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Abstract: No single spatial interpolation method reigns supreme for modelling the precise spatial
distribution of groundwater quality data. This study addresses this challenge by evaluating and
comparing several commonly used geostatistical methods: Local Polynomial Interpolation (LPI),
Ordinary Kriging (OK), Simple Kriging (SK), Universal Kriging (UK), and Empirical Bayesian Kriging
(EBK). We applied these methods to a vast dataset of 3033 groundwater records encompassing a
substantial area (11,100 km2) in the coastal lowlands of the western Netherlands. To our knowledge,
no prior research has investigated these interpolation methods in this specific hydrogeological setting,
exhibiting a range of groundwater qualities, from fresh to saline, often anoxic, with high natural
concentrations of PO4 and NH4. The prediction performance of the interpolation methods was
assessed through statistical indicators such as root means square error. The findings indicated that
EBK outperforms the other geostatistical methods in forecasting groundwater quality for the five
variables considered: Cl, SO4, Fe, PO4, and NH4. In contrast, SK performed worst for the species
except for SO4. We recommend not using SK to interpolate groundwater quality species unless the
data exhibit low spatial variation, high sample density, or evenly distributed sampling.

Keywords: groundwater; geostatistical analysis; GIS; lowlands

1. Introduction

Spatial and temporal information about groundwater’s hydrochemical properties is
essential for managing groundwater resources. Obtaining reliable groundwater analyses for
a region can be costly and laborious, and samples cannot be collected without monitoring
wells, usually resulting in a limited spatial data density. Therefore, the ability to predict
water quality in unsampled areas is essential.

Geosciences employ GIS and geostatistical analysis to derive predicted values at
unsampled sites [1]. Developing efficient interpolation methods has been a long-standing
tradition in GIS. The methods for interpolating spatial data are generally divided into two
main categories: deterministic and geostatistical methods. The deterministic approach is a
method that uses a mathematical function to compute values at locations that have not been
sampled. Distance-weighted smoothing in this approach considers the spatial proximity
of variables. Locations closer together are more likely to have similar values than those
farther apart. In contrast, geostatistical approaches account for the spatial relationship
between data points. These approaches create a surface with inherent spatial dependence,
leading to potentially more accurate predictions in unsampled areas [2]. The geostatistics
approach analyses the spatial pattern of a parameter across sampled locations and uses this
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information to build a statistical model that predicts the parameter’s value at unsampled
points, considering the distance between them [3–5].

Several factors affect interpolation accuracy, such as the sampling design, population
size, boundary demarcation, and normality of the dataset. These factors also affect how
interpolation techniques can be used [6–9]. Thus, choosing the more accurate interpolation
method is important. In the geospatial analysis of groundwater quality, Ordinary Kriging
(OK), Simple Kriging (SK), Universal Kriging (UK) as classical kriging methods, Local
Polynomial Interpolation (LPI) as the deterministic method, and Empirical Bayesian Kriging
(EBK) are more commonly used interpolation techniques [10–12].

No single interpolation method has been accepted for groundwater quality studies.
For example, ref. [13] investigated the performance of UK and OK, along with EBK, across
a 2145 km2 Mahvelat plain in Khorasan Razavi, Iran. They discovered that while EBK
was the most accurate at predicting salinity, UK came in second. Seyedmohammadi [14]
reported that OK provided the most precise interpolation results for groundwater elec-
trical conductivity (EC) in Guilan Province, Iran. Xiao et al. [15] investigated different
interpolation methods across the Yangtze River Estuary (China; 550 km2). OK was a more
accurate predictor of total phosphorus concentrations in their analysis. The best methods
for interpolating groundwater quality species in the Rumuola Community (135 km2) in
Obio-Akpor, Nigeria, were found to be EBK for pH, TDS for sulphate and nitrate, and
OK for nickel and hardness based on the relative performance of four interpolation meth-
ods [16]. Kumari et al. [17] evaluated the ability of various interpolation methods, including
LPI, SK, and EBK, to predict various groundwater quality species over the Ulagalla cascade
(51 km2) in Sri Lanka and concluded that EBK was the best method due to its low error.
They, however, recommended EBK for smaller datasets and LPI for less variable datasets
that do not contain extreme values near boundaries. Overall, the EBK model, as a solid
non-stationary algorithm for spatiotemporal interpolation, often makes the best of all the
geostatistical models for interpolating groundwater data [10,13,18].

To our knowledge, no study has evaluated these interpolation methods in the quasi-3D
coastal lowlands of the western Netherlands. This study uniquely addresses this gap by
evaluating and comparing several interpolation methods for a vast dataset of groundwater
samples (spanning 11,100 km2). This region faces critical challenges related to geological
saltwater intrusions (reflected by high Cl and SO4 concentrations), which happened last
from 50 BC to 400 AD [19], and naturally elevated nutrient levels (NH4 and PO4) [20,21],
originating from degradation of sedimentary organic matter and peat. Ferrous Fe (Fe2+)
is also included due to its importance in understanding the area’s redox state (following
this, Fe2+ is presented as Fe, considering negligible Fe3+). We aim to create high-resolution
visualisations of these critical groundwater quality species by pinpointing the most effective
interpolation method. This will offer valuable insights for managing groundwater resources
in this intricate coastal environment, allowing for informed decision-making regarding
salinity intrusion, nutrient levels, and redox conditions.

2. Study Area

The low-lying western part of The Netherlands lies in the southeastern North Sea
sedimentary basin. A dune belt with a length of almost 150 km and a width of c. 8 km is
found along the coast of the North Sea. Polders dominate the landscape behind this dune belt.

