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mitigate the previously mentioned challenges by contributing to a more sustainable transport
system. These are places where shared cars, mopeds, and e-bikes are offered to improve con-
nectivity in urban areas. In this paper, we investigate the impact of efficiently allocating multi-
modal shared mobility hubs on modal split, service level, and environmental factors while
assuring economic feasibility. Given a limited budget, cities would like to optimize the hubs’
locations to maximize the population’s benefits. For that purpose, we introduce a multi-stage
design algorithm model that distributes the hubs and allocates fleets of shared cars, mopeds,
and e-bikes to maximize travel utility for all the population traveling using traditional and/or
shared modes while accounting for multimodal trips. The model is divided into several modules:
computational modules that calculate the demand for the hubs; an optimization module to
optimize the hubs’ capacities, availability, and relocation of shared vehicles; and finally, a genetic
algorithm to find the optimal hub distribution. Our proposed model is one of the first that op-
timizes the location and capacity of multimodal hubs by considering multimodal trips in a large
network. Additionally, it allows to assess mobility, spatial, and environmental impact of shared
modes. The model is applied to the case of Amsterdam, the capital of The Netherlands, with
around 800,000 inhabitants. After running several scenarios with different budgets allocated to
build the hubs, results show that having more hubs with a lower number of shared vehicles is
more beneficial than having fewer hubs with higher capacity. That is because the travel time
savings increase considerably when investments lead to complete coverage of the area by the
hubs network. A modal split of 5% for the shared modes is expected when Amsterdam is covered
by 288 hubs. From an environmental point of view, only 32% of the shared trips replace trips
previously made by ICE and electric cars, leading to a limited CO2 emissions reduction of 1.27%.
Hence, introducing shared modes and mobility hubs without push measures for the use of private
cars appears to offer limited benefits to decrease the negative impacts of private car usage.
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1. Introduction

Nowadays, urban areas face multiple challenges regarding sustainability, pollution, livability, accessibility, and social inequality,
which are partly related to the design of the mobility system. Since mobility hubs present an opportunity to reshape our cities and
contribute to a more sustainable, livable, accessible, and equitable transport system, many local and regional governments throughout
the world are focusing their policies on the introduction of mobility hubs (Weustenenk & Mingardo, 2023). A hub is defined as “a place
where different sustainable transportation modes are integrated seamlessly to help promote connectivity” (Aono, 2019). Multimodal
hubs have the potential to improve accessibility in urban/suburban areas by linking new emerging shared modes with the existing
traditional public transport. Allowing seamless intermodal trips would enhance the population’s travel experience by mitigating traffic
jams and shifting towards more sustainable mobility solutions. This modal shift would create new opportunities to repurpose public
spaces, for example, by reducing car (parking) space and making the streets more suitable for active modes of travel (Stam et al., 2021).
Given a limited budget, cities need to optimize the location of mobility hubs to maximize the benefits for their citizens.

Facility locations can be selected efficiently using facility location models, a specific sort of optimization model whose decision
variables correspond to the location and capacity of these facilities. This problem has been extensively studied for various types of
facilities, of which shared mobility stations (Frade & Ribeiro, 2015). However, most of the models developed in the literature focus on
locating stations for unimodal mobility services such as bike and car sharing services. Most of the models do not consider the relation
with other traditional modes of transport, which might influence the choices made in the network and the overall traveler’s welfare.
This paper aims to introduce a multi-stage design algorithm that optimizes the hubs’ location and the allocation of shared vehicles to
maximize utility given a certain budget restriction while considering multimodal trips in a real size urban area.

Mobility hubs can differ in their size and services offered. The focus of this paper is urban shared mobility hubs that offer shared e-
mopeds, e-bikes, and e-cars and that do not need the construction of major structures. These can be located near public transport
stations, on the city’s outskirts, or in different neighborhoods. Hence, there is no further differentiation in the hub’s type. The hubs’
sizes are then a result of the model developed rather than a classification of the hub type. A one-way station-based system is considered,
which means that the shared vehicles should be unlocked at a hub but do not have to be returned to the same hub after usage (Mounce
& Nelson, 2019).

This paper contributes to the scientific literature by presenting a model framework to optimize the locations and the capacities of
multimodal shared mobility hubs (i.e. number of shared e-mopeds, e-bikes, and e-cars offered) in large-scale realistic multimodal
networks to maximize travel utility for all individuals traveling using traditional and/or shared modes. This model is one of the few
that considers multimodal trips which highly affect the results. A case study for the municipality of Amsterdam in the Netherlands
illustrates how the model can be used to develop policies for the design of a network of hubs. The case study also shows what is the
impact of the introduction of mobility hubs on the modal split, vehicle kilometers traveled, total travel time, emissions, percentage of
shared mobility demand satisfied over different time periods, and spatial coverage. The study also provides a deeper understanding of
the relationship between shared modes and public transport. The paper is structured as follows. In the following section, we present a
literature review of the research conducted to locate mobility hubs or shared mobility stations. Then, the methodology is detailed and
explained. In the next section, the model is applied in a case study for the city of Amsterdam. This is followed by a discussion on the
results. The paper ends with the main conclusions that can be taken from the study.

2. Related literature

Several models and approaches have been investigated to better design shared mobility systems. The different approaches can be
categorized depending on the method adopted, the objective, and the purpose of the model. The first differentiation is done depending
on the method adopted, whether a mathematical algorithm, multi-criteria decision-making, a geographic information system, or a
combination of methods is applied. This categorization is not meant to be exclusive, and it does not seek to rigidly classify models into
separate compartments. Instead, the aim is to discuss the advantages and limitations of various methodological approaches used in the
literature and acknowledge that these approaches can often be combined or applied together to address the problems effectively. The
second differentiation is done on the objective of the model. Some papers focus on the system’s profitability from an operator’s point of
view by maximizing, for example, the demand covered or the profits generated from the services. In contrast, only a few others assess
the problem from a policy-maker point of view by focusing on maximizing spatial coverage, decreasing distribution inequality between
zones, or minimizing travel costs for users. This literature review focuses mainly on algorithms developed to distribute unimodal and
multimodal mobility hubs. The literature review was conducted by searching for relevant studies and articles using online databases
such as Google Scholar, ScienceDirect, and IEEE Xplore. Various keywords and combinations such as “shared mobility”, “station
location”, “capacity optimization”, and “mobility hubs” were used. References within the articles found were also examined to identify
additional sources. The selected studies were then analyzed and synthesized to draw insights and recommendations on the topic.

A multitude of models has been developed for unimodal shared mobility services while considering the concerns of users and
operators. The first category is the models that distribute and optimize the location of bike sharing stations using mathematical
programing. Caggiani et al. (2020a) developed a linear mathematical problem to minimize the daily bike sharing costs, including
operation, maintenance, and user system costs. Constraints to satisfy the expected demand and ensure spatial equity were set. The
equity constraint is achieved by setting limits on the difference between the districts regarding the available bikes per one demanded
ride and the walking distances to and from the docking stations (Caggiani et al., 2020a). Frade and Ribeiro (2015) solved the design
problem from the operator’s perspective by maximizing the benefits in the design and operation processes. Lin et al. (2013) proposed a
greedy heuristic method to find a near-optimal distribution of stations and inventory of bikes at each station. The objectives were to
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minimize total travel costs, minimize walking distance, and guarantee the availability of bicycles. Finally, Duran-Rodas et al. (2021)
developed a heuristic model to distribute stations by maximizing spatial fairness, considering spatial equity, efficiency, and equality.
An equity deprivation index was developed to assess the equity aspect. This index is a ratio of the percentage of the underprivileged
population and the walking accessibility to essential opportunities (Duran-Rodas et al., 2021). Caggiani et al. (2020b) developed a
model that distributes bike sharing stations while considering the accessibility of the populations. A mathematical function has been
developed, having as an objective the minimization of inequalities between advantaged and disadvantaged groups in terms of
accessibility to public transport and intermodal travel itineraries while ensuring coverage.

Guler and Yomralioglu (2021) developed a workflow that combines GIS and MCDM methods to determine the location of bicycle
sharing stations and bike lanes, then applied it to the case of Istanbul, Turkey. The criteria used were the closeness to bus lines, parks,
public transport stations, leisure, educational centers, population density, and land type. Similar methods have been applied to
Catania, Italy, using as criteria the public transport accessibility, socio-economic data, and location of points of interest (Fazio et al.,
2021). Garcia-Palomares et al. (2012) used location-allocation models to distribute the stations and determine their capacity. The
authors tested the model intending to maximize the number of people covered, or to minimize the distance walked to reach the
stations. It is essential to note the point that increasing the number of stations leads to an increase in the demand covered and the
accessibility benefits, however with diminishing returns: the more developed the network is, the more significant increase in costs can
be obtained with minimal improvements (Garcia-Palomares et al., 2012).

Models were not only limited to the location of stations but also included the optimization of the number and size of carsharing
stations (depots) (Correia & Antunes, 2012) or the rebalancing of vehicles between stations based on the demand (Huang et al., 2018;
Jorge et al., 2014; Li et al., 2016; Nikiforiadis et al., 2021). In addition to that, several papers assessed the optimal number of docks,
bikes, and trips per station. For example, Chou et al. (2019) optimized the location of the stations as well as the number of bikes by
using train and bus operator’s data. Wuerzer et al. (2012) performed an analysis that combines mathematical formulation and GIS to
locate the stations and optimize the number of bikes. The parameters considered were the population density, the biking infra-
structure, employment density, the public transport stations, and other points of interest.

