future research. 

 

The following concepts and notations will be used in all the examples below: 

 

Simulation model - is a computational model that given some inputs computes some 

outputs. In other words, the simulation model is the function which computes 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡𝑠) →  𝑜𝑢𝑡𝑝𝑢𝑡𝑠 
 

This model is used to generate the data on which the inference task will be executed. This 

function can be deterministic or stochastic. In an engineering application, the simulation 

the phenomena of interest. In this way the data generated by such a model is assumed to 

be resembling sufficiently  well the real world measurements, given the same values for the 

inputs. With data* we will refer to those outputs generated by the simulation model given 

the inputs*.   

 

Inference model - similarly to the simulation model is a computational model that given 

input parameters computes outputs.  The fundamental difference between the simulation 

and inference models is on the inputs. In the simulation model these are the actual values 

on which function()  is executed. On the contrary, in the inference model those are 

parameters of probability distributions, e.g. mean and variance of a Normal distribution. 

These distributions are referred to as the priors. Some actual values are then sampled from 

this distributions and subsequently the function()  is executed on those sampled values. In 

other words, the simulation model has two steps which read like: 

 

𝑝𝑟𝑖𝑜𝑟_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑖𝑛𝑝𝑢𝑡𝑠_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) →  𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑖𝑛𝑝𝑢𝑡𝑠_𝑣𝑎𝑙𝑢𝑒𝑠 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑖𝑛𝑝𝑢𝑡𝑠_𝑣𝑎𝑙𝑢𝑒𝑠) → 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

 

This means that the inference model is probabilistic, even if the function of the simulation 

model is deterministic. Every time it is executed it will sample different inputs values on 

which execute the function. Finally, additionally to the simulation model, the inference 

model also takes some data*. This data* is used in the inference routine, described next. 

 

Inference routine - is the computational model that executes the statistical inference. That 

is to infer the inputs* from data*, without inverting the function(). The goal of probabilistic 

programming is to lower, as much as possible, the effort in defining mathematically and 

computationally such inference routine. With some degree of difference, the PP libraries 

described in Section 2.1.2 have inference routines which take as inputs the inference model, 

the data* and the prior distributions of the input parameters. While returning, the posteriors 

distributions on theses parameters, samples from such distributions and some metrics to 

describe the accuracy of such inference. 
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Below we will present some examples using these concepts and showcasing applications of 

PP. The code to reproduce the examples is shared in the Appendix Section of this document.  

3.1 Biased coin 
In this example we model the toss of a coin n times. We assume that it is already known 

that the coin is biased, but that we do not exactly know to what extent. Our goal is to infer 

the actual amount of bias from the n tosses. We implement this example in the Julia 

programming language using, the RxInfer [10] library for the inference.  

 

The simulation model consists of sampling n times the discrete Bernoulli distribution with 

parameter p, i.e. a sample is 1 with probability p and 0 with probability 1-p. This simulation 

model is stochastic since every time we execute this model, for the same p and n, the n 

values will be different. 

 

The inference model is very similar to the simulation model, with additional information on 

the prior distribution of the parameter p. We assume that this prior is a Beta distribution, 

which is parametrised by the two parameters p1 and p2. The values of these parameters are 

assumed known as part of the prior information. We also assume that the two parameters 

are independent. The inference model then proceeds in two steps:  

1. take sample p from a Beta with parameters p1 and p2. 
2. take n samples from a Bernoulli with parameter p from step 1.  

Notice that step 2 above is equivalent to the simulation model. 

 

The inference routine will then use the inference model, together with a set of n samples 

from the simulation model and return the posterior distribution for the parameter p of the 

Bernoulli.  

 

In the figures below we show some inference results. The parameters used in each figure 

are shown in the title, where p* is the actual parameter of the Bernoulli used to generate the 

data in the simulation model; p_est is the mean of the posterior distribution; p_naive is the 

mean of the n samples. The posterior is the result of the inference. The results depend on 

the number of samples n p* and the prior of the Beta. 

This dependence is shown in the different figures below. Increasing the number of samples 

and minimising the between the p* and the prior of the Beta allows to perform a 

more accurate inference.  

 

 

Figure 3-1 Biased coin. Inference based on 10 tosses. Correct prior. Correct inference. 
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Figure 3-2 Biased coin. Inference based on 10 tosses. Wrong prior. 

 

Figure 3-3 Biased coin. Inference based on 5000 tosses. Wrong prior. 

 

Specifically, Figure 3-1 

Here correct means that the sample p* (green vertical line) has a high probability to be 

sampled from the prior (blue curve). The variance of the posterior distribution (red curve) is 

dependent on the number of samples n=10, increasing the number of samples will decrease 

the variance of the posteriors. Figure 3-2 shows a less ideal situation in which the prior on 

the Beta is off, i.e. the p* is very unlikely to be sampled from this distribution. With a low 

number of samples n
beliefs on this coin. Increasing the number of samples to n=5000 as in Figure 3-3 will change 

this situation, with the posterior being estimated and peaked around p*. 

3.2 If-else example 
In this example we model a data-generating process containing logical if-else statements. 

This results in discontinuities in the execution trace, meaning that two contiguous 

datapoints can be arbitrarily far apart, and input and output distribution of data that exhibits 

complex behaviour. 

 

Our simulation model accepts five parameters, 𝑛, 𝑚0, 𝑚1, 𝜎, and 𝑝. Building on the previous 

example, we begin by sampling 𝑛 Bernoulli distributions with parameter 𝑝, each taking 

values either 0 or 1. However, rather than simply recording the output, we make a second 
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sample from a different distribution, a gaussian distribution with mean 𝑚0 (respectively 𝑚1) 

if the value of the Bernoulli is 0 (respectively 1) and standard deviation 𝜎  for both gaussians. 

This kind of model, where the generated data is the result of a random mixture of two or 

more distinct processes, is known as a mixture model. 

 

Figure 3-4 shows a depiction of a dataset generated following this process.  

 

The task of the inference engine is to identify the two different gaussian modes and the 

proportion of samples that correspond to each mode. In other words, the task is to identify 

the parameters 𝑚0, 𝑚1, 𝜎, and 𝑝. 

 

The inference model proceeds similarly to the simulation model with some slight 

modifications. First, we give priors for all inferred parameters. We use rather uninformative 

priors for all, with 𝑙𝑜𝑐𝑠 = (𝑚0, 𝑚1) being the vector formed by 𝑚0 and 𝑚1, both drawn from a 

gaussian distribution with mean 0 and standard deviation 15. The prior for 𝜎 must only allow 

for positive numbers, so we choose to be a half-normal with width 5. The prior for 𝑝 is 

uniform. Then we say that each step an 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is generated according to a Bernoulli 

distribution with parameter 𝑝 and the data is drawn from a gaussian distribution with 𝑠𝑡𝑑 =

𝜎 and 𝑚𝑒𝑎𝑛 = 𝑙𝑜𝑐𝑠[𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡]. This is the way we express in the inference model the 

condition that a sample is drawn from one or the other Gaussian according to the value of 

the Bernoulli sample.  