The geology is characterised by Holocene and Pleistocene deposits (Figure 1). The
surface is predominantly covered by a complex Holocene layer that serves mostly as a
confining unit. In the eastern riverine region, this layer is composed mainly of fluvial
deposits and peat, while in the western coastal region, it comprises a combination of
fluvial, marine deposits, and peat [20]. The thickness of this confining layer increases
westward from less than 1 m to over 50 m and is mostly between 5 and 20 m [22]. Below the
polder area and the coastal dunes, the geological setting is composed of Late and Middle
Pleistocene and some periglacial deposits. Significant fluvial activity occurred during
the Middle Pleistocene epochs, with large rivers depositing sand and gravel along their



Water 2024, 16, 2581 3 of 28

banks [23]. These deposits are recorded in a sequence of geological formations that reflect
river dynamics and sea level changes. These formations, listed from oldest to youngest,
include the Peize and Waalre (PZWA), Sterksel (ST), and Urk (UR) Formations. The Saalian
ice age profoundly impacted the area, with advancing ice sheets from the north lowering
sea levels and creating extensive fluvial systems. As the ice retreated, it left behind glacial
deposits such as the Drente Formation (DR) and ice-pushed sediments (DT), including till,
outwash, and moraines. These glacial deposits are now found both buried and exposed at
the surface in the eastern part of the study area as ice-pushed ridges.
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Figure 1. Overview of the surface geology, classified by the sedimentological origin of formations
in the western Netherlands. The thin red line shows the general boundary of the area lying below
average sea level.

In the Late Pleistocene interglacial period, marked by high sea levels, marine deposits
formed, stratigraphically recognised as the Eem Formation (EE). During the Weichselian ice
age, periglacial conditions prevailed, leading to the deposition of aeolian cover sands from
the Boxtel Formation (BX) and fluvial sediments from the Kreftenheye Formation (KR),
which blanket much of the older Pleistocene deposit. Figure A1 in the Appendix A presents
three hydrogeological cross-sections across the study area, illustrating the distribution of
aquifers, aquitards, and complex layer and the associated geological formations.

Around 60% of the study area lies near or slightly below sea level (BSL) [24], known
as lowland areas. One prominent feature in the northeastern part of the study area is
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Lake IJsselmeer, which spans around 1100 km2 and has average and maximum water
depths of 4.5 and 7 m, respectively. Historically a marine bay, this lake contains fresh water
primarily sourced from the River IJssel since the embankment in 1932 [25]. The relatively
shallow depths of the lake may influence interactions with underlying groundwater, which
depends on specific locations and geological conditions. Water level management in the
lowland region involves pumping surface water directly into major rivers or through a
network of lakes and canals. In the deepest polders, regional groundwater exfiltration
occurs [20]. Additionally, groundwater recharge results from multiple sources, including
rainwater infiltration, lake infiltration, seawater intrusion, and the infiltration of inlet water
from large rivers. The variations in surface water levels and the hydraulic resistance of
the confining layer significantly impact the extent of groundwater recharge. The region’s
groundwater quality exhibits variability in several parameters, including salinity, redox
state, pH, saturation state for carbonate minerals, and natural nutrients [20]. This variability
is influenced by the complex interactions between surface water and groundwater, which
are governed by the region’s unique topographical and geological conditions.

3. Materials and Methods
3.1. Data Selection

A dataset of 16,457 groundwater analyses from the Netherlands Geological Survey
(TNO) database, spanning from 1970 to 2010 and including depths down to 50 m below
sea level (MBLS), was used to identify the optimal interpolation method for visualising
spatiotemporal changes in groundwater quality. Groundwater in the western Netherlands
has mainly remained stagnant for centuries, with carbon-14 dating indicating ages between
4000 and 5000 years [26]. This long-term stability suggests that paleohydrogeological
conditions significantly influence the salinity of Dutch groundwater. In agricultural areas,
shallow rainwater infiltration results in rainwater lenses within the confining top layer,
while groundwater wells typically access the first aquifer below. Generally, changes in
groundwater composition over the past 40 years have been minimal, indicating stable
salinity levels over this geological time scale (Figure A2).

During quality control, each analysis underwent checks for duplicates, illogical com-
pound combinations (e.g., alkalinity lower than pH 4), and adherence to electroneutrality
principles in water composition. Wells with multiple analyses were represented by the
median values calculated using SPSS (Statistical Package for the Social Sciences). This
resulted in a dataset of 3033 groundwater records from 1875 wells (some with multiple
screen depths). Figure A3 shows the distribution of samples across various depth intervals.
The study area was divided into eight horizontal layers, reflecting the overall aquifer
stratification. While acknowledging the influence of vertical features on groundwater flow
through infiltration and exfiltration processes, this layered approach was deemed more
suitable. However, it is important to clarify that groundwater samples from depths of less
than 5 m are primarily from coastal dunes and ice-pushed areas. To account for this, we
limited the interpolation to these regions for this layer. Furthermore, since the groundwater
level is generally within 3 m of the surface [20], the map we created accurately represents
the deeper layers being mapped. Section 4.3 discusses the factors influencing 3D map
accuracy in this context and justifies the selection of the layered approach.

