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Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder 
with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, 
with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or 
even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising 
prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological 
safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be 
used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk 
assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this 
susceptible subgroup of the population in future toxicological assessments.
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Introduction

The two major types of inflammatory bowel diseases (IBD), 
Crohn’s disease (CD) and ulcerative colitis (UC), are char-
acterized by a chronically inflamed intestine. Between 1990 
and 2017, the global number of cases of IBD rose from 
3.7 million to 6.8 million, marking a strong increase in 
global prevalence of 85% (Alatab et al. 2020). While origi-
nally being labeled a “modern Western disease”, both the 
incidence and prevalence of IBD are now also rising in other 
parts of the world, as a Western lifestyle and diet are pro-
gressively being adopted in developing countries (Loftus 
2004; Rizzello et al. 2019; Coward et al. 2022). The etiol-
ogy of IBD remains unknown, but the complex interplay 
between genetic susceptibility, environmental risk factors, 
diet, and intestinal dysbiosis is thought to be of high impor-
tance (Leso et al. 2015). Genome-wide association studies 
identified a large number of IBD-associated susceptibility 
gene loci (Jostins et al. 2012). These include single nucleo-
tide polymorphisms (SNPs) in receptor proteins linked to 
interactions with the intestinal microbiome (Ogura et al. 
2001), proteins related to autophagy (Hampe et al. 2007), or 
interleukins (IL) and their receptors. Environmental factors 
that contribute to the pathogenesis of IBD include smoking 
(Bernstein et al. 2006), use of drugs (especially antibiotics; 
Shaw et al. 2010), stress (Bitton et al. 2008), emerging con-
taminants (Chen et al. 2023), ambient air pollution (Anan-
thakrishnan et al. 2011), and lastly, diet, both directly and 
indirectly by changing the intestinal microbiome (Wu et al. 
2013; Knight-Sepulveda et al. 2015; Guo et al. 2024). Differ-
ences in the microbial composition have been found in IBD 
patients when compared to healthy individuals, although it is 
not clear whether this is a potential cause or a consequence 
of IBD (Joossens et al. 2011).

The disturbance of intestinal homeostasis, leading to the 
relapsing inflammation observed in IBD, is characterized by 
a variety of features on intestinal tissue- and cellular level. 
Although the initiating factors are poorly understood, stud-
ies found that IBD patients exhibit an impaired intestinal 

epithelial barrier (Maloy and Powrie 2011), as well as dif-
ferent mucin expression and secretion compared to healthy 
individuals (Furr et al. 2010; Sheng et al. 2011; Yamamoto-
Furusho et al. 2015). This compromised barrier function 
results in heightened interaction and infiltration of toxicants 
and bacteria through the epithelium, triggering a reaction 
of the immune system (Johansson et al. 2014), resulting in 
an increased expression and release of pro-inflammatory 
cytokines (Shioya et al. 2007; Neurath 2014; Singh et al. 
2016). For example, enterocytes can directly secrete IL-8 
as a response to bacterial entry to attract macrophages 
(Eckmann et al. 1993). Phagocytosis and destruction of 
pathogens by macrophages leads to an immediate innate 
cellular immune response, characterized by the release of 
other cytokines like tumour necrosis factor-alpha (TNF-α; 
Pathmakanthan and Hawkey 2000; Jr et al. 2001). TNF-α is 
able to promote apoptosis and further dysfunction of the epi-
thelial barrier (Van Antwerp et al. 1998; Wang et al. 2005, 
2006), leading to a vicious cycle of continuous inflammatory 
responses. This chronic state of inflammation can induce 
oxidative DNA damage (Pereira et al. 2016), which ulti-
mately increases the risk for cancer (Meira et al. 2008).

The most common clinical symptoms of IBD are diar-
rhea, abdominal pain, blood in stool and fatigue (Singh 
et al. 2011). Complications accompanying IBD include 
extra intestinal manifestations (Vavricka et al. 2015), intes-
tinal fibrosis (Wang et al. 2022a, b), and an increased risk 
of developing colon cancer (Jess et al. 2012). Individuals 
suffering from IBD typically experience intermittent phases 
of exacerbation and remission (Zallot and Peyrin-Biroulet 
2013), with specific stressors being identified for entering 
the next exacerbation phase (Singh et al. 2011). While CD 
can affect the entire gastrointestinal tract with alternating 
healthy and inflamed sites, UC is limited to the colon but 
shows a continuous area of inflammation (Yu and Rodri-
guez 2017). Despite some differences in typical symptoms 
and diagnostics, both CD and UC show a similar disease 
burden and generally share the same therapeutic strategies 
(e.g., suppressing inflammation; Le Berre et al. 2020). The 
long-term treatment target for IBD is endoscopically deter-
mined mucosal healing, the absence of disability and nor-
malized health-related quality of life (as recently reviewed 
by the International Organization for the Study of Inflam-
matory Bowel Disease; Turner et al. 2021) Medical insights 
on effective therapies and side effects, evolve rapidly and 
are frequently discussed, for instance within the European 
Crohn’s and Colitis Organisation.

The prevalence of IBD is on the rise globally, raising con-
cerns about the potential impact of environmental toxicants 
and drugs on affected individuals. While regulatory bodies 
conduct risk assessments of these compounds primarily on 
the general population, the specific effects on IBD patients 
remain largely unexplored. In this review, we discuss the 
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potential risks that drugs, chemicals, and particles might 
pose to IBD patients, highlighting the need for greater atten-
tion to the unique vulnerabilities of IBD patients in these 
assessments.

IBD from a toxicology perspective

Foodborne chemical and particulate matter toxicity

Dietary components are a primary environmental factor 
influencing gut health. In recent years, there has been a 
growing concern about the impact of foodborne contami-
nants and ultra-processed foods on the development and pro-
gression of intestinal diseases. Below, we discuss examples 
of foodborne contaminants, i.e., natural toxins, environmen-
tal contaminants, particulate matter, and chemicals that are 
deliberately introduced in food as additives (Fig. 1).

Foodborne biotoxins

Our environment is full of microorganisms that produce 
toxins which can have detrimental effects on gut (and sys-
temic) health. As the gut barrier function is disrupted in 
IBD patients, toxins can be expected to more readily enter 
the body. Sera of patients with active CD or UC had higher 
levels of bacterial toxins from Clostridium difficile, Escheri-
chia coli O157, Salmonella Spp., and Staphylococcus aureus 
compared to patients in remission (Qiu et al. 2014). Moreo-
ver, IBD patients are more susceptible to C. difficile infec-
tion, especially ulcerative colitis patients (Khanna et al. 
2017). Furthermore, a retrospective study showed that prior 
antibiotic usage was associated with C. difficile toxin in stool 
samples of IBD patients (Meyer et al. 2004). The pathogenic 
mechanism of C. difficile is characterized by the produc-
tion of two protein exotoxins (Toxin A and Toxin B) which 
compromise the epithelial barrier and induce inflammation 
(Hunt and Ballard 2013; Chandrasekaran and Lacy 2017). 

