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Abstract

Scenarios are commonly used for decision support and future exploration of com-

plex systems. Using simulation models to generate these scenarios, called scenario

discovery, has received increased attention in the literature as a principled method

of capturing the uncertainty, complexity, and dynamics inherent in such problems.

However, current methods of incorporating dynamics into scenario discovery are

limited to a single outcome of interest. Furthermore, there is little work on the post‐

generation evaluation of the generated scenarios. In this work, we extend scenario

discovery to multiple dynamic outcomes of interest, and present a number of visual

and statistical approaches for evaluating the resulting scenario sets. These innova-

tions make model‐based scenario generation more widely applicable in decision

support for complex societal problems, and open the door to multimethod scenario

generation combining model‐based and model‐free methods such as Intuitive Logics

or futures cones.
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1 | INTRODUCTION

Many modern societal decision problems are plagued by the presence of

uncertainty, complexity, and multiple involved actors (Gotts et al., 2019;

Vermeulen et al., 2013). Scenario‐based planning has emerged as a

popular solution to these challenges (Bradfield et al., 2005; Godet, 2000;

Schoemaker, 1993). Scenarios describe the future as a systematized set

of plausible narrative descriptions with underlying drivers. This enables

improved understanding of key uncertainties, exploration of policy al-

ternatives, and clarification of stakeholder objectives. Scenario‐based

decision support is considered especially effective for long‐term deci-

sion contexts (Pot et al., 2023).

A key challenge in scenario‐based decision support is how to

create a set of scenarios which comprehensively summarizes the

decision‐relevant possible future developments of the studied

problem, and whose constituent scenarios are both individually

plausible and distinct from one another (Dhami et al., 2022; Lord

et al., 2016). Under the banner of scenario discovery, a growing body

of literature seeks to investigate how (simulation) models may be

used to generate such scenarios, as this allows an explicit coupling of

driving factors (i.e., model inputs) to resulting futures (i.e., model

outputs) (Bryant & Lempert, 2010; Kwakkel & Jaxa‐Rozen, 2016). A

topic of special interest in this regard is how temporal dynamics may

be included in such a scenario generation process, as temporal pro-

cesses such as delays, feedbacks, and accumulation are notable

challenges for human cognition (Sterman, 1994) and could be tackled

with computational methods (Lustick & Tetlock, 2021). Behavior‐

based or dynamic scenario discovery based on time series clustering
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(Kwakkel et al., 2013; Steinmann et al., 2020) has been proposed as a

possible solution for addressing this challenge (Kwakkel &

Auping, 2021).

However, the current state of the art in behavior‐based scenario

discovery is deficient in (at least) two ways. First, behavior‐based

scenario discovery is currently only applied to a single outcome of

interest, or policy objective, by which the scenarios are characterized

and differentiated. This is too simplistic for application in complex,

real‐world use cases, which often involve conflicting and uncertain

trade‐offs between multiple objectives (Hakanen et al., 2023;

Kasprzyk et al., 2013; Kwakkel et al., 2016). Second, there is a lack of

methods for analyzing the differences between the various scenarios

constituting the generated scenario set. Understanding the quanti-

tative and qualitative differences between the scenarios in the set is

crucial for informed decision making, especially regarding the

boundaries between them (Bankes, 2011).

In this study, we extend behavior‐based scenario discovery to

multidimensional scenarios, that is, scenarios including multiple

decision‐relevant objectives, using a multidimensional clustering

algorithm. Furthermore, we demonstrate a number of visual and

quantitative methods for evaluating the resulting scenarios which

have not previously been applied to scenario discovery. The goal of

these contributions is to enhance the usefulness of behavior‐based or

dynamic scenario discovery for simulation‐based decision support,

especially where uncertain, complex, and multiactor problems are

concerned.

2 | BACKGROUND

2.1 | Scenarios

Scenarios can be defined as a systematized set of plausible future

oriented descriptions of a phenomenon that include external context

and are comparatively different (Spaniol & Rowland, 2019). In the

words of Lustick and Tetlock (2021), “scenarios tend to be colorful

inside‐view accounts of events as they could unfold if key causal

drivers took on either lower or higher values.” This accessibility

makes them especially attractive for decision makers as on‐ramps

toward engaging with a problem's full complexity (Wilkinson

et al., 2013). Nowadays, scenarios are widely used in decision support

in a number of domains including climate change adaptation (Lee

et al., 2021), national security (Veldhuis et al., 2020), business (Halim

et al., 2016), and public health (Crawford & Wright, 2022).

The effectiveness of scenario‐based decision support hinges on

the usefulness or fitness for purpose of the underlying scenario set

(Sluijs et al., 2021). A number of authors have proposed criteria for

evaluating scenario sets. For example, Dhami et al. (2022) proposed

completeness, context, plausibility, coherence, and order effects,

while Nowack et al. (2011) put forth credibility, transferability, and

legitimacy. For an extensive review of such criteria, we point the

reader to the review of Amer et al. (2013).

In this study, we follow the scenario criteria put forth by

Steinmann et al. (n.d.), namely diversity, plausibility, and compre-

hensiveness. Diversity implies that the scenarios in the set are

qualitatively distinct from one another (Spaniol & Rowland, 2019) and

therefore not redundant (Litchfield et al., 2011). This may allow a

more comprehensive assessment of the policy interventions (Lord

et al., 2016; Wilkinson & Eidinow, 2008). Plausibility refers to the

notion that scenarios should represent future states of the world

which could actually occur (Lord et al., 2016; Schoemaker, 1993),

although no claim is made to the likelihood of this occurrence (Wiek

et al., 2013). Finally, comprehensiveness captures the idea that the

scenario set should give as complete an account of the system's

potential future developments as possible, so as to avoid blind spots

(Derbyshire, 2020; Derbyshire & Morgan, 2022). This means rea-

soning across the widest possible cross‐section of the futures cone

(Dhami et al., 2022; Gall et al., 2022). This may improve the robust-

ness of the resulting decisions, as a wider range of possible future

conditions is considered (Lempert et al., 2006; Rosenhead

et al., 1972).