3.2. Methodology

To achieve the research goals, the work was divided into stages (Figure 2). 1. Data
collection, processing, and analysis and 2. spatial interpolation model comparison and
selection. ArcMap’s Geostatistical Analyst (GA) tool was crucial for data analysis. GA offers
both deterministic and geostatistical methods for surface mapping. We could validate the
models and determine the optimal interpolation technique for each situation by employing
these methods. We created interpolation maps, and the resulting surfaces were converted
from GA layers into raster layers using the raster tools.
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3.3. Interpolation Methods

This study compared the performance of five interpolation techniques for groundwater
quality mapping: Ordinary Kriging (OK), Simple Kriging (SK), Universal Kriging (UK),
Local Polynomial Interpolation (LPI), and Empirical Bayesian Kriging (EBK). We begin by
providing a concise overview of the core steps involved in each method. Subsequently, we
highlight the key strengths, limitations, and parameters influencing the effectiveness of
each technique.

3.3.1. LPI Method

The LPI method is a linear regression model with varying regression coefficients [27].
It assesses the desired variable’s dependence on data locations and calculates the values
of unknown points by fitting the local polynomial using point regression coefficients only
within the specified neighbourhood instead of all [27,28]. The term “neighbourhood” refers
to sample points that are close together. The sample points in a neighbourhood can be
geographically weighted by their distance from the prediction location [17]. Neighbour-
hoods can overlap or be used in the next local polynomial. This interpolation method
focuses on surface uniformity with a variable relief form and produces surfaces that capture
short-range variation [29]. Thus, it may be a good candidate for automatically mapping
the data regularly collected from the groundwater monitoring networks, especially in
heterogeneous areas. The general Equation (1) used in the LPI method is the following [27]:

Ẑ(x0) = Z(Xi) + εi = X(si)β(s) + εi (1)

where i = 1 to n, n is the number of data locations, zi is the average of qi observations made
at the ith measurement point, si are the coordinates of the ith measurement point, Z(Xi)
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is the real value at the location Xi, εi is the averaged error of the local area around the
ith measurement point, β(s) are the regression coefficients in the local area around Z(Xi),
and X(si) are the explanatory variables in the case of geographically weighted regression,
including the x, y coordinates.

3.3.2. Classical Kriging Methods

Classical Kriging is a powerful geostatistical tool that estimates property values at
unsampled locations based on neighbouring observations. For this method to work, you
need a model of the semivariogram (Equation (2)), an essential tool to characterise the
spatial variability of a variable of interest.

γ(h) =
1

2n ∑n(h)
i {Z(Xi)− Z(Xi+h)}2 (2)

In the equation, Z(Xi) is the value of the variable of interest at location (Xi), and
Z(Xi+h) is the value of the variable at a location Xi+h, which is h distance away from Xi.
n(h) is the number of data point pairs separated by the distance h and {Z(Xi)− Z(Xi+h)}2

is the squared difference between the values at two locations separated by distance h.
Classical Kriging views regionalised variables as spatially defined. This perspective

allows us to treat regionalised variables probabilistically, even with a single observation.
A key application of kriging is the generation of regular grids of estimates for creating
contour maps with statistically optimal properties. The estimates are unbiased, meaning the
forecast’s expected value aligns with the observations’ expected value. Another significant
advantage of kriging is that it provides error variances for any linear estimation method.
These can be computed at any location where a kriging estimate is made, allowing for
the visualisation of uncertainty on a curved surface. A robust suite of kriging techniques,
including Simple Kriging (SK), Ordinary Kriging (OK), Universal Kriging (UK), and others,
are employed, each with its own strengths [30].

Simple Kriging (SK)

SK is the most basic kriging method, relying on three key assumptions. Firstly, it
assumes that the observations partially realise a random function, denoted as Z(x), where x
represents the spatial location. Secondly, it assumes that this random function is second-
order stationary, meaning that the mean, spatial covariance, and semivariance are not
dependent on x. Lastly, it assumes that the mean is known. In Equation (3) for the Simple
Kriging estimate is:

Ẑ(x0) = m + ∑k
i=1 λi[Z(xi)− m] (3)

which Ẑ(x0) is the predicted value of the function at the location x0, m is the mean value of
the function in the neighbourhood, k is the number of measured values, λi are unknown
weights for each measured value Z(xi).

Ordinary Kriging (OK)

OK relaxes the requirement for a known mean in SK. It assumes the mean is constant
but unknown across the area of interest. This allows for wider use of kriging. Like SK, OK
relies on the spatial dependence of the data to estimate values at unsampled locations. The
OK estimator (Equation (4)) can be shown as

Ẑ(x0) = m
(

1 − ∑k
i=1 λi

)
+ ∑k

i=1 λiZ(xi) (4)

However, a vector containing the k observations near location xi is necessary where
the desired estimate of the regionalised variable Z(x) is needed.
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Universal Kriging (UK)

UK tackles a limitation of Ordinary Kriging (OK). While OK works well for data with
a constant average, it struggles with trends. UK addresses this by separating the data into
the drift and the residuals.

UK works in three steps: 1. estimate and remove trend, 2. kriging on residuals,
3. combine for the final estimate. The usual geostatistic models are first- or second-degree
polynomials (Equations (5) and (6)) [31].

m(x0) = α0 + ∑k
i=1(α1z1,i + α2z2,i) (5)

m(x0) = α0 + ∑k
i=1

(
α1z1,i + α2z2,i + α3z2

1,i + α4z2
2,i + α5z1,iz2,i

)
(6)

where in two dimensions, z1,i, represents the easting coordinate of observation i and z2,i rep-
resents the northing coordinate at the same location. The αj are the unknown drift coefficients.

However, the model must comprise the residuals from the regionalised variable, which
leads to more complexity. Solving this extended system of equations will generate a set of
weights involving a linear model with two coefficients, requiring at least five observations
for each estimate. However, many more observations are typically used for each estimated
location, often 16 to 32 control points.