Fig. 1   Dietary toxicity in IBD patients. Detrimental dietary additives, 
such as artificial sweeteners, emulsifiers and engineered nanomateri-
als (ENM) are able to enter the intestinal lamina propria as the epi-
thelial barrier function is compromised, which can lead to activation 
of the immune system. Furthermore, these dietary compounds can 

disturb the microbiome, leading to further exacerbation of IBD. Bio-
toxins derived from pathogenic microbes such as C. difficile enter the 
lamina propria where they can further damage the intestine, as well as 
enter the systemic circulation. Created with BioRender.com
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Not only does C. difficile infection lead to a worsening of 
IBD symptoms, it also increases adverse outcomes such as 
treatment failure, hospitalization, and even death (Sehgal 
et al. 2021). Other pathogenic and commensal bacterial spe-
cies have shown similar opportunistic effects in IBD patients 
(Zhang et al. 2022). Some fungi are known to produce poi-
sonous metabolites known as mycotoxins, which end up in 
our food. The most prevalent mycotoxin in our diet is deox-
ynivalenol (DON), produced by Fusarium species and com-
monly detected in cereals and other wheat-related products 
(Cano et al. 2013). DON is known to interfere with intesti-
nal barrier function (Payros et al. 2020), and was found to 
exacerbate colitis in a DSS rodent model, even at otherwise 
no observed adverse effect levels (Gan et al. 2023). Further-
more, DON was found to disturb epithelial tight junctions by 
altering bile acid transport, and to increase proinflammatory 
cytokine production, in inflamed Caco-2/THP-1 co-cultures 
but not in control Caco-2 cultures (Wang et al. 2023). Other 
mycotoxins, such as aflatoxin and ochratoxin A have been 
identified as potential risk factors for IBD patients as well 
(Maresca and Fantini 2010).

Ultra‑processed foods

A strong increase in the consumption of ultra-processed 
foods, such as fast food and frozen meals, can be seen 
throughout the world (Monteiro et al. 2013; da Costa et al. 
2022). These highly-processed foods are typically energy 
dense, with high amounts of carbohydrates, fat, sugar, salt, 
and food additives (Monteiro et al. 2019). The increase in 
IBD prevalence in developing countries correlates with the 
increase of (ultra-)processed food consumption, prompting 
the question of what effect highly processed food has on 
gut health (Rizzello et al. 2019). Food additives like arti-
ficial sweeteners, such as aspartame, stevia, and sucralose, 
have been hypothesized to have a detrimental effect on gut 
health (Suez et al. 2015). Although artificial sweeteners are 
approved by the Food and Drug Administration (FDA) and 
European Food Safety Authority (EFSA), a multitude of epi-
demiologic and animal studies provide conflicting results on 
whether they induce intestinal dysbiosis and affect gut health 
in general (Ahmad et al. 2020; Raoul et al. 2022). Several 
studies found that sucralose exacerbates ileitis and colitis 
in different rodent models by inducing gut dysbiosis (Wang 
et al. 2019; Li et al. 2020; Guo et al. 2021). However, die-
tary levels of artificial sweeteners were only found to induce 
dysbiosis in animals with genetic predisposition for IBD, 
and not in healthy control mice (Rodriguez-Palacios et al. 
2018), indicating that dietary levels of artificial sweeteners 
might only pose risks for IBD patients. Other major food 
components in ultra-processed foods are emulsifiers, which 
are used to stabilize food products by preventing separation 
of oils and water. Oral administration of low concentrations 

of the emulsifiers carboxymethylcellulose (CMC) and poly-
sorbate-80 (P80) induced severe colitis in IL-10 knockout 
mice, but only mild inflammation in wild-type mice (Chassa-
ing et al. 2015). Furthermore, exposure to the emulsifier car-
rageenan led to the aggravation of colitis in multiple rodent 
models (Bancil et al. 2021). Similar results have been found 
for other emulsifiers and thickeners, such as maltodextrin 
(Laudisi et al. 2019) and methylcellulose (Llewellyn et al. 
2018). Synthetic food colorants are widely used in dietary 
products, especially in ultra-processed food. The common 
food colorants azo dye Red 40 and Yellow 6 are deemed safe 
for consumption at reported use levels by industry (Barciela 
et al. 2023). However, these azo dyes are metabolized by 
commensal bacteria into 1-amino-2-naphthol-6-sulfonate 
sodium salt, which was shown to exacerbate colitis in sus-
ceptible mice by promoting 5-hydroxytryptamine (5-HT) 
secretion, consequently leading to increased inflammation 
(He et al. 2021; Kwon et al. 2022), an observation that needs 
to be confirmed in humans.

Foodborne micro‑ and nanoparticles

Many processed foods contain engineered nanomateri-
als (ENM) purposely added as coloring agents, anticaking 
agents or as preservatives (de Oliveira et al. 2022). The total 
human uptake of ENM such as titanium dioxide (TiO2) or 
silica (SiO2) is challenging to quantify, but daily exposures 
are estimated to be up to 10.4 mg kg−1 body weight (bw) per 
day and 1.8 mg kg−1 bw per day (Dekkers et al. 2011; EFSA 
2016), respectively. The safety of ENMs as additives is a 
highly debated topic (EFSA et al. 2021), as both TiO2 and 
SiO2 nanomaterials can induce pro-inflammatory reactions 
via the NOD-, LRR- and pyrin domain-containing protein 
3 (NLRP3) inflammasome pathway in vitro (Busch et al. 
2022a, b; Bredeck et al. 2023). This pathway is part of the 
innate immune system and is crucially involved in intestinal 
inflammation (Busch et al. 2022) and the pathogenesis of 
IBD (Bauer et al. 2012; Zhen and Zhang 2019). Although 
only minor effects were observed after oral exposure to nan-
oparticles in vivo (Wang et al. 2007; Chen et al. 2017), the 
outcome of numerous other studies spurred the hypothesis 
that oral exposure to particulate matter can have a negative 
impact on an already existing intestinal inflammation, such 
as in active IBD, instead of inducing it. In 2001, Lomer 
and colleagues observed a significantly reduced Crohn’s dis-
ease activity index (CDAI) in patients on a specific diet low 
on microparticles such as TiO2 (Lomer et al. 2001). How-
ever, the outcomes of this small pilot study (10 subjects per 
group) could not be confirmed in a larger follow-up study 
(91 subjects per group; Lomer et al. 2004). Nevertheless, 
in vivo studies in colitis mouse models also suggest that 
the intake of micro- and nanoparticles like polystyrene or 
TiO2 can exacerbate pre-existing intestinal inflammation 
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(Ruiz et al. 2017; Zheng et al. 2021; Wang et al. 2022a, b). 
Similar observations were made in Caco-2, mucus secret-
ing HT29-MTX-E12 cells and THP-1 derived macrophage 
based in vitro models of intestinal inflammation, where 
microplastics or metallic ENM caused effects only or more 
pronounced in the inflamed-like state of the model (Kämpfer 
et al. 2020; Busch et al. 2021).

