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of capturing the uncertainty, complexity, and dynamics inherent in such problems.
However, current methods of incorporating dynamics into scenario discovery are

limited to a single outcome of interest. Furthermore, there is little work on the post-
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discovery to multiple dynamic outcomes of interest, and present a number of visual
and statistical approaches for evaluating the resulting scenario sets. These innova-
tions make model-based scenario generation more widely applicable in decision
support for complex societal problems, and open the door to multimethod scenario
generation combining model-based and model-free methods such as Intuitive Logics

or futures cones.
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1 | INTRODUCTION

decision-relevant possible future developments of the studied

problem, and whose constituent scenarios are both individually

Many modern societal decision problems are plagued by the presence of
uncertainty, complexity, and multiple involved actors (Gotts et al., 2019;
Vermeulen et al., 2013). Scenario-based planning has emerged as a
popular solution to these challenges (Bradfield et al., 2005; Godet, 2000;
Schoemaker, 1993). Scenarios describe the future as a systematized set
of plausible narrative descriptions with underlying drivers. This enables
improved understanding of key uncertainties, exploration of policy al-
ternatives, and clarification of stakeholder objectives. Scenario-based
decision support is considered especially effective for long-term deci-
sion contexts (Pot et al., 2023).

A key challenge in scenario-based decision support is how to

create a set of scenarios which comprehensively summarizes the

plausible and distinct from one another (Dhami et al., 2022; Lord
et al., 2016). Under the banner of scenario discovery, a growing body
of literature seeks to investigate how (simulation) models may be
used to generate such scenarios, as this allows an explicit coupling of
driving factors (i.e., model inputs) to resulting futures (i.e., model
outputs) (Bryant & Lempert, 2010; Kwakkel & Jaxa-Rozen, 2016). A
topic of special interest in this regard is how temporal dynamics may
be included in such a scenario generation process, as temporal pro-
cesses such as delays, feedbacks, and accumulation are notable
challenges for human cognition (Sterman, 1994) and could be tackled
with computational methods (Lustick & Tetlock, 2021). Behavior-

based or dynamic scenario discovery based on time series clustering
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(Kwakkel et al., 2013; Steinmann et al., 2020) has been proposed as a
possible solution for addressing this challenge (Kwakkel &
Auping, 2021).

However, the current state of the art in behavior-based scenario
discovery is deficient in (at least) two ways. First, behavior-based
scenario discovery is currently only applied to a single outcome of
interest, or policy objective, by which the scenarios are characterized
and differentiated. This is too simplistic for application in complex,
real-world use cases, which often involve conflicting and uncertain
trade-offs between multiple objectives (Hakanen et al., 2023;
Kasprzyk et al., 2013; Kwakkel et al., 2016). Second, there is a lack of
methods for analyzing the differences between the various scenarios
constituting the generated scenario set. Understanding the quanti-
tative and qualitative differences between the scenarios in the set is
crucial for informed decision making, especially regarding the
boundaries between them (Bankes, 2011).

In this study, we extend behavior-based scenario discovery to
multidimensional scenarios, that is, scenarios including multiple
decision-relevant objectives, using a multidimensional clustering
algorithm. Furthermore, we demonstrate a number of visual and
quantitative methods for evaluating the resulting scenarios which
have not previously been applied to scenario discovery. The goal of
these contributions is to enhance the usefulness of behavior-based or
dynamic scenario discovery for simulation-based decision support,
especially where uncertain, complex, and multiactor problems are

concerned.

2 | BACKGROUND
2.1 | Scenarios

Scenarios can be defined as a systematized set of plausible future
oriented descriptions of a phenomenon that include external context
and are comparatively different (Spaniol & Rowland, 2019). In the
words of Lustick and Tetlock (2021), “scenarios tend to be colorful
inside-view accounts of events as they could unfold if key causal
drivers took on either lower or higher values.” This accessibility
makes them especially attractive for decision makers as on-ramps
toward engaging with a problem's full complexity (Wilkinson
et al., 2013). Nowadays, scenarios are widely used in decision support
in @ number of domains including climate change adaptation (Lee
et al., 2021), national security (Veldhuis et al., 2020), business (Halim
et al.,, 2016), and public health (Crawford & Wright, 2022).

The effectiveness of scenario-based decision support hinges on
the usefulness or fitness for purpose of the underlying scenario set
(Sluijs et al., 2021). A number of authors have proposed criteria for
evaluating scenario sets. For example, Dhami et al. (2022) proposed
completeness, context, plausibility, coherence, and order effects,
while Nowack et al. (2011) put forth credibility, transferability, and
legitimacy. For an extensive review of such criteria, we point the

reader to the review of Amer et al. (2013).

In this study, we follow the scenario criteria put forth by
Steinmann et al. (n.d.), namely diversity, plausibility, and compre-
hensiveness. Diversity implies that the scenarios in the set are
qualitatively distinct from one another (Spaniol & Rowland, 2019) and
therefore not redundant (Litchfield et al., 2011). This may allow a
more comprehensive assessment of the policy interventions (Lord
et al., 2016; Wilkinson & Eidinow, 2008). Plausibility refers to the
notion that scenarios should represent future states of the world
which could actually occur (Lord et al., 2016; Schoemaker, 1993),
although no claim is made to the likelihood of this occurrence (Wiek
et al., 2013). Finally, comprehensiveness captures the idea that the
scenario set should give as complete an account of the system's
potential future developments as possible, so as to avoid blind spots
(Derbyshire, 2020; Derbyshire & Morgan, 2022). This means rea-
soning across the widest possible cross-section of the futures cone
(Dhami et al., 2022; Gall et al., 2022). This may improve the robust-
ness of the resulting decisions, as a wider range of possible future
conditions is considered (Lempert et al, 2006; Rosenhead
et al., 1972).