2.2 | Generating scenarios

Generating scenario sets which meet some desired criteria can be

accomplished in a number of ways. One example is Intuitive Logics

(Bradfield et al., 2005), which first identifies a broad range of factors,

reduces these to the most impactful drivers, and then creates sce-

narios based on a high‐low matrix for these drivers. Futures cones

(Voros, 2003) are an alternative approach, often starting from a

“business‐as‐usual” base case and then seeking to expand this base

case in various directions to grow a cone of plausible alternative

developments over time. A common thread across these methods of

scenario generation is that they rely heavily on tacit domain expertise

and implicit mental models of the studied problem or system to

develop the decision‐relevant scenarios.

However, there are two main difficulties with this type of sce-

nario generation. First, the human brain is ill‐suited to reasoning

about nonlinear systems (Sterman, 1994). Furthermore, there is often

substantial uncertainty surrounding these systems (Lempert

et al., 2003), making precise reasoning and forecasting difficult. As

Lamontagne et al. (2018) and Dolan et al. (2021) highlighted, the

combination of these two factors implies that approaches based on

mental models and human reasoning may not fully identify the

decision‐relevant scenarios. A growing body of literature from the

exploratory modeling (Bankes, 1993) community has therefore

investigated the applicability of scenario generation methods based

on simulation models. The underlying idea is that by first representing

the system in a simulation model, and only then identifying the

decision‐relevant scenarios based on a thorough analysis of that

model, that the aforementioned pitfalls of complexity and uncertainty

can be dealt with in a principled and reproducible way. Guivarch et al.

(2017) referred to this as a simulate‐and‐story approach, as a
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counterpoint to the more established story‐and‐simulate approach

(e.g., Kunc, 2024).

2.3 | Model‐based scenario generation: Scenario
discovery

Bryant and Lempert (2010) proposed scenario discovery as a

method for generating decision‐relevant scenarios using simula-

tion models. First, a number of computational experiments are

performed on a simulation model, thus creating a data set of ex-

ternal drivers (i.e., model inputs) and resulting dynamics (i.e.,

model outputs). Then, some criterion for decision relevance is

defined, such as a minimal performance level of a specific model

output. This criterion is often based on stakeholder objectives or

policy goals. It can then be used to identify all computational

experiments which are decision‐relevant. In the final step, a so‐

called rule induction algorithm can be used to identify the part of

the model's input space from which these decision‐relevant out-

puts originate. The identified input subspace, together with the

criterion applied to the outputs, then forms the resulting scenario

in the conventional sense—a pairing of external driving forces and

resulting dynamics.

Multiple algorithms are available for performing the last step,

the rule induction. Lempert et al. (2008) compared the patient rule

induction method (PRIM) (Friedman & Fisher, 1999) and classifica-

tion and regression trees. The former appears to have more uptake

in the literature (e.g., Halim et al., 2016; Hidayatno et al., 2020;

McJeon et al., 2011; Parker et al., 2015; Popper, 2019; Student

et al., 2020b), and has also been extended and improved upon by a

number of researchers, including Dalal et al. (2013), who proposed a

Principal Components Analysis preprocessing step, Kwakkel and

Jaxa‐Rozen (2016), who evaluated alternative objective functions,

and Kwakkel (2019), who generalized PRIM's core objectives into a

many‐objective optimization. In essence, PRIM is a method for

finding the region (or “subspace”) of data space in which a subset of

that data with certain characteristics is more commonly found than

elsewhere. PRIM rule induction is performed by first drawing a

bounding box around all points in the space, and then iteratively

reducing the size of this box along one dimension of the space. The

choice of dimension to be restricted is driven by three metrics,

namely coverage, density, and interpretability. Coverage describes

how many of the points of interest are still included in the box.

Density captures how many other points are still included in the box.

Interpretability finally represents how many dimensions have

already been restricted. Coverage and density should both be

maximized, but in practice often trade off against one another.

Interpretability should be minimized, as restricting the box along

fewer input space dimensions produces more understandable and

intuitive resulting regions. For in‐depth explanations of PRIM and

this box reduction process, we refer the reader to previous works on

the method (Bryant & Lempert, 2010; Kwakkel & Jaxa‐Rozen, 2016;

Lempert et al., 2008).

2.4 | Extensions of scenario discovery

The original implementation by Bryant and Lempert (2010) focused

on finding the input parameter ranges associated with a single set of

outputs of interest. A number of researchers have since extended

scenario discovery to multiple such sets. This is sometimes called

multiclass scenario discovery, and is commonly done by grouping the

model outputs in some fashion and then performing rule induction

for each cluster in turn (e.g., Gerst et al., 2013; Guivarch et al., 2016;

Jafino and Kwakkel, 2021; Rozenberg et al., 2014). An alternative

approach is to identify alternative criteria for the decision‐relevant

model runs, and then perform rule induction for each of those criteria

individually (e.g., Greeven et al., 2016; Student et al., 2020a). The

former may improve the distinctiveness of the resulting scenarios,

while the latter may make them better targeted to the decision

problem at hand. In either case, the result is a set of scenarios, which

aligns more closely with the conventional understanding and usage of

scenarios than the original single‐scenario approach by Bryant and

Lempert (2010). However, the generation of multiple scenarios also

requires subsequent verification that these scenarios fulfill the quality

requirements defined for the decision context at hand. The evalua-

tion of diversity, which has also been called distinctiveness (Lord

et al., 2016) or separability (Jafino & Kwakkel, 2021), deserves special

attention in this regard as the model‐generated scenarios cannot be

assumed to be diverse in a human‐interpretable way. Steinmann et al.