Recently, micro- and nanoplastics have emerged as a con-
taminant of concern in food and drinking water that might 
impact gut health (Vethaak and Legler 2021; Niu et al. 2023; 
Busch et al. 2023). PET microplastics have shown to affect 
human gut microbiome compositions (Tamargo et al. 2022), 
and exposure to nano- and microplastics may affect intestinal 
functions such as intestinal epithelial permeability (Hirt and 
Body-Malapel 2020). While there have been some reports on 
the risk of plastic particles for IBD patients, our knowledge 
is still limited (Yan et al. 2022; Zhao et al. 2023; Zolotova 
et al. 2023). The ubiquitous nature of micro- and nanoplas-
tics in our food chain warrants more investigations on the 
implications of these particles on the possibly attenuated 
risks for IBD patients.

Residues of agrochemicals

Chemical herbicides and pesticides are widely used in agri-
culture to prevent the growth of weeds and to protect our 
crops from pests to ensure the availability of food (Fig. 2) 
(Sharma et al. 2019). However, exposure to residues of these 
agrochemicals can influence IBD development and progres-
sion, as has recently been shown in an epidemiologic study 
correlating organochlorine exposure with an increase in 
incidence of IBD (Chen et al. 2024). This confirmed earlier 
observations in rodents. For example, the herbicide propyza-
mide has been found to increase inflammation and immune 
cell infiltration in mice models for colitis and enteritis by 
inhibiting AhR nuclear receptor mediated signaling, which 
was not observed in healthy mice (Sanmarco et al. 2022). 
While the use of organophosphate pesticides like chlorpyri-
fos (CPF) has been banned in the EU (EFSA 2019), humans 
are still exposed to residues of these pesticides because of its 
intensive use in the past decades (Hongsibsong et al. 2020; 
Foong et al. 2020; EFSA 2023). A limited number of stud-
ies showed the detrimental effects of CPF on the gut. CPF 

Fig. 2   Chemical toxicity in IBD patients. Various chemicals have 
proven to have a deleterious effect on gut health of individuals with 
IBD. For example, Propyzamide inhibits AhR signaling leading to 
tight junction (TJ) disruption. The pesticide chlorpyrifos has been 
found to alter gut microbiome composition and to disturb Treg17/

Th17 balance, resulting in increased inflammation. Endocrine-dis-
rupting chemicals such as bisphenol A have been found to aggravate 
IBD. Aluminium has shown to worsen colitis, and decrease epithelial 
regeneration in mice. Created with BioRender.com
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was found to disturb the balance between Treg17 and Th17 
cells in a DSS-induced colitis mouse model, leading to fur-
ther aggravation of tissue injury (Huang et al. 2019, 2020). 
In the healthy mammalian gut, Th17 cells protect the host 
by secreting proinflammatory cytokines, while Treg cells 
restrain excessive effector T-cell responses (Lee 2018). How-
ever, in IBD patients this Treg 7/ Th17 balance is disturbed, 
resulting in inflammation (Yan et al. 2020). Additionally, 
CPF was found to alter the gut microbiota composition in 
mice, which led to an increase in intestinal inflammation 
and permeability (Zhao et al. 2016). Other active ingredi-
ents in chemical herbicides such as dicamba (Mesnage et al. 
2021) and 2,4-Dichlorophenoxy acetic acid (Tu et al. 2019) 
have shown detrimental effects on gut homeostasis as well. 
Importantly, long-term intestinal effects upon human expo-
sure to (residues of) pesticides are currently not incorporated 
in the evaluation for market authorization of agrochemicals 
(Gangemi et al. 2016).

Metal residues in food

Industrialization has led to an accumulation of metals, par-
ticularly aluminum, in our food and drinking water (Alasfar 
and Isaifan 2021). Oral administration of aluminum at levels 
comparable to high daily intake by humans in urban regions 
(1.5 mg kg−1 day−1) aggravated inflammation in three dif-
ferent mouse models of colitis, evidenced by increased pro-
inflammatory cytokine production, heightened macroscopic 
and histological inflammation, and decreased epithelial 
regeneration (Pineton de Chambrun et al. 2014). In a follow-
up study using human tissues, aluminum induced cytokine 
secretion in colon tissue isolate from CD patients but not in 
tissue from healthy individuals (Djouina et al. 2022). The 
role of other metals in IBD have been described as well, but 
only in a handful of studies. Nickel particles were found to 
be aggregated in nickel sites (Ø10–100 µm) in intestinal tis-
sue of CD patients, and where found to exacerbate colitis in 
a DSS mouse model and induced colitis in mice genetically 
susceptible to inflammation (Matsuda et al. 2022). Low die-
tary levels of manganese seem to exacerbate colitis in DSS 
mice (Choi et al. 2020; Paschall et al. 2020), and arsenic is 
known to cause intestinal barrier disruption in vitro using 
intestinal Caco-2 cells (Chiocchetti et al. 2019). The high 
concentration of metals in our environment require more 
in-depth research on their potential toxicity in both healthy 
individuals and susceptible individuals.

Endocrine disruptors in food

Endocrine-disrupting chemicals are exogenous chemicals 
that interfere with hormonal processes such as growth, 
development, reproduction and metabolism. Endocrine 
disrupting chemicals are mostly by-products of the 

industrial manufacturing and use of plastics, pesticides, 
pharmaceuticals, and flame-retardants (Benotti et al. 2009; 
Schug et al. 2011). Bisphenol A (BPA) is a representative 
chemical of a large class of chemical compounds that are 
widely used in the production process of plastics, although 
the use of BPA is currently being restricted (EFSA Panel 
on Food Contact Materials, Enzymes and Processing Aids 
(CEP) et al. 2023). An observational study in CD patients 
found that patients with high serum levels of BPA had 
an increased systemic inflammatory response (Linares 
et al. 2021). Endocrine receptor levels were significantly 
increased and correlated with BPA levels. Furthermore, 
markers for microbial dysbiosis such as bacterial DNA 
and endotoxin levels in the blood were correlated with 
increased BPA uptake. A metagenomic analysis in mice 
revealed that dietary BPA intake reduces the species 
diversity of the intestinal microbiome (Lai et al. 2016). 
Loss of microbial diversity is associated with a multitude 
of chronic illnesses, including IBD (Flight et al. 2015; 
Gong et al. 2016; Wilkins et al. 2019). Accordingly, BPA 
was found to alter microbiome-related metabolite levels, 
and thereby aggravating disease activity, in DSS-colitis 
models (DeLuca et al. 2018). Both BPA and its substitute 
fluorene-9-bisphenol were also found to deregulate sugar 
and fatty acid metabolism in colitic mice (Yin et al. 2022). 
The reduced human health based guidance values for BPA, 
(EFSA Panel on Food Contact Materials, Enzymes and 
Processing Aids (CEP) et al. 2023) could potentially result 
in the rise of other bisphenols, which, although untested, 
might also pose toxic effects.