Other studies modeled how to improve existing bike sharing systems by locating additional stations and managing their capacity.
Several indicators were used to demonstrate how to prioritize new locations for stations or other biking facilities (Kabak et al., 2018;
Larsen et al., 2012). Banerjee et al. (2020) used a combination of GIS and mathematical formulation to identify the optimal location for
new stations while considering the closeness to public transport, attractions, and existing bike stations. Kurniadhini and Roychansyah
(2020) developed a model based on spatial multi-criteria analysis to identify the best location for new bike sharing stations in
Yogyakarta, Indonesia. The model considered 13 criteria and aimed to induce a shift in the transport patterns of this city. Kanjanakorn
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and Piantanakulchai (2013) used experts’ knowledge to rank suitable solutions and evaluate different parameters such as walkability
to destinations and land type. Finally, Bhuyan et al. (2019) developed a spatial GIS approach that maps the areas according to the
density-based bike equity index in order to prioritize bike sharing infrastructure. This index includes disadvantaged demographic
groups (youth, elderly, minorities, low-income, and zero-car households) and a level of traffic stress related to the safety of bikeable
roads.

Only a few models were developed to optimally locate multimodal mobility hubs. Nair and Miller-Hooks (2014) developed a bi-
level framework to minimize total travel times and the installation costs of multimodal hubs that include shared bicycles, cars, or
electric vehicles. However, this model did not integrate public transport. Petrovic et al. (2019) developed a methodology for planning
the locations of urban intermodal terminals along a railway line. The first phase included finding the number of citizens in each
catchment area using GIS. The second phase included optimizing the location while considering travel time, construction costs, and
impact on the environment. However, this approach did not consider multimodal traveling. Steiner and Irnich (2020) introduce a
model to optimize the use of hubs where on-demand mobility modes are provided. The goal of the model is to minimize total costs
while considering the intermodal trips linking the on-demand legs to complement traditional links. However, the model developed
does not differentiate between the on-demand modes. Frank et al. (2021) developed a decision support tool to locate multimodal
mobility hubs in rural areas. The model aims to improve accessibility to points of interest by increasing the number of categories
accessible within a certain travel time threshold; and to workplaces by maximizing the ratio of car travel time to intermodal travel
time. The model includes decisions related to the location of the hubs, the required equipment, and the available on-demand modes per
hub.

Most of the models developed so far focus on locating stations for unimodal mobility services. The models aim to either maximize
profits for operators or maximize spatial coverage. There is a lack of models considering travelers’ costs in a multimodal network. Most
of the models do not consider the relation with other traditional modes of public transport, which might lead to unrealistic results and
inaccurate assessments. In conclusion, no model has been presented in the literature to optimize the location and capacity of multi-
modal mobility hubs in a large multimodal network to maximize utility. This paper aims to fill a gap in the literature by proposing a
model that optimizes the location and capacity of shared multimodal mobility hubs while maximizing travel utility in urban areas,
accounting for multimodal trips.

3. Methodology

The model proposed in this paper has as its main objective to locate shared mobility hubs and determine their fleet capacity. The
framework adopted for the model is presented in Fig. 1. The model is divided into several modules: computational modules that
calculate the number of people that would like to use a mobility hub; a mathematical optimization module to optimize the capacity,
availability, and relocation of shared vehicles; and finally, a genetic algorithm that performs several iterations to find the optimal
distribution of hubs.

The model developed uses the outputs of a macroscopic transport model for a certain area of interest. A macroscopic model
simulates the aggregate behavior of traffic flows. It aggregates the network’s trips into several zones with similar attributes and
properties (de Dios Orttizar & Willumsen, 2011). They influence the route followed when using any mode and hence affect the total
costs of traveling from an origin to a destination. Some examples of macroscopic modelling packages include AIMSUN, PTV VISUM,
Cube Voyager, EMME, and Omnitrans (Calvert et al., 2016).

Fig. 1 outlines the structure of the proposed model. In our initial Utility Computation Module, the utilities per mode and OD-pair
are computed using skim matrices exported from a macroscopic strategic traffic and transport model. A Genetic Algorithm activates
some mobility hubs from a set of pre-chosen candidates.

To determine the candidate mobility hub locations, candidates are distributed in the city by ensuring full coverage of the popu-
lation. Literature has shown that users are willing to walk 200 to 400 m to access a shared mobility system (Duran-Rodas et al., 2021).
If the city has a good coverage of public transport stops, these stops can be used as candidate mobility hub locations. However, if parts
of the population are not covered by the candidate hubs’ 400 m service areas, other locations are added to cover the whole population
to prevent any bias and avoid favoring specific neighborhoods or demographics. Only locations that have sufficient space to install a
hub are selected by checking them using Google Street View or conducting a field visit. In the case where the city lacks a robust public
transport system, then the candidate locations can be distributed in the city by iterating while ensuring the space availability and
coverage of the population by the 400 m service areas.

The utilities computed in the Utility Computation Module and the activated hubs are used in the Path and Usage Module to find the
multimodal paths that maximize utility. As a result, the mobility hubs used in these paths are recorded, being those multi or uni-modal.
The utilities obtained for each OD-pair and path are used in a logit model that accounts for path overlaps. This logit model computes
the demand for each shared mode available at the hubs. This demand is inputted into the Capacity module to optimize the hubs’
capacities and eventually obtain the ratio of satisfied demand. The objective function of the Capacity module is to maximize travel
utility and it is the same as the fitness function used in the Genetic Algorithm to iterate over the different hub locations. After several
iterations leading to the fitness function’s convergence, the (assumed) optimal distribution and capacities of the mobility hubs are
obtained. As is the case with all metaheuristics, they can yield highly satisfactory solutions to the problem, but there is no guarantee of
achieving optimality. In the following sections, the term “optimal” solution refers to the solution at which a certain level of conver-
gence of the fitness function has been reached since mathematical proof of optimality is not provided. All the sub-models within the
framework are further explained in detail in the following sections.
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3.1. Utilities computation module

In the initial step of the model, the skim matrices and the number of trips made per OD-pair in the case study region are obtained
from a macroscopic transport model. Hence, the congestion and public transport modeling are performed by the macroscopic transport
model rather than one of the developed modules, reducing the computation complexity. The resulting travel times and travel distances
per OD-pair per mode (skim matrices) are used to compute the utilities to travel from an origin to a destination per traditional and
shared mode. The current more traditional modes considered are walking, private bicycle, private car, and public transport; while the
shared modes considered are the shared e-car, e-bike, and e-moped. The literature presents several factors to be included in the utility
of the shared modes, such as walking distance, searching time, pricing, battery levels, and availability (Li & Kamargianni, 2019, 2020;
Papu Carrone et al., 2020; Reck et al., 2021; van Kuijk et al., 2022). However, in this paper, a simplified utility structure is adopted to
match the utilities used in the macroscopic transport model. The utility function (U) is presented in Equation (1).

U = — (cost_start + travel_distance x cost_user_per_km) — (travel_time x value_of _time) — (travel_time

X cost_user_per_hour) — mode_specific_constant (€D)]

The utility function (U) includes several variables. The initial costs incurred by the user are represented by the cost_start variable.
The distance traveled is represented by travel_distance, while the cost per kilometer is represented by cost_user_per_km. The time spent
traveling from their origin to the destination is represented by travel_time (for the shared modes, 2 additional minutes are included in
the travel time to unlock and lock the vehicle), while the user’s value of time is represented by value_of _time. Additionally, the cost per
hour incurred by the user for using the specific mode is represented by cost_user_per_hour. Finally, a mode-specific constant value is
included in the equation.

Inputs/outputs summary of the module:

e Inputs: Skim matrices per mode, trips per OD-pair per traditional mode.
e Outputs: Utility matrices per traditional mode, utility matrices between hubs per shared mode, total trips per OD-pair.

3.2. Path and shared modes usage module

This module aims to find the highest utility paths, for different mode combinations. Additionally, for each path, the mobility hubs
that are used are also recorded. To compute the highest utility paths between OD-pairs while considering shared modes, the hubs’
locations for a specific iteration of the genetic algorithm (to be explained later in section 3.5) should be inputted into this module. At
each iteration, the metaheuristic activates different hubs from a set of candidate locations, e.g., current transit stops. The highest utility
paths are naturally going to vary depending on the hubs that have been activated. The utility of a whole path is computed by adding the
utilities of the different legs, which is inspired by the concept of a super network whereby this comprises networks specific to different
modes interconnected by transfer links (Carlier et al., 2002). However, the mode-specific constants are not summed. Mode-specific
constants are included in the path’s utility depending on the role of the mode in the entire trip (van Eck et al., 2014). Due to the
lack of stated or revealed preference data, a new mode-specific constant for the mode combination is not estimated. Hence, in this case,
only the mode-specific constant of the main mode is included. It is also possible to add a transfer penalty to account for the disutility
generated by transferring between modes. It is important to mention that the legs forming the highest utility path consider congestion
(before introducing shared modes) since they are exported from the macro transport model. However, no further iterations are per-
formed to compute the new congestion levels that may be affected by the introduction of shared vehicles. The literature presented
some analysis to affirm that the reduction in congestion is not significant when introducing shared modes (Fan & Harper, 2022),
making this assumption acceptable.

We assume in the modeling framework that multimodal trips have a maximum of three modal legs. The legs for the traditional
modes are extracted from a transport model, which means that each leg can encompass multiple underlying trips. For instance, a public
transport leg may involve a combination of bus and tram trips. Limiting the number of main legs to three is deemed acceptable for
Amsterdam, given its high population density and the fact that longer trips typically do not exceed three modal legs. While it is feasible
to consider more legs, doing so would significantly increase computational time.