(2020) proposed using overlap between the different scenario

regions to evaluate separability, while Jafino and Kwakkel (2021)

incorporated separability directly into the scenario generation pro-

cess by clustering in the in‐ and output spaces simultaneously. Finally,

Gerst et al. (2013) used visual inspection to evaluate separability.

The identification of the decision‐relevant model outputs

(sometimes referred to as the “outputs of interest”) before rule

induction is a critical step in successful scenario generation with

scenario discovery. The key challenge is that the model outputs,

which are often multidimensional time series, must be reduced to a

single binary variable. The choice of criterion by which to do this has

downstream effects, and deserves substantial attention during the

analytical process (Hitch, 1960). A common approach is to apply a

threshold criterion to the last value in one of the model's time series

outputs. However, multidimensional criteria, or criteria based on

statistical properties of the time series outputs such as mean or

amplitude values, can also be imagined. Steinmann et al. (2020)

proposed an alternative approach using time series clustering to first

find clusters of similar dynamics among one of the model's outputs,

and then perform rule induction for each cluster in turn. This

approach, referred to as behavior‐based or dynamic scenario dis-

covery, allows the dynamics of the system to be directly considered

when creating the scenarios (Kwakkel & Auping, 2021). It was based

on earlier work by Kwakkel et al. (2013), Gerst et al. (2013), and

Guivarch et al. (2016), and has since successfully been applied in at

least one decision support context (Kahagalage et al., 2024). An ad-

ded benefit of behavior‐based scenario discovery is that the

dynamics in the resulting clusters can more readily be translated into
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verbal narratives than the point values common in conventional

scenario discovery, which was also demonstrated by Greeven et al.

(2016). The overall result of behavior‐based scenario discovery is a

systematized set of model output clusters with distinct dynamics,

each associated with a defined region of the input space. This is the

sense in which we use the term “scenario”—a combination of a

contiguous region of a model's input parameter space and a set of

qualitatively similar model outputs which originate from that region.

In our view, this is the usage most consistent with established defi-

nitions of the term (e.g., Spaniol & Rowland, 2019) and more con-

ventional scenario generation methods.

3 | METHODS

In this section, we describe our methodological approach to gener-

ating multivariate scenarios with a simulation model, as well as ana-

lyzing the resulting scenarios. We closely follow the original approach

for scenario discovery with clusters of time series introduced by

Steinmann et al. (2020), but extended to multivariate model outputs.

In this sense, we draw heavily upon both extensions to scenario

discovery described previously: the consideration of multiple classes

of outcomes, and the consideration of temporal dynamics. First, we

describe our case study and associated simulation model, which we

use to demonstrate our approach. Second, we document the con-

ducted simulation experiments, through which we generated the data

underlying the generated scenarios. Third, we describe the multi-

variate clustering approach used to identify the distinct dynamics

associated with the scenarios. Last, we document the rule induction

performed to link the dynamics to their generative parameter input

ranges, and the reconstruction process used to verify the rule

induction.

3.1 | Case study

The fictional decision making context which we use throughout this

paper to demonstrate our methodological innovations is a protest

movement with potential for violent escalation. In particular, we are

interested in generating scenarios which high‐level decision makers

in national security and law enforcement may use to evaluate policy

intervention alternatives. These alternatives might theoretically

include the deployment of law enforcement personnel, monitoring of

the movement, or information operations, up to the repression of the

movement due to an excessive risk to public safety and security. This

is a suitable case study for behavior‐based scenario discovery for

multiple reasons. First, the system is characterized by dynamic

complexity (Sterman, 2002) and delays in policy response, making

temporal analysis necessary. Second, ensuring public safety and

security is an ongoing task not defined by an end state (as is common

in scenario discovery, see for example, work by Bryant and

Lempert, 2010; Student et al., 2020b). We assume in this decision

context that it is possible to create a simulation model of the protest

movement in question which is accepted and considered useful by all

relevant stakeholders.

A system dynamics model of the fictional protest movement

supports our case study. The purpose of our model is to explore the

potential evolution of a protest movement through simulation. As

such, the goal of our modeling efforts is not to calibrate our model to

a specific protest movement. Rather, we include dynamics like

growth, decline, and escalation of violence that characterize the

behavior patterns of protest movements in general. The model is

exploratory in nature, and should not be regarded as a fully validated

model with which protest dynamics can be studied.

The underlying dynamics of a complex societal phenomenon are

usually hard to grasp and understand. System dynamics models are

able to include a multitude of assumptions on causal relationships of

and between societal dynamics, and therefore these models are

applicable to study a system's emergent behavior by analyzing the

impact of feedback loops and nonlinear behavior (Sterman, 2000;

Veldhuis et al., 2023). The core factors and causal relationships of our

simulation model, visualized in Figure 1, are adapted from theory

driven modeling studies focused on the dynamics of protest move-

ments (Alsulami et al., 2022; van der Zwet et al., 2022).

The core stock‐flow‐feedback mechanism of our model describes

the behavioral transition of people from being a potential protester to

being mobilized into an active protester, and eventually fatigue or

withdrawing as a retired protester. Active protesters are divided into

two groups: new protesters and experienced protesters. New pro-

testers typically have a higher exhaustion rate and lower mobilization

effect on potential protesters, and therefore a lower positive impact

on the longevity of the protest movement compared to experienced

protesters (Alsulami et al., 2022). New protesters mature toward

experienced protesters as they spend time together organizing and

participating in protest activities. It can be assumed experienced

protesters establish more strong relationships that yield stronger

collective effects. If the core group of experienced protesters ex-

ceeds a certain threshold, the limit core support, the collective effect

makes them less likely to retire.