Conclusions on potential increased risk of IBD patients 
upon exposure to foodborne chemicals

Humans are exposed to a great diversity of chemicals via 
food and drinking water. A distinction in two groups of 
chemicals can be made. First, chemicals that require a mar-
keting authorisation (i.e., agrochemicals and food addi-
tives) and therefore undergo a regulatory safety assessment 
before use is permitted. While these chemicals are exten-
sively evaluated, the development of intestinal inflamma-
tion or IBD is not considered in toxicological safety testing 
programmes. Secondly, chemicals can end-up in our food 
as contaminants via the environment. While for some of 
these chemicals limits for their tolerated presence in food 
are in place, the true effects on susceptible groups in the 
population remain largely unknown. Together, this empha-
sizes the need for adequate testing approaches to study the 
mode of action of chemicals and their potential relation to 
IBD, or to assess the potential increased vulnerability of 
IBD patients upon exposure to foodborne chemicals.
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Potential increased risk of IBD patients 
upon exposure to drugs

Recent studies have shown that some drugs (i.e., drugs not 
related to IBD therapy) may pose a higher health risk for 
IBD patients compared to healthy individuals. These height-
ened risks can be attributed to several factors. First, as the 
intestinal epithelium of IBD patients in the active phase of 
IBD is characterized by increased crypt apoptosis and villus 
atrophy, leaving the mucosal tissue open to luminal contents 
(Sonis 2004), drugs might further induce epithelial damage 
and increase intestinal permeability. This allows the trans-
location of other harmful substances and pathogens across 
the epithelial barrier, possibly exacerbating the inflamma-
tory state and worsening IBD symptoms. Secondly, altera-
tions in the presence or activity of enterocyte transporters 
in IBD patients can affect drug pharmacokinetics, impacting 
the efficacy and increasing the risk of adverse effects of the 
drugs (Yoshida et al. 2013). It has been reported that the 
mRNA expression of equilibrative nucleoside transporter 
(ENT) 1/2, concentrative nucleoside transporter (CNT) 2, 
organic anion-transporting polypeptide (OATP) 2B1 (Wojtal 
et al. 2009), and protein levels of multidrug resistance pro-
tein (MRP) 1 and MRP2 were significantly elevated (Ufer 
et al. 2009; Erdmann et al. 2019), whereas the protein levels 
for apical sodium-dependent bile acid transporter (ASBT), 
organic solute transporter (OST), novel organic cation trans-
porter (OCTN) 2 (Erdmann et al. 2019), OCT3, monocar-
boxylate transporter (MCT) 1, P-glycoprotein (P-gp), breast 
cancer resistance protein (BCRP; Ufer et al. 2009), MRP3 
(Jahnel et al. 2014), and MRP4 (Verma et al. 2013) were 
significantly lower in the intestine of IBD patients (Fig. 3). 
In the following paragraphs we discuss different classes of 
drugs that can either cause additional intestinal toxicity or 
have increased bioavailability due to increased transporter 
activity in IBD patients (Fig. 4).

Proton pump inhibitors

Drugs such as omeprazole, esomeprazole and lansoprazole, 
are commonly applied proton pump inhibitors (PPIs) used 
for the treatment of gastroesophageal disorders (Khan and 
Howden 2018). A recent human study revealed a correlation 
between the administration of PPIs to IBD patients and an 
elevated risk of their hospitalization (Nighot et al. 2023). 
One of the causes is thought to be the disruption of intestinal 
tight junctions by the PPI-induced increase in extracellular 
pH levels, triggering the activation of myosin light chain 
kinase via p38 pathways, as shown in DSS-induced colitis 
mouse models (Nighot et al. 2023). Secondly, PPIs increase 
gastric pH levels at standard therapeutic doses, allowing 
harmful bacteria to survive the gastric passage, which could 
result in alterations of the intestinal microbial composition 

(Lombardo et al. 2010). Both modes of action are proposed 
to underly PPI-induced exacerbation of IBD symptoms.

Nonsteroidal anti‑inflammatory drugs

Nonsteroidal anti-inflammatory drugs (NSAIDs), includ-
ing ibuprofen and naproxen, are in general extensively 
prescribed due to their effectiveness in the treatment of 
inflammation and pain (Mahadevan et al. 2002). Usage 
of NSAIDs is associated with an elevated risk of intesti-
nal mucosal damage and related complications. Despite 
having anti-inflammatory properties, several studies have 
reported exacerbation and relapses in IBD patients upon 
NSAIDs administration (Kaufmann and Taubin 1987; 
Felder et al. 2000; Forrest et al. 2004). NSAIDs exhibit 
their anti-inflammatory and analgetic effects primarily by 
inhibiting the activity of cyclooxygenase (COX). COX 
is also responsible for the production of prostaglandins 
involved in tissue repair and ulcer healing processes in 

Fig. 3   Altered transporter expression levels in IBD patients, divided 
into apical and basolateral transport. Upregulated transporters are 
shown in yellow, while downregulated transporters are shown in pur-
ple. Created with BioRender.com
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IBD patients (Halter et al. 2001) indicated by increased 
COX gene expression in the inflamed colon (Lin et al. 
2018). As a consequence, the inhibition of COX and 
prostaglandin production by NSAIDs compromises the 
recovery of the intestinal barrier and further increases 
intestinal permeability in IBD patients (O’brien 2000). In 
addition, at the moment of intestinal absorption, NSAIDs 
cause specific damage to enterocyte mitochondria by dis-
rupting oxidative phosphorylation, resulting in enterocyte 
cytotoxicity and further increased intestinal permeability 
(Matsui et al. 2011). The chronic inflammation and ulcera-
tion present in IBD patients weakens the intestinal lining, 
rendering it more susceptible to NSAIDs-induced barrier 
damage and increasing the risk of (further) ulceration, per-
foration, and bleeding.