2.2 | Generating scenarios

Generating scenario sets which meet some desired criteria can be
accomplished in a number of ways. One example is Intuitive Logics
(Bradfield et al., 2005), which first identifies a broad range of factors,
reduces these to the most impactful drivers, and then creates sce-
narios based on a high-low matrix for these drivers. Futures cones
(Voros, 2003) are an alternative approach, often starting from a
“business-as-usual” base case and then seeking to expand this base
case in various directions to grow a cone of plausible alternative
developments over time. A common thread across these methods of
scenario generation is that they rely heavily on tacit domain expertise
and implicit mental models of the studied problem or system to
develop the decision-relevant scenarios.

However, there are two main difficulties with this type of sce-
nario generation. First, the human brain is ill-suited to reasoning
about nonlinear systems (Sterman, 1994). Furthermore, there is often
substantial uncertainty surrounding these systems (Lempert
et al., 2003), making precise reasoning and forecasting difficult. As
Lamontagne et al. (2018) and Dolan et al. (2021) highlighted, the
combination of these two factors implies that approaches based on
mental models and human reasoning may not fully identify the
decision-relevant scenarios. A growing body of literature from the
exploratory modeling (Bankes, 1993) community has therefore
investigated the applicability of scenario generation methods based
on simulation models. The underlying idea is that by first representing
the system in a simulation model, and only then identifying the
decision-relevant scenarios based on a thorough analysis of that
model, that the aforementioned pitfalls of complexity and uncertainty
can be dealt with in a principled and reproducible way. Guivarch et al.

(2017) referred to this as a simulate-and-story approach, as a
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counterpoint to the more established story-and-simulate approach
(e.g., Kunc, 2024).

2.3 | Model-based scenario generation: Scenario
discovery

Bryant and Lempert (2010) proposed scenario discovery as a
method for generating decision-relevant scenarios using simula-
tion models. First, a number of computational experiments are
performed on a simulation model, thus creating a data set of ex-
ternal drivers (i.e., model inputs) and resulting dynamics (i.e.,
model outputs). Then, some criterion for decision relevance is
defined, such as a minimal performance level of a specific model
output. This criterion is often based on stakeholder objectives or
policy goals. It can then be used to identify all computational
experiments which are decision-relevant. In the final step, a so-
called rule induction algorithm can be used to identify the part of
the model's input space from which these decision-relevant out-
puts originate. The identified input subspace, together with the
criterion applied to the outputs, then forms the resulting scenario
in the conventional sense—a pairing of external driving forces and
resulting dynamics.

Multiple algorithms are available for performing the last step,
the rule induction. Lempert et al. (2008) compared the patient rule
induction method (PRIM) (Friedman & Fisher, 1999) and classifica-
tion and regression trees. The former appears to have more uptake
in the literature (e.g., Halim et al., 2016; Hidayatno et al., 2020;
McJeon et al.,, 2011; Parker et al.,, 2015; Popper, 2019; Student
et al., 2020b), and has also been extended and improved upon by a
number of researchers, including Dalal et al. (2013), who proposed a
Principal Components Analysis preprocessing step, Kwakkel and
Jaxa-Rozen (2016), who evaluated alternative objective functions,
and Kwakkel (2019), who generalized PRIM's core objectives into a
many-objective optimization. In essence, PRIM is a method for
finding the region (or “subspace”) of data space in which a subset of
that data with certain characteristics is more commonly found than
elsewhere. PRIM rule induction is performed by first drawing a
bounding box around all points in the space, and then iteratively
reducing the size of this box along one dimension of the space. The
choice of dimension to be restricted is driven by three metrics,
namely coverage, density, and interpretability. Coverage describes
how many of the points of interest are still included in the box.
Density captures how many other points are still included in the box.
Interpretability finally represents how many dimensions have
already been restricted. Coverage and density should both be
maximized, but in practice often trade off against one another.
Interpretability should be minimized, as restricting the box along
fewer input space dimensions produces more understandable and
intuitive resulting regions. For in-depth explanations of PRIM and
this box reduction process, we refer the reader to previous works on
the method (Bryant & Lempert, 2010; Kwakkel & Jaxa-Rozen, 2016;
Lempert et al., 2008).

2.4 | Extensions of scenario discovery

The original implementation by Bryant and Lempert (2010) focused
on finding the input parameter ranges associated with a single set of
outputs of interest. A number of researchers have since extended
scenario discovery to multiple such sets. This is sometimes called
multiclass scenario discovery, and is commonly done by grouping the
model outputs in some fashion and then performing rule induction
for each cluster in turn (e.g., Gerst et al., 2013; Guivarch et al., 2016;
Jafino and Kwakkel, 2021; Rozenberg et al., 2014). An alternative
approach is to identify alternative criteria for the decision-relevant
model runs, and then perform rule induction for each of those criteria
individually (e.g., Greeven et al., 2016; Student et al., 2020a). The
former may improve the distinctiveness of the resulting scenarios,
while the latter may make them better targeted to the decision
problem at hand. In either case, the result is a set of scenarios, which
aligns more closely with the conventional understanding and usage of
scenarios than the original single-scenario approach by Bryant and
Lempert (2010). However, the generation of multiple scenarios also
requires subsequent verification that these scenarios fulfill the quality
requirements defined for the decision context at hand. The evalua-
tion of diversity, which has also been called distinctiveness (Lord
et al., 2016) or separability (Jafino & Kwakkel, 2021), deserves special
attention in this regard as the model-generated scenarios cannot be
assumed to be diverse in a human-interpretable way. Steinmann et al.
(2020) proposed using overlap between the different scenario
regions to evaluate separability, while Jafino and Kwakkel (2021)
incorporated separability directly into the scenario generation pro-
cess by clustering in the in- and output spaces simultaneously. Finally,
Gerst et al. (2013) used visual inspection to evaluate separability.
The identification of the decision-relevant model outputs
(sometimes referred to as the “outputs of interest”) before rule
induction is a critical step in successful scenario generation with
scenario discovery. The key challenge is that the model outputs,
which are often multidimensional time series, must be reduced to a
single binary variable. The choice of criterion by which to do this has
downstream effects, and deserves substantial attention during the
analytical process (Hitch, 1960). A common approach is to apply a
threshold criterion to the last value in one of the model's time series
outputs. However, multidimensional criteria, or criteria based on
statistical properties of the time series outputs such as mean or
amplitude values, can also be imagined. Steinmann et al. (2020)
proposed an alternative approach using time series clustering to first
find clusters of similar dynamics among one of the model's outputs,
and then perform rule induction for each cluster in turn. This
approach, referred to as behavior-based or dynamic scenario dis-
covery, allows the dynamics of the system to be directly considered
when creating the scenarios (Kwakkel & Auping, 2021). It was based
on earlier work by Kwakkel et al. (2013), Gerst et al. (2013), and
Guivarch et al. (2016), and has since successfully been applied in at
least one decision support context (Kahagalage et al., 2024). An ad-
ded benefit of behavior-based scenario discovery is that the