The disturbance is the trigger for the mobilization dynamic of the

model. This factor mimics the level of animosity a certain part of the

population has toward a specific government or other type of rele-

vant topic. The disturbance is modeled as a sigmoidal function that

transits from a “relaxed” state to a “tense” state, in which the mobi-

lization effects are larger and protests activities are more legitimized

by the population (Gallo, 2013). The threshold disturbance factor

determines when a disturbance overshoots the tolerance in a society

and the tension is triggered. We assume that disturbances could

occur with different intensities and duration. The steepness distur-

bance factor influences how quickly the transition from the relaxed

state to the tense state occurs.

The output of the mobilization dynamic are the protests orga-

nized by the protesters. It is assumed that the number of protests is a

function of the number of protesters. A percentage of these protests

escalate into violent protest or riots depending on a number of fac-

tors: a high rate of new protesters compared to experienced
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protesters and a lack of organizational capacity positively influence

the rate of protests that escalate (Gustafson, 2020). Furthermore,

repression is an instrument aimed at limiting the negative effects of

protests, however, it causes more protests that lack organizational

capacity to escalate into violence. These dynamics have an intensi-

fying impact on the conflict situation as they positively influence the

legitimacy of the movement and the escalation due to repression, if

the level of repression is higher than what the level of escalation

legitimizes.

3.2 | Simulation experiments

To generate a wide range of plausible future protest movement

dynamics, we simulated the protest movement model described

above using a variety of parameter settings, each producing a un-

ique plausible future behavior of the movement. In total, we con-

ducted 1000 simulation experiments with unique input parameter

value combinations. This number proved sufficient to generate

diverse and interesting clusters without making the cluster com-

putation process excessively long. As the model is deterministic, we

did not perform any replications of the individual combinations. The

sampling of the input parameter value combinations, as well as the

processing and storage of the simulation experiments, was done in

Python using the Exploratory Modeling & Analysis Workbench

(Kwakkel, 2017). The simulation experiments themselves were run

in Vensim DSS 8.1 using the Runge‐Kutte 4 Auto integration tech-

nique over 2000 time steps. Of these time steps, the first 200 time

steps (those before the exogenously introduced disturbance) were

considered part of the model's warm‐up period, and discarded

before analysis.

To create the unique input parameter value combinations used

for the simulation experiments, we used Latin Hypercube Sampling

(McKay et al., 1979) to uniformly cover the input space. The

parameter ranges defining this space are given in Table 1. We em-

pirically identified these parameter ranges, first based on literature

and the model design, and then by exploring the parameter space for

interesting and diverse model dynamics.

Based on discussions with stakeholders, domain experts, and

model exploration, we identified two model outcomes of interest,

namely the number of protests, and the number of experienced pro-

testers. These two outcomes may be considered decision‐relevant in

the context of the fictional protest movement depicted by our

model.

3.3 | Multidimensional time series clustering

To identify underlying behavioral patterns across the simulation ex-

periments, we clustered the resulting data across the two afore-

mentioned outcomes of interest. The simulation data was first pre-

processed individually per outcome using the standard scaler in the

Python package scikit‐learn (Pedregosa et al., 2011), thus removing

the mean and scaling all model output time series to unit variance.

This was necessary as the observations differed in their amplitudes

and means by multiple orders of magnitude.

For the clustering step, we used k‐means clustering with a

Dynamic Time Warping distance metric, implemented in the

F IGURE 1 System dynamics model of a fictional protest movement.
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Python package tslearn (Tavenard et al., 2020). The clustering was

performed across both outputs of interest simultaneously. To

reduce computation demands in the clustering phase, we

restricted the clustering to the first 800 postdisturbance time

steps of the model runs, where the largest differences in dynamics

could be observed. We chose to search for k = 5 clusters. This

number was chosen empirically based on subsequent analysis

steps, but has some grounding in literature. Notably, Lord et al.

(2016) advocated using between four and six scenarios, as three

scenarios may be interpreted as a high‐moderate‐low arrangement

to the detriment of the resulting decision (Goodwin et al., 2019),

and seven approaches the limit of human working memory

(Miller, 1956). In the original paper describing behavior‐based

scenario discovery, the authors chose six clusters (Steinmann

et al., 2020), while in another application of behavior‐based sce-

nario discovery, Kahagalage et al. (2024) explicitly chose three

scenarios to frame the resulting clusters as high, moderate, and

low performance levels of the studied system.

3.4 | Generative input subspaces per cluster

To identify the regions of the input space (also called subspaces) from

which the majority of each cluster's included simulation experiments

originate, we applied a rule induction technique called the Patient

Rule Induction Method or PRIM (Friedman & Fisher, 1999), again

implemented in the Exploratory Modeling & Analysis Workbench,

with an updated objective function (Kwakkel & Jaxa‐Rozen, 2016). In

our case, we applied PRIM to the input parameter combinations

associated with each cluster's constituent model outcomes, in line

with previous work by Steinmann et al. (2020). To facilitate later

analysis, we restricted the rule induction algorithm to a small number

of input parameter space dimensions which had comparatively

greater influence on model dynamics and clustering outcomes.

Building on the work by Weinans et al. (2024) on identifying

behavior‐relevant parameters, we used visual inspection of model

input‐output data as well as global sensitivity analysis using the

PAWNmethod (Pianosi et al., 2016) to select these input dimensions.

The latter was implemented in the Python package SALib (Herman &

Usher, 2017; Iwanaga et al., 2022). PAWN, named after the two lead

developers, measures the influence of a specific model input as the

variation in a model output's cumulative distribution function (CDF)

when the uncertainty about that input is removed. This is done by

comparing the unconditional and conditional (i.e., with a fixed value

for the specific model input) CDFs using the Kolmogorov–Smirnov

statistic. To ensure comparability across the clusters, we chose the

first box in the PRIM peeling trajectory of each cluster with a density

of 80% as that cluster's representative subspace, or, if such a box

could not achieved, the highest‐density box available.