Antibiotics

Studies have shown that the gut microbiome is altered in the 
intestine of IBD patients, prompting the use of antibiotics 
as a therapeutic strategy (Nitzan et al. 2016). Interestingly, 
several cohort studies have shown that there is an association 
between early-life antibiotic exposure and the development 
of IBD (Margolis et al. 2010; Hviid et al. 2011; Lee et al. 
2013). Clinicians are advised to be cautious when prescrib-
ing antibiotics to IBD patients (Theochari et al. 2018). The 
compromised intestinal barrier in IBD patients results in an 
increased penetration of antibiotics across the epithelium 
into the lamina propria, where the intestinal immune cells 
are located. Studies have shown that therapeutic levels of 
the antibiotic drugs gentamicin and amikacin reduced the 

Fig. 4   Toxicity induced by pharmaceuticals  in IBD patients. The 
compromised epithelial barrier in IBD patients results in increased 
uptake of compounds. Chemotherapeutics are cytotoxic to the intes-
tinal epithelium, releasing damage associated proteins leading to 
increased inflammation. Nonsteroidal anti-inflammatory drugs 
(NSAIDs) damage the intestinal epithelium by disrupting oxidative 
phosphorylation, and prevent tissue repair via COX inhibition. Pro-
ton pump inhibitors increase the luminal pH, leading to gut micro-

bial dysbiosis. Antibiotics cause dysregulation of both the immune 
response and the gut microbiome. Selective serotonin reuptake inhibi-
tors (SSRIs), inhibit serotonin (5-HT) reuptake by enterocytes by 
blocking selective serotonin reuptake inhibitors. The increased 5-HT 
concentration in the lamina propria results in immune cell activa-
tion, which leads to increased intestinal inflammation. Created with 
BioRender.com
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chemotaxis of polymorphonucleocyte (PMN), which are 
recruited from blood vessels in response to inflammation in 
IBD patients (Goodhart 1977; Khan et al. 1979). This might 
cause dysregulated immune responses and increased inflam-
mation. In addition, antibiotics disrupt the composition of 
gut microbiome and decrease microbial diversity, providing 
pathogenic microbes with the opportunity to overgrow the 
intestine (Yoon and Yoon 2018), further driving the vicious 
cycle that is IBD.

Selective serotonin reuptake inhibitors

Apart from the direct intestinal clinical adverse outcomes, 
individuals suffering from IBD are also at increased risk 
of developing depression due to a significant drop in life 
quality (Geiss et al. 2018). In general, selective serotonin 
reuptake inhibitors (SSRIs) are used as antidepressant medi-
cations, and are primarily acting by inhibiting the reuptake 
of the neurotransmitter 5-HT, better known as serotonin, 
thereby increasing neuroactivity in the brain (Jones and 
Blackburn 2002). Specifically for IBD patients, the use of 
SSRIs might cause concern. To prevent prolonged receptor 
stimulation, 5-HT is actively taken up by the serotonin trans-
porter (SERT), which is distributed throughout the intestinal 
epithelium (Coates et al. 2017). In IBD patients, there is 
reduced expression of SERT, leading to decreased uptake 
of 5-HT and consequently elevated levels of 5-HT in the 
lamina propria (Coates et al. 2004). The inhibition of SERT 
activity by SSRIs administration further increases the con-
centration of 5-HT levels in the lamina propria, which then 
activate immune cells such as macrophages and mast cells, 
promoting the production of pro-inflammatory cytokines 
(Shajib and Khan 2015). Mice studies showed that knock-
out of SERT exacerbates colitis and intestinal inflammation 
in IL-10 deficient mice (Bischoff et al. 2009; Haub et al. 
2010). In addition, the potentiation of serotonergic signal-
ing in SERT knockout mice contributes to watery diarrhea, 
which is one of the symptoms of IBD patients (Haub et al. 
2010). Although human studies are lacking, this suggests 
an increased risk of complications for IBD patients using 
SSRIs.

Chemotherapeutic drugs

IBD has been associated with higher incidences of malig-
nancies, such as colon cancer due to chronic inflammation, 
or lymphomas and non-melanoma skin cancers due to pro-
longed use of IBD therapeutic drugs (Laredo et al. 2023). 
Vice versa, anticancer treatments, such as the chemothera-
peutic drug 5-fluorouracil, have been reported to exacerbate 
diarrhea in IBD patients, most likely by inducing mitotic 
arrest and apoptosis of crypt cells leading to altered fluid 
transport (Stein et al. 2010; Shawna Kraft 2013). As stated 

above, the altered expression and activity of transporters 
in IBD patients can change the pharmacokinetics of orally 
applied drugs. This is exemplified by drugs that are a sub-
strate for the apical efflux transporter P-gp, which expels 
substrate drugs from epithelial cells to the lumen of the intes-
tine and thereby limits the absorption of drugs (Estudante 
et al. 2013). Inhibited P-gp activity has been found to signifi-
cantly increase the area under the plasma concentration–time 
curve (AUC) and the plasma peak concentration (Cmax) of 
chemotherapeutics like paclitaxel (Meerum Terwogt et al. 
1999), topotecan (Kuppens et al. 2007), and doxorubicin 
(Planting et al. 2005) in humans upon oral administration, 
potentially increasing the magnitude of their adverse effects 
due to higher blood and tissue concentrations.

Conclusions on potential increased risk of IBD patients 
upon exposure to drugs

The intestinal epithelium of IBD patients has an altered 
activity of enterocyte transporters and has a lower barrier 
function compared to healthy individuals. Therefore, the 
pharmacokinetics and the local toxicodynamics of drugs 
might be different in IBD intestinal cells, for instance 
because of altered drug receptor expression. Indirect harm-
ful effects that drugs might have on the intestinal microbi-
ome also need to be considered when investigating the risks 
of these compounds.

Models for inflammatory bowel diseases

In this section, we summarize experimental models of IBD 
and discuss their advantages and disadvantages in toxicity 
testing of possible inflammation-exacerbating toxicants. For 
in-depth discussions on the use of models to investigate the 
pathogenesis, pathophysiology and treatment of IBD, we 
refer the reader to more detailed reviews on these topics 
(Dieleman et al. 1997; Cominelli et al. 2017; Joshi et al. 
2022).

Animal models of IBD

Experimental animal models have proven to be valuable 
tools in understanding the basic pathophysiology of IBD, 
however such models can also be used to study the effects 
of chemical exposure on the progression of IBD. The first 
experimental model for colitis was developed in 1957 by 
sensitizing rabbits to crystalline egg albumin by rectal 
administration of diluted formalin (Kirsner and Elchlepp 
1957). Ever since, various animal models have been 
developed to investigate IBD, most of which are rodents 
expressing acute or chronic colitis. Here, we describe three 
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categories of commonly used rodent models and their poten-
tial (and limitations) for toxicity testing (Table 1).