dynamics in the resulting clusters can more readily be translated into
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verbal narratives than the point values common in conventional
scenario discovery, which was also demonstrated by Greeven et al.
(2016). The overall result of behavior-based scenario discovery is a
systematized set of model output clusters with distinct dynamics,
each associated with a defined region of the input space. This is the
sense in which we use the term “scenario”—a combination of a
contiguous region of a model's input parameter space and a set of
qualitatively similar model outputs which originate from that region.
In our view, this is the usage most consistent with established defi-
nitions of the term (e.g., Spaniol & Rowland, 2019) and more con-

ventional scenario generation methods.

3 | METHODS

In this section, we describe our methodological approach to gener-
ating multivariate scenarios with a simulation model, as well as ana-
lyzing the resulting scenarios. We closely follow the original approach
for scenario discovery with clusters of time series introduced by
Steinmann et al. (2020), but extended to multivariate model outputs.
In this sense, we draw heavily upon both extensions to scenario
discovery described previously: the consideration of multiple classes
of outcomes, and the consideration of temporal dynamics. First, we
describe our case study and associated simulation model, which we
use to demonstrate our approach. Second, we document the con-
ducted simulation experiments, through which we generated the data
underlying the generated scenarios. Third, we describe the multi-
variate clustering approach used to identify the distinct dynamics
associated with the scenarios. Last, we document the rule induction
performed to link the dynamics to their generative parameter input
ranges, and the reconstruction process used to verify the rule

induction.

3.1 | Case study

The fictional decision making context which we use throughout this
paper to demonstrate our methodological innovations is a protest
movement with potential for violent escalation. In particular, we are
interested in generating scenarios which high-level decision makers
in national security and law enforcement may use to evaluate policy
intervention alternatives. These alternatives might theoretically
include the deployment of law enforcement personnel, monitoring of
the movement, or information operations, up to the repression of the
movement due to an excessive risk to public safety and security. This
is a suitable case study for behavior-based scenario discovery for
multiple reasons. First, the system is characterized by dynamic
complexity (Sterman, 2002) and delays in policy response, making
temporal analysis necessary. Second, ensuring public safety and
security is an ongoing task not defined by an end state (as is common
in scenario discovery, see for example, work by Bryant and
Lempert, 2010; Student et al., 2020b). We assume in this decision
context that it is possible to create a simulation model of the protest

movement in question which is accepted and considered useful by all
relevant stakeholders.

A system dynamics model of the fictional protest movement
supports our case study. The purpose of our model is to explore the
potential evolution of a protest movement through simulation. As
such, the goal of our modeling efforts is not to calibrate our model to
a specific protest movement. Rather, we include dynamics like
growth, decline, and escalation of violence that characterize the
behavior patterns of protest movements in general. The model is
exploratory in nature, and should not be regarded as a fully validated
model with which protest dynamics can be studied.

The underlying dynamics of a complex societal phenomenon are
usually hard to grasp and understand. System dynamics models are
able to include a multitude of assumptions on causal relationships of
and between societal dynamics, and therefore these models are
applicable to study a system's emergent behavior by analyzing the
impact of feedback loops and nonlinear behavior (Sterman, 2000;
Veldhuis et al., 2023). The core factors and causal relationships of our
simulation model, visualized in Figure 1, are adapted from theory
driven modeling studies focused on the dynamics of protest move-
ments (Alsulami et al., 2022; van der Zwet et al., 2022).

The core stock-flow-feedback mechanism of our model describes
the behavioral transition of people from being a potential protester to
being mobilized into an active protester, and eventually fatigue or
withdrawing as a retired protester. Active protesters are divided into
two groups: new protesters and experienced protesters. New pro-
testers typically have a higher exhaustion rate and lower mobilization
effect on potential protesters, and therefore a lower positive impact
on the longevity of the protest movement compared to experienced
protesters (Alsulami et al., 2022). New protesters mature toward
experienced protesters as they spend time together organizing and
participating in protest activities. It can be assumed experienced
protesters establish more strong relationships that yield stronger
collective effects. If the core group of experienced protesters ex-
ceeds a certain threshold, the limit core support, the collective effect
makes them less likely to retire.