Taking four traditional modes and three shared modes, the total number of alternatives for a three-leg trip isequalto 4 x 3 x 4 =
48. From these 48 options, the following 9 combinations have been considered in this paper: walk — shared car — walk; walk — shared
moped — walk; walk — shared bike — walk; walk — shared car — public transport; walk — shared moped - public transport; walk — shared
bike — public transport; public transport — shared car — walk; public transport — shared moped — walk; public transport — shared bike —
walk. Some combinations that are less probable or more complex to model are not considered in the case study. For example, the mode
combinations that include a shared trip between two public transport trips are not considered. These trips might be candidates for
shared mobility however they represent a marginal number of shared mobility trips when compared to the effort of modeling them.
Finally, all the combinations that include a car or a private bike as access/egress modes to mobility hubs are not considered due to the
increase in complexity and computation time to model the vehicle ownership and spatial availability. However, disregarding the paths
that have the car as access or egress excludes the cases where the person parks the car on the city’s outskirts and uses public transport
or shared modes to access or leave the city. Hence, the cases where the hub is used as a park-and-ride facility are not considered in this
study, especially since the case study focuses on the urban area of Amsterdam. To locate regional shared mobility hubs, Blad et al.
(2022) proposed a multi-criteria decision analysis.
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Inputs/outputs summary of the module:

o Inputs: Utilities per mode and OD-pairs, set of activated mobility hubs.
e Outputs: Utilities per multimodal path and OD-pair; and mobility hubs usage per path and OD-pair (record of which hubs are used
per path for each OD-pair).

3.3. Demand Estimation module

The Demand Estimation module computes the travel demand per shared mode for every pair of hubs. To compute this demand, a
logit model is used including a path size (PS) overlap factor to correct for overlap in paths. The PS is a continuous value that varies
between 0 and 1. If the path is unique, then the path size factor is equal to 1; hence the utility remains constant. On the other hand, if
there is partial overlap, then the path size factor is smaller than 1, leading to a decrease in utility and a decrease in the attractiveness of
this path (Hoogendoorn-Lanser & Bovy, 2007). Public transport and walking are the only traditional modes that are combined with
shared modes in the developed model. Therefore, there may be overlaps between the public transport or walking legs when they are
combined with shared modes and the corresponding uni-modal public transport or walking trips. To address this overlap, we use an
overlap factor for the overlapping public transport leg. However, it is assumed that a relatively small walking leg is combined with
shared mode trips, and as a result, we do not consider the overlap between the walking leg in the shared trip and the uni-modal trip
done solely by foot. This approach allows to appropriately account for the main overlaps while maintaining simplicity and accuracy in
the analysis. It is important to note that alternative methods exist in the literature for handling dependent paths, including probit and
nested models. However, these models are computationally intensive. Probit models, for instance, cannot be computed analytically
and demand numerous iterations for each OD-pair (Hoogendoorn-Lanser & Bovy, 2007). Nested models involve nesting parameters
that complicate computations, particularly for numerous OD-pairs (Krajzewicz et al., 2018). Additionally, parameter estimation in
these models is challenging, especially in the absence of sufficient data. Hence, for each OD-pair k, the utilities U of all paths p, a logit
parameter f, and overlap parameter f,.,q, are used to compute the ratio r of trips performed using a multimodal path p as shown in
Equation (2).

exp (ﬂ x (U,’;' T ﬂm,c,,aplnPS) )

S (2)
P
505 (8 (UL + BenpnPS ) )
Where,
ps—1- !

N x L

PS corresponds to the path size overlap factor, [ (in km) corresponds to the length of the public transport leg in the path that in-
cludes shared modes, N corresponds to the total number of paths that include public transport legs, and L (in km) corresponds to the
length of the whole path that includes walking, shared mode, and public transport. The logarithm of the path size factor appears to
account for statistical and behavioral overlaps effects (Hoogendoorn-Lanser & Bovy, 2007). To properly model how the overlap affects
choice behavior, the parameter f,,.,, is needed. The impact of the parameter f,,,,,, on the modal split and hubs usage is analyzed in
the case study. A positive f,,..q, is chosen to reflect that the overlap would lead to a disutility, meaning that a path overlapping with
public transport is not as attractive as if the same path was considered an independent one. Dixit et al. (2021) found a positive
perception of route overlap for public transport due to the availability of alternative travel options in case of disruptions. However, in
the case of this study, the overlap is assumed to be negatively perceived thus adding disutility due to the assumed identical paths used.

The share of trips over the multimodal paths is multiplied by the total number of trips per OD-pair to obtain the demand for shared
modes. The use of the total number of trips per OD-pair that result from the macroscopic model provides a direct depiction of the
population’s mobility behavior in the area. As a result, there is no need to rely on proxy variables such as points of interest or other
demand attraction factors to estimate the number of trips. Finally, to obtain the number of trips demanding the use of the different hubs
and shared modes, the demand for shared modes per OD-pair is combined with the usage matrix that contains information on which
hubs are used for each path and OD-pair (the output of the previous module). It is assumed that the number of trips between each OD-
pair does not vary when shared modes are introduced to the network. In a more advanced methodology, the OD matrix should be
computed again in an iterative way using the skim matrices of all the available modes since there might be new trips generated or old
ones redistributed when an alternative is introduced. This would make the model harder to solve.

If individuals want to use a shared mode but no vehicles are available (the capacity will be obtained in the next module), it is
assumed that they are rejected and thus redistributed over traditional modes. The utility W¥ is the utility experienced by the in-
dividuals of OD-pair k that have been rejected access to mobility hubs. It is computed by multiplying the logit-computed share of each
traditional mode (walking, bicycle, private car, and public transport) by the utility of using it and summing them all up.

Inputs/outputs summary of the module:

o Inputs: Utilities per mode path and mobility hubs usage per OD-pair, total number of trips per OD-pair.
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e Outputs: Number of trips using the different mobility hubs and shared modes per OD-pair, number of trips using traditional modes
of transport, and the total utility experienced by each OD-pair when using shared modes, traditional modes, or in the case they are
rejected access to shared modes.

3.4. Capacity module

The demand for each shared mode and each pair of hubs computed in the Demand Estimation module is inputted into a linear
optimization model, presented in this section, that maximizes utility by optimizing the number of docks or spaces for shared modes, the
number of shared vehicles, the number of relocated vehicles between the hubs, and the ratio of demand satisfied. In this model, the
objective function is represented by the sum of utilities for the trips using shared modes and the trips using traditional modes. The latter
include the trips that are using traditional modes initially and the trips that are rejected access to the shared mobility system due to the
lack of available vehicles. It is assumed that the individuals who are rejected access to one shared mode at a mobility hub are
redistributed over the traditional modes of transport without considering the other shared modes or mobility hubs as options. This is a

Table 1
Model Notation.

Set of OD-pairs

Set of available shared modes (shared cars, shared mopeds, and shared e-bikes)
Set of centroids

Set of time-steps

Parameters
B Investment budget for building hubs
Cr Fixed investment costs to build a mobility hub
cy Investment cost to construct or install a dock for shared mode m < .7
cy Operational cost per vehicle of type m per year
cr Relocation cost per vehicle of type m per time-step
cy Investment cost to acquire a vehicle of type m
dl!;'k Demand for vehicles of type m needed for OD-pair k € .% from mobility hub i € ./" to mobility hub j € .7 (output of the Demand Estimation module)
F Big number: in that case max (2 x yn,,) withm € .7
Pt Demand fraction at time-step t € .7 (discussed in the Model’s Parameters section)
R™ Revenue generated per vehicle of type m per time-step
T3 Time-steps needed to travel from mobility hub i to mobility hub j using shared mode m

ymk Utility experienced by OD-pair k using shared mode m

Q Total utility experienced by all OD-pairs using traditional modes of transport. Q is obtained by multiplying the utility per OD-pair for each traditional mode
(computed in the utilities computation module) by the number of trips using each traditional mode per OD-pair (computed in the demand estimation
module) and summing the results for all OD pairs

wk Utility experienced by OD-pair k that have been rejected access to a shared mode due to lack of capacity and used traditional modes instead

Ymu  Maximum number of docks or spaces for shared mode m per mobility hub

Vi Minimum number of docks or spaces for shared mode m per mobility hub, greater than 0

2 Binary variable equal to 1 if mobility hub is activated at node i, and 0 otherwise. It is the chromosome obtained from the genetic algorithm
Decision variables

i Number of repositioned or relocated vehicles of type m from mobility hub i to mobility hub j at the beginning of time-step t

v Number of vehicles of shared mode m present at time-step t in mobility hub i

Xt Ratio of satisfied demand for shared mode m at time-step t in mobility hub i

w Number of docks or spaces for shared mode m available in mobility hub i

Objective Function
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simplification based on the notion that people would like to stick with the mode that they prefer among these new alternatives.

While the model does not explicitly reflect the disutility experienced by travelers who are rejected access to a mobility hub, it
should be emphasized that it is assumed that travelers have full visibility of the available vehicles through a dedicated app or platform
before leaving their origin. Hence, they can make informed decisions based on the availability of vehicles, and no disutility is assumed
in terms of effort or inconvenience caused by lack of vehicle availability. However, it is worth mentioning that the mere absence of
available shared vehicles can also be considered a form of disutility, even if no efforts were involved. Nevertheless, for the purpose of
the model, this aspect is disregarded.

The mathematical model structure is inspired by models developed for car sharing (Correia & Antunes, 2012; Huang et al., 2018)
and bike sharing systems (Frade & Ribeiro, 2015). The model notation and description are presented in Table 1.