One of the main categories of animal models for IBD 
are the chemically-induced rodent models. Oral adminis-
tration of dextran sulfate sodium (DSS) to mice and rats 
leads to self-limiting, acute inflammation that resembles 
UC. DSS disrupts the gut barrier function by inducing 
direct damage to the epithelium, allowing infiltration of 
luminal antigens into the lamina propria (Chassaing et al. 
2014). Trinitrobenzene sulfonic acid (TNBS) in combina-
tion with ethanol induces bowel inflammation reminiscent 
of CD when administered rectally to rodents by inducing 
an immune response (Antoniou et  al. 2016). However, 
chemically-induced rodent models have important limita-
tions, as they induce a nonspecific injury to the intestinal 
epithelium. Furthermore, animal strain, gender, and whether 
these animals are germ-free will affect disease susceptibility 
(Koboziev et al. 2011), and concerns have been raised on the 
high severity of the induced disease and consequently the 
susceptibility to toxicants.

Transgenic rodent models are the second main type of 
IBD animal models. A widely used transgenic model in IBD 
research is the IL-10 knockout mouse. The immunoregula-
tory cytokine IL-10 maintains intestinal immune homeo-
stasis mainly via T-helper (Th)1 and Th17 cells (Jacobse 
et al. 2021). Inhibition of IL-10 results in excessive secre-
tion of proinflammatory cytokines (Gunasekera et al. 2020). 
In IL-10 knockout mice, this has been shown to result in 
colitis (Keubler et al. 2015). Interestingly, germ-free IL-10 
knockout mice do not develop spontaneous colitis (Sellon 
et al. 1998), suggesting a crucial role of external pathogens 
in the onset of colitis. Secondly, as T-lymphocytes are key 
mediators of chronic inflammation in the gut, transgenic 
CD4+CD45high T-cell mice models have been developed 
(Ostanin et al. 2009). A large advantage of this model is 
that it can be used to investigate the effect of toxicants on 
early-stage immunologic events associated with IBD. A 
drawback of both of these immunomodulatory models is that 
the microbiome composition of mice differ between research 
facilities which can cause differences in colitis development 
and in susceptibility of animals to toxicants (Reinoso Webb 
et al. 2018; Ericsson and Franklin 2021).

Mouse models spontaneously developing intestinal 
inflammation can be considered the third type of IBD 
models. The SAMP1/YitFc mouse strain develops a CD-
like phenotype without chemical, genetic, or immunogenic 
manipulation that closely resembles CD in humans (Kosie-
wicz et al. 2001). These mice show lesion formation in the 
terminal ileum paired with a discontinuous pattern of normal 
mucosa and inflammed mucosa. Most of the mice develop 
this chronic ileitis at the age of 10 weeks (Rivera-Nieves 
et al. 2003). Due to its close resemblance to chronic CD in 
humans, the model can provide important insights in the 

inductive and exacerbating effects of xenobiotics on IBD. 
However, the long duration needed for complete disease 
onset makes it an expensive and time-consuming model to 
use.

Although frequently used in preclinical IBD research, 
animal models show uncertainty regarding their accuracy 
in predicting the human physiological response to drugs, 
chemicals and other toxicants (Leenaars et al. 2019). In addi-
tion, rising costs of animal studies, ethical concerns, and 
high drug attrition rates have enticed researchers to develop 
more advanced in vitro models in an attempt to reduce, or 
replace, animal testing, as well as to enable high-throughput 
testing of toxicants.

Ex vivo and in vitro models for IBD

Several types of intestinal epithelial and intestinal tissue 
ex vivo and in vitro models have been developed for toxi-
cokinetic and toxicodynamic studies. These models have 
turned out to be powerful models to study the molecular 
and cellular processes underlying the pathophysiology of 
IBD, and to study the interactions with drug and foodborne 
chemicals as discussed above. Here, we review the current 
state of the art of these models and discuss further outlooks 
for the use of ex vivo and in vitro models.

Ex vivo models

Intestinal tissue explants resemble the in vivo architecture 
and cell type diversity and are therefore highly relevant to 
understand the impact of nutrients, drugs, and toxicants in 
a physiologic setting (Donkers et al. 2021; Rahman et al. 
2021). IBD patient-derived material maintains disease char-
acteristics like the impaired intestinal barrier, local inflam-
mation, and intestinal fibrosis which therefore do not need 
to be induced artificially. Consequently, the impact of the 
IBD-phenotype on intestinal processes like drug or toxicant 
absorption can be studied in a representative model. How-
ever, the use of ex vivo gut tissue for IBD research is still 
limited, mostly through the constrained throughput and lifes-
pan (hours to a maximum of 3 days) of these tissue explant 
models, but important steps have been taken over the recent 
years.

Two well-known ex vivo gut tissue model are the Ussing 
chamber and InTESTine™ model (Westerhout et al. 2014; 
Stevens et al. 2019). In these models, tissue segments are 
clamped vertically (Ussing chamber) or horizontally (InTES-
Tine™) between two chambers, allowing the measurement 
of transport across the epithelial barrier (Westerhout et al. 
2014; Stevens et al. 2019). These devices are mainly used 
to study drug absorption or gut tissue barrier functions. 
Clamping intestinal tissue of UC patients (Nakai et al. 2020) 
and CD patients (Biskou et al. 2022) demonstrated a leaky 
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barrier mainly for the paracellular passage route. Further-
more, barrier permeability was increased in inflamed sites 
compared to non-inflamed sites (Libertucci et al. 2018), and 
remained leakier than normal (compared to IBD patients and 
healthy controls) during disease remission (Katinios et al. 
2020). Ex vivo intestinal tissue explants were used to evalu-
ate effectiveness of the TNF-α neutralizing antibody–drug 
Infliximab (Yakymenko et al. 2018). So far, impaired bar-
rier function remains the only IBD-characteristic studied 
ex vivo. Insights into inflammation, disturbed processes in 
the supportive connective tissue, or altered absorption for 
specific drugs and toxicant, remain to be explored in tissue 
explant models.