The disturbance is the trigger for the mobilization dynamic of the
model. This factor mimics the level of animosity a certain part of the
population has toward a specific government or other type of rele-
vant topic. The disturbance is modeled as a sigmoidal function that
transits from a “relaxed” state to a “tense” state, in which the mobi-
lization effects are larger and protests activities are more legitimized
by the population (Gallo, 2013). The threshold disturbance factor
determines when a disturbance overshoots the tolerance in a society
and the tension is triggered. We assume that disturbances could
occur with different intensities and duration. The steepness distur-
bance factor influences how quickly the transition from the relaxed
state to the tense state occurs.

The output of the mobilization dynamic are the protests orga-
nized by the protesters. It is assumed that the number of protests is a
function of the number of protesters. A percentage of these protests
escalate into violent protest or riots depending on a number of fac-

tors: a high rate of new protesters compared to experienced
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FIGURE 1 System dynamics model of a fictional protest movement.

protesters and a lack of organizational capacity positively influence
the rate of protests that escalate (Gustafson, 2020). Furthermore,
repression is an instrument aimed at limiting the negative effects of
protests, however, it causes more protests that lack organizational
capacity to escalate into violence. These dynamics have an intensi-
fying impact on the conflict situation as they positively influence the
legitimacy of the movement and the escalation due to repression, if
the level of repression is higher than what the level of escalation

legitimizes.

3.2 | Simulation experiments

To generate a wide range of plausible future protest movement
dynamics, we simulated the protest movement model described
above using a variety of parameter settings, each producing a un-
ique plausible future behavior of the movement. In total, we con-
ducted 1000 simulation experiments with unique input parameter
value combinations. This number proved sufficient to generate
diverse and interesting clusters without making the cluster com-
putation process excessively long. As the model is deterministic, we
did not perform any replications of the individual combinations. The
sampling of the input parameter value combinations, as well as the
processing and storage of the simulation experiments, was done in
Python using the Exploratory Modeling & Analysis Workbench
(Kwakkel, 2017). The simulation experiments themselves were run
in Vensim DSS 8.1 using the Runge-Kutte 4 Auto integration tech-
nique over 2000 time steps. Of these time steps, the first 200 time
steps (those before the exogenously introduced disturbance) were

considered part of the model's warm-up period, and discarded
before analysis.

To create the unique input parameter value combinations used
for the simulation experiments, we used Latin Hypercube Sampling
(McKay et al., 1979) to uniformly cover the input space. The
parameter ranges defining this space are given in Table 1. We em-
pirically identified these parameter ranges, first based on literature
and the model design, and then by exploring the parameter space for
interesting and diverse model dynamics.

Based on discussions with stakeholders, domain experts, and
model exploration, we identified two model outcomes of interest,
namely the number of protests, and the number of experienced pro-
testers. These two outcomes may be considered decision-relevant in
the context of the fictional protest movement depicted by our

model.

3.3 | Multidimensional time series clustering
To identify underlying behavioral patterns across the simulation ex-
periments, we clustered the resulting data across the two afore-
mentioned outcomes of interest. The simulation data was first pre-
processed individually per outcome using the standard scaler in the
Python package scikit-learn (Pedregosa et al., 2011), thus removing
the mean and scaling all model output time series to unit variance.
This was necessary as the observations differed in their amplitudes
and means by multiple orders of magnitude.

For the clustering step, we used k-means clustering with a
Dynamic Time Warping distance metric, implemented in the

858017 SUOLILLOD 3Aea.0 3|l jdde au Aq peuenob afe sejone VO ‘8sn Jo se|ni 10} ArIqiT8UIIUO /3|1 UO (SUORIPUOD-PUE-SWLBIW0D A8 | 1M ATelq 11 |UO//SdNL) SUORIPUOD pUe SWLe 1 843 885 *[202/60/TT] Uo ARiqiTauljuo Ae|IM ‘ Spue|ieyieN aueIyo0D - jes(ed sed AQ #6T 204/200T 0T/I0p/LLI00" A3 1M AReid 1 jeuluo//Sdny wolj pepeojumod ‘0 ‘ZGTSELSZ



STEINMANN ET AL.

6 of 17
597 | WiLEY

TABLE 1 Input parameter ranges for sampling.
Model parameter Range Unit
Duration of disturbance [1, 15] Days
Disturbance intensity [0.4, 1.8] Dimensionless

Threshold disturbance [0.4, 0.8] Dimensionless
Steepness disturbance [1, 8] Dimensionless
PO [40, 100] Protesters
NO [50, 100] Protesters
EO [0, 80] Protesters
AO [0, 60] Protesters
Mobilization effect new [0, 0.5] Protesters/
protesters protester/day
Mobilization effect [0, 0.5] Protesters/
experienced protesters protester/day
Exhaustion rate new [0, 0.1] Protesters/day
protesters
Exhaustion rate [0.02, 0.1] Protesters/day
experienced protesters
Median duration [14, 35] Days
experience gain
Limit core support [10, 100] Protesters
Steepness [5, 10] Dimensionless
Stabilization rate [0.002, Protesters/

0.008] protester/day
Protests per protester [0.04, 0.1] Protests/protester/day
Organization capacity [5, 10] Dimensionless
Limit legitimate repression [0, 0.6] Protests/repression
Percentage repression [0.1, 0.3] Protests/repression

Python package tslearn (Tavenard et al., 2020). The clustering was
performed across both outputs of interest simultaneously. To
reduce computation demands in the clustering phase, we
restricted the clustering to the first 800 postdisturbance time
steps of the model runs, where the largest differences in dynamics
could be observed. We chose to search for k =5 clusters. This
number was chosen empirically based on subsequent analysis
steps, but has some grounding in literature. Notably, Lord et al.
(2016) advocated using between four and six scenarios, as three
scenarios may be interpreted as a high-moderate-low arrangement
to the detriment of the resulting decision (Goodwin et al., 2019),
and seven approaches the limit of human working memory
(Miller, 1956). In the original paper describing behavior-based
scenario discovery, the authors chose six clusters (Steinmann
et al., 2020), while in another application of behavior-based sce-
nario discovery, Kahagalage et al. (2024) explicitly chose three
scenarios to frame the resulting clusters as high, moderate, and

low performance levels of the studied system.