The objective function is to maximize the total travel utility experienced by the individuals in the system. It has three components:
the first represents the sum of utilities for the trips using a shared mode; the second represents the sum of utilities for the trips that were
rejected access to the shared modes due to lack of capacity; the third represents the utilities of the trips performed using the traditional
modes. The model is subject to 13 constraints that are detailed below.

Constraint 4 is an equilibrium constraint. It represents the conservation constraint of available shared vehicles of type m over time-
step t at mobility hub i. The number of vehicles of type m at time-step t +1 is equal to the number vehicles present at time-step t minus
the number of vehicles that leave the hub at time-step ¢t to be used or relocated, plus the number of vehicles, used or relocated, that
arrive at time-step t from any hub at hub i. To find the arrival times of the relocated shared vehicles, the travel time for a shared car
(m = 0) is used since all the shared modes are relocated using the road network with travel times similar to the car.

Constraint 5 ensures that a higher number of vehicles of type m is present at hub i at moment ¢t than the demand satisfied. This
constraint is translated by the need to have more vehicles present at a mobility hub compared to the number of vehicles leaving that
hub. It is important to mention that the ratio of satisfied demand x is a variable related to the mobility hub i rather than each OD-pair.
Hence, all the OD-pairs that use mobility hub i have the same ratio of satisfied demand. Therefore, everyone that arrives at the same
moment at the hub has the same chance of using the shared modes regardless of their origin or destination.

Constraint 6 ensures that fewer vehicles of type m are relocated from hub i than the available vehicles in this hub. Constraint 7
ensures that no vehicles are rebalanced within the same mobility hub to avoid unnecessary relocations. Constraints 8 and 9 ensure that
no vehicles of type m are rebalanced from mobility hub i to j if those hubs are not activated. In this model, it is assumed that rebalancing
can happen at each time-step. However, we do recognize that other constraints such as the availability of employees and trucks might
limit the ability to rebalance vehicles at every time-step (Santos & de Almeida Correia, 2019). Constraints 10 and 11 ensure that no
active hubs house more (or fewer) spaces than the set limits. Constraint 12 guarantees that fewer vehicles of shared mode m are
assigned to mobility hub i than the available spaces. Constraint 13 ensures that the ratio of satisfied demand is lower than one if the
mobility hub is activated or zero if it is not activated.

Finally, Constraints 14 and 15 are budget constraints. The first one ensures that the investment costs are lower than the budget. It
computes the costs of installing the docks/spaces and the fixed costs of constructing a hub. The second constraint ensures that the
operation of the service is profitable. These profits are computed by subtracting the operators’ costs from their revenues. The latter are
computed by multiplying the duration of the trips by the price of using the shared mode. The costs equal the sum of relocations,
vehicles’ depreciation, and vehicle maintenance costs normalized to the study period.

Inputs/outputs summary of the module:

e Inputs: Parameters and data mentioned in Table 1.
e Outputs: Capacity of mobility hubs, number of vehicles of each type in each mobility hub at different timesteps, percentage of
satisfied demand at each timestep, objective function, and the rebalancing performed during the period.

3.5. Metaheuristic for the location problem: Genetic algorithm

The entire process described above assumes the existence of a network of hubs solution to be evaluated. Formulating the above
mathematical problem with the location problem simultaneously leads to a very difficult problem to solve (Correia & Antunes, 2012),
especially in a context of multiple modes available for traveling. A metaheuristic is proposed to search for a good configuration so-
lution for the hubs’ network. For each network - a set of activated mobility hubs out of the candidate locations - it is possible to
compute the utility of each multimodal path in the Path and Usage module and run all the other modules described above to estimate
the performance of that particular set of active hubs.

According to the literature, the genetic algorithm is one of the most suitable metaheuristics to perform such a task (Caggiani et al.,
2020b; Liu et al., 2015; Nair and Miller-Hooks, 2016; Romero et al., 2012). Genetic algorithms are inspired by the theory of evolution.
Over the different generations, the traits that enable the individuals to survive (perform better according to a performance function)
become more frequent, leading to the population’s evolution (Mirjalili, 2019). The initial population is generated with several in-
dividuals. Each individual is constituted of an array or chromosome of 1 s and O s representing whether a mobility hub is active at a
specific candidate location or not. The fitness of each individual is assessed using the Capacity module’s objective function which
requires running all the prior modules as explained before. Pairs of individuals from the initiated population are selected to be the
parents and reproduce the next generation of the population by taking genes from both parents in a crossover process and randomly
modifying some genes in a mutation process. Then the fitness of the new individuals is assessed using the objective function in an
iterative process until the stopping criteria are met. Like natural selection, this algorithm allows one to obtain better solutions over the
generations, bringing it closer to the optimum but not guaranteeing it (Mirjalili, 2019).
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Inputs/outputs summary of the module:

e Inputs: Set of potential mobility hub locations, genetic algorithm parameters.
e Outputs: Activated mobility hubs for each iteration; at the end of the iterations, the distribution of hubs for which the fitness
function converged is obtained.

4. Case study

The method has been applied to the case study city of Amsterdam, capital of the Netherlands (approximately 800,000 inhabitants),
to evaluate the methodology and simultaneously get insights into the optimal locations and capacities of the mobility hubs. Each
household in Amsterdam has an average of 1.98 bicycles which shows a great interest in this mode. In fact, a high share of trips is made
using active modes: 38 % and 10 % of the residents’ and visitors’ trips, respectively, are made using a bicycle with an average modal
split for the bicycle of 28 % (Gemeente Amsterdam, 2021). While the bike modal split to train stations is close to 50 % (Shelat et al.,
2018). This is also stimulated by the presence of a well-developed cycling infrastructure with more than 2336 km of segregated cycling
and shared paths. The share of mopeds is growing but is still limited to 2 %. However, the city is also facing rapid growth, which
increases pressure on public spaces and reduces accessibility. To curb these issues, the municipality of Amsterdam is working on
improving traffic flow by diverting traffic from the center to the outskirts of the city. In addition to that, the municipality aims to make
the city more livable by reducing the space available for private cars thus pushing people to use collective forms of mobility as well as
active modes. Mobility hubs are a good solution to achieve the mentioned goals since they decrease reliance on personal vehicles and
shift mobility from owning to sharing, making the usage of cars an option, not an obligation. It is therefore a challenge to propose good
reliable and robust methods for the city of Amsterdam to scale up these hubs into a proper network that maximizes accessibility and
improves mobility while creating a more livable and sustainable city. This is a goal of Amsterdam but also of other cities worldwide as
they move to cut carbon emissions in this decade.
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4.1. Potential location of mobility hubs

To generate solutions for the problem one must start by generating a list of candidate locations. As previously mentioned in section
3, public transport stops are initially considered as candidate hubs. To ensure comprehensive coverage and avoid biases, additional
candidate hubs are included to cover the entire population with 400 m service areas. All hubs, including both public transport stops
and additional candidate locations, were checked using Google Street View to visually evaluate whether there is enough space
available, equivalent to approximately four car parking spots, on the road, sidewalk, or other empty areas. Only locations that have
sufficient space to install a hub have been selected.

To model the mobility hubs and obtain the skim matrices needed, the candidate hub locations are associated with centroids from an
existing macroscopic traffic and transport model of Amsterdam which has a high density of centroids (TNO, 2022). The main focus area
of this study is the city of Amsterdam, and smaller villages in the metropolitan area, particularly those located in the north-east beyond
the highway (e.g., Zunderdorp), have not been included. In the end, a total of 288 potential candidate mobility hub locations have been
selected for the case study, as seen in Fig. 2. These potential candidate hubs cover more than 99 % of the population in the area under
consideration.

4.2. Parameters

The model parameters used to perform the case study for Amsterdam are presented in this section. The forecasted 2030 morning
peak transport data is used for the runs since it is assumed that the network of hubs will be ready by then.

4.2.1. Utilities’ parameters

The utility function presented in Equation (1) is used with different costs and parameter values per mode (see Table 2). The utilities
of traditional modes and shared cars are present in Amsterdam’s transport model and have been estimated using transport demand
data (TNO, 2022). However, since shared mopeds and shared e-bikes are not included in that model, these parameters have been
derived based on expert judgment. The mode-specific constant for shared mopeds and shared e-bikes is set equal to the mode-specific
constant of regular bikes. The value of time parameter used for these modes is 7.5€/hr, which is the value of time adopted in the Dutch
national model for an electric bicycle (Rijkswaterstaat, 2021). The user costs per hour are estimated by examining the rates set by the
operators in Amsterdam and the Netherlands. The following prices are obtained: Go Sharing prices 0.23€ per minute for the shared e-
bike services, Felyx and GoSharing prices 0.3€ per min and 0.29 € per minute respectively for shared mopeds. For this case study, no
subscriptions are considered.

No transfer penalties are included in the calculation of utilities for the case study. The reason for this is that mobility hubs are
associated with the centroids of the transport model, as mentioned in section 4.1. As a result, the model generates many detours that do
not occur in real life. Therefore, each transfer is inherently accompanied by a certain detour due to the modeling approach adopted,
which can be considered as a type of penalty. Hence, while explicit transfer penalties are not utilized, the detours generated by the
model inherently account for the disutility generated by transferring between modes.

4.2.2. Overlap parameter

As previously mentioned in the Demand Estimation module section (3.3), the overlap factor is used to account for the disutility
related to overlapping legs. It is assumed that in the case of this study, overlapping paths are less attractive than independent paths. The
probability of choosing path p is given by Equation (2).