 

Table 3 shows the computed posteriors for the parameters of the simulation. Inspecting the 

table it seems that the inference overestimates the values of 𝑚0 and 𝑚1 by about 0.1. 

Figure 3-4: Dataset generated by a mixture process with 𝑛 = 2000, 𝑚0 = −4, 𝑚1 = 4, 𝜎 = 2, and 𝑝 = 0.4. 
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Interestingly, this is not because the inference engine is wrong but because the data is 

slightly skewed to the positive numbers. 

 

This becomes clear when one computes the sample average of the data in Figure 3-4 and 

finds it to be 0.699, rather than the theoretical value of 0.8. This betrays an important 

property of simulation models with internal randomness, namely that the data they 

generate can be affected by random fluctuations. In reality, no random process is perfectly 

unbiased, and random fluctuations in the simulation data will be considered intrinsic by the 

inference engine because it only has access to the data.  

Table 3 Parameter posteriors for mixture models. 

Parameter Est. Mean Est. 5% Est. 95% Real value 

𝑚0 −3.91 −4.01 −3.81 −4 

𝑚1 4.11 3.98 4.23 4 

𝜎 2.00 1.94 2.06 2 

𝑝 0.4 0.38 0.42 0.4 

 

Another important property of most probabilistic programs is that they generate posterior 

distributions, not simply point estimates for mean and variance of variables. Moreover, they 

can generate the joint posterior distribution over all variables, which can be used to discover 

correlation (or independence) between variables. 

3.3 Mass-spring-damper system 
In this example we consider a 1-D mass spring damper system schematically represented in 

Figure 3-5 below and mathematically modelled by the following second order differential 

equation: 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑐

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 0 

 

 

Figure 3-5 Schema of the mass spring damper system. From Wikipedia3. 

The inference task is to infer the posterior of the parameters k and c given their priors and n 

samples from the measured position at dt time intervals. 

 𝑦[𝑖]  =  𝑥[𝑖 ⋅ 𝑑𝑡]  +  𝜂[𝑖].  
Where 𝜂[𝑖] are measurement noise terms sampled independently from a Normal 

distribution. The mass m is assumed to be known and equal to 1. Here we implement this 

inference task in Julia using the probabilistic programming library Turing.jl [13]. The 

inference task is executed using a Markov chain Monte Carlo (MCMC) [13] sampling 

approach. 

 

_______ 

3 https://en.wikipedia.org/wiki/Mass-spring-damper_model 
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Figure 3-6 shows the simulated data used in the inference task. Blue line is the continuous 

time series representing the position of the mass m. The red dots represent the noisy 

measurements of such position, every dt. 

  

 

Figure 3-6 Mass spring damper system. Example simulated data for the position x(t) and its noisy 
measurement y[i] 

 

Figure 3-7 and Figure 3-8 show the inference results for the k and c parameters respectively. 

Where 𝑘∗ and  𝑐∗ are shown as a vertical green line, the uniform prior distribution is shown 

as a horizontal blue line and the posterior as a red line. The uniform prior distributions for k 

and c are both in the range 0 and 2. These priors are the most uninformative as possible, to 

represent a situation when little knowledge is known on the system. Notice how the 

estimate of the parameter k is more accurate than the c parameter. This is because we only 

use measurements of the position of the mass. Using the velocity would results in opposite 

precision.  

 

Figure 3-7 Mass spring damper system. Inference result for the k parameter. k* = 0.60 k_est = 0.59. 201 Data 
samples. 100 MCMC samples. 
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Figure 3-8 Mass spring damper system. Inference results for the c parameter. 201 Data samples. 100 MC 
samples. 

Finally, Figure 3-9 show the results for the inference of the parameters c by increasing the 

number of samples used in the Markov chain in the MCMC inference algorithm from 100 to 

1000 which results in a more accurate estimation of the parameter. 

 

 

Figure 3-9 Mass spring damper system. Inference results for the c parameter. 201 Data samples. 1000 MC 
samples. 

3.4 RC filter 
An RC-filter is an electric circuit which consists of resistors and capacitors. The simplest RC-

circuit is a first order RC-filter consisting of one resistor and one capacitor as shown in Figure 

3-10. The output voltage Vc can be computed as a function of the input voltage Vin and the 

values of the resistor R and capacitor C using the following differential equation: 

𝑉𝐶 = 𝑉𝑖𝑛 − 𝑅𝐶
𝑑𝑉𝐶
𝑑𝑡

 

 

The goal of this example is to find the values for the resistor R and the capacitor C given a 

time series of input signal Vin and output signal Vc. In practice this can be done by applying a 

known signal as Vin and measuring Vc and computing the values of R and C. In the previous 

Mass-spring-damper system example a single input value was provided: the start position 

while in this example the input is a time series of Vin and Vc. 



 

 

 TNO Public  TNO 2024 R11725 

 TNO Public 21/45 

 

Figure 3-10: RC circuit configured as a low-pass filter. From Wikipedia4. 

 

The RC-circuit is modelled in Julia using DifferentialEquations.jl [26] as an Ordinary 

Differential Equations (ODE). Given a differential equation, an input signal and a start- and 

stop time a time series of results is computed. The differential equation for Vc can be written 

in Julia as follows: 

dVc .= (Vin(t) .- Vc) / (R * C) 

Note that dotted operators (.= and .-) are used to indicate these operations are broadcasted, 

meaning they operate on time-series which are called vectors in Julia. 

 

The selected input signal Vin is a (single) block wave as shown Figure 3-11. The output signal 

is the typical shark-fin created by low-pass filtering a block signal, also shown in Figure 3-11. 

Random measurement noise is added to the filtered signal as indicated by the blue circles. 

 

Figure 3-11 input and output signal for RC filter 

 

The data points with measurements noise are used in the inference step where the values of 

the resistor (R) and capacitor (C) are estimated. This is done using Turing.jl [13], a Julia 

library for general-purpose probabilistic programming. Their website has an example 

dedicated to parameter estimation using Bayesian inference of differential equations: 

https://turinglang.org/dev/tutorials/10-bayesian-differential-equations/  

 

During the inference potential values for R and C are sampled from a Normal distribution. 

The tolerances (deviations from the nominal value, calculated as 𝜎/𝜇, where 𝜎 is the 

standard deviation and 𝜇 is the mean) of the resistor and capacitor are known to be 1% and 
_______ 

4 https://en.wikipedia.org/wiki/RC_circuit 

https://turinglang.org/dev/tutorials/10-bayesian-differential-equations/
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10% respectively. However, specifying the variance in the Normal distribution to match the 

tolerance gives a narrow sample range. This causes the inference to be very slow. A better 

approach is to allow the Normal distribution to sample from a (much) larger range than can 

be expected from the tolerance. This speeds-up the inference significantly and also improves 

the end result (closer to the original value for R and C in the simulation). 