To verify that the identified input parameter regions were pre-

dictive for their associated clusters' dynamics, we reconstructed each

cluster's dynamics from their respective input subspaces. To do so,

we drew 50 samples, again using Latin Hypercube Sampling, from

each cluster's associated input region, and then used the previously

described Python‐Vensim simulation setup to run simulation experi-

ments for each of those samples. We then visually compared the

resulting model dynamics with those originally identified through the

clustering algorithm.

Furthermore, we created verbal narratives for each scenario by

manually assessing each cluster's dynamics, the underlying parameter

ranges, and the model's causal relations. In writing the narratives, we

relied on the scenario criteria proposed earlier, as well as the scenario

narrative evaluations proposed by Dhami et al. (2022). The resulting

narratives may be more accessible or suitable for certain decision

support contexts or communication channels than the quantitative,

data‐heavy model outputs underlying them.

Finally, to inspect the resulting scenarios describing the fictional

protest movement's plausible future developments, as well as their

separability, we used a combination of visual and statistical analysis

techniques. Hakanen et al. (2023) refer to such approaches as “co-

ordinated multiple views,” and consider them especially suitable for

high‐dimensional model outputs. We leveraged recent advances in in

the visual inspection of many‐objective optimization outcomes

TABLE 1 Input parameter ranges for sampling.

Model parameter Range Unit

Duration of disturbance [1, 15] Days

Disturbance intensity [0.4, 1.8] Dimensionless

Threshold disturbance [0.4, 0.8] Dimensionless

Steepness disturbance [1, 8] Dimensionless

P0 [40, 100] Protesters

N0 [50, 100] Protesters

E0 [0, 80] Protesters

A0 [0, 60] Protesters

Mobilization effect new
protesters

[0, 0.5] Protesters/
protester/day

Mobilization effect
experienced protesters

[0, 0.5] Protesters/
protester/day

Exhaustion rate new

protesters

[0, 0.1] Protesters/day

Exhaustion rate

experienced protesters

[0.02, 0.1] Protesters/day

Median duration
experience gain

[14, 35] Days

Limit core support [10, 100] Protesters

Steepness [5, 10] Dimensionless

Stabilization rate [0.002,
0.008]

Protesters/
protester/day

Protests per protester [0.04, 0.1] Protests/protester/day

Organization capacity [5, 10] Dimensionless

Limit legitimate repression [0, 0.6] Protests/repression

Percentage repression [0.1, 0.3] Protests/repression
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(Filipic & Tusar, 2018; Osika et al., 2023) to develop two novel visual

representations of multiclass scenario subspaces in the form of

pairwise grid plots and parallel coordinate plots. Furthermore, we

explored the representation of the subspaces as intersecting sets

using a so‐called upset plot (Lex et al., 2014), an extension of initial

attempts at quantifying overlap by Steinmann et al. (2020). Upset

plots are widely used in the biomedical domain (Gadhave et al., 2019)

to analyze sets and their various intersections. We apply this idea to

the subspaces and the sampled points they contain. As some points

lie within two (or more) subspaces' boundaries, their dynamics may

be attributed to multiple clusters, which might in turn introduce

ambiguity into the decision support process. By quantifying the box

subspace intersections, a better understanding of the separation

between the different subspaces can be obtained.

4 | RESULTS

4.1 | Clustering outcomes

The results of the multivariate clustering applied to our model's two

decision‐relevant outcomes are shown in Figure 2 for all five clusters

together in the top row, and individually below. It is apparent that

each cluster shows similar internal dynamics, but that these dynamics

are qualitatively different across the clusters, especially when con-

sidering both outcomes of interest. Furthermore, the dynamics of the

number of protests and number of experienced protesters for each

cluster are quite similar. This can be explained by the fact that

experienced protesters are a large driver of protest activity in our

model. The labels given to each cluster are the narrative names

introduced later in Section 4.4—for consistency, we use them

throughout the manuscript. These labels were partially manually

assigned, and partially generated using AI based on the verbal nar-

rative descriptions. We note here that the chosen colors do not imply

any qualitative assessment of the clusters ‐ for example, cluster

Intensity is not necessarily more desirable than cluster Indifference,

despite the green and red colors, respectively. We further observe

that the clusters are not evenly sized. The Waves cluster contains

314 model runs, cluster Hidden Threat contains 82 model runs,

cluster Intensity contains 70 model runs, cluster Indifference contains

183 model runs, and cluster Flickering contains 351 model runs. The

data underlying this clustering was generated in roughly 2min, and

the clustering itself took roughly 20min, both on a standard work-

station. We note here that, due to the uniform sampling, the relative

frequency of certain model runs and the associated cluster sizes do

not imply anything about the real‐world probabilities of the different

clusters emerging in the model.

In Figure 3, we visualize the 1000 input parameter combinations

in the model's input space, colored by the cluster their resultant

model outputs were assigned to. In the scatter plot in the lower

triangle, we observe that distinct regions of colored points are visible.