To determine the value for the overlap parameter f,,.q,, there are three possible options: estimating it based on available data,
borrowing it from existing literature, or performing a sensitivity analysis. In this specific research, the first two options were not
accessible and were considered out of scope. Therefore, a sensitivity analysis of this parameter is conducted on the modal split and the
demand distribution over the mobility hubs. Since long computation times do not allow for a sensitivity analysis on the overall model,
the analysis is performed when all the candidate mobility hubs are activated. The overlap parameter is varied between 0 and 20 to
assess its impact on the modal split. The graph presented in Fig. 3 highlights the effect of the overlap parameter on the modal split of
each shared mode. It is important to mention that the modal split shown in the chart is the demand for shared modes rather than the
actual trips satisfied. Hence, the real modal split can be smaller than what is presented in this graph due to vehicle unavailability. The
main paths that are affected by this change are the paths that include public transport since only the overlap with public transport is
considered. An increase in the overlap parameter results in a higher disutility, causing a decrease in the modal split for shared modes-

Table 2
Utility parameters.
Mode Cost start Cost user per km Cost user per hour Value of time Mode-specific constant
Walk 0 0 0 9 2
Bicycle 0 0 0 9 9.5
Car 0 0.17 0 9 0
Public Transport 0.87 0.142 0 6.75 10.5
Shared Car 0 0.6 0 9 5
Shared Moped 0 0 17.7 7.5 9.5
Shared e-Bike 0 0 13.8 7.5 9.5

10
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Fig. 3. Effect of the overlap factor on the demand modal split.

public transport combinations. As the overlap parameter continues to grow, the demand modal splits of the shared modes-public
transport combinations approach zero. Increasing the overlap parameter from 0 (0 means that the overlap is not considered) to 20,
decreases the modal split of the shared modes-public transport combinations from 0.6 % to 0.18 % of the overall trips in the system, as
seen in Fig. 3. This percentage is relatively small and only a split of it will be satisfied by the available shared modes. A parameter value
of 15 is chosen, because in the interval 0 — 15, the modal split exhibited more significant fluctuations, indicating higher sensitivity to
changes in the overlap parameter. Beyond the value of 15, the slope decreased, suggesting that the results became less sensitive to
further increases in the overlap parameter. The selected value of 15 offers a balance between stability and impact, making it a suitable
choice. Additionally, few OD-pairs were chosen to represent cases for which the combination of shared modes and public transport was
either expected to be beneficial or not. Modal splits were computed for various overlap parameters, and in consultation with local
mobility experts, 15 was estimated as the value most closely representing the real-world scenarios for these OD-pairs. Because of the
absence of behavioral data, the parameter choice could not be validated and was instead approximated. Future research could improve
accuracy by estimating this parameter using choice models. Importantly, it is worth mentioning that the sensitivity analysis showed
that the overlap parameter had a negligible effect on the overall results, and the chosen value does not significantly alter the main
conclusions drawn from the research.

4.2.3. Parameters for the capacity module

The Capacity module is dependent on several parameters which are primarily related to the costs of constructing the mobility hubs,
acquiring the vehicles, and operating the system. First, the fixed construction costs (Cy) are set to be 5000€ per hub, according to
experts at TNO working in the field in close cooperation with the municipality of Amsterdam. The costs to construct/install a dock or
space for all the shared modes (C}) are set to 500€/space (Frade & Ribeiro, 2015). It is assumed that the charging will not be done on-
site but in a specialized facility; hence, no significant installations are needed, mainly repurposing the space, and applying surface
painting. Regarding the revenue generated (R™), the average service prices in Amsterdam are used: 0.28€, 0.295€, and 0.23€ per
minute for the shared car, moped, and e-bike, respectively.

The shared car’s relocation costs per hour are assumed to be equal to the average hourly wage in The Netherlands (Correia &
Antunes, 2012). The relocation costs for the shared scooters and e-bikes are equal to a tenth of the average hourly wage, assuming that
each employee can take ten vehicles in a truck. This brings the relocation costs to 3.33€ per 10 min per shared car relocated and 0.33€
per 10 min per shared moped or e-bike relocated. When considering the relocation costs, it is assumed that full capacities of the
vehicles are always utilized. This simplification allows for easier modeling of the system, but it may not fully capture real-world
variations in vehicle occupancy. The operational costs of e-vans and electricity consumption are considered in the operational costs
presented below.

The capital costs needed to initiate a shared mobility company are estimated based on a study performed by Wortmann et al. (2021)
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for e-mopeds usage in Berlin. The capital costs used for this case study are 6,245€ per moped, 2,800€ per e-bike, and 15,170€ per car.
Regarding the operational costs, it is assumed that the operator incurs the same operational costs for all the shared modes and that the
fixed costs can be distributed evenly over the vehicles, which brings it to 1,900 € per year per vehicle (Wortmann et al., 2021).

A maximum number of docks/spaces is defined to limit the spatial usage of the mobility hubs due to the spatial limitations present
in the city. The maximum capacity is 3 shared cars, 15 mopeds, and 15 e-bikes per hub. Most of the suggested mobility hub locations
can house this number of vehicles, corresponding to approximately six car parking spaces. The minimum capacity set in the model is 1
car, 3 mopeds, and 3 e-bikes per hub.

The parameters used in the Capacity module are summarized in Table 3.

4.2.4. Share of demand in each time interval

The Amsterdam transport model at hand is a macroscopic model that aggregates trips spatially and temporally into a 2-hour peak.
However, the demand fraction (p*) every 10 min during the 2 h is needed to divide the aggregated data into smaller time intervals. The
ratio of demand per time-step is found using the ODiN data, which is a yearly nation-wide questionnaire of around 60,000 respondents
in the Netherlands (CBS, 2022). After filtering the trips, the demand distribution over the morning peak is presented in Fig. 4.

4.3. Model runs

Three scenarios are run with different budgets of 0.5, 1.0, and 1.5 million euros to build the shared mobility hubs. The computer
used to perform the runs has the following specs: 19 — 9900X CPU@3.5 GHz 20 Logical cores, 64 GB RAM with a 24 GB NVIDIA
TitanRTX GPU. The computations performed at each iteration are heavy since the different paths, utilities, and demands are computed
for more than 9 million OD-pairs. However, the computation time has been severely reduced by taking advantage of the GPU
computing technology which reduces that computation time by an order of 10%. Additionally, all the sums present in the capacity
module are processed on the GPU to save computation time and then inputted into the Xpress python library as variables. For each
scenario, the convergence is reached after approximately 150 generations, with each generation having 50 individuals. The average
computation time is 180 s per individual. Hence, each scenario takes around 20 days to run which is deemed acceptable for a hard
planning problem such as this.

A significant challenge when applying the genetic algorithm is ensuring that the algorithm is not stuck on a local optimum. This
problem is mainly associated with the fact that the population loses genetic diversity, which leads to a focus on one solution space. A
mutation rate of 0.01 is used in the case study to overcome this challenge, which means that each bit has a 1 % probability of being
changed. Additionally, for each scenario, two runs with different initial populations are performed to assess whether they converge
towards the same optimum. Running the model twice is not intended to demonstrate that it produces the true optimal solution. Instead,
it serves the purpose of assessing the convergence of the process. By running the model multiple times, it can be verified whether the
achieved convergence is due to mere chance or if the results are consistently stable. The aim is to avoid obtaining vastly different
results concerning the objective function when running the model again. This stability check provides additional confidence in the
reliability of the outcomes. In some cases, the two runs do not converge exactly to the same absolute value of the fitness function due to
minor rounding errors in the computation. For the scenario with a budget limit of 1.0 ME, the first run is performed by initiating a
population constituted of the first half with entirely random individuals and the second with random individuals following a certain
proportion of activated hubs. The proportion of activated hubs is set depending on the budget used. It is equal to the number of hubs
that can be activated with the set budget if a maximum of shared vehicles are assigned to each hub:

B
Cf + Zme//c:iﬂ X Yiax

The proportion of activated hubs set in the initiation process does not affect the result; it just orients the genetic algorithm towards a
solution space that meets the preliminary conditions to compute the fitness function. The second run is performed by initiating a
completely random population. The evolution of the best solutions over the different generations is presented in Fig. 5. The algorithm
is assumed to converge toward the optimal solution since a plateau has been observed over the last 70 generations.

In the run presented in Fig. 5, it is proven that initiating a population with a certain proportion of activated hubs leads to faster
convergence as opposed to starting the procedure with zero hubs or all hubs on. Hence, the same initiation procedure is adopted in the

(16)

Table 3
Capacity module’s parameters.
Fixed Shared Car Shared Moped Shared E-bike

G 5,000 €
cy 500 € 500 € 500 €
Cop 1900 €/year 1900 €/year 1900 €/year
cr 3.33 €/10 min 0.33 €/10 min 0.33 €/10 min
cy 15,170 € 6,245 € 2,800 €
R™ 2.8 €/10 min 2.95 €/10 min 2.3 €/10 min
Y 3 15 15
Yrin 1 3 3

12
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Fig. 4. Demand distribution over the morning peak.
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Fig. 5. Evolution of the best solutions over the generations for a budget of 1.0 ME€.

other scenarios. For the second scenario with a lower budget of 0.5 M€, the evolution of best solutions over the different generations is
presented in Fig. 6. The algorithm is assumed to converge towards the optimal solution since a plateau is observed for both runs over
the last 79 and 111 generations. This scenario takes approximately 17 days to run. For the third scenario with a higher budget of 1.5
ME, the evolution of best solutions over the different generations is presented in Fig. 7 Again, the algorithm is assumed to converge
towards the optimal solution since a plateau has been observed for both runs over the last 81 and 73 generations. This scenario takes
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Fig. 6. Evolution of the best solutions over the generations for a budget of 0.5 ME€.
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Fig. 7. Evolution of the best solutions over the generations for a budget of 1.5 ME.

approximately 25 days to run.