 

Since the values for the resistor and capacitor (R and C) only appear as a product in the 

differential equal, the inference only finds a value for this product, and not for the individual 

values of R and C. However, because the variance of the Normal distribution of the capacitor 

is larger than of the resistor (to mimic the larger tolerances of capacitors), the results of the 

inference does favour the capacitor to deviate from the designed value.  

 

The results of an inference on a low-pass RC-filter as shown in Figure 3-10 can be found in 

Figure 3-12. The design values of resistor and capacitor are , 

which we use to create our priors for these parameters. The prior distributions of the design 

values are shown in blue in Figure 3-12. One instance of this filter is simulated in with value 

R* C* = 45 µF. Based on the simulation results the values for R and C  are 

estimated using inference, which results in Rest (+1.4% overestimation) and Cest = 

44.3 µF (-1.5% underestimation). Observe that the estimated value of both R  and C  are 

closer to the true values than the design values, and the posterior tolerance for C  is now 

much smaller (1.5%) than the prior tolerance (10%), while the posterior tolerance of the 

resistor is marginally bigger than the design value, due to its interaction with the far more 

imprecise capacitor in the RC circuit.  

 

  

Figure 3-12 inference results of estimating the values for R and C in the RC-filter.  
The actual values of the resistor and capacitor are given by R* and C*. The prior distribution around the 
designed value is shown in blue, the posterior distribution around the estimated value is plotted in red. 

3.5 State machine 
In this example we consider a simple probabilistic state machine with two states 𝑠1 and 𝑠2 

and transition probabilities 𝑝1  =  𝑝𝑟𝑜𝑏. 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠1 → 𝑠2 and 𝑝2  =  𝑝𝑟𝑜𝑏. 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠2 → 𝑠1. 

With the probability of staying in a state given as 1 − 𝑝1 , 𝑝2 respectively for 𝑠1, 𝑠2. Given a 

sequence of N states, starting from the initial state 𝑠1, the inference task is to infer the 

transition probabilities 𝑝1, 𝑝2. We solve this inference task using the Python library Simulation 

Based Inference (SBI) [15]. An advantage of SBI in respect to other probabilistic 

programming libraries is that inference model consists of a wrapper around the simulation 

model. Therefore, no additional coding is required to define the inference model.   

 



 

 

 TNO Public  TNO 2024 R11725 

 TNO Public 23/45 

Figure 3-13 show the results for the SBI inference for a sequence of N = 100 states with 𝑝1
∗ =

0.6 and 𝑝2
∗ = 0.4. The priors for the transition probabilities are uniform distributions in the 

range [0.3, 0.8]. The posterior for 𝑝1 is shown in blue, on the top left plot, with in red a 

vertical line for 𝑝1
∗.  Similarly for 𝑝2 on the bottom plot. The top right plot shows the joint 

posterior distribution, with an orange dot at (𝑝2
∗, 𝑝1

∗). 

 

 

Figure 3-13 SBI inference results for transition probabilities of a probabilistic state machine, where dim 1, dim 

2 correspond to 𝑝
1
, 𝑝
2
 respectively. 

3.6 2D convolution 
Image filtering, like with a blur-, sharpening-, or edge-detection filter, is usually done using a  

2D convolution. In this application the input image and convolution kernel are known, and 

the output image is computed. Another application is to determine the convolution kernel 

from a known input and a measured output image, for example during the calibration of an 

imaging system. 

 

In this example probabilistic programming is used to reconstruct the convolution kernel 

from a known input pattern and an acquired output image. The input pattern and the 

output image can be found in Figure 3-14. In this example the output image is simulated by 

applying a Gaussian blurring kernel on a slightly noisy input pattern and adding 

measurement noise. 
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Figure 3-14 input pattern and output image used in determining the convolution kernel 

 

NumPyro [27], a probabilistic programming library which provides a NumPy [28] backend for 

Pyro [9], is used to compute the convolution kernel from the  shape, the input 

pattern and the output image. The results of the inference are shown in Figure 3-15. Figure 

3-15a shows the convolution kernel coefficients used to transform the input pattern to the 

output image. A Uniform distribution is used as the input estimation to the inference to not 

give a bias to the kernel parameters, hence each coefficient is set to 1/9 as shown in Figure 

3-15b. The coefficients resulting from the inference can be found in Figure 3-15c. 

 

 

Figure 3-15 convolution kernel coefficients  
[a] used in the simulation to generate the output image from the test pattern (k*) 

[b] as the initial estimate for inference (prior) 
[c] results after inference (posterior) 
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4 Diagnostic cases 

4.1 Conveyor belt 
In the context of the Carefree project, we have outlined a methodology for using 

probabilistic programs together with simulation models, and applied the methodology to a 

an industrial printer. For more detail, see[29]. This subsystem contains a conveyor belt that 

rests horizontally on four cylinders. The cylinders rotate at a variable speed and transmit this 

movement to the belt. In order to keep the belt at the centre of the cylinders, one of the 

cylinders can be tilted by raising or lowering it, see Figure 4-1. 

 

 

 

The mechanism responsible for this tilting is driven by a Z-position motor. This tilting causes 

the belt to slide up or down the cylinder each revolution by an amount proportional to the Z-

motor position. Every few revolutions the position of the belt is measured and a correction is 

computed by a Proportional Integral (PI) controller, resulting in an adjustment of the Z-

motor position. This steering action is necessary to counter the various causes that make the 

belt drift away from its intended position. 

 

Our goal here is to discern the unknown causes of this drift and to infer their strength, given 

the available data on the belt and motor positions over time. 

 

4.1.1 Simulation model  
 

Every step of the PI-controller begins with a measurement of the belt position. This belt 

position must be a function of the previous belt position, the previous motor correction, and 

the drift incurred between the current measurement and the previous one. Based on the 

current positions of both the belt and Z-motor, the position of the latter is updated by a PI 

controller with the goal of returning the belt to its intended position. The equations 

modelling this behaviour are: 

 

Figure 4-1: The belt lies on a horizontal plane. By raising the steering roller, the plane is 

tilted, and so the belt slides slightly to the side with every revolution due to gravity. 
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{

𝑏𝑒𝑙𝑡𝑘 = 𝑏𝑒𝑙𝑡𝑘−1 − 𝛼 ⋅ 𝑚𝑜𝑡𝑜𝑟𝑘−1 + 𝑑𝑟𝑖𝑓𝑡𝑘
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑘 = 𝑐𝑖𝑛𝑡(𝑏𝑒𝑙𝑡𝑘 + 𝑏𝑒𝑙𝑡𝑘−1) + 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑘−1

𝑚𝑜𝑡𝑜𝑟𝑘 = 𝑐𝑝𝑟𝑜𝑝 ⋅ 𝑏𝑒𝑙𝑡𝑘 + 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑘

 

 
𝑐𝑖𝑛𝑡 , and 𝑐𝑝𝑟𝑜𝑝 are known proportionality constants and subscripts (·)k corresponds 

to the value at sample k. 