More details on Classical Kriging methods and deterministic interpolation methods,
such as LPI, are found in Krivoruchko [32] and Li, Heap [33].

3.3.3. Empirical Bayesian Kriging (EBK)

A significant challenge lies in automatically estimating all model parameters, includ-
ing data transformation and regression coefficients, especially for large datasets spanning
vast areas. Bayesian approaches, known for their ability to account for model parameter un-
certainty, have emerged as a promising solution. EBK addresses the limitations of Classical
Kriging, which relies on a single semivariogram and manual parameter adjustments. EBK
utilises a geostatistical interpolation technique to predict values at specific locations using
nearby observations [34–36]. It achieves this through self-optimisation using an ensemble
of semivariogram models automatically generated via subsetting and simulation [37,38].
EBK also tackles data scarcity by leveraging local trends [35] and can extrapolate when
necessary [39,40].

The final thematic map is generated by combining the results of these localised models.
For large datasets, EBK fits models for data subsets and predicts using a weighted sum of
nearby subset models, which may overlap. Multiple subsets, including those with varying
trends, can contribute to predictions. Subsets can be user-defined or automatic. Refer to
Krivoruchko et al. [41] for details on subsets and overlap.

Semivariance increases with the distance between the prediction location and the
nearest observation, indicating that the variation is no longer related to distance after a
certain point. Classical Kriging assumes a Gaussian process, but this assumption is violated
for most real data. While EBK transforms data to a near-Gaussian distribution, the residuals
can still be non-Gaussian, so a transformation option is available. Figure 3 summarises the
EBK interpolation process used in this study. The general EBK Equation (7) is [42]:

Z(x) = ∑n
i=0 λiZ(xij) (7)

where Z(x) was the predicted value (ij) was the coordinate of known points, λi was the
weight coefficient.
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The EBK model is useful for connecting data from different points in time and space,
especially groundwater data (e.g., [10,13,18,44]), even if the data shows unusual patterns
or cannot be obtained from the same sources across the study area. Despite challenges in
estimating all model parameters, EBK’s ability to handle uncertainties makes it a promising
solution for automatic data interpolation.

3.4. Method Strengths and Weaknesses

Table 1 summarises the advantages, disadvantages, and influencing parameters of
these common interpolation methods used to analyse spatial data. While each method
offers unique benefits, it also comes with limitations. For instance, kriging techniques
excel at incorporating spatial dependence but require more complex parameterisation and
can be computationally expensive for large datasets. The outcomes generated by distinct
interpolation methods can vary depending on the algorithms employed, the underlying
assumptions, and the properties of the data to which they are applied. Additionally,
the maximum concentration in a map produced through interpolation may surpass the
maximum value present in the original data. As a result, the extrapolation accuracy depends
on the method used, and some methods may be better suited to handle extrapolation than
others. For example, the EBK method reduces the impact of outliers by borrowing strength
from the ensemble, and standard errors are spatially stabilised [45,46].

Table 1. Comparison of spatial interpolation methods (based on Kumar and Sinha [47]; Sahu [48];
van Lieshout [49]; Heap [33,50]; Boumpoulis et al. [51]).

M
ethod

Advantages Disadvantages Influencing
Parameters Differences in Estimated Results

LPI

Adapts to local patterns, no
stationarity assumptions,

efficient

No uncertainty
quantification, overfitting

risk

Polynomial degree,
smoothing,

neighbourhood

Lower error in areas with local
variations, higher in smoother

regions

SK Simple, unbiased
predictions

Assumes constant mean,
no uncertainty

Semivariogram, data
quality

Higher RMSE when constant
mean assumption fails

O
K

Spatial dependence,
minimises error, predicts

uncertainty

Requires stationarity,
complex semivariogram

model

Nugget 1 effect, Sill 2,
Range 3

Data quality

Lower error with local mean
adaptation, affected by
semivariogram choice.

U
K

Handles trends, improves
non-stationary data,
predicts uncertainty

Complex, trend
requirements, overfitting

risk

Semivariogram, trend
model, data quality

Lower error with trends, higher if
trends are misidentified

EBK

Automates parameter
estimation, handles

non-stationarity

Potential bias, limited
control, intensive

Simulations, data
quality, distribution

Lower error with variability,
higher with lower data density

Notes: 1 The value at which the semivariogram (almost) intercepts the y-value. 2 The value at which the
semivariogram first flattens out. 3 The distance at which the semivariogram first flattens out.
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3.5. Interpolation and Validation

The various tasks were applied to the data using ArcMap 10.8. The ArcMap Geostatis-
tical Wizard was used to adjust the parameters, including transformation, order of trend
removal, and declustering, to obtain the optimal interpolation methods. If necessary, these
steps were performed during the pre-processing stage to enhance data quality before spatial
interpolation. The reasons for applying each step and the conditions under which they
were used are explained in the following. The spatial groundwater data were analysed with
descriptive statistics tools in SPSS and showed a half-normally distribution (a truncated
normal). Figure A4 shows the frequency histogram of groundwater species. It is important
to note that an additional argument against using log-normal transformation is that it can
exaggerate the importance of low-concentration values for substances like NO3 and Fe.
Since the detection limits for these substances vary between 0.1 mg/L, 0.01 mg/L, etc.,
“low” or “below detection limit” values can become disproportionately spread when a
log-normal transformation is applied.