3.4 | Generative input subspaces per cluster

To identify the regions of the input space (also called subspaces) from
which the majority of each cluster's included simulation experiments
originate, we applied a rule induction technique called the Patient
Rule Induction Method or PRIM (Friedman & Fisher, 1999), again
implemented in the Exploratory Modeling & Analysis Workbench,
with an updated objective function (Kwakkel & Jaxa-Rozen, 2016). In
our case, we applied PRIM to the input parameter combinations
associated with each cluster's constituent model outcomes, in line
with previous work by Steinmann et al. (2020). To facilitate later
analysis, we restricted the rule induction algorithm to a small number
of input parameter space dimensions which had comparatively
greater influence on model dynamics and clustering outcomes.
Building on the work by Weinans et al. (2024) on identifying
behavior-relevant parameters, we used visual inspection of model
input-output data as well as global sensitivity analysis using the
PAWN method (Pianosi et al., 2016) to select these input dimensions.
The latter was implemented in the Python package SALib (Herman &
Usher, 2017; Iwanaga et al., 2022). PAWN, named after the two lead
developers, measures the influence of a specific model input as the
variation in a model output's cumulative distribution function (CDF)
when the uncertainty about that input is removed. This is done by
comparing the unconditional and conditional (i.e., with a fixed value
for the specific model input) CDFs using the Kolmogorov-Smirnov
statistic. To ensure comparability across the clusters, we chose the
first box in the PRIM peeling trajectory of each cluster with a density
of 80% as that cluster's representative subspace, or, if such a box
could not achieved, the highest-density box available.

To verify that the identified input parameter regions were pre-
dictive for their associated clusters' dynamics, we reconstructed each
cluster's dynamics from their respective input subspaces. To do so,
we drew 50 samples, again using Latin Hypercube Sampling, from
each cluster's associated input region, and then used the previously
described Python-Vensim simulation setup to run simulation experi-
ments for each of those samples. We then visually compared the
resulting model dynamics with those originally identified through the
clustering algorithm.

Furthermore, we created verbal narratives for each scenario by
manually assessing each cluster's dynamics, the underlying parameter
ranges, and the model's causal relations. In writing the narratives, we
relied on the scenario criteria proposed earlier, as well as the scenario
narrative evaluations proposed by Dhami et al. (2022). The resulting
narratives may be more accessible or suitable for certain decision
support contexts or communication channels than the quantitative,
data-heavy model outputs underlying them.

Finally, to inspect the resulting scenarios describing the fictional
protest movement's plausible future developments, as well as their
separability, we used a combination of visual and statistical analysis
techniques. Hakanen et al. (2023) refer to such approaches as “co-
ordinated multiple views,” and consider them especially suitable for
high-dimensional model outputs. We leveraged recent advances in in

the visual inspection of many-objective optimization outcomes
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(Filipic & Tusar, 2018; Osika et al., 2023) to develop two novel visual
representations of multiclass scenario subspaces in the form of
pairwise grid plots and parallel coordinate plots. Furthermore, we
explored the representation of the subspaces as intersecting sets
using a so-called upset plot (Lex et al., 2014), an extension of initial
attempts at quantifying overlap by Steinmann et al. (2020). Upset
plots are widely used in the biomedical domain (Gadhave et al., 2019)
to analyze sets and their various intersections. We apply this idea to
the subspaces and the sampled points they contain. As some points
lie within two (or more) subspaces' boundaries, their dynamics may
be attributed to multiple clusters, which might in turn introduce
ambiguity into the decision support process. By quantifying the box
subspace intersections, a better understanding of the separation

between the different subspaces can be obtained.

4 | RESULTS
4.1 | Clustering outcomes

The results of the multivariate clustering applied to our model's two
decision-relevant outcomes are shown in Figure 2 for all five clusters
together in the top row, and individually below. It is apparent that
each cluster shows similar internal dynamics, but that these dynamics
are qualitatively different across the clusters, especially when con-
sidering both outcomes of interest. Furthermore, the dynamics of the
number of protests and number of experienced protesters for each
cluster are quite similar. This can be explained by the fact that

Protests Experienced protesters
20 100 20

WILEY—L 7

experienced protesters are a large driver of protest activity in our
model. The labels given to each cluster are the narrative names
introduced later in Section 4.4—for consistency, we use them
throughout the manuscript. These labels were partially manually
assigned, and partially generated using Al based on the verbal nar-
rative descriptions. We note here that the chosen colors do not imply
any qualitative assessment of the clusters - for example, cluster
Intensity is not necessarily more desirable than cluster Indifference,
despite the green and red colors, respectively. We further observe
that the clusters are not evenly sized. The Waves cluster contains
314 model runs, cluster Hidden Threat contains 82 model runs,
cluster Intensity contains 70 model runs, cluster Indifference contains
183 model runs, and cluster Flickering contains 351 model runs. The
data underlying this clustering was generated in roughly 2 min, and
the clustering itself took roughly 20 min, both on a standard work-
station. We note here that, due to the uniform sampling, the relative
frequency of certain model runs and the associated cluster sizes do
not imply anything about the real-world probabilities of the different
clusters emerging in the model.