We conjecture that the drift results from the linear combination of five causes: 

 

o Calibration: the belt might not be completely horizontal when the Z-motor is 

at position 0. This results in a constant calibration error 𝑐.  

o Misalignment: the belt might not be well aligned with the previous 

component of the printer. This results in a constant misalignment error 𝑚 

that is present only when the machine is printing. 

o Degradation: the belt material might wear out and deform over time, 

resulting in a time-dependent drift 𝐷𝑘. We conjecture this degradation to be 

exponential and with an unknown deformation direction 𝑠 ∈ {−1,+1} and 

degradation exponent  𝛿.  

o Sheets: when the pages make contact with the belt, they might cause a 

perturbation to its position, depending on the properties of the pages. This 

would result in a train of pulses 𝑃𝑘 with varying amplitude and width, 

present only when the machine is printing.  

o Noise: we finally conjecture that all other sources of error add up to a 

Gaussian term 𝜀𝑘  ∼  𝑁 (0, 𝜎) with unknown variance and zero mean.  

 

These causes are described by the following equations: 

 

𝑑𝑟𝑖𝑓𝑡𝑘  =  𝑐 +  𝑝𝑟𝑖𝑛𝑡𝑘 ⋅ (𝑚 +  𝑃𝑘) + 𝐷𝑘  +  𝜀𝑘 

𝐷𝑘  =  𝑠(4
𝛿𝑘  −  1), 

 
where 𝑝𝑟𝑖𝑛𝑡𝑘 is a Boolean variable denoting whether the machine is printing at time 𝑘. In 𝐷𝑘, 

the sign parameter 𝑠 determines the direction of degradation (positive or negative), and the 

−1 ensures that  𝐷𝑘=0 = 0. 

 

4.1.2 Inference model 
Considering the temporal nature of our data and the controlled stepwise nature of the 

system, we propose a Bayesian state-space model as the probabilistic description. A 

Bayesian state-space model is a dynamical system of equations relating random variables. 

The system is determined by the observability and update equations. These equations 

describe how the unobserved dynamic variables (degradation 𝐷𝑘, perturbation 𝑃𝑘) evolve 

over time as a function of their previous state, the static variables (calibration 𝑐, 

misalignment 𝑚) and the observed external variables (𝑝𝑟𝑖𝑛𝑡𝑘), and how the measured 

variable 𝑑𝑟𝑖𝑓𝑡𝑘 depends on the above. 

Table 4 inference results on simulated data 
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The inference algorithms use MCMC sampling to infer both the continuous variables 

𝑐,𝑚, 𝐷𝑘 , 𝛿, 𝜎 as well as the discrete variable 𝑠𝑖𝑔𝑛. Moreover, it is possible to make future 

predictions. The quality of those predictions, however, depend on the quality of the 

underlying assumptions. 

 

We tested the inference model against the simulation model and on real data (see Table 4 

for results of inference on simulated data and Figure 4-2 for the results of inference on the 

real data). 

 

 

Figure 4-2 Example of measured data where miscalibration (a), and degradation (b) are the main causes of a 
belt position error. The Belt and Z-motor positions are measured, while the causes of belt drift in the bottom 

plots are inferred. The sources of drift are shown here in the units of the Z-position motor rather than the belt 
for comparison with the former 

In this example, the simulation model is compiled using already available knowledge on 

failure mechanisms, together with control models, and serves a dual function. On the one 

hand, it helps validate the expert knowledge on failures, by comparing the results of 

simulations to data from incidents in the field. On the other hand, it is used to validate the 

inference models by providing us with a controlled test bench in which to test the ability of 

the inference model to distinguish the different causes of errors. The inference model is 

derived from the generative model and is used with field data from real incidents to perform 

root-cause diagnosis. 

4.2 Print quality  
In this case study, the printhead array of an industrial printer has a tendency to require too 

many service actions, which incurs unscheduled downtime costs and material replacements 

costs. 

 

A printhead array, consists of four printheads for four colours: yellow, magenta, cyan, and 

black, laid out respectively in the direction the paper moves. Each printhead has ~10k 

nozzles which can be in either of three states: {ℎ𝑒𝑎𝑙𝑡𝑦, 𝑠𝑡𝑢𝑐𝑘, 𝑏𝑟𝑜𝑘𝑒𝑛}. 

 

At every print, each nozzle can become stuck because of dust, or become stuck as part of a 

cluster that appears when ink dries on the nozzle plate. Additionally, nozzles can be 

permanently damaged through usual wear and tear.  

 

Every nozzle is indirectly measured by printing specific markers on (test) pages and scanning 

those pages. The result of the test is an {𝑂𝑘, 𝑁𝑜𝑘} value that is logged for each nozzle and 
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each test print. Healthy nozzles are always reported as {𝑂𝑘}, while stuck and broken nozzles 

are reported as {𝑁𝑜𝑘}. 

 

This is a dynamic system with discrete timesteps. At Every new print the state of the nozzles 

can potentially change. When the total number of 𝑁𝑜𝑘 nozzles reaches a threshold (e.g. 

100) the system cleans the printhead array, returning the state of 𝑠𝑡𝑢𝑐𝑘 nozzles to ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 

and leaving the 𝑏𝑟𝑜𝑘𝑒𝑛 nozzles in the same state. Therefore, stuck nozzles can be 

distinguished from broken nozzles because the latter do not reset after a cleaning action. 

 

While there are many effects that can make a nozzle 𝑁𝑜𝑘, for the purpose of this KIP we will 

focus on distinguishing ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑠𝑡𝑢𝑐𝑘 and 𝑏𝑟𝑜𝑘𝑒𝑛 nozzles in one printhead from their 

measured states and the cleaning information. 

4.2.1 Simulation model 
The simulation uses a sequence of hidden Markov chains to simulate the behaviour of the 

~10k nozzles.  The basic block for each nozzle at each time step is depicted in Figure 4-3. The 

parameters in the figure are defined below. 

 

 

The sequence of operations is as follows:  

 

1. At the beginning of the simulation, parameters 𝑝𝑠, 𝑝𝑏 , 𝑝𝑢(denoting the 

probabilities of  transitioning from ℎ𝑒𝑎𝑙𝑡ℎ𝑦  to 𝑠𝑡𝑢𝑐𝑘, ℎ𝑒𝑎𝑙𝑡ℎ𝑦 or 𝑠𝑡𝑢𝑐𝑘 to  𝑏𝑟𝑜𝑘𝑒𝑛 and 

𝑠𝑡𝑢𝑐𝑘 to ℎ𝑒𝑎𝑙𝑡ℎ𝑦 at any point) are sampled from prior distributions. 

 
2. The hidden state𝑥𝑖,𝑡   of nozzle 𝑖 at time 𝑡 is represented by a vector of probabilities  

 of size 3. The cluster variables 𝐶𝑖,𝑡 are sampled using a Markov chain.  