Also, no complete regional trend was seen, which should have been removed. To
address the absence of a complete regional trend, which should have been removed,
trend detection and removal were performed as a pre-processing step. This involved
fitting a polynomial regression model into the spatial data to identify systematic spatial
variations. The identified trend was then subtracted from the data, resulting in a detrended
dataset. This pre-processing step ensures that the subsequent interpolation methods, such
as Ordinary Kriging (OK) or Empirical Bayesian Kriging (EBK), are applied to data that
accurately reflect local variations, thereby improving the reliability of the spatial predictions.
The UK and OK would yield similar results if the data did not exhibit a 100% regional
trend. When unsure how effective our trend removal or transforming is, we should use
both, compare the outcomes, and pick the best for our data. Furthermore, we used the
declustering function wherever necessary for the SK interpolation, given the distribution
of the groundwater samples commensurate with the known depth. Remember, kriging
assigns equal weight to all measurements within a certain distance from an unidentified
location, regardless of their spatial arrangement. This could lead to overestimating or
underestimating values at the unknown location, mainly if anomalies or pollution sources
exist. Declustering eliminates this bias by separating nearby points into clusters and giving
each one a weight based on its features and how the data are spread out.

Furthermore, we used the Optimal model function to optimise the chosen interpola-
tion model automatically. For EBK, many functions in General properties, such as overlap
factor, data partitioning, and specified numbers, provide the best results. For example, the
sample numbers can range from 20 to 1000 (with a default of 100) in such a way that each
sample is used Q times (the overlap factor Q can range between 0.01 and 5, allowing for
both overlapping and disjoint subsets, though a non-overlapping data subsetting option
is also provided [37]. The EBK subsetting option was modified to achieve the smallest
Root Mean Square Error (RMSE). In addition, there are numerous semivariogram models,
such as Linear, Thin Plate Spline, Exponential, Exponential Detrended, Whittle Detrended,
K-Bessel, and K-Bessel Detrended, each of which has its own benefits and drawbacks. We
used a Power semivariogram because of the balance between accuracy and processing
speed regarding the recommendations provided [52]. It is important to note that data trans-
formation aims to enhance the accuracy and validity of interpolation results by reducing
the impact of outliers, non-normality, and other sources of data variability. Neverthe-
less, selecting the appropriate data transformation type depends on the characteristics
of the input data and the desired interpolation results. Finally, all thematic maps were
created and transformed using the Raster tool. Note that although EBK often manages
data variability effectively and provides more realistic estimates, negative values can still
occur. To address this, negative values produced by EBK were replaced with zero using the
Raster Calculator’s thresholding function as a post-processing adjustment since concen-
tration values are bounded and cannot be negative. This adjustment, however, may affect
error estimates and conditional simulations. Therefore, while the initial Gaussian assump-
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tion simplifies the analysis, its application to concentration data should be approached
with caution.

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Error (ME)
are statistical measures using the leave-one-out cross-validation (LOOCV) technique for
evaluating interpolation accuracy, which is accessible in Geostatistical Wizard. This tech-
nique has previously been used in hydrogeological studies [18,53]. Through LOOCV,
the program systematically removes each point in the interpolation, predicts its value by
interpolating the remaining points, and compares the expected value to the measured
value [18,54]. This validation method lets us determine which interpolation models pro-
vide the most accurate dataset representation. The most appropriate interpolation method
should have the lowest value of the RMSE as the most important index to evaluate the
accuracy (Equation (8)):

RMSE =

√
1
n ∑n

i=

(
yi

observed − yi
predicted

)2
(8)

where yi
observed is the observed value, yi

predicted is the predicted value, and n is the number
of samples.

This study used the cross-validation results to compare the interpolation methods. The
RMSE values were calculated per combination of species and depth intervals for all interpo-
lation methods investigated. These RMSE values derived from the integrated interpolation
model and cross-validation results were used to evaluate the different interpolation methods.

Choosing the most appropriate interpolation method using a wide range of RMSE
calculations is complex. Statistical indicators of RMSE calculations, such as median value
(MD), standard deviation (SD), and maximum value (Max), can be used to evaluate the
different interpolation methods. SD is one of the most commonly used indicators of
dispersion tendency, while MAX refers to the biggest error measurements. Small MD, SD,
and MAX values indicate less uncertainty at a certain point for that interpolation method.

4. Results and Discussion

Table 2 presents sample counts, medians, mean, and interquartile ranges (Equation (9))
of chosen groundwater constituents for each depth interval.

IQR = Q3 − Q1 (9)

where Q1 is the 25th percentile of the data and Q3 is the 75th percentile of the data.

Table 2. Characteristics of the selected groundwater species per depth interval.

Depth Interval
(m-NAP) Count

Median, Mean and Interquartile Range (mg/L)

Cl SO4 Fe PO4 NH4

0 to 5 249 78 355 113 35 64 57 1.9 4.4 5.6 0.5 2.6 2.0 1.0 4.0 3.1
5 to 10 360 121 844 286 37 104 85 3.4 6.8 8.1 0.9 3.1 3.0 3.1 10.0 12.2
10 to 15 455 147 919 667 17 81 68 4.6 9.2 10.0 1.2 3.7 3.2 5.0 13.0 15.9
15 to 20 462 191 1000 1002 11 67 40 5.6 10.9 14.1 1.5 3.8 4.2 8.3 15.4 18.9
20 to 25 519 175 1159 1170 11 82 43 6.1 11.5 13.1 1.3 3.5 4.2 8.8 15.0 21.3
25 to 30 485 257 1224 1330 8 73 41 6.9 11.2 12.5 1.2 3.2 3.7 8.8 14.0 17.0
30 to 40 503 544 1617 1926 16 108 55 6.9 11.9 12.6 0.9 2.4 2.4 6.7 12.9 14.1
40 to 50 317 623 2180 2863 17 137 69 5.4 9.6 11.3 0.6 2.0 1.5 5.5 11.4 10.2