In Figure 3, we visualize the 1000 input parameter combinations
in the model's input space, colored by the cluster their resultant
model outputs were assigned to. In the scatter plot in the lower
triangle, we observe that distinct regions of colored points are visible.
For example, orange points, denoting cluster Waves, seem largely
associated with higher stabilization rate values and lower values for
the exhaustion rate of new protesters. In the filled kernel density
estimate plots on the diagonal, the relative change in assigned clus-
ters over each variable's range is shown. Here too certain trends are
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FIGURE 2 Identified clusters (k = 5) for 1000 model runs across two outcomes of interest (number of protests, and number of experienced
protesters). The top-left pair of figures shows all clusters together for the two outcomes of interest, and the remaining pairs of figures show the
individual clusters, paired by color. The x-axes represent time over the model run, and the y-axes the number of protests and experienced
protesters, respectively. The cluster labels are the narrative names introduced in Section 4.4.
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FIGURE 3 Pair grid plot for model inputs and their associated output clusters. Every subplot represents a pair of input parameters, except
for the subplots on the diagonal which refer to a single input parameter. In the lower triangle, every point represents a single model run's input
parameter values, the color of the point indicating the cluster the resulting outputs were assigned to. The subplots on the diagonal are filled
kernel density estimates, and represent the relative distribution of the different clusters as the parameter value changes. Cluster colors match

with previous figure.

apparent. For example, cluster Waves is only present above values of
4 for steepness disturbance, while cluster Flickering virtually dis-
appears around a value of 6 for the same input parameter. It is also
apparent that certain input parameters have very little effect on some
clusters. For example, the number of model runs assigned to cluster
Intensity is virtually invariant to the value of the stabilization rate
parameter. In the Supporting Information S1: File S1, we also present
contour plots for each cluster individually.

4.2 | Generative input subspaces per cluster

When performing rule induction with PRIM for each identified clus-
ter, the subspaces documented in Table 2 result. These regions of the

model's input space were found by PRIM to be predictive of the
associated cluster, that is, an input parameter combination sampled
from within one of these regions is commonly assigned to that
region's associated cluster in the output space. The probability of this
assignment is 280%, as this was the chosen density threshold for the
rule induction. Table 3 gives summary coverage, density and inter-
pretability statistics for each induced subspace.

4.3 | Cluster reconstruction
To verify that the subspaces identified with PRIM for each cluster

actually represent their clusters' dynamics well, we reconstruct each
cluster from its input subspace by performing another set of
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TABLE 2 Induced input parameter subspaces for each cluster.
Model parameter Waves Hidden threat Intensity Indifference Flickering
Steepness disturbance [5.25, 7.99] [1.41, 7.82] [2.46, 6.14] [1.00, 4.94] [1.00, 3.71]
Exhaustion rate new protesters [0.033, 0.100] [0.000, 0.017] [0.031, 0.094] [0.014, 0.039] [0.027, 0.100]
Limit core support [10.03, 99.96] [66.95, 99.96] [30.78, 80.61] [30.19, 92.39] [10.03, 99.96]
Stabilization rate [0.002, 0.008] [0.002, 0.008] [0.003, 0.007] [0.004, 0.008] [0.002, 0.007]

TABLE 3 PRIM details for each cluster's subspace.
Cluster Coverage Density Interpretability
Waves 0.67 0.82 2
Hidden threat 0.61 0.76 4
Intensity 0.51 0.27 4
Indifference 0.30 0.81 4
Flickering 0.56 0.81 3

Note: Coverage represents the percentage of cluster members included in
the found subspace, density the ratio of included cluster members over
total points in the box, and interpretability the number of restricted

dimensions necessary. Abbreviation: PRIM, patient rule induction method.

simulation experiments for each cluster's generative input subspace.
The number of experiments for each cluster is based on the cluster
sizes described in Section 4.1. In Figure 4, we show the original and
reconstructed dynamics for the first outcome of interest, the number
of protests. We restrict ourselves to one outcome of interest here
because the two outcomes are highly correlated (evident in Figure 2).
It is visually apparent that for every cluster, the reconstructed
dynamics are similar to the original ones. This indicates that the
identified regions are indeed predictive for the associated clusters'

dynamics.

4.4 | Narratives

Based on the identified clusters and their associated input parameter
regions, the following short narratives may be associated with each
identified cluster.

e Waves: A short but intense period of protests immediately follows
the initial external disturbance. Afterwards, there is a period of
relative calm, with few to none daily protests. Subsequent to this
quiet period, the protest movement regains momentum and re-
establishes daily protests at levels comparable to the initial activity
period. The number of experienced protesters closely matches this
pattern—an initial surge in numbers, followed by the movement
almost completely dying out, only to return to manpower levels
comparable to the first phase of protests. This dynamic is driven
by a high steepness of the disturbance, and a rapid exhaustion rate
of new protesters.

e Hidden threat: The movement maintains a relatively low, but
constant frequency of protests. There is no substantial change
over time. While few protests are ever observed, a relatively large
number of experienced protesters forms a hard core of the
movement, keeping it alive, and potentially serving as a breeding
ground for a future escalation. The main drivers of this scenario
are a very low exhaustion rate of new protesters, as well as a high
threshold value for the core support of the movement.

o Intensity: The protest movement maintains a high activity rate.
Although the absolute number of protests varies, the movement is
consistently active. The number of experienced protesters is also
relatively high, although it too shrinks and grows rapidly. This
behavior pattern is driven by intermediate values for the steepness
of disturbance, stabilization rate, and limit of the movement's core
support, and a high value for the exhaustion rate of new
protesters.

o Indifference: Apart from a minor initial spike, the movement never
gains the momentum or followers necessary for sustained and
intense protest activity, staying consistently at low activity levels.
However, there is also no sigh of the movement completely col-
lapsing. The dynamics of this scenario can be traced to a low value
for the exhaustion rate of new protesters and steepness of dis-
turbance, and intermediate to high values for the limit of core
support and stabilization rate.

o Flickering: While the protest movement never establishes high
activity and support levels, it frequently gains and loses momen-
tum at a lower level, showing repeated signs of life and warranting
constant attention. The key drivers of this behavior pattern are a
low steepness of disturbance, low to intermediate value for sta-
bilization rate, and intermediate to high value for the exhaustion
rate of new protesters.