In addition to performing two runs, another check is performed to have higher confidence in the convergence reached by creating a
case where a specific distribution of hubs is imposed as the best one and ensuring that the genetic algorithm reaches it. For this
purpose, the same network of Amsterdam and the 288 potential mobility hub locations are used. By keeping all the modules and
interactions in the model intact, it would have been impossible to impose an optimal solution. Hence, for this trial, the capacity module
which optimizes capacities of the hubs at each generation is not included, and a specific hub distribution is imposed as the optimal one.
160 from the 288 mobility hubs are randomly chosen and stored in an array. All the OD-pairs using the other 128 mobility hubs are not
given access to shared modes, and the utility of traditional modes is applied. The selection of 160 hubs is made through a random
process with the expectation that running the algorithm will naturally lead to convergence toward the imposed optimal solution. It is
essential to emphasize that this selection is exclusively reserved for the additional verification trial and is not a standard practice in the
typical model execution, serving to augment the degree of confidence in the convergence outcomes. Although the capacities are not
considered in this trial, the size and variation in the fitness function are similar to the model developed. Hence, it is possible to show
that the algorithm effectively converges. After 252 generations, the algorithm reaches the imposed optimal solution, which gives
additional confidence regarding the results obtained with regards to the case study.

4.4. Results

Different indicators are computed for five scenarios: the first one with no mobility hubs activated, the following three scenarios
with an allocated budget of 0.5, 1.0, 1.5 M€, respectively, and a final scenario with all 288 hubs activated, which requires a budget of
6.192 ME. For the five scenarios, the following results are presented:

e Mobility indicators: modal split, total travel time spent, percentage of demand satisfied.
e The spatial distribution of hubs, their capacities, and the population coverage.
e Environmental implications in terms of emissions.

4.4.1. Mobility indicators

First, the modal splits for the five scenarios are presented in Table 4. When installing mobility hubs with different allocated budgets,
there is a decrease in the modal split of the bike, car, and public transport, while the walking modal split remains the same. The most
significant decrease is seen for the bike: around 0.11 % and 3 % for allocated budgets of 0.5 M€ and 6.2 M€, respectively. This result is

Table 4

Modal split (cut at < 0.001 %) for the different budget scenarios.
Budget (M€) 0 0.5 1.0 1.5 All hubs activated (6.2)
Walk 20.76 % 20.76 % 20.76 % 20.76 % 20.76 %
Bike 28.32 % 28.21 % 28.12 % 27.63 % 25.33 %
Car 43.76 % 43.69 % 43.65 % 43.42 % 42.21 %
Public Transport 7.16 % 7.14 % 7.12 % 7.04 % 6.64 %
Shared Car - 0.02 % 0.02 % 0.17 % 0.68 %
Shared Moped - 0.16 % 0.22 % 0.73 % 3.86 %
Shared E-bike - 0.04 % 0.09 % 0.21 % 0.41 %
Shared Car + Public Transport - <0.001 % <0.001 % 0.001 % 0.006 %
Shared Moped + Public Transport - 0.003 % 0.004 % 0.012 % 0.066 %
Shared E-bike + Public Transport - 0.018 % 0.025 % 0.032 % 0.041 %
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logical since shared modes can substitute bike trips and provide faster means of transport. The second highest decrease is seen for
personal cars: around 0.07 % and 1.55 % for budgets of 0.5 M€ and 6.2 M€ respectively. Finally, the public transport split decreases by
0.027 % and 0.523 % for budgets of 0.5 M€ and 6.2 M€. Around 55 %, 32 %, and 13 % of the trips made using shared modes replace
trips previously made using bike, private car, and public transport, respectively.

Shared moped takes the largest share of trips since they are faster than e-bikes, and the fare difference is relatively small. The modal
split for the shared modes is small for the scenarios with budgets of 0.5 and 1 M€. However, it increases significantly when higher
investments are made. The significant benefits gained by higher investments are also highlighted in Fig. 8. The analysis comprises a
limited number of data points due to the significant computation time required for each scenario. However, if more data points were
added, it is likely that an S-shaped graph would be generated. This trend can be explained by the allocation of lower budgets primarily
towards constructing smaller hubs with limited capacity and hence limited benefits. As the budget increases, more resources are
dedicated to expanding the capacity of the extensive hub network. This allows a larger number of users, particularly those located in
areas where the highest gains can be achieved, to benefit from the system. Consequently, investments exceeding 1 M€ result in more
substantial reductions in total travel time per euro invested, contributing to the steeper slope observed in the S curve. However, there
comes a point where the additional capacity and newly added hubs do not provide significant benefits compared to other trans-
portation modes. This explains the flatter slope of the curve and the smaller returns per euro invested. The locations where the
additional hubs and vehicles are provided may not offer substantial advantages to users compared to traditional modes, explaining the
limited benefits achieved beyond a certain threshold.

Shared modes are combined with public transport, mainly when the average initial trip length is large. 60 % of the trips combining
shared modes and public transport are longer than 40 min. In contrast, shared modes are used independently for trips between 10 and
50 min. Shared mopeds cover the highest percentage of trips having a travel time between 20 and 30 min. In comparison, shared cars
and shared e-bikes cover the highest percentage of trips with a travel time between 10 and 20 min.

Another interesting indicator to assess is the average percentage of demand satisfied over the different time periods. For the shared
car, it varies between 5.6 % and 71.3 % for budgets of 0.5 and 6.2 ME, respectively. While for the shared moped, it varies between 9.6
and 61.6 %, and for the shared e-bike between 87.4 and 90.3 %. This shows that the hubs do not satisfy all the demand, especially with
lower investment budgets.

4.4.2. Spatial distribution of hubs

After assessing the hubs’ effects on mobility indicators, their spatial distribution and capacity are analyzed. For a lower budget of
0.5 ME, the algorithm activates 58 hubs, as seen in Fig. 9.

While for a budget of 1 M€, the 116 activated hubs are presented in Fig. 10.

The distribution of hubs obtained for an allocated investment budget of 1.5 M€ is presented in Fig. 11. This investment leads to
extensive coverage of Amsterdam while distributing the hubs evenly.

The variation in the capacity of the mobility hubs is presented in Table 5. In all scenarios, the hubs have capacities close to the
minimum capacities set for each shared mode. This is also reflected in the averages obtained. Few hubs have capacities exceeding the
minimum. Higher capacities are set for the shared mopeds compared to the shared e-bikes.

The percentage of residents covered by the 0-250 m service areas is equal to 5.7, 11.5, 17.1, and 30.3 % for budgets of 0.5, 1, 1.5,
and 6.2 ME, respectively. It is clear that when increasing the budget allocated to build hubs, a higher percentage of the population is
closer to a mobility hub. It is also interesting to note how the percentage of the population within 250 m of a hub is equal to 17 % for a
budget of 1.5 M€ and 30 % for a budget of 6.2 M€. This signifies that investments have diminishing returns in terms of coverage. The
rationale behind this observation is twofold. Firstly, there is a focus on areas with higher population densities. This strategic approach
ensures that a larger portion of the population resides in proximity to the mobility hubs, maximizing utility for a significant number of
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Fig. 8. Total travel time depending on the budget allocated to build the hubs.
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Fig. 9. Activated hubs for a budget of 0.5 M€.

people. Secondly, the implementation with lower budgets involves installing more hubs with smaller capacities. This approach allows
for a wider coverage area, as activating numerous hubs ensures that a larger portion of the population is within reach of a mobility hub.

The hubs distribution obtained for a budget of 1 M€ along with the population density map is presented in Fig. 12. It can be
observed that more hubs are activated in high-density areas and Amsterdam’s central part compared to other regions, reflecting both
the focus on higher population densities and the initial installation of hubs with smaller capacities.

4.4.3. Environmental implications

Finally, the effect of the mobility hubs on the environment is assessed. First, the emissions generated by the shared modes from the
traveled kilometers and relocation operations are added to compute the net reduction in emissions. Then the emissions generated from
the reduction in traditional modes are subtracted. The emissions are obtained by multiplying the kilometers traveled by the CO,
emissions per mode per passenger-kilometer (CE Delft, 2021). For the relocations of shared mopeds and shared e-bikes, the emissions
of an electric van are used, and it is assumed that each van can relocate ten vehicles at a time. The assumptions can be related to the
vehicle type, speed traveled, the electricity generation mix, the usage patterns of the vehicles, and the vehicle’s occupancy (OECD/ITF,
2020). The reduction in emissions is computed for all the scenarios by comparing them to the base scenario with no mobility hubs
(Table 6). It is calculated for two cases; case 1 considers that electric cars constitute 8 % of the total fleet of cars and electric buses 50 %
of the total fleet of buses. In contrast, case 2 considers that all vehicles are electric. With these assumptions, it can be concluded that the
reductions in CO; emissions, measured in tons of CO5 equivalent (CO; — eq T), are limited, with a maximum of 1.27 % for the case
where all mobility hubs are activated, and a mixed composition of cars is still available. The reduction is even more limited when all
vehicles traveling in Amsterdam are considered to be electric. The results obtained refer to the emissions while using the vehicles so
there is no life cycle analysis performed.

4.5. Sensitivity analysis
The model includes several parameters that might affect the results. A sensitivity analysis is performed on the operation costs (C}"),
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Fig. 10. Activated hubs for a budget of 1.0 ME€.

relocation costs (C"), and vehicle acquisition costs (C}'). Nevertheless, due to the computational time, it is impossible to assess the
parameters’ impact on the results for all scenarios. Hence, to perform the sensitivity analysis, all the mobility hubs are activated, and
the different parameters are modified accordingly.