Every timestep, the hidden state is update by multiplying it with a 3x3 transition 
matrix 𝑇𝑖,𝑡 that depends on the cluster variable 𝐶𝑖,𝑡  and the cleaning 𝑐𝑙𝑒𝑎𝑛𝑡.  

 

𝑇𝑖,𝑡
 =

{
  
 

  
 
[

1 − 𝑝𝑏 − 𝑝𝑖,𝑠
 𝑝𝑢 0

𝑝𝑖,𝑠
 1 − 𝑝𝑢 − 𝑝𝑏 0

𝑝𝑏 𝑝𝑏 1

] ,  𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 0;

[
1 1 0
0 0 0
0 0 1

] ,                                  𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 1.

           Equation 1 

 

Figure 4-3: Basic building block of the hidden Markov chain used for simulating the system. The 
variables 𝑐𝑙𝑒𝑎𝑛𝑡 and 𝑦𝑖,𝑡 are observed, the rest are hidden. Missing is the connection of the 

clustering variables across nozzles for a fixed 𝑡. 
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Where the probability of becoming stuck 𝑝𝑖,𝑠 depends on the value of the cluster 

variable 𝐶𝑖,𝑡 at a particular nozzle location and time step as: 

𝑝𝑖,𝑠
 = 𝑝𝑖,𝑠

 (𝑡) = {
𝑝𝑠             𝑖𝑓 𝐶𝑖,𝑡 = 0

1 − 𝑝𝑏          𝑖𝑓 𝐶𝑖,𝑡 = 1      
 

These matrices capture the evolution of the nozzles between cleanings (first case) 

and the action of said cleanings (second case). The implicit encoding is that rows 

and columns correspond to (ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑠𝑡𝑢𝑐𝑘, 𝑏𝑟𝑜𝑘𝑒𝑛) respectively.  

It is also possible to express this operation as a single linear transformation using an 

order 4 tensor, rather than a matrix with nested cases.     

3. The hidden state 𝑥𝑖,𝑡 is multiplied by a fixed 3x2 observation matrix 𝑂 = [
1 0 0
0 1 1

]. 

The result is a vector of probabilities that is sampled to obtain the observations 𝑦𝑖,𝑡. 

Columns represent the states (ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑠𝑡𝑢𝑐𝑘, 𝑏𝑟𝑜𝑘𝑒𝑛) and rows (𝑂𝑘, 𝑁𝑜𝑘), 

respectively. 

  

4.2.2 Inference model 
The inference model follows closely the simulation model with only two modifications. 

 

The model contains: 
1. A set of hidden three-state categorical random variables {𝑥𝑖,𝑡 , 𝑖 = 1, … , 𝑁, 𝑡 =

0,… ,𝑀}. All nozzles are initialized to be ℎ𝑒𝑎𝑙𝑡𝑦, i.e. 𝑥𝑖,0 = ℎ𝑒𝑎𝑙𝑡ℎ𝑦 ∀𝑖. 

2. A random transition matrix 𝑇 drawn from a MatrixDirichlet distribution. 
3. A set of observable two-state categorical variables {𝑦𝑖,𝑡 , 𝑖 = 1, … , 𝑁, 𝑡 = 1,… ,𝑀} 

4. Fixed matrices 𝑇𝑐 and 𝑂 determining the logic of cleaning and observing hidden 

states. 

5. The logical structure of the hidden Markov chain, i.e. the identities 

Figure 4-4: Output of one simulation with only 100 nozzles. On the vertical axis we have nozzle 
number. On the horizontal print number. The top plot displays the hidden states of 100 nozzles. No 
color for ℎ𝑒𝑎𝑙𝑡ℎ𝑦, orange for 𝑠𝑡𝑢𝑐𝑘, blue for 𝑏𝑟𝑜𝑘𝑒𝑛. The measured states are black for 𝑁𝑜𝑘 and no 

color for 𝑂𝑘. 
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𝑥𝑖,𝑡 = 𝑇 ⋅ 𝑥𝑖,𝑡−1    𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 0 
𝑥𝑖,𝑡 = 𝑇𝑐 ⋅ 𝑥𝑖,𝑡−1    𝑖𝑓 𝑐𝑙𝑒𝑎𝑛𝑡 = 1 
𝑦𝑖,𝑡 = 𝑂 ⋅ 𝑥𝑖,𝑡 

The inference model differs from the simulation model in that there is no notion of 

clustering, its effects being imputed to the transition matrix 𝑇, and that there is no 

assumption on the internal structure of 𝑇 such as in Equation 1. 

 

The results of the inference on 500 nozzles for 100 consecutive prints can be seen in Figure 

4-5. The quantities inferred here are the hidden states of the nozzles and the transition 

probability.  

The transition matrix is not directly comparable to the transition matrix in the simulation, 

since it absorbs the effects of dust and clustering into one single process, but its results are 

consistent with those of a simulation with parameters 𝑝𝑠 = 0.0002, 𝑝𝑏 = 0.0001, 𝑝𝑢 = 0.0001, 

and a probability of being in a cluster of roughly 0.004 ± 0.0045. 

 

𝑇𝑒𝑠𝑡 = [
0.9936 0.0003 0.0
0.0062 0.9984 0.0
0.0001 0.0013 1.0

] 

 
 

The hidden nozzle states are inferred correctly with probability 99.95%. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  

Figure 4-5: Right: simulated data, left: Result of inference on the 
hidden nozzle states. The accuracy is above 99.95%. 
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5 Summary and conclusions 

Conclusions 

We confirm that probabilistic programming (PP) holds potential for solving inverse problems 
relevant in industry, especially when simulation models are already in place. Most promising 
is the possibility of using PP for quality control, performance diagnostics, and predictive 
maintenance.  
However, it remains unclear how PP compares to other methods for solving inverse 
problems (see Future Work). 

PP libraries are developing rapidly, but they are not yet fully ready to be used by non-experts 
for engineering applications. Currently, most applications of PP are found in medicine and 
physics/astrophysics, with its use in engineering being relatively scarce. 

There is a clear knowledge gap in industry with regards to the skills necessary for 
successfully integrating PP into an industrial setting. A strong collaboration with academia is 
advised as a means to bridge the gap. 

Connecting with the previous point, there is strong interest from academia in collaborating 
with industry and TNO to enhance these libraries and explore their applications further. 
Dutch academia, in particular, is strong in probabilistic programming. 

Connections to industry and future work 
During this study we have identified several avenues for future work. 

 

• Comparison to other methods. As stated in the introduction, comparing probabilistic 

programming to other methods of solving inverse problems was outside the scope 

of this study, yet we believe it is highly recommended to do so in order to fully 

assess the utility of PP for industrial applications. 

 

• Investigate industry needs in more detail. In this study we have identified predictive 
maintenance, quality control and performance diagnostics of degrading and/or 

dynamic systems as promising applications with clear business value. 