As the five four-dimensional subregions described in the table
are difficult to intuitively visualize, we present them in another
pairwise grid plot in Figure 5. This allows the spatial positions of the
five boxes to be visually analyzed for every pair of input parameter
dimensions individually. In a confirmation of observations already
made based on Figure 3, it is apparent that not all input dimensions
are predictive for every cluster. For example, the Waves cluster is
essentially independent of the value of the core support limit.
However, certain interactions and alignments between the different
boxes are also visible, notably for the exhaustion rate of new pro-

testers (Hidden Threat and Indifference are clearly separated from
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FIGURE 4 Comparison of clusters identified in the originally generated data set, and ensembles of model runs generated from each cluster's
input parameter subspace, for a single outcome of interest. The pairwise behavioral similarity shows that the identified subspaces are indeed
predictive for each cluster's unique dynamics. Cluster colors match with previous figures.

Waves, Intensity and Flickering, which overlap considerably) and clusters is visible, apart from minor overlap at the boundaries of
the steepness disturbance (Waves and Flickering are clearly sepa- some clusters.

rated, while Intensity and Indifference overlap). In the plot com- In Figure 6, we provide a novel visualization of PRIM subspace
bining these two parameters, a distinct separation between all five regions using a parallel coordinate plot with shaded areas
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FIGURE 5 Generative input subspaces for each cluster, shown for the four sensitive input parameter axes shown in Figure 3. Each box
denotes a two-dimensional shadow of the four-dimensional hypercube which contains most of the input parameter combinations belonging to a

specific cluster. Cluster colors match with previous figures.

representing each cluster's predictive range for each studied input
parameter axis. This allows a direct comparison of the similarities
between different clusters' subregions, as they are shown in the same
figure in their entirety (as opposed to the lower-dimensional shadows
in Figure 5. For example, we may observe that clusters 2 and 3 are
roughly comparable for the first two plotted axes, but diverge
markedly otherwise. The figure also makes it apparent how some
clusters are very narrowly demarcated along certain axes (such as
cluster Hidden Threat for the third axis Exhaustion rate new protest-
ers), and very widely along others (e.g., cluster Hidden Threat along
the fourth axis Steepness disturbance). We note here that these
parameter ranges, as described in Section 3.2, were chosen for the
dynamics they created with our stylized model rather than any real-
world equivalence.

4.5 | Cluster separability

To better understand the overlaps and spatial interactions of the five
clusters' input subspace regions, we represent the model runs in each
subregion as a set, and analyze the intersections of these sets with an
upset plot in Figure 7. On the bottom, the individual clusters form
one row each, the bars on the left-hand side showing how many
model runs lie within the input parameter subspace associated with
that cluster. The dots and lines toward the right represent intersec-
tions or overlaps between these subspaces, with the bars above the
dots showing how great these intersections are. For example, the
Hidden Threat and Indifference subspaces contain 66 and 68 model
runs, respectively, but have an overlap of only one model run. Thus,
they are well-separated. This can be corroborated by considering
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Figure 5, where it is visible that these two clusters have only minimal
overlap in the parameter dimension Exhaustion rate new protesters.
The upset plot thus adds a quantitative underpinning to the visual
inspection possible with pairwise grid plot in Figure 5.

A number of observations can be drawn from this figure. First,
most model runs only lie within a single cluster's input space
subregion. This is desirable, as it indicates that the subregions are
well separated and distinct. The greatest overlap is between
clusters 2 and 4. This makes intuitive sense, as the respective
dynamics of these two clusters do not differ much qualitatively,
only quantitatively in terms of their amplitude. It is therefore not
surprising that they are close together in the input space. How-
ever, we also notice that 321 model runs are not associated with
any cluster. In other words, for almost one-third of all studied
plausible future dynamics of the protest movement, it is unclear to
which scenario they belong. By extension, this implies that one-
third of the model's input space is not covered by any cluster's
subspace. Finally, only four model runs lie within the subspaces of
three different clusters.

5 | DISCUSSION

In the presented work, we extended behavior-based scenario dis-
covery to multivariate outcomes in a case study of protest movement
dynamics. Furthermore, we introduced a number of novel analytical
techniques for making sense of the resulting model-generated sce-
narios of protest intensity and movement support. In this section, we
discuss observations from our case study, and implications of our

methodological innovations.

5.1 | Observations from case study
Our application of multidimensional behavior-based scenario discov-
ery to the case study of a fictional protest movement yielded five
distinct and interesting scenarios. Each scenario provides a unique
description of a plausible future development of the movement re-
garding two decision-relevant objectives, the number of protests
per day and the number of experienced protesters. It is noteworthy
that none of the scenarios represent conventional scenario arche-
types such as utopia or dystopia—every generated scenario poses its
own challenges to decision makers. This is a key advantage of gen-
erating scenarios with simulation models (Guivarch et al., 2017),
rather than creating them directly using structured methods such as
futures cones or Intuitive Logics. It may also improve the robustness
of the resulting decisions and subsequent policing actions, as they
have been evaluated against a wider range of challenging scenarios
(Lamontagne et al., 2018).

The extension of behavior-based scenario discovery
(Steinmann et al., 2020) to multidimensional model outputs over

time generates scenarios which may be more useful for decision
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support processes. For example, through the addition of a second
dimension, a clear difference emerged between clusters 1 and 3,
which have comparable protest numbers, but differ substantially
regarding the number of protesters. While our case study included
only two decision-relevant dimensions, more dimensions could
easily be added, creating even richer and more complex scenarios.
This may be especially interesting for output dimensions which
are less closely correlated than the ones we used in our case
study.