The relocation costs were varied between 2 and 4.5 € per 10 min timestep for shared cars and between 0.20 and 0.45 € per 10 min
timestep for shared e-bikes and mopeds. All the instances have fitness functions varying by less than 0.001 %. The variation is
negligible, which means that this parameter does not influence the results.

The same method is adopted to assess the impact of the acquisition costs by varying those costs in the intervals of 15000-21000 €
per shared car and 5000-7000 € per shared moped and 1500-3500 € per shared e-bike. Hence, the fitness function varies by less than
0.001 %. The operational costs are also varied to obtain the same result: these parameters do not affect the results and distribution of
vehicles.

The main reason behind these results is that the revenue generated from these services is considerably higher than the costs. In
addition, the positive net revenue (presented in constraint 15) is a sum of the net revenues for all the services provided; hence if one of
the shared modes is not profitable, the other shared modes can compensate for these losses to keep the net revenue positive.

5. Discussion of results and policy implications

In this section, the model’s implementation challenges and the results obtained are discussed. The results include: the hubs’ spatial
distribution, their environmental impact, the modal split achieved for the shared modes, and finally, the policy aspects related to the
introduction of shared modes.

The implementation of the developed model presents two challenges: high data requirements and computational intensity. Data
unavailability or delays in computational processing can hinder the development and deployment of the model for timely policy
decisions. These challenges can be overcome with the implementation of specific strategies enhancing the model’s applicability.

Firstly, the model necessitates a substantial volume of data, which may not always be available for different cities. While the model
itself is adaptable to diverse areas, as it can utilize the output of any macroscopic transport model with the structure remaining
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Table 5
Statistics of the mobility hubs’ capacities depending on the budget allocated.
Budget (M€) 0.5 1 1.5
Shared Car Average 1.16 1.12 1.01
Minimum 1 1 1
Maximum 3 3 2
Shared Moped Average 3.14 3.06 3.13
Minimum 3 3 3
Maximum 11 5 13
Shared E-bike Average 3.00 3.07 3.05
Minimum 3 3 3
Maximum 3 8 9

unchanged and only the data format needing adaptation, the primary limitation arises from the need for comprehensive and accurate
data to ensure reliable results. In cases where fine-grained data is unavailable, but neighborhood-level data is accessible, the model can
still serve as a valuable tool. It can estimate capacity requirements and hub allocation for these neighborhoods. While the level of
accuracy may not match that of the case study, this approach remains useful for urban planners seeking more efficient resource
allocation within a city. Additionally, addressing data constraints is possible through the use of imputation methods, which include
statistical and machine learning techniques. These methods help bridge data gaps, ensuring model robustness even when confronted
with incomplete datasets.

Secondly, there is a computational limitation as the model is resource-intensive when evaluating numerous paths, utilities, and
demands for over 9 million OD-pairs in the large urban area of Amsterdam. The practical implementation of the model in different
contexts may face hindrances due to the availability and affordability of computational resources. While the model has already been
applied to a large area, scaling it up for larger contexts with increased OD-pairs or generations would be possible but would require
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Table 6
Variation in emissions per scenario.
Budget (M€)
0.5 1 1.5 All hubs activated (6.2)
Traveled kilometers (km)
Shared cars (80 CO,-eq g/pkm) 390 426 4014 17,587
Shared mopeds (16 CO,-eq g/pkm) 6374 10,948 35,588 199,653
Shared e-bikes (6 CO»-eq g/pkm) 1531 3123 6815 12,871
Relocated vehicles.kilometers (veh.km)
Shared cars (80 CO2-eq g/pkm) 369 530 283 5853
Shared mopeds (106 CO»-eq g/pkm) 457 722 2688 47,876
Shared e-bikes (106 CO»-eq g/pkm) 803 1797 4879 9741
Variation in kilometers traveled using traditional modes of transport (km)
Walk (0 CO,-eq g/pkm) +704 +857 +3200 +8716
Bike (0 CO,-eq g/pkm) —4364 —8382 —27405 —129453
Car (217 COy-eq g/pkm for case 1, 80 CO,-eq g/pkm for case 2) —7286 —9821 —24094 —106445
Public Transport (88 COz-eq g/pkm for case 1, 84 COz-eq g/pkm for case 2) —3132 —4451 -10232 —41520
Emissions Reduction
Case 1: Total Reduction in Emissions (CO; — eq T) -1.67 —-2.23 —5.10 —21.02
Case 1: Percentage reduction in CO, emissions (%) -0.10 -0.14 -0.31 -1.27
Case 2 (where all vehicles are electric): Total Reduction in Emission (CO, — eq T) —0.66 —0.86 -1.75 —6.23
Case 2 (where all vehicles are electric): Percentage reduction in CO, emissions (%) —0.04 —0.05 -0.11 —0.38

higher computational resources to keep the time as it is. To mitigate this challenge, several options are available. One approach in-
volves considering a reduction in the number of shared modes: instead of optimizing for three shared modes, limiting it to two or even
one could significantly reduce the computational load. Additionally, in many cities, certain modes, such as bikes, do not constitute a
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significant portion of the modal split and could be excluded from the model, resulting in substantial computation time savings. Another
viable option would be to run the model on a neighborhood level instead of a fine-grained level, as discussed earlier. These strategies
can enhance the feasibility and accessibility of the model across a wider range of contexts. In future research, a heuristic could be
developed to solve concurrently the capacity module, currently formulated as a mathematical model, and the module that activates the
hubs, currently performed by the genetic algorithm. This approach would allow for simultaneous optimization, potentially reducing
the computation time.

The model developed is used to distribute the mobility hubs for different investment budgets to maximize travel utility. When a low
budget is set, the algorithm suggests locating more hubs in the center and highly dense areas compared to the outskirts. From the
results obtained for a budget of 0.5 ME, the algorithm prioritizes activating many hubs with lower capacities rather than larger ones
with higher capacities. This can be explained by the fact that increasing the hubs’ coverage leads to covering more demand, providing
more utility gains, and enabling to take advantage of the network effect whereby the presence of more hubs enables increased con-
nectivity and accessibility between mobility hubs. This allows for greater opportunities for travel between these hubs and maximizes
the overall benefits and utility gains for users. However, activating many smaller hubs leads to higher fixed costs, which means fewer
vehicles are available to satisfy the demand. This is reflected by the low travel time gains and modal split for the shared modes when
smaller budgets are invested. A more extensive network of hubs provides the ability to serve more trips leading to substantial gains in
terms of travel time and trips served. Increasing marginal returns are associated with the benefits mentioned. When investing 0.5 M€ in
building mobility hubs, the travel time savings during the 2-hour morning peak are equal to 49 min per 1,000 € invested, while when
increasing the budget from 1.0 M€ to 1.5 ME, the travel time saved accounts for 160 min per 1,000 € (as seen in Fig. 5). After providing
complete city coverage, the marginal returns are expected to be higher since every euro invested would be used for additional vehicle
capacity rather than building a new hub. Therefore, the same amount of money can have different benefits depending on the total
investment made.

To understand the reasons behind the algorithm’s results, the demand for each hub and the average utility gains per trip are
mapped in Fig. 13. These parameters are mapped when all 288 mobility hubs are activated; hence, they are subject to change for a
different distribution of mobility hubs activated. However, this map gives a good overview of the relation between the demand, the
utility gains, and the results obtained. In the scenarios with an allocated budget of 0.5 ME, it can be visually deduced that hubs with
higher utility gains are chosen. In some cases, adjacent hubs are chosen since the utility gains might vary depending on the network of
activated hubs. When higher budgets are allocated, both utility gains and demand play a role in selecting the optimal distribution of
hubs and capacities. It can be seen that many hubs located on the outskirts of Amsterdam are activated since they provide significant
benefits per trip. In the scenario of 1.5 ME, the largest hub in terms of capacity is located in Java-eiland (Fig. 11). This can be explained
by the fact that the utility gains per trip are considerable. When checking on Google Maps, a trip from Java-eiland to Rijksmuseum (in
the center of Amsterdam), for example, takes around 17, 21, and 30 min by bike, car, and public transport, respectively. Hence, shared
modes can shorten travel times considerably for such trips due to their speed and ease of access.

Around 55 %, 32 %, and 13 % of the trips made using shared modes were to be made by bike, car, and public transport, respectively,
if shared modes were not introduced. Many papers found that more than half of the electric micromobility trips substitute public
transport and active modes (Liao & Correia, 2022). van Marsbergen et al. (2022) also describe this substitution effect but also stressed
the increased option set for passengers, enabling a less car-dependent lifestyle. The shift percentages vary depending on the city
assessed and the method adopted to measure them. In the Amsterdam case study, a negligible number of trips shifted from walking to
shared modes. This can be explained by the fact that there is a high reliance on bikes in Amsterdam, and individuals that want to make
their trips faster would have shifted previously to biking. Hence shared modes seem a better substitution for bikes than walking trips in
the case of this city. The higher percentage shift to shared modes from the bike and public transport compared to cars leads to lower
emissions benefits. The CO5 emissions reduction for lower allocated budgets is limited (around 0.1 %), while for the higher budget of
6.2 M€, the emissions decrease by 1.27 % compared to the base scenario. This reduction is even smaller (around 0.38 %) when
considering the case where all vehicles replaced are electric. Hence, the argument that shared modes lead to a significant reduction in
CO-, emissions is debatable if not accompanied by other push policies.