Immortalized cell line (co‑)culture models

The most widely used cell model exploits immortalized 
human colorectal adenocarcinoma cells (Caco-2 cells) that 
spontaneously differentiate upon reaching confluence into 
an adherent monolayer that shows features of enterocytes in 
the small intestine (Lea 2015). A wide range of compounds 
have been utilized to induce an inflammatory phenotype in 
the Caco-2 model (Table 2). The endotoxin lipopolysac-
charide (LPS) is used to induce inflammation via the Toll-
like receptor 4 (TLR4) pathway (Lu et al. 2008; Wang et al. 
2023). Recombinant proinflammatory cytokines such as 
TNF-α and IL-1β induce a disease-like state in the Caco-2 
model (Maria-Ferreira et al. 2018; Liang et al. 2020). Simi-
lar to some animal models, chemicals have been employed 
to induce damage in Caco-2 models, however they are not 
frequently used due to their non-representative nature to 
human inflammation (Araki et al. 2006; Toutounji et al. 
2020). Lastly, intestinal epithelial injury can be induced via 
hypoxic or heat stress as well (Lian et al. 2021). On the 
downside, Caco-2 cells demonstrate an increased expression 
of crucial transporter proteins, including P-gp, MRP1, and 
OATP2B1, with levels ranging from 3- to 130-fold higher 
than those found in human jejunal tissue (Vaessen et al. 
2017). As this does not reflect the expression of transport-
ers in exacerbated phase IBD patients (see section above), 
employing alternative in vitro models that more accurately 
mirror these transporter expression patterns may offer more 
dependable insights when conducting transport studies on 
IBD patients.

Since the Caco-2 model mainly represents enterocytes, 
co-culturing with other cell types can provide a more physi-
ologically relevant model. Co-culturing Caco-2 cells with 
HT29-MTX cells that resemble a goblet cell-like pheno-
type provides a model with mucus as an additional bar-
rier against pathogens or toxicants (Hoffmann et al. 2021). 
Tri-culture models that additionally include THP-1 derived 
macrophages as immune cells have been used to emulate 
inflammatory conditions on a cellular level like observed 

in IBD (Gijzen et al. 2020). Caco-2/THP-1 co-cultures can 
be stimulated with IFN-γ and LPS to induce inflammation 
followed by barrier disruption, cytokine release, and cyto-
toxicity (Kämpfer et al. 2017).

While immortalized cell line (co)culture models have 
proven to be most valuable tools in intestinal research, they 
lack cell diversity, tissue architecture, and overall biologic 
complexity as seen in vivo. Therefore, human stem cell-
derived in vitro models are increasingly being explored as 
models for IBD and to study the interaction with chemicals.

Stem cell‑derived intestinal models

Several types of stem cell-derived models are being devel-
oped. Commonly, stem cells are grown in vitro as orga-
noids. Organoids are three-dimensional structures that self-
organize through cell–cell and cell–matrix interactions to 
recapitulate intestinal epithelial aspects in vitro (Marsee 
et al. 2021). Co-culturing organoids with immune cells, 
stromal cells, endothelial cells or a microbiome renders 
them complex in vitro models that can emulate the intes-
tinal microenvironment (Puschhof et al. 2021; Hentschel 
et al. 2021). The spherical nature of organoids limits their 
applicability for apical exposure studies, therefore 2D stem-
cell derived cell layers that self-organize, self-renew and 
self-polarize are currently being developed (Wang et al. 
2017; Grouls et al. 2022). Stem cell-based culture models 
are derived from two primary sources of stem cells. First, 
adult stem cells can be directly derived from human tissue, 
including from tissue from IBD patients (Dotti et al. 2022). 
Human intestinal organoids derived from CD patients were 
found to have an impaired epithelial regeneration upon 
TNF-α stimulation compared to healthy controls (Lee et al. 
2021), illustrating the effectiveness of such a model for 
exposure studies. Interestingly, a cocktail of IL-1β, IL6, and 
TNF-α was able to reproduce this inflammatory phenotype 
in healthy control organoids (d’Aldebert et al. 2020). The 
second main type of stem cells are induced pluripotent stem 
cells (iPSCs). These cells are obtained by reprogramming 
somatic cells into pluripotent cells (Chen et al. 2014) that 
can be further differentiated into intestinal epithelial cells 
(Shafa et al. 2018). Exposure of such iPSC-derived intestinal 
cell models to interferon-γ resulted in tight junction disrup-
tion and an increase in the expression of IBD-associated 
genes (Workman et al. 2020). iPSC-derived organoids from 
very early onset IBD patients could be used to model fibrotic 
responses in vitro in response to TGF-β (Estrada et al. 2022). 
Furthermore, iPSC-derived organoids of UC patients were 
found to recapitulate histological and functional features 
of in vivo colitis (Sarvestani et al. 2021). iPSCs can also 
be developed into cell layers, but these layers show a more 
fetal-like phenotype compared to adult stem cell-derived 
models (Negoro et al. 2018).
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Table 2   In vitro culture models for IBD

Cell lines

Cell types Pros Cons Inflammatory stimuli Ref

Caco-2 ▪ Barrier forming
▪ Reproducibility
▪ Cheap
▪ Ease to handle

▪ Only epithelial cells
▪ Limited transporter expres-

sion
▪ Carcinoma-derived
▪ Limited differentiation

DSS (Araki et al. 2006; Tout-
ounji et al. 2020)

TNF-α (Liang et al. 2020)
IL-1β (Maria-Ferreira et al. 2018)
LPS (Wang et al. 2023)

Co-cultures

Cell types Pros Cons Inflammatory 
stimuli

Ref

Caco-2/HT29-MTX ▪ Barrier forming
▪ Reproducibility
▪ Cheap
▪ Ease to handle
▪ Mucus production

▪ Only epithelial cells
▪ Limited transporter expres-

sion
▪ Carcinoma-derived

IL-1β
TNF-α
Hypoxia

(Dosh et al. 2019)

Caco-2/THP-1 ▪ Barrier forming
▪ Immune response
▪ Cheap

▪ Limited transporter expres-
sion

▪ Carcinoma-derived
▪ Limited differentiation

IFN-γ + LPS (Kämpfer et al. 2017)

Caco-2/HT29-MTX/THP-1 ▪ Barrier forming
▪ Immune response
▪ Mucus production

▪ Limited transporter expres-
sion

▪ Carcinoma-derived
▪ Increased complexity

IFN-γ + LPS (Kämpfer et al. 2022)
LPS (Marescotti et al. 2021)

Caco-2/THP-1/MUTZ-3 ▪ Barrier forming
▪ Immune response
▪ Both monocyte- and den-

dritic cell-like cell types

▪ Limited transporter expres-
sion

▪ Carcinoma-derived
▪ Increased complexity
▪ Limited differentiation

LPS (Paul et al. 2023)
IL-1β (Susewind et al. 2016)

Caco-2/PBMC-derived mac-
rophages

▪ Barrier forming
▪ Immune response

▪ Limited transporter expres-
sion

▪ Increased complexity
▪ Limited differentiation

LPS (Schnur et al. 2022)