4.1. Maps

We looked at kriging and LPI interpolation maps for five important solutes. They
showed that both small- and large-scale heterogeneity complicated the hydrogeochemical
pattern at different depths. This is illustrated in Figure 4 for the EBK and LPI methods.
High SO4 concentrations (more than 150 mg/L) have been linked to old, brackish-to-
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saline groundwater from Holocene transgressions [55] or a combination of pyrite (FeS2)
oxidation in reclaimed land and peat mineralisation exacerbated by acid, SOx-rich rain
until the 1980s [56,57]. Fresh (Cl < 100 mg/L) to saline (Cl > 5000 mg/L) groundwater
is found in Pleistocene and Holocene sediments. The Cl concentration is lowest in the
dunes and the area with fluvial deposits at the surface, reflecting rainwater infiltration [19].
Chloride is highest in Pleistocene aquifers under polders, reflecting the palaeohydrological
conditions and mixing between marine and freshwater [20], especially in the southwestern
and northern parts of the study area. Iron has low concentrations in the dunes and east.
There is a belt with high concentrations in the polders eastwards of the dunes, and the
northern part also contains high Fe concentrations. Extreme Fe concentrations above
40 mg/L are uncommon since high Fe concentrations will induce siderite (i.e., FeCO3)
precipitation at the neutral to slightly alkaline pH found [20]. Phosphate shows the lowest
concentrations in the east, while areas with high concentrations are in the southwest and
north. The NH4 map is not displayed because of its similarities to the PO4 map.

There are substantial differences between the hydrogeochemical patterns established
by the various interpolation techniques. After evaluating all thematic maps at all depth
intervals, the following was observed. Unlike LPI, kriging interpolation methods tend
to eliminate local anomalies from the interpolation grid to represent a general regional
pattern. Except for the PO4 and Fe maps, which have a spotted pattern in some areas, the
produced maps have a smooth pattern that gradually alters. Some groundwater wells may
have significantly higher or lower concentrations of PO4 and Fe than the nearby wells,
which can result from several factors relating to the hydrogeology and geochemistry of
the subsurface. One possible explanation for a spotted pattern in PO4 is the presence of
localised sources of phosphorus.

In the same way, spots on Fe maps can show differences in the geochemistry of the
ground due to iron-rich minerals or changes in solubility controls and redox conditions. For
example, sulphate reduction may affect the solubility control of Fe by pyrite versus siderite
equilibrium. Additional investigation, including sediment and groundwater sampling
and analysis, is needed to determine the precise controls of the sediment matrix on the
groundwater composition, including the Fe concentrations and their spotted nature.

Various interpolation techniques also provide varying estimates of the maximum
values. Here, the predicted values for Cl range from 0 to 17,230 mg/L using the geo-
statistical EBK method and 0 to 17,350 mg/L using the deterministic LPI method. SO4
ranged between 0 and 1450 mg/L for both interpolation methods (Figure 4(a2,b2)). The
Fe concentration ranged between 0 and 94 mg/L using EBK (Figure 4(a3)), whereas Fe
interpolation using LPI ranged between 0 and 101 mg/L (Figure 4(b3)). The greatest dif-
ference in maximum values is seen for PO4, where the highest value predicted by EBK is
19.9 mg/L, and the highest value predicted by LPI is 42.25 mg/L (Figure 4(a4,b4)).Water 2024, 16, x FOR PEER REVIEW 12 of 28 
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4.2. Simulation Accuracy

Table 3 summarises the RMSE values calculated for each interpolation method across
all groundwater species and depth intervals. In this study, the interpolation method
with the lowest RMSE value is considered the best fit for representing the input data.
Generally, the first layer exhibits the lowest RMSE, and it tends to increase with depth.
This suggests that the complexity of geological formations influences the accuracy of the
chosen interpolation method. Interestingly, accuracy improves between 20 and 30 NAP,
which coincides with the highest lateral sampling density. This highlights the significant
impact of sampling density on measurement precision. The RMSE changes for each species
per depth layer, suggesting that each groundwater species might affect the accuracy of the
interpolation method. This implies that a single interpolation method may not be optimal
for mapping all species simultaneously.

Table 3. RMSE values across various depths and interpolation methods (SK, OK, UK, EBK, and IDW)
for the groundwater quality species, including Cl, SO4, NH4, Fe, and PO4. Lower RMSE values
indicate better model performance.

Method
Depth 0 to 5 5 to 10 10 to 15 15 to 20 20 to 25 25 to 30 30 to 40 40 to 50

Chloride

SK 899 1698 1659 1610 1963 1367 1810 1684
OK 1067 1816 1506 1511 1477 1207 1767 1367
UK 1116 1816 1690 1473 1477 1250 1846 1464
EBK 986 1537 1427 1470 1430 1169 1487 1351
IDW 1063 1596 1420 1481 1504 1224 1778 1427

Sulphate

SK 119 216 165 184 169 180 206 165
OK 115 225 150 167 173 133 212 215
UK 122 218 162 173 180 135 203 217
EBK 128 210 129 167 171 142 209 163
IDW 124 216 130 163 172 141 206 172

Ammonium

SK 8.1 15.6 13.2 13.1 10.5 13.5 14.9 25
OK 7.07 12.3 13.57 13.1 10.1 14.4 15.4 21.7
UK 7.19 12.4 13.6 13.1 10.8 13.7 15.7 21.8
EBK 7.1 12.2 13.1 12.9 9.1 13.4 14.8 21
IDW 7.5 12.5 13.4 13.1 9.4 13.5 15.4 22
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Table 3. Cont.