For example, orange points, denoting cluster Waves, seem largely

associated with higher stabilization rate values and lower values for

the exhaustion rate of new protesters. In the filled kernel density

estimate plots on the diagonal, the relative change in assigned clus-

ters over each variable's range is shown. Here too certain trends are

F IGURE 2 Identified clusters (k = 5) for 1000 model runs across two outcomes of interest (number of protests, and number of experienced
protesters). The top‐left pair of figures shows all clusters together for the two outcomes of interest, and the remaining pairs of figures show the
individual clusters, paired by color. The x‐axes represent time over the model run, and the y‐axes the number of protests and experienced
protesters, respectively. The cluster labels are the narrative names introduced in Section 4.4.
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apparent. For example, cluster Waves is only present above values of

4 for steepness disturbance, while cluster Flickering virtually dis-

appears around a value of 6 for the same input parameter. It is also

apparent that certain input parameters have very little effect on some

clusters. For example, the number of model runs assigned to cluster

Intensity is virtually invariant to the value of the stabilization rate

parameter. In the Supporting Information S1: File S1, we also present

contour plots for each cluster individually.

4.2 | Generative input subspaces per cluster

When performing rule induction with PRIM for each identified clus-

ter, the subspaces documented inTable 2 result. These regions of the

model's input space were found by PRIM to be predictive of the

associated cluster, that is, an input parameter combination sampled

from within one of these regions is commonly assigned to that

region's associated cluster in the output space. The probability of this

assignment is ≥80%, as this was the chosen density threshold for the

rule induction. Table 3 gives summary coverage, density and inter-

pretability statistics for each induced subspace.

4.3 | Cluster reconstruction

To verify that the subspaces identified with PRIM for each cluster

actually represent their clusters' dynamics well, we reconstruct each

cluster from its input subspace by performing another set of

F IGURE 3 Pair grid plot for model inputs and their associated output clusters. Every subplot represents a pair of input parameters, except
for the subplots on the diagonal which refer to a single input parameter. In the lower triangle, every point represents a single model run's input
parameter values, the color of the point indicating the cluster the resulting outputs were assigned to. The subplots on the diagonal are filled
kernel density estimates, and represent the relative distribution of the different clusters as the parameter value changes. Cluster colors match
with previous figure.
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simulation experiments for each cluster's generative input subspace.

The number of experiments for each cluster is based on the cluster

sizes described in Section 4.1. In Figure 4, we show the original and

reconstructed dynamics for the first outcome of interest, the number

of protests. We restrict ourselves to one outcome of interest here

because the two outcomes are highly correlated (evident in Figure 2).

It is visually apparent that for every cluster, the reconstructed

dynamics are similar to the original ones. This indicates that the

identified regions are indeed predictive for the associated clusters'

dynamics.

4.4 | Narratives

Based on the identified clusters and their associated input parameter

regions, the following short narratives may be associated with each

identified cluster.

• Waves: A short but intense period of protests immediately follows

the initial external disturbance. Afterwards, there is a period of

relative calm, with few to none daily protests. Subsequent to this

quiet period, the protest movement regains momentum and re‐

establishes daily protests at levels comparable to the initial activity

period. The number of experienced protesters closely matches this

pattern—an initial surge in numbers, followed by the movement

almost completely dying out, only to return to manpower levels

comparable to the first phase of protests. This dynamic is driven

by a high steepness of the disturbance, and a rapid exhaustion rate

of new protesters.

• Hidden threat: The movement maintains a relatively low, but

constant frequency of protests. There is no substantial change

over time. While few protests are ever observed, a relatively large

number of experienced protesters forms a hard core of the

movement, keeping it alive, and potentially serving as a breeding

ground for a future escalation. The main drivers of this scenario

are a very low exhaustion rate of new protesters, as well as a high

threshold value for the core support of the movement.

• Intensity: The protest movement maintains a high activity rate.

Although the absolute number of protests varies, the movement is

consistently active. The number of experienced protesters is also

relatively high, although it too shrinks and grows rapidly. This

behavior pattern is driven by intermediate values for the steepness

of disturbance, stabilization rate, and limit of the movement's core

support, and a high value for the exhaustion rate of new

protesters.

• Indifference: Apart from a minor initial spike, the movement never

gains the momentum or followers necessary for sustained and

intense protest activity, staying consistently at low activity levels.

However, there is also no sigh of the movement completely col-

lapsing. The dynamics of this scenario can be traced to a low value

for the exhaustion rate of new protesters and steepness of dis-

turbance, and intermediate to high values for the limit of core

support and stabilization rate.

• Flickering: While the protest movement never establishes high

activity and support levels, it frequently gains and loses momen-

tum at a lower level, showing repeated signs of life and warranting

constant attention. The key drivers of this behavior pattern are a

low steepness of disturbance, low to intermediate value for sta-

bilization rate, and intermediate to high value for the exhaustion

rate of new protesters.

As the five four‐dimensional subregions described in the table

are difficult to intuitively visualize, we present them in another

pairwise grid plot in Figure 5. This allows the spatial positions of the

five boxes to be visually analyzed for every pair of input parameter

dimensions individually. In a confirmation of observations already

made based on Figure 3, it is apparent that not all input dimensions

are predictive for every cluster. For example, the Waves cluster is

essentially independent of the value of the core support limit.

However, certain interactions and alignments between the different

boxes are also visible, notably for the exhaustion rate of new pro-

testers (Hidden Threat and Indifference are clearly separated from

TABLE 2 Induced input parameter subspaces for each cluster.

Model parameter Waves Hidden threat Intensity Indifference Flickering

Steepness disturbance [5.25, 7.99] [1.41, 7.82] [2.46, 6.14] [1.00, 4.94] [1.00, 3.71]

Exhaustion rate new protesters [0.033, 0.100] [0.000, 0.017] [0.031, 0.094] [0.014, 0.039] [0.027, 0.100]

Limit core support [10.03, 99.96] [66.95, 99.96] [30.78, 80.61] [30.19, 92.39] [10.03, 99.96]

Stabilization rate [0.002, 0.008] [0.002, 0.008] [0.003, 0.007] [0.004, 0.008] [0.002, 0.007]

TABLE 3 PRIM details for each cluster's subspace.