 

• Connecting academia and industry on PP. Considering the knowledge gap in industry 

and the relative novelty of PP libraries, industrial-academic collaboration is essential 

to further mature PP tools and transfer them to industry. 

 
 

• Investigate application of PP for design space exploration. Design space exploration 

is usually characterized as an optimization problem, but can be also described as an 

inference problem when the desired properties are assumed as observed and the 

design parameters are treated as unknown variables connected to the former by a 

model. This has been considered in the literature, see [30], but not explored in this 

study 
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6 Appendix 

This appendix contains the source code of the examples discussed in sections 3 and 4. 

6.1 Biased coin 
using Plots, RxInfer, Random, Distributions, LinearAlgebra 
rng = MersenneTwister(42)# set seed 
 
function simulation_model(p,n) 
    data = float.(rand(rng, Bernoulli(p),n)) 
    return data 
end 
 
@model function inference_model(p1,p2,n) 
    y = datavar(Float64, n) 
    p ~ Beta(p1, p2) 
    for i in 1:n 
        y[i] ~ Bernoulli(p) 
    end 
end 
 
function inference_routine(p,n,p1,p2)     
    dataset = simulation_model(p,n) 
    results = infer(model = inference_model(p1,p2,n),data = (y = dataset,)) 
    return results, dataset 
end 
 
n = 10 
p = 0.15 
p1 = 20 
p2 = 100 
res, data = inference_routine(p,n,p1,p2); 

6.2 If-else models 
from jax import random 
import jax.numpy as jnp 
import torch 
import numpyro 
import pyro 
 
import numpyro.distributions as dist 
import pyro.distributions as pyrodist 
from numpyro.infer import NUTS, MCMC 
 
def simulate(n, m0, m1, sigma, p): 
    mean = torch.empty(n) 
    y = torch.empty(n) 
    c = torch.empty(n) 
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    for i in range(n): 
        c[i] = pyro.sample('c_{}'.format(i), pyrodist.Bernoulli(p)) 
        if c[i]==0: 
            mean[i] = m0 
        else: 
            mean[i] = m1 
        y[i]=pyro.sample('y_{}'.format(i),pyrodist.Normal(mean[i],sigma)) 
 
    return {'m0': m1, 'm1': m1, 'sigma': sigma, 'c':c, 'p':p,  
            'observed': y.numpy()} 
 
# Run simulation. 
sim_data = simulate(2000, -4, 4, 2, 0.4) 
 
def model(data): 
    # Global variables. 
    p = numpyro.sample('p',dist.Beta(1,1)) 
    sigma = numpyro.sample("sigma", dist.HalfNormal(5.0)) 
    with numpyro.plate("components", 2): 
        locs = numpyro.sample("locs", dist.Normal(0.0, 15.0)) 
 
    with numpyro.plate("data", len(data)): 
        # Local variables. 
        assignment = numpyro.sample("assignment", dist.Bernoulli(p)) 
        numpyro.sample("obs", dist.Normal(locs[assignment], sigma), 
                       obs=data) 
## Inference 
Kernel = NUTS(model) 
mcmc = MCMC(kernel,num_warmup=5000, num_samples=5000, num_chains=2) 
mcmc.run(random.PRNGKey(1), jnp.array(sim_data['observed'])) 
mcmc.print_summary() 

6.3 Mass-spring-damper system 
using DifferentialEquations 
using Plots 
using Turing 
using LinearAlgebra 
 
function simulation_model(ddu, du, u, p, t) 
    p1, p2 = p 
    ddu .= -p1*u -p2*du 
end 
 
@model function inference_model(data::AbstractVector, prob, priors) 
    # Prior distributions. 
    σ ~ InverseGamma(priors[1], priors[2]) 
    p1 ~ Uniform(priors[3], priors[4]) 
    p2 ~ Uniform(priors[5], priors[6]) 
 
    # Simulate model. 
    p = [p1,p2] 
    predicted = solve(prob, Tsit5(); p=p,  
                              saveat=delta_t, save_idxs=dimension_interest) 
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    # Observations. 
    data ~ MvNormal(predicted.u, σ^2 * I) 
    return nothing 
end 
 
function main_routine(dx0, x0, tspan, p, sigma,priors) 
    # Generate data. 
    prob = SecondOrderODEProblem(simulation_model, dx0, x0, tspan, p) 
    sol = solve(prob; saveat=delta_t) 
    data = Array(sol[dimension_interest,:]) +  
                 sigma * randn(size(Array(sol[dimension_interest,:])))  
    # we only measure the position 
 
    # Inference 
    model = inference_model(data, prob, priors)  
    # Sample 3 independent chains. 
    results = sample(model, NUTS(0.35), MCMCSerial(),  
                                              length_MC, 3; progress=false)  
    return results,data 
end 
 
# Only consider position 
dimension_interest = 2 
# Parameters [k,c] 
p_star = [0.6,0.3] 
sigma_star = 0.3 
# Initial Conditions 
x0 = [.5] 
dx0 = [0.5] 
# Time 
tspan = (0.0, 20) 
delta_t = 0.1 
 
# Priors 
sigma_p1 = 2  
sigma_p2 = 3 
p1_min = 0 
p1_max = 2 
p2_min = p1_min 
p2_max = p1_max 
priors = [sigma_p1,sigma_p2,p1_min,p1_max,p2_min,p2_max] 
 
# Markov chain parameters 
length_MC = 100 
results,data = main_routine(dx0, x0, tspan, p_star, sigma_star,priors) 
 

6.4 RC filter 
using DifferentialEquations 
using Interpolations 
using LinearAlgebra 
using Turing 
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# Initial conditions and input signal 
Vout0 = [0.0] 
tspan = (0.0, 10); 
input_a = zeros(50) 
input_a[5:30] .= 1.0 
xs = 0:(10.0/49):10 
input_f = Interpolations.scale( 
                            interpolate(input_a, BSpline(Linear())), xs); 
 
# Design parameters, i.e. typical values 
R = 22E3  # 22 kΩ 
C = 47E-6  # 47 µF 
p = (R, C, input_f) 
 
# Function to compute output of RC-filter using a differential equation 
function simulation_model(dVout, Vout, p, t) 
    R, C, Vin = p 
    dVout .= (1.0*Vin(t) .- Vout) / (R * C) 
end 
 
# Function to fit a model for R and C 
@model function inference_model(data, prob) 
    σ = 0.1; 
    p1 ~ truncated(Normal(R, 0.10*R); lower=0.01*R, upper=10*R) 
    p2 ~ truncated(Normal(C, 0.30*C); lower=0.01*C, upper=10*C) 
 
    # Simulate model.  
    p = (p1, p2, input_f) 
    predicted = solve(prob; p=p, saveat=0.1) 
 
    # Observations. 
    for i in 1:length(predicted) 
        data[:, i] ~ MvNormal(predicted[i], σ^2 * I) 
    end 
     
    return nothing 
end 
 
function inference_routine(data) 
    p = (R, C, input_f) 
    prob = ODEProblem(simulation_model, Vout0, tspan, p) 
    model = inference_model(data, prob) 
    chain = sample(model, NUTS(0.65), MCMCSerial(), 200, 3); 
     