When performing the rule induction for each cluster's gen-
erative input subspace, PRIM generates an entire trajectory of
possible subspaces, which differ regarding density, coverage, and
interpretability. We chose the first box to reach a density of 80%
(or, failing that, the highest-density box available), giving a rela-
tively small but highly predictive result for each cluster. The 80%
density threshold was reached for three out of five clusters, with a
fourth cluster reaching 75% density. Using small, high-density
boxes is one possible solution to PRIM's orthogonality constraints
(see Auping, 2018; Quinn et al., 2017), and provided relatively
good reconstructions of each cluster's dynamics from its associ-
ated subspaces. However, it also had the drawback of relatively
low coverage values for the individual subspaces (see Table 3,
which by extension left almost one-third of all model runs not
assigned to any cluster. These runs stem from the uncovered or
white regions visible in Figure 5. Care must be taken when
interpreting these unassigned model runs—it is not that their
dynamics are individually fundamentally different from those
included in the five found subspaces, but that their generative
input parameter combinations are difficult to distinguish from
those of model runs assigned to other clusters. In effect, the un-
covered regions may be seen as a sort of fuzzy boundary space
between the high-density subspaces of the five scenarios.

Whether it is acceptable to have such a degree of uncertainty
surrounding the scenarios and their respective input subspaces will
depend on the decision support context. In domains which are
accustomed to operating under uncertainty, such as public safety and
security, the incompleteness of the scenarios may be more acceptable
than in aviation or nuclear energy, for example. We note here that the
choice of density threshold value is itself a many-objective optimi-
zation problem between minimizing the number of model runs not
included in any scenario's generative subspace, maximizing the num-
ber of runs included in a single scenario's generative subspace, and
generating roughly equally-sized scenarios.

The verbal narratives which we wrote to accompany each clus-
ter's associated dynamics and identified input parameter region
complemented the underlying quantitative data. However, this writing
was a relatively free-form process, as we found little guidance in the
literature on how to craft a scenario narrative based on a simulation
model's dynamics. Length, style, and focus of these narratives could
be adjusted. However, it is unclear how this might affect the per-
ception of the scenarios, with associated impacts on the resulting

decisions.
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5.2 | Methodological innovations

Scenario discovery was originally proposed by Bryant and Lempert
(2010) for creating a single scenario based on a single outcome of
interest's value at a single point in time. Subsequently, the method
has been enhanced by Gerst et al. (2013) (among others) for multi-
dimensional outcomes of interest, and by Kwakkel et al. (2013) for
outcomes of interest over time. This work combines these two en-
hancements to enable the generation of multidimensional, temporal
scenarios. This makes scenario discovery increasingly useful for
decision support in complex, real-world problem contexts, which are
commonly multidimensional and temporally sensitive (Kwakkel &
Auping, 2021; Osika et al.,, 2023). Furthermore, by clustering the
model's outputs in multiple dimensions, the resulting clusters may be
associated with more separable input subspaces, as the outputs can
more easily be differentiated. The outputs of our method are also
more comparable to those resulting from other scenario methods, in
that they are multidimensional and include narratives. This raises the
possibility of using an ensemble of scenario methods, and thus cre-
ating a scenario “superset” containing plausible futures generated
with a variety of methods. This may further improve the robustness
and effectiveness of the resulting decisions, as they have been
evaluated against a wider range of scenarios.

By visually and statistically inspecting both the individual sce-
nario regions and their relations to one another across multiple plot
types, a more holistic understanding of the scenarios can be gained
than through comparison of their output dynamics alone. This has a
number of potential benefits. First, the differences between the
scenarios become clearer, especially regarding their underlying driv-
ing forces. Second, the effectiveness of policy interventions for each
scenario can be assessed more accurately, and interventions target-
ing specific scenarios can be designed. This allows for more granular
and adaptive policy design, which is a key tool for coping with
modern societal challenges in the face of uncertainty (Kwakkel &
Haasnoot, 2019). Finally, the visual representation of the scenarios
using the various presented methods may facilitate communication
and explanation of the quantitative, multidimensional data underlying

the scenarios.

6 | CONCLUSION

We extended behavior-based scenario discovery with multivariate
time series clustering to generate multidimensional scenarios with
underlying drivers and associated narratives. The resulting scenarios
were all distinct and uniquely challenging for potential policy inter-
ventions, as they represented qualitatively distinct alternative future
dynamics across multiple decision-relevant objectives. We also
introduced a number of novel analytical approaches for evaluating
the generated scenario sets, including pairwise grid plots and parallel
coordinate plots of the scenario input subspaces, upset plots of the

model runs lying within the scenario subspaces, and reconstruction of

cluster dynamics from those subspaces. This multimethod approach
to cluster evaluation highlights the differences and similarities
between the various scenarios, thus improving upon the state of the
art in analyzing the scenarios generated with multiclass scenario
discovery. These methodological innovations can strengthen scenario
generation for high-quality public policy decision-making, including
mitigation of safety and security risks connected to adverse devel-
opments of protest movements.

The consideration of more than one policy objective when gen-
erating scenarios for decision support more closely reflects real-
world decision contexts, and makes the outputs of behavior-based
scenario discovery more comparable to those of more conventional
scenario generation methods. This also opens the door to multi-
method scenario generation, in which scenario “supersets” are gen-
erated using a variety of methods to get the most diverse and
comprehensive possible set. This may improve the robustness and
usefulness of the resulting decisions. A key area of research in this
regard is a more structured approach to generating integrated verbal
narratives (and associated names) from (sets of) quantitative time

series.
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