Cluster Coverage Density Interpretability

Waves 0.67 0.82 2

Hidden threat 0.61 0.76 4

Intensity 0.51 0.27 4

Indifference 0.30 0.81 4

Flickering 0.56 0.81 3

Note: Coverage represents the percentage of cluster members included in

the found subspace, density the ratio of included cluster members over
total points in the box, and interpretability the number of restricted
dimensions necessary. Abbreviation: PRIM, patient rule induction method.
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Waves, Intensity and Flickering, which overlap considerably) and

the steepness disturbance (Waves and Flickering are clearly sepa-

rated, while Intensity and Indifference overlap). In the plot com-

bining these two parameters, a distinct separation between all five

clusters is visible, apart from minor overlap at the boundaries of

some clusters.

In Figure 6, we provide a novel visualization of PRIM subspace

regions using a parallel coordinate plot with shaded areas

F IGURE 4 Comparison of clusters identified in the originally generated data set, and ensembles of model runs generated from each cluster's
input parameter subspace, for a single outcome of interest. The pairwise behavioral similarity shows that the identified subspaces are indeed
predictive for each cluster's unique dynamics. Cluster colors match with previous figures.
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representing each cluster's predictive range for each studied input

parameter axis. This allows a direct comparison of the similarities

between different clusters' subregions, as they are shown in the same

figure in their entirety (as opposed to the lower‐dimensional shadows

in Figure 5. For example, we may observe that clusters 2 and 3 are

roughly comparable for the first two plotted axes, but diverge

markedly otherwise. The figure also makes it apparent how some

clusters are very narrowly demarcated along certain axes (such as

cluster Hidden Threat for the third axis Exhaustion rate new protest-

ers), and very widely along others (e.g., cluster Hidden Threat along

the fourth axis Steepness disturbance). We note here that these

parameter ranges, as described in Section 3.2, were chosen for the

dynamics they created with our stylized model rather than any real‐

world equivalence.

4.5 | Cluster separability

To better understand the overlaps and spatial interactions of the five

clusters' input subspace regions, we represent the model runs in each

subregion as a set, and analyze the intersections of these sets with an

upset plot in Figure 7. On the bottom, the individual clusters form

one row each, the bars on the left‐hand side showing how many

model runs lie within the input parameter subspace associated with

that cluster. The dots and lines toward the right represent intersec-

tions or overlaps between these subspaces, with the bars above the

dots showing how great these intersections are. For example, the

Hidden Threat and Indifference subspaces contain 66 and 68 model

runs, respectively, but have an overlap of only one model run. Thus,

they are well‐separated. This can be corroborated by considering

F IGURE 5 Generative input subspaces for each cluster, shown for the four sensitive input parameter axes shown in Figure 3. Each box
denotes a two‐dimensional shadow of the four‐dimensional hypercube which contains most of the input parameter combinations belonging to a
specific cluster. Cluster colors match with previous figures.
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F IGURE 6 Generative input subspaces for the four sensitive input parameter axes shown in Figure 3 as parallel coordinates. The top‐left
figure shows all clusters together, and the remaining figures the individual input subspaces per cluster. Colors match with previous figures.

F IGURE 7 Upset plot of the generative input
subspaces for each cluster, showing input
parameter combinations sampled for the 1000
model runs which lie within the subspace
boundaries of one or more of the boxes shown in
Figure 5. Unlisted intersections did not occur.
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Figure 5, where it is visible that these two clusters have only minimal

overlap in the parameter dimension Exhaustion rate new protesters.

The upset plot thus adds a quantitative underpinning to the visual

inspection possible with pairwise grid plot in Figure 5.

A number of observations can be drawn from this figure. First,

most model runs only lie within a single cluster's input space

subregion. This is desirable, as it indicates that the subregions are

well separated and distinct. The greatest overlap is between

clusters 2 and 4. This makes intuitive sense, as the respective

dynamics of these two clusters do not differ much qualitatively,

only quantitatively in terms of their amplitude. It is therefore not

surprising that they are close together in the input space. How-

ever, we also notice that 321 model runs are not associated with

any cluster. In other words, for almost one‐third of all studied

plausible future dynamics of the protest movement, it is unclear to

which scenario they belong. By extension, this implies that one‐

third of the model's input space is not covered by any cluster's

subspace. Finally, only four model runs lie within the subspaces of

three different clusters.

5 | DISCUSSION

In the presented work, we extended behavior‐based scenario dis-

covery to multivariate outcomes in a case study of protest movement

dynamics. Furthermore, we introduced a number of novel analytical

techniques for making sense of the resulting model‐generated sce-

narios of protest intensity and movement support. In this section, we

discuss observations from our case study, and implications of our

methodological innovations.

5.1 | Observations from case study

Our application of multidimensional behavior‐based scenario discov-

ery to the case study of a fictional protest movement yielded five

distinct and interesting scenarios. Each scenario provides a unique

description of a plausible future development of the movement re-

garding two decision‐relevant objectives, the number of protests

per day and the number of experienced protesters. It is noteworthy

that none of the scenarios represent conventional scenario arche-

types such as utopia or dystopia—every generated scenario poses its

own challenges to decision makers. This is a key advantage of gen-

erating scenarios with simulation models (Guivarch et al., 2017),

rather than creating them directly using structured methods such as

futures cones or Intuitive Logics. It may also improve the robustness

of the resulting decisions and subsequent policing actions, as they

have been evaluated against a wider range of challenging scenarios

(Lamontagne et al., 2018).

The extension of behavior‐based scenario discovery

(Steinmann et al., 2020) to multidimensional model outputs over

time generates scenarios which may be more useful for decision

support processes. For example, through the addition of a second

dimension, a clear difference emerged between clusters 1 and 3,

which have comparable protest numbers, but differ substantially

regarding the number of protesters. While our case study included

only two decision‐relevant dimensions, more dimensions could

easily be added, creating even richer and more complex scenarios.