    R_est = mean(get(chain, :p1)[:p1]) 
    R_std = std(get(chain, :p1)[:p1]) 
    C_est = mean(get(chain, :p2)[:p2]) 
    C_std = std(get(chain, :p2)[:p2]) 
    return (R_est, R_std, C_est, C_std) 
end 
 
# Create an ODE of the RC-filter, use it to simulate output with noise 
r_star = 21E3 # actual value of the resistor 
c_star = 45E-6 # actual value of the capacitor 
p_star = (r_star, c_star, input_f) 
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prob = ODEProblem(simulation_model, Vout0, tspan, p_star) 
sol = solve(prob, Tsit5(); saveat=0.1) 
simdata = Array(sol) + 0.05 * randn(size(Array(sol))) 
 
# Use the output of the simulation to estimate the value of R* and C* 

(R_est, R_std, C_est, C_std) = inference_routine(simdata) 
 

6.5 2D convolution 
import numpyro as npr 
import numpy as np 
import jax.numpy as jnp 
from jax import random 
import random as rnd 
 
def simulation_model(image: np.ndarray, kernel: np.ndarray, var_noise=0): 
    image_size = image.shape 
    kernel_size = kernel.shape 
    kernel_length = kernel_size[0] * kernel_size[1] 
    output_size = tuple(image_size[n] - kernel_size[n] + 1 \ 
                                                for n in range(image.ndim)) 
    output_length = output_size[0] * output_size[1] 
    proc_image = np.zeros([output_size[0], output_size[1], 
                           kernel_size[0], kernel_size[1]]) 
    conv_image = np.zeros([output_size[0], output_size[1]]) 
    for y in range(output_size[0]): 
        for x in range(output_size[1]): 
            proc_image[y][x] = image[y:y+kernel_size[0],x:x+kernel_size[1]] 
            conv_image[y][x] = np.sum(proc_image[y][x] * kernel + \ 
                                      [[rnd.normalvariate(0,var_noise)  
                                          for xx in range(kernel_size[1])]  
                                          for yy in range(kernel_size[0])]) 
 
    proc_image = proc_image.reshape([output_length, kernel_length]) 
    conv_image = conv_image.reshape([output_length]) 
    return proc_image, conv_image 
 
def inference_model(data): 
    signal,convolved_signal,kernel_size = data[0],data[1],data[2] 
    k = [npr.sample('param_' + chr(ord('a') + i),  
    npr.distributions.Uniform(low=-3, high=3)) for i in range(kernel_size)] 
    kernel = jnp.array(k, dtype=jnp.float32) 
    with npr.plate('data', len(signal), dim=-2): 
        return npr.sample('obs', npr.distributions.Normal( \ 
                jnp.sum(signal*kernel, axis=1), 0.1), obs=convolved_signal) 
 
def inference_routine(data, warmup=100, samples=1500, chains=2): 
    kernel_shape = data[3] 
    npr.set_host_device_count(chains) 
    kernel = npr.infer.NUTS(inference_model) 
    mcmc = npr.infer.MCMC(kernel, num_warmup=warmup, num_samples=samples, \ 
                          num_chains=chains) 
    mcmc.run(key, data) 
    samples = mcmc.get_samples() 
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    mu = np.asarray([np.mean(samples[k]) for k in samples]) 
    mu = mu.reshape(kernel_shape) 
    var = np.asarray([np.var(samples[k]) for k in samples]) 
    var = var.reshape(kernel_shape) 
    return mu, var 
 
# Create a checkerboard pattern 
L=4 
N=5 * L 
image = np.random.rand(N,N) / 10.0 
for i in range(0, N-L+1, 2*L): 
    image[i:i+L, :] = 1 - image[i:i+L, :] 
    image[:, i:i+L] = 1 - image[:, i:i+L] 
 
# Create a Gaussian blurring kernel for simulation 
img_kernel = np.ones([3,3]) 
img_kernel[0,1] = 2 
img_kernel[2,1] = 2 
img_kernel[1,0] = 2 
img_kernel[1,2] = 2 
img_kernel[1,1] = 4 
img_kernel = img_kernel/np.sum(img_kernel) 
 
# Create simulated output, including measurement noise 
proc_image, conv_image = simulation_model(image, img_kernel, 
var_noise=0.02) 
 
# Run inference to determine convolution kernel coefficients 
data = [jnp.array(proc_image, dtype=jnp.float32),\ 
        jnp.array(conv_image, dtype=jnp.float32), \ 
        img_kernel.size, \ 
        img_kernel.shape] 
kernel_mean, kernel_var = inference_routine(data) 
 

6.6 State machine 
import torch 
import numpy as np 
from sbi import analysis as analysis 
from sbi import utils as utils 
from sbi.inference import SNPE, simulate_for_sbi, infer 
from sbi.utils import MultipleIndependent 
from torch.distributions import Uniform 
 
def simulation_model(params): 
    p1 = params[0].item() 
    p2 = params[1].item() 
   
    p_transition = np.array([[1-p1, p1], [p2, 1-p2]]) 
    states = [initial_state] 
   
    for _ in range(markov_chain_length - 1): 
        current_state = states[-1] 
        probs = p_transition[current_state] 
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        new_state = np.random.choice( 
                    np.linspace(0,np.shape(probs)[0]-1,np.shape(probs)[0]), 
                    size=1, p= probs ).astype(int) 
        states.append(new_state[0]) 
    return torch.as_tensor(states, dtype = torch.float32) 
 
markov_chain_length = 100 
initial_state = 0 
 
#real parameters for simulation 
p1_star = 0.6 
p2_star = 0.4 
p_star = torch.as_tensor([p1_star,p2_star]) 
 
#definition of prior 
prior = utils.BoxUniform(low=0.3 * torch.ones(2), high=.8 * torch.ones(2)) 
 
#inference model 
inference_model = infer(simulation_model, prior,  
                                      method="SNPE", num_simulations=1000) 
#main routine 
posteriors_samples = 40000 
data_star = simulation_model(p_star) 
samples = inference_model.sample((posteriors_samples,), x=data_star) 

6.7 Conveyor belt 
def Conveyor_belt_1(y, printing, T0, T1, future=0): 
  # Standard deviation of the noise introduced at each step. 
  sigma = numpyro.sample("sigma", dist.HalfNormal(5)) 
  sign_param = numpyro.sample("sign_param", dist.Bernoulli(0.5)) 
  sign = (2*sign_param)-1 
  decay_exp = numpyro.sample("decay_exp", dist.Uniform(0.000, 0.5)) 
  calibration = numpyro.sample("calibration", dist.Uniform(-30, 30)) 
  misalign_ampl = numpyro.sample("misalignment", dist.Uniform(-30, 30)) 
     
  def transition_fn(carry, t): 
    # Update equation 
    degradation = carry  # Designate hidden vars 
    degradation = ((degradation + sign) * (4 ** (decay_exp / 100)) - sign) 
         