For all scenarios, the modal split for the mode combinations that include shared modes and public transport is negligible.
Depending on the scenario, around 3 to 10 % of the shared modes trips are performed in combination with public transport. This is
mainly because shared modes do not offer significant advantages to accessing public transport compared to walking or cycling.
Additionally, the public transport network in Amsterdam is extensive and has good coverage of most areas, limiting the benefits that
shared modes can provide as access or egress modes. Shared modes are mainly used as access/egress modes to public transport for trips
longer than 40 min. Many authors ask if shared modes complement or compete with public transport. It is challenging to come up with
a general answer to that question. Many parameters affect this relationship: public transport coverage, level of service, and the
population’s mobility behavior. van Mil et al. (2021) found about 40 factors in their literature review. In the case of Warsaw, Nawaro
(2021) concluded that e-scooters provide limited support to public transport, especially in areas with high public transport usage.
Similar results were obtained for the case of Indianapolis; Luo et al. (2021) conclude that shared e-scooters can compete with buses in
areas with high bus coverage and can complement public transport where there is no good coverage. These two cases can be compared
to the results obtained in the case of Amsterdam, where good public transport services cover most parts of the city. The combination of
shared modes and public transport is not attractive, mainly due to the high fares and lower travel time benefits for most OD-pairs when
associating shared modes with public transport. This highlights the need for better policies to integrate shared modes and public
transport since such a combination would have several benefits on the social and economic levels. Better fare integration between
shared modes and public transport might increase the appeal of performing such multimodal trips. In the future, if the adoption rate of
shared modes increases, then new public transport infrastructure can be designed to accommodate the new way of traveling that
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Fig. 13. Distribution of demand and average utility gains per mobility hub.

combines public transport and shared modes. The latter can increase the catchment areas of public transport stations, allowing the
design of new systems with fewer stations and higher speed of services. Further studies can assess the factors affecting the attrac-
tiveness of combining shared modes and public transport to develop policies and strategies that improve modal integration among
different social groups.

If the municipality has lower budgets allocated for installing shared mobility hubs, it must not only focus on using this budget to
build large mobility hubs. This study has proven that installing smaller ones distributed in the city provides more benefits to maximize
utility. The construction of the mobility hubs can be divided into phases starting from a lower budget to a higher one after several
years. An adaptive design of hubs would allow first to install a network of smaller mobility hubs, then add other hubs and upgrade the
capacity of the existing ones in line with the higher budget designs.

If the budget available from the municipality is limited, another solution could be to create virtual mobility hubs. Mobility hubs do
not always have to be physical stations; municipalities can choose to have virtual ones. The shared modes providers would impose on
their customers to park the vehicles in specific spaces, which can be monitored through the GPS signal emitted by the vehicles. The
municipality can choose the location of these virtual stations using a model similar to the one developed in this study. Therefore, this
would bring together several modes at distinctive points in the city with no significant investments needed from the municipality in
terms of racks or facilities other than providing the space for this purpose. Adopting such strategies allows for better organization of the
public space. It avoids the chaos that some cities have faced with free-floating micro-mobility vehicles without investing significant
amounts of money.

Installing shared modes in the city looks very beneficial and stimulates behavior change. However, many policies should
accompany such an introduction to induce positive change correctly. Many experts talk about stick and carrot measures, especially
when looking at the shift from personal to shared usage of vehicles. These measures are a combination of “punishments” and “rewards”
to induce the desired behavior. The stick measures can discourage private car ownership by reducing the parking spaces available,
reducing the speed limits, and flipping the urban planning priorities by focusing on the users of active modes and public transport
rather than private cars. It is essential to induce a shift from private cars to shared modes rather than active modes or public transport
to shared modes, especially in terms of spatial occupancy and sustainability. This is not an easy task and cannot be implemented
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immediately. Instead, it is a long-term plan also outlined in Amsterdam’s 2030 mobility plan (Gemeente Amsterdam, 2013). Looking at
the carrot measures, these can be incentives for the users to use shared modes. These incentives can be financial ones by providing a
bonus for citizens to shift from personal cars to shared modes. However, such incentives might be limited to a particular group of
people. To widen the range of people covered by carrot measures, better integration between shared modes and public transport can be
imposed on the operators. For example, by reducing the fares for individuals using shared modes as access or egress modes to public
transport; or using the OV-card (or any other future system) to unlock the shared vehicles. This might encourage people from lower-
income and less-educated backgrounds to use shared modes due to the ease of access. Hence, when looking at the city’s mobility
transition, it is essential to take a holistic approach, combining mobility and spatial policies to induce the desired shift and make the
city more livable.

6. Conclusions

In this paper, we proposed a model to optimize the location and capacity of multimodal mobility hubs to maximize the total utility
experienced by individuals traveling using traditional and/or shared modes, all while considering multimodal trips in large urban
networks. It fills the gap that is currently present in the literature by considering multimodal trips that include shared modes, public
transport, and walking. Finally, it relates mobility, environmental, and service level indicators to the budget allocated to construct the
network of hubs.

We conclude that the model is flexible and can be adapted for different scenarios, policies, and locations. It can use the output of
any macroscopic transport model to optimize the location and capacity of shared multimodal mobility hubs and compute their effects.
When implementing the model for a new location, the specific characteristics of that region’s transport system and the choices made by
its population can be translated into the model through the development of new choice models and utility functions. This custom-
ization ensures that the model, with its current structure, accurately reflects the unique factors influencing transportation preferences
in the new location. Different policy measures can also be implemented to push for the shift towards sustainable modes and translated
in the model. For instance, increasing parking costs, decreasing speed limits, reducing the cost of shared modes and public transport,
and enhancing road safety are all strategies that can be integrated into the model by adjusting the utility functions. Parking costs can be
incorporated into the car mode costs parameter, speed limits can be factored in by modifying the calculation of travel time, the cost of
sustainable modes can be adjusted by changing their associated costs in the utility functions, and the safety of infrastructure can be
accounted for by modifying the constants attributed to the different modes. It is essential to note that these parameters should be re-
estimated through various choice models, as the stated preferences data cannot be repurposed for a substantially different use case.
Nevertheless, the general framework for defining utilities remains consistent across these adaptations.

The algorithm was run for different allocated budgets to build the mobility hubs (0.5, 1.0, and 1.5 ME, respectively). Different hub
distributions are obtained for each scenario. The algorithm prioritizes locating many smaller hubs in the city center first rather than a
few larger ones. With smaller allocated budgets, the hubs are evenly distributed in the Amsterdam area, with a higher concentration in
areas with higher population densities. The algorithm also activates hubs in the outskirts where significant utility gains can be ach-
ieved. The result of prioritizing the installation of many hubs with lower capacities rather than larger ones with higher capacities can
be considered valid in other cases or cities. This leads to locating hubs closer to the origins and destinations, which provides higher
utility gains, especially when demand is spread across the city. In the case where demand is concentrated between an origin and a
destination, then smaller hubs might not be the preferred option. Investments to construct mobility hubs are associated with increasing
marginal returns in terms of benefits and travel time savings but diminishing returns in terms of spatial coverage.

The implementation of mobility hubs can be phased for optimal results. Initially, multiple smaller hubs can be installed in areas
with high population densities, leveraging the network effect and proximity to origins and destinations. In subsequent phases,
additional hubs can be strategically added to areas with significant utility gains, and the capacity of the hubs installed in the initial
phase can be expanded if required. Adopting a multi-stage approach allows cities to benefit from incremental development, refining
the network over time. This strategy offers flexibility, adaptability, and the opportunity to evaluate and make necessary adjustments at
each stage. Ultimately, it facilitates the transition to a final hub configuration that maximizes benefits, travel time savings, and spatial
coverage, effectively meeting the diverse transportation needs of residents and visitors. Furthermore, it is possible to generalize the
result that trips combining shared modes and public transport are limited when the public transport network is extensive since this
combination is not that attractive. However, if the public transport network does not cover the whole population, then the shared
modes might help complement this network. Finally, the model proves that most shared trips in Amsterdam would substitute public
transport and active modes, around 32 % and 55 % respectively, leading to limited environmental benefits. In the case that electric cars
constitute 8 % of the total fleet of personal cars and electric buses 50 % of the total fleet of buses, the CO, emissions reduction for lower
allocated budgets is limited (around 0.1 %), while for the higher budget of 6.2 M€, the emissions decrease by 1.27 % compared to the
base scenario.

Future research efforts should dwell on validating empirically the results of the model. This validation could be achieved by
comparing the model’s results with the actual usage metrics of hubs in cities where such hubs are already implemented. This com-
parison would involve analyzing data from shared mobility operators or conducting mobility surveys to assess trip combinations,
modal split, and the total number of trips performed.

Furthermore, it is recommended to do a comparative analysis with state-of-the-art or state-of-practice methods for the same case
study. This can involve using solely a facility location problem or multi-criteria analysis to provide insights into the model’s ability to
outperform or at least match existing approaches. The effectiveness of the model can be evaluated through various metrics, including
service level, operational and fixed costs under different demand scenarios. These scenarios can range from an underutilized system to
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a highly saturated network. By subjecting the model to a spectrum of demand conditions, its robustness and adaptability can be
assessed.

Future research can also focus on improving or extending the various sub-models within the presented framework. Firstly, by
analyzing in more depth which factors influence the usage of shared modes, hub and route choices. Secondly, in the developed model,
it is considered that travelers are homogeneous; therefore, future studies can consider the population’s heterogeneity, which might
present interesting results especially if the demographics are linked to the usage patterns. It would also allow optimizing the location of
mobility hubs and shared services to provide equitable mobility options. Finally, it is interesting to model the behavior of the in-
dividuals in the longer term to assess the impact of introducing shared modes on car ownership and eventually on the use of public
space.
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