This may be especially interesting for output dimensions which

are less closely correlated than the ones we used in our case

study.

When performing the rule induction for each cluster's gen-

erative input subspace, PRIM generates an entire trajectory of

possible subspaces, which differ regarding density, coverage, and

interpretability. We chose the first box to reach a density of 80%

(or, failing that, the highest‐density box available), giving a rela-

tively small but highly predictive result for each cluster. The 80%

density threshold was reached for three out of five clusters, with a

fourth cluster reaching 75% density. Using small, high‐density

boxes is one possible solution to PRIM's orthogonality constraints

(see Auping, 2018; Quinn et al., 2017), and provided relatively

good reconstructions of each cluster's dynamics from its associ-

ated subspaces. However, it also had the drawback of relatively

low coverage values for the individual subspaces (see Table 3,

which by extension left almost one‐third of all model runs not

assigned to any cluster. These runs stem from the uncovered or

white regions visible in Figure 5. Care must be taken when

interpreting these unassigned model runs—it is not that their

dynamics are individually fundamentally different from those

included in the five found subspaces, but that their generative

input parameter combinations are difficult to distinguish from

those of model runs assigned to other clusters. In effect, the un-

covered regions may be seen as a sort of fuzzy boundary space

between the high‐density subspaces of the five scenarios.

Whether it is acceptable to have such a degree of uncertainty

surrounding the scenarios and their respective input subspaces will

depend on the decision support context. In domains which are

accustomed to operating under uncertainty, such as public safety and

security, the incompleteness of the scenarios may be more acceptable

than in aviation or nuclear energy, for example. We note here that the

choice of density threshold value is itself a many‐objective optimi-

zation problem between minimizing the number of model runs not

included in any scenario's generative subspace, maximizing the num-

ber of runs included in a single scenario's generative subspace, and

generating roughly equally‐sized scenarios.

The verbal narratives which we wrote to accompany each clus-

ter's associated dynamics and identified input parameter region

complemented the underlying quantitative data. However, this writing

was a relatively free‐form process, as we found little guidance in the

literature on how to craft a scenario narrative based on a simulation

model's dynamics. Length, style, and focus of these narratives could

be adjusted. However, it is unclear how this might affect the per-

ception of the scenarios, with associated impacts on the resulting

decisions.
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5.2 | Methodological innovations

Scenario discovery was originally proposed by Bryant and Lempert

(2010) for creating a single scenario based on a single outcome of

interest's value at a single point in time. Subsequently, the method

has been enhanced by Gerst et al. (2013) (among others) for multi-

dimensional outcomes of interest, and by Kwakkel et al. (2013) for

outcomes of interest over time. This work combines these two en-

hancements to enable the generation of multidimensional, temporal

scenarios. This makes scenario discovery increasingly useful for

decision support in complex, real‐world problem contexts, which are

commonly multidimensional and temporally sensitive (Kwakkel &

Auping, 2021; Osika et al., 2023). Furthermore, by clustering the

model's outputs in multiple dimensions, the resulting clusters may be

associated with more separable input subspaces, as the outputs can

more easily be differentiated. The outputs of our method are also

more comparable to those resulting from other scenario methods, in

that they are multidimensional and include narratives. This raises the

possibility of using an ensemble of scenario methods, and thus cre-

ating a scenario “superset” containing plausible futures generated

with a variety of methods. This may further improve the robustness

and effectiveness of the resulting decisions, as they have been

evaluated against a wider range of scenarios.

By visually and statistically inspecting both the individual sce-

nario regions and their relations to one another across multiple plot

types, a more holistic understanding of the scenarios can be gained

than through comparison of their output dynamics alone. This has a

number of potential benefits. First, the differences between the

scenarios become clearer, especially regarding their underlying driv-

ing forces. Second, the effectiveness of policy interventions for each

scenario can be assessed more accurately, and interventions target-

ing specific scenarios can be designed. This allows for more granular

and adaptive policy design, which is a key tool for coping with

modern societal challenges in the face of uncertainty (Kwakkel &

Haasnoot, 2019). Finally, the visual representation of the scenarios

using the various presented methods may facilitate communication

and explanation of the quantitative, multidimensional data underlying

the scenarios.

6 | CONCLUSION

We extended behavior‐based scenario discovery with multivariate

time series clustering to generate multidimensional scenarios with

underlying drivers and associated narratives. The resulting scenarios

were all distinct and uniquely challenging for potential policy inter-

ventions, as they represented qualitatively distinct alternative future

dynamics across multiple decision‐relevant objectives. We also

introduced a number of novel analytical approaches for evaluating

the generated scenario sets, including pairwise grid plots and parallel

coordinate plots of the scenario input subspaces, upset plots of the

model runs lying within the scenario subspaces, and reconstruction of

cluster dynamics from those subspaces. This multimethod approach

to cluster evaluation highlights the differences and similarities

between the various scenarios, thus improving upon the state of the

art in analyzing the scenarios generated with multiclass scenario

discovery. These methodological innovations can strengthen scenario

generation for high‐quality public policy decision‐making, including

mitigation of safety and security risks connected to adverse devel-

opments of protest movements.

The consideration of more than one policy objective when gen-

erating scenarios for decision support more closely reflects real‐

world decision contexts, and makes the outputs of behavior‐based

scenario discovery more comparable to those of more conventional

scenario generation methods. This also opens the door to multi-

method scenario generation, in which scenario “supersets” are gen-

erated using a variety of methods to get the most diverse and

comprehensive possible set. This may improve the robustness and

usefulness of the resulting decisions. A key area of research in this

regard is a more structured approach to generating integrated verbal

narratives (and associated names) from (sets of) quantitative time

series.
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