    # Observability equation 
    mu = calibration + degradation + printing[t] * (misalign_ampl) 
    y_ = numpyro.sample("y", dist.Normal(mu, sigma))   
 
    return degradation, y_ 
 
  with numpyro.handlers.condition(data={"y": y[T0+1:T1]}): 
    _, ys = scan(transition_fn, 
                 (sign * (4 ** (decay_exp * T0 / 100) - 1)),  
                 jnp.arange(T0 + 1, T1+future), ) 
 
    if future > 0: 
        numpyro.deterministic("y_forecast", ys[-future:]) 
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6.8 Print quality 

6.8.1 Simulation 
import matplotlib 
matplotlib.use('Qt5Agg') 
import numpy as np 
import matplotlib.pyplot as plt 
import warnings 
warnings.simplefilter(action='ignore', category=DeprecationWarning) 
 
prob_start_clust = 0.001 
prob_stop_cluster = 0.2 
prob_stuck = 0.0002 
prob_break = 0.0001 
prob_unstuck = 0.0001 
 
initial_cluster_state = 0 
 
OK = 0 
stuck = 1 
broken = 2 
 
working = 0 
not_working = 1 
 
N = 1000 
P = 100 
cleaning_treshold = 100 
 
def get_transition_matrix_2_states(p11,p22): 
    p_stay = np.array([[1-p11, p11], [p22, 1-p22]]) 
    return p_stay 
 
def markov_sequence(p_transition, sequence_length, initial_state): 
    states = [initial_state] 
    for _ in range(sequence_length - 1): 
        current_state = states[-1] 
        probs = p_transition[current_state] 
        new_state = np.random.choice(np.linspace(0,np.shape(probs)[0]-1,  

np.shape(probs)[0]), size=1, p=probs).astype(int) 
        states.append(new_state[0]) 
    return states 
 
def cluster(p1,p2,sequence_length, initial_state): 
    return markov_sequence(get_transition_matrix_2_states(p1, p2), 

sequence_length, initial_state) 
 
def measuring_nozzles(hidden_states): 
    measured_states = hidden_states.copy() 
    for idx,el in enumerate(hidden_states): 
        measured_states[idx] = working if el==OK else not_working 
    return measured_states 
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def single_print(prev_hidden_states,prev_clean): 
    current_hidden_states = prev_hidden_states.copy() 
    c = cluster(prob_start_clust,prob_stop_cluster,N,initial_cluster_state) 
    c_probs = [prob_stuck if x == 0 else 1-prob_break for x in c] 
    if prev_clean: 
        for idx,el in enumerate(prev_hidden_states): 
            if el == broken: 
                current_hidden_states[idx] = broken 
            else: #OK or stuck goes back to OK 
                current_hidden_states[idx] = OK 
    if not prev_clean: 
        for idx,el in enumerate(prev_hidden_states): 
            c_prob=c_probs[idx] 
            if el == OK: 
                current_hidden_states[idx] = np.random.choice( 
[OK, stuck, broken], size=1, p=[1 - prob_break - c_prob, c_prob, 
prob_break]) 
            if el == stuck: 
                current_hidden_states[idx] = np.random.choice([OK, stuck, 
broken], size=1, p=[prob_unstuck, 1 - prob_unstuck - prob_break, 
prob_break]) 
            if el == broken: 
                current_hidden_states[idx] = broken 
 
    measured_hidden_states = measuring_nozzles(current_hidden_states) 
    if sum(measured_hidden_states)> cleaning_treshold: 
        current_clean = True 
    else: 
        current_clean = False 
    return current_hidden_states,current_clean,measured_hidden_states,c 
 
 
def prints(): 
    hidden_states = np.zeros((P,N)) 
    measured_states = np.zeros((P,N)) 
    cleanings = np.zeros(P) 
 
    prev_hidden_states = np.zeros(N) 
    prev_clean = False 
 
    for p in range(P): 
        current_hidden_states, current_clean, current_measured_states,_ = 
single_print(prev_hidden_states,prev_clean) 
        hidden_states[p] = current_hidden_states 
        measured_states[p] = current_measured_states 
        cleanings[p] = current_clean 
 
        prev_hidden_states = current_hidden_states 
        prev_clean = current_clean 
 
    return hidden_states,measured_states,cleanings 
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6.8.2 Inference 
using Pkg 
Pkg.activate(".") 
Pkg.instantiate() 
using RxInfer 
 
# Transition matrix prior statistics: 
# Assumes that broken nozzles can't spontaneously repair; 
# Transitions are assumed unknown otherwise. 
A_T = [1.0 1.0 0.01; 
       1.0 1.0 0.01; 
       1.0 1.0 100.0] 
 
# Known transition matrix when cleaning: 
# Assumes that stuck nozzles always become operational after cleaning; 
# Broken nozzles always remain broken. 
T_c = [1.0 1.0 0.0;  
       0.0 0.0 0.0;  
       0.0 0.0 1.0] 
 
# Observation matrix: 
# Assumes that stuck and broken nozzles are always detected as failures. 
O = [1.0 0.0 0.0; 0.0 1.0 1.0] 
 
@model function batch(M, N) 
    h_0 = randomvar(N) # Initial state per nozzle 
    h   = randomvar(M, N) # Hidden states per nozzle over time 
    w   = datavar(Vector{Float64}, M, N) # Obs. states per nozzle over time 
 
    T ~ MatrixDirichlet(A_T) # Transition matrix prior 
    for n = 1:N # For each nozzle 
        h_0[n] ~ Categorical([1.0, 0.0, 0.0]) # initially operational 
 
        h_min = h_0[n] 
        for m = 1:M # For each timepoint 
            if cleaning[m] 
                # Transition model is known when cleaning 
                h[m, n] ~ Transition(h_min, T_c) 
            else 
                # Transition model under matrix T 
                h[m, n] ~ Transition(h_min, T)  
            end 
            w[m, n] ~ Transition(h[m, n], O) # Observation model 
 
            h_min = h[m, n] # Reset previous state 
        end 
    end 
end 
 
# Assume a structured factorization of the free energy 
constraints = @constraints begin 
    q(h_0, h, T) = q(h_0, h)q(T) 
end 
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# Initialization for the iterative variational Bayes algorithm 
initmarginals = (T=MatrixDirichlet(A_T),) 
 
# Keep only the posteriors at the last iteration 
returnvars = (h = KeepLast(),  
              T = KeepLast()) 
 
n_iterations = 5; # Number of iterations of the variational algorithm 
 
result = inference( 
    model         = batch(M, N),  
    data          = (w = m_one_hot,), 
    constraints   = constraints, 
    initmarginals = initmarginals, 
    returnvars    = returnvars, 
    iterations    = n_iterations, 
    free_energy   = true 
); 
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