Method
Depth 0 to 5 5 to 10 10 to 15 15 to 20 20 to 25 25 to 30 30 to 40 40 to 50

Iron

SK 6.71 9.1 12.2 12.5 10.4 11.2 14.5 7.2
OK 7.1 9.5 12.4 12.4 10.58 10.1 15.1 7.8
UK 7.1 9.3 11.5 12.4 10.5 9.49 14.6 7.88
EBK 6.3 9.1 11.1 12.3 10.2 9.1 14.4 7
IDW 6.8 9.7 11.6 12.2 9.9 9.5 14.9 7

Phosphate

SK 4.3 6 5.16 5.95 3.9 4.3 3.61 4.3
OK 4.4 6.2 5.45 4.7 3.9 4.3 3.7 5
UK 4.5 6.2 5.45 4.8 3.8 4.38 3.7 4.3
EBK 4 6.05 4.9 4.6 3.8 4.2 3.5 4.3
IDW 4.43 6.16 5.44 4.9 4.08 4.49 3.8 4.78

To enhance clarity, the results are also presented in Figure 5, using the following
statistical indicators. The statistical median of the RMSE values is represented by the
middle line within each box, while the threshold indicates the lowest recorded error. The
length of each box illustrates the range of RMSE values for each interpolation method.
Therefore, the best method is characterised by the lowest median, the smallest RMSE values,
and the narrowest range of RMSE.
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Our results show that the EBK method performed better than other interpolation
methods, while this method also has a better smoothing effect. Figures A5–A9 present maps
of the selected groundwater species generated using the optimal interpolation method. The
worst interpolation method was SK for Cl, LPI for Fe and NH4, OK for PO4, and UK for
SO4. Furthermore, the next proper interpolation methods can be listed for Cl as OK > UK
> LPI and for Fe as UK > OK > SK. By investigating the RMSE seen for PO4, the results
show that although UK, SK, and LPI have almost similar MDs and SDs, the interpolation
methods could be sorted according to the MAX value as SK > UK > LPI. The statistical
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results on the RMSE of SO4 show that the second-lowest MD and SD are found for LPI. As
a result, the interpolation methods rank as LPI > OK > SK. A comparison of interpolation
methods for NH4 also shows that the interpolation methods are sorted as OK > UK > SK.

However, it is crucial to remember that RMSE offers a single metric of accuracy and
does not provide information about the distribution or patterns of errors. Therefore, em-
ploying additional metrics and visualisation techniques, along with incorporating domain
expertise, data characteristics, prior knowledge, and validation data, is recommended. This
is precisely why we delve deeper into exploring the distribution of errors in the next step.

Obtained maps’ error prediction and associated uncertainty vary when different
interpolation methods are applied (e.g., EBK, Figure 6). Uncertainty about the interpolation
method is related to many factors, including the effectiveness of the number of samples
and sampling distance [58]. This may be related to the presence of impermeable versus
permeable sedimentary layers. A suitable interpolation method should also give results
with low interpolation smoothing, which keeps the gradual change in species [59]. However,
the hexagonal patterns observed in the prediction error map at 40–50 m in the southwest can
be linked to how the data were subsetted in our model. These shapes, appearing in areas
without samples, could also result from extrapolations based on nearby data points. While
this occasionally might yield less accurate predictions in these regions, it is a typical hurdle
in spatial analysis and does not necessarily undermine our results. Interestingly, despite the
presence of these shapes, the adjustments made in the model that led to their formation also
produced the lowest RMSE. This suggests a more accurate data fit overall. Moreover, minor
data irregularities are not expected to significantly influence our conclusions, especially if
the analysis aims to identify overarching trends rather than pinpoint precise values.

Corresponding to our findings, the mean errors and coefficients of determination of
the SK models were relatively higher than the other four methods. It implies that SK is
more sensitive to the extreme points and the relatively low sample density in some areas
because it uses the global mean of the entire data, not the local mean. These conditions are
prevalent in the southern and southeastern parts of the study area at depths of more than
30 m. Also, a less appropriate sampling distribution exists in the first 10 m.

4.3. Three-Dimensional Aspect

We opted to create maps for depth intervals of 5 or 10 m, resulting in a quasi-3D model
of groundwater quality rather than a full 3D model. The Dutch coastal areas pose several
challenges when creating a full 3D model of groundwater quality. The region’s geological
system is complex, with subsurface units and strata with distinct hydraulic properties [60].
Human activities such as land reclamation, peat extraction, and construction of dikes and
canals have also significantly impacted complex hydrological patterns [61]. Additionally,
various natural processes in the area impact the region’s sedimentation history, creating a
complex stratigraphic record. As aquitards, local clay layers restrict vertical flow, making it
difficult to estimate groundwater quality accurately [62].
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The absence or limited use of well screens in clay-rich layers, which are prevalent
in large portions of the Holocene top layer, especially in the first interval layer, poses
a significant challenge for collecting observations. This is primarily attributed to clay’s
low permeability, which hampers the movement of groundwater and makes it difficult
to gather accurate data, leading to a decrease in the spatial density of information and
further complicating groundwater assessments in these areas. As a result, interpolating
groundwater data becomes notably more complicated in clay-rich areas, adding to the
uncertainty in understanding subsurface dynamics. We recommend not using SK to
interpolate the spatial variation in groundwater quality species unless the data show low
spatial variation and a higher sample density with evenly distributed sampling.