Stem cell cultures

Cell types Pros Cons Inflammatory 
stimuli

Ref

iPSC-derivedHIO ▪ Differentiated epithelial 
layer

▪ Commercially available
▪ IBD patient-derived iPSCs

▪ Spherical
▪ Fetal-like phenotype
▪ No immunologic compo-

nent
▪ Donor variability
▪ High-maintenance
▪ Costly

IFN-γ (Workman et al. 2020)
NA (Sarvestani et al. 2021)
TGF-β (Estrada et al. 2022)

ASC-derived HIO ▪ Differentiated epithelial 
layer

▪ IBD patient-derived HIO 
with inflammatory pheno-
type

▪ Adult phenotype

▪ Spherical
▪ No immunological com-

ponent
▪ Access to mammalian tis-

sue required
▪ Donor variability
▪ Costly

TNF-α (Lee et al. 2021)
TNF-α + IL-1β + IL6 (d’Aldebert et al. 2020)

IBD patient-derived HIO 
monolayers

▪ Barrier forming
▪ IBD patient-derived iPSCs

▪ Spherical
▪ Fetal-like phenotype
▪ No immunologic compo-

nent
▪ Genetic variability
▪ High-maintenance
▪ Costly

IFN-γ + TNF-α  
+ IL-1α

(Jelinsky et al. 2023)
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Advanced tissue and cell culturing platforms

Microphysiological systems, such as organs-on-chips, 
hollow-fiber membranes, and microfluidic chambers are 
emerging techniques in the field of organ modelling (Nitsche 
et al. 2022). These in vitro systems can be used to mimic the 
architecture, circulation, and mechanical stress of the intes-
tine (Amirabadi et al. 2022). Microfluidic devices allow for 
a tight control of the tissue microenvironment, by controlling 
for example oxygen levels (Richardson et al. 2020), by emu-
lating intestinal luminal conditions and incorporating IBD 
patient-derived microbiota (Donkers et al. 2024), or by the 
incorporation of scaffolds to emulate the extracellular matrix 
(Cherwin et al. 2023). Intestinal tissues from IBD patients 
cultured in such systems remain to express inflammatory 
markers, as measured by calprotectin release (Dawson et al. 
2016).

Microphysiologic culture systems have been used to cul-
ture intestinal cell lines and intestinal stem cells (Kasendra 
et al. 2018; Ingber 2022; Shin and Kim 2022) in an attempt 
to recreate more in vivo-like intestinal phenotypes. The 
incorporation of Caco-2 and endothelial cell co-cultures in 
such a culture system allowed the recreation of IBD-like 
intestinal tissues (Tataru et al. 2023). Furthermore, the flow 
of cell culture media prevented bacterial overgrowth as 
observed in statit culturing methods and therefore allows to 
co-culture intestinal microorganisms with human cells (Shin 
and Kim 2018). In addition, stem cell-derived models have 
been included in micro-physiologic culture systems using 
adult stem cells from IBD patients (Shin et al. 2020). Inter-
estingly, micro-physiologic culture systems allow the cul-
ture of different tissues in separate compartments while still 
allowing communication of cells and signaling molecules, 
which increases functionality of the cell models. Using a 
gut-liver co-culture model, the modulatory role of microbial 
short-chain fatty acids in IBD related intestinal inflammation 
was studied (Trapecar et al. 2020). While OoC platforms 
hold great potential for next-generation risk assessment of 
chemicals, overcoming certain challenges is essential before 
these platforms can effectively contribute to the evaluation 
of pharmacokinetic–pharmacodynamic parameters.

Future directions of toxicological research using 
advanced cell models for IBD

The toxicological safety assessment of chemicals tradition-
ally focuses on protecting the general population, which does 
not necessarily incorporate individuals with an impaired 
intestinal barrier. From a toxicologists perspective, the 
increased prevalence of IBD raises concerns on a potentially 
increased bioavailability of chemicals and drugs. As dis-
cussed, altered intestinal tissue functionality during disease 
exacerbation can affect the toxicokinetic and toxicodynamic 

behavior of drugs, foodborne chemicals and particulate mat-
ter. Given the increasing prevalence of IBD this increases 
the relevance of considering IBD patients as a vulnerable 
population within the toxicological risk assessment of chem-
icals. In addition, evidence is accumulating that chemical 
and particulate matter exposure via food and drinking water 
can attenuate intestinal inflammation in IBD patients as well 
as (vulnerable) healthy individuals.

While several IBD animal models are available to study 
the consequences of chemical and particle exposure on the 
disease pathophysiology, these rodent models can be lim-
ited in their ability to mechanistically study the interactions, 
and neither can they be used to study the underlying causes 
for disease initiation (and the role of environmental factors 
on this initiation). Other animal models can be considered, 
such as the zebrafish, which can prove a valuable tool due 
to their low maintenance costs, fecundity, genetic similarity 
to humans, ease of gene-editing, and optical transparency 
at the embryonic level (Hanyang et al. 2017; Choi et al. 
2021). However, non-animal models offer greater advan-
tages and can exploit different routes. Ex vivo intestinal tis-
sue approaches allow to study the consequences of chemi-
cal exposure on the complex tissue microenvironment, but 
require easy access to human (surgery) material and its use 
is limited given the short life-span of the tissue segments.

Advanced in vitro models, ranging from co-culture mod-
els with intestinal cell lines to iPSCs and adult stem cells, 
are good candidate models to study interaction of chemicals 
on intermediate mechanistic steps, so-called key events, in 
the pathophysiology of IBD. Obviously, this is currently 
being explored within toxicological sciences in the adverse 
outcome pathway (AOP) approach, which was launched a 
decade ago to structure the integration of ex vivo and in vitro 
models in toxicological risk assessment (Vinken 2013). Both 
ex vivo models and stem cell-derived models allow to use 
patient-derived material, which has great addition benefits 
compared to cell line models (and animal models). The 
application and advantages of using stem cell models in 
biomedical sciences is apparent, as it allows a personalized 
approach into the therapeutic potential of drugs and chemi-
cal vulnerability.

Conclusions

Risk assessment of foodborne contaminants and drugs is pri-
marily performed to protect healthy individuals from adverse 
health outcomes. As patients suffering from IBD show an 
impaired intestinal barrier, as well as altered transport and 
defence mechanisms in the intestinal epithelium, the out-
come of these risk assessments might not hold true for this 
sub-group of the population. As the prevalence of IBD is 
strongly increasing in the western world, we recommend 
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to consider individuals with prevalent intestinal inflamma-
tion in the risk assessment process of food contaminants 
and orally applied drugs. Currently available experimental 
models of IBD still carry disadvantages regarding costs, 
complexity or disease onset, but might prove to be valuable 
tools in future.
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