For the first time, Appelo and Willemsen [63] noted that the development of the
cation composition of groundwater might also differ between diffusion and advection as
controlling transport mechanisms during the displacement of saline and fresh groundwater
or vice versa. Advective transport can sustain sharp concentration gradients that persist
significantly, whereas dispersive or diffusive transport can lead to gradual gradients. These
different transport mechanisms can lead to complex and unpredictable patterns in ground-
water chemistry, making it challenging to model contaminant behaviour accurately. Also,
ref. [64] found that density-driven groundwater flow is present in the study area. This flow
type can cause water and rock to interact, especially through cation-exchange processes [65].
With these complex hydrogeochemical patterns and factors, such as advective transport
and cation-exchange processes, creating a full 3D model can be challenging and may only
capture some of the relevant features of the system. Also, geostatistical interpolation
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methods tend to smooth concentration gradients, making it challenging to obtain vertical
hydrogeochemical gradients [50,66]. As a result, if a 3D model without taking the data
features, prior knowledge, and hydrogeochemical complexity into account, especially in
the vertical dimension, is made, the model becomes less accurate, and predictions become
less confident [67–69].

To our knowledge, no precise interpolation method involving barriers (e.g., aquitards
or impermeable layers) can create a 3D hydrogeochemical model in an ArcGIS environment.
Hence, we used a layered approach for our 3D hydrogeochemical model in ArcGIS, which
does not incorporate geostatistical relationships in the vertical direction to account for the
presence of barriers such as aquitards or impermeable layers. This approach is likely to
reduce uncertainty in the vertical dimension of the model.

5. Conclusions

Groundwater monitoring is laborious and expensive, making it worthwhile to consider
the optimum interpolation method and correctly estimate concentrations in unmonitored
areas. For the first time, a large dataset of 3030 samples was used to compare five geo-
statistical interpolation methods (EBK, UK, OK, SK, and LPI) for estimating groundwater
composition in the western Netherlands’s coastal lowlands. The comparison was conducted
for five species that refer to salinity, redox state, and natural nutrients. EBK outperforms
the other geostatistical methods based on root mean square analysis values obtained by
cross-validation. UK is the second-best interpolation method for two out of five species:
Fe and PO4. For Cl and NH4, the OK interpolation method is the second-best. Further-
more, LPI is the second-best SO4 indicator. The SK method is not recommended since
higher mean errors exist. Based on this information, EBK is the method of interpolation
that should be selected as the best option for determining the composition of ground-
water when there is no possibility of conducting testing before interpolation. However,
cross-validation remains crucial for confirming the chosen method’s effectiveness in any
specific application.
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Figure A1. Two north-south and one east-west hydrogeological cross-sections of the study area from 
BRO REGIS II v2.2.1 (www.dinoloket.nl (accessed on 28 August 2024). NAP (Normal Amsterdam 
Peil) height of 0 m is about the average North Sea level. CM means complex, S means sand sediment 
(i.e., aquifers), and C means clay sediment layers (i.e., aquitards). The names refer to the geological 
formations. 

Figure A1. Two north-south and one east-west hydrogeological cross-sections of the study area
from BRO REGIS II v2.2.1 (www.dinoloket.nl (accessed on 28 August 2024). NAP (Normal Amster-
dam Peil) height of 0 m is about the average North Sea level. CM means complex, S means sand
sediment (i.e., aquifers), and C means clay sediment layers (i.e., aquitards). The names refer to the
geological formations.
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Figure A2. The time series of the selected location presenting the overall groundwater quality 
changes over 40 years. Time series plots (A–O) correspond to map sample locations. Figure A2. The time series of the selected location presenting the overall groundwater quality changes

over 40 years. Time series plots (A–O) correspond to map sample locations.
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Figure A3. The distribution of samples across various depth intervals (in meters relative to NAP). 
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Figure A4. The frequency histogram distribution of groundwater species suggesting a truncated 
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Figure A5. Chloride groundwater maps created by the EBK method for all depth intervals in the western Netherlands. Few groundwater observation wells at 0–5 
m NAP outside the dunes and ice-pushed ridge exist because most of the study area is below sea level and the top layer is often clayey in the polder area in which 
few groundwater wells have been installed. 

Figure A5. Chloride groundwater maps created by the EBK method for all depth intervals in the western Netherlands. Few groundwater observation wells at 0–5 m
NAP outside the dunes and ice-pushed ridge exist because most of the study area is below sea level and the top layer is often clayey in the polder area in which few
groundwater wells have been installed.
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Figure A6. Sulphate groundwater maps created by the EBK method for all depth intervals in the western Netherlands. Figure A6. Sulphate groundwater maps created by the EBK method for all depth intervals in the western Netherlands.
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Figure A7. Iron (Fe (II)) groundwater maps created by EBK method for all depth intervals in the western Netherlands. Figure A7. Iron (Fe (II)) groundwater maps created by EBK method for all depth intervals in the western Netherlands.
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Figure A8. Phosphate groundwater maps created by the EBK method for all depth intervals in the western Netherlands. Figure A8. Phosphate groundwater maps created by the EBK method for all depth intervals in the western Netherlands.
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Figure A9. Ammonium groundwater maps created by the EBK method for all depth intervals in the western Netherlands. Figure A9. Ammonium groundwater maps created by the EBK method for all depth intervals in the western Netherlands.
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