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A B S T R A C T

Metal structures often exhibit macroscopic defects from which cracks can nucleate during cyclic loading. The
current work presents a two-scale approach to enable the prediction of crack nucleation from such defects
by taking into account local microstructure features. The geometrical description of the defect and associated
non-homogeneous strain fields are modeled using a macroscale model which employs a continuum elastoplastic
material model for cyclic deformation. The cyclic deformation of the microstructure near the defect is modeled
using a mesoscale model which employs a crystal plasticity material model and uses multiple realizations to
address the statistical microstructure variability. The boundary conditions of the mesoscale model are extracted
from the macroscale model. By simulating the deformation of the microstructure using the strain fields near
the defect and by introducing a fatigue indicator parameter for crack nucleation, along with the weakest-
link based upscaling methodology, the developed approach enables the prediction of the distribution of crack
nucleation life. The approach is used for analyzing different defects for crack nucleation by considering local
grain orientations. The predictions are shown to not only capture phenomena such as scatter, size effects,
etc. qualitatively, but also agree with a classical engineering approach and experimentally reported data sets
quantitatively.
1. Introduction

Engineering metallic structures often contain unintended geomet-
rical discontinuities or imperfections caused by fabrication processes,
such as welding. Examples of such imperfections are slag inclusions,
under-cuts, and blowholes. In response to the applied load, such im-
perfections are classical stress raisers [1] that are analogous to an
engineering notch in the structure. Under repetitive loading, fatigue
cracks can nucleate and grow from these geometrical imperfections
leading to fatigue failure. Therefore, in engineering failure analysis,
these geometrical imperfections are often called and treated as de-
fects [2,3]. In practice, these defects are of sizes in the order of a
couple of millimeters. Hence these defects are macroscopic features
in contrast to material microstructural constituents and microscopic
material defects, such as non-metallic inclusions and micro-pores. To
ensure the safe and prolonged usage of structures containing such
macroscopic defects, it is imperative to estimate their fatigue crack
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nucleation life (𝑁𝑛). This paper focuses on such macroscopic defects
(hereafter simply called defects) and the associated 𝑁𝑛.

Traditionally, total fatigue life (𝑁𝐹 ) is understood to consist of a
crack initiation life (𝑁𝐼 ) and a crack propagation life [4,5]. The value
of 𝑁𝐼 is subjective to the crack-length criterion that is used to denote
the crack initiation. Typically, an observation of a crack grown to a
size of the order of 0.5 mm to 2 mm is used to estimate 𝑁𝐼 [6].
For most engineering metals and alloys, this crack size is much larger
than the underlying microstructural features. With the advent of so-
phisticated crack detection and crack size measurement techniques [7],
it has become possible to analyze cracks at smaller crack lengths.
This has led to an understanding wherein the traditional definition of
initiation is viewed to be further composed of different stages of crack
nucleation, microstructurally short crack growth, and physically short
crack growth [8–11]. Among these stages, crack nucleation refers to the
development of a crack in the nucleant phase, of a size in the order of
the characteristic microstructure feature, such as a grain [12–14]. Some
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List of Symbols

𝝈 Stress Tensor.
𝝈𝒅𝒆𝒗 Deviatoric part of 𝝈.
𝑿 Backstress tensor.
𝑿𝒅𝒆𝒗 Deviatoric part of 𝑿.
𝜀̄𝑝𝑙 Equivalent plastic strain.
𝜀̄𝑚𝑎𝑥,𝑀 Cycle maximum value of volume-averaged

principal strain over the volume 𝑣𝑀 .
𝜀̄𝑚𝑖𝑛,𝑀 Cycle minimum value of volume-averaged

principal strain over the volume 𝑣𝑀 .
𝜒𝛼 Backstress on a particular 𝛼th slip system.
𝛥𝛾𝛼𝑁 Slip-range for 𝛼th slip system and 𝑁th load

cycle.
𝛥𝑑𝑚(𝑥⃗𝑛𝑚) Amplitude displacement vector used for

defining boundary condition at 𝑥⃗𝑛𝑚.
𝛾̇𝛼 Slip rate on a particular 𝛼th slip system.
𝛾̇◦ Reference slip rate.
𝑠̇𝛼 Rate of evolution of slip resistance.
E[𝑌 ] Mean value of Y.
V[𝑌 ] Coefficient of variation of Y.
𝜇◦ Gumbel parameter for 𝑃 ◦.
𝜌 Local root radius of the defect of a semi-

elliptical cylinder shape.
𝜎′𝑓 Fatigue strength coefficient.
𝜎𝛼𝑛,𝑁 Peak normal stress for 𝛼-th slip system and

for 𝑁-th loading cycle.
𝜎◦ Gumbel parameter for 𝑃 ◦.
𝜎𝐴 Applied stress in macroscale model.
𝜎𝑐𝑦𝑐 Cyclic Yield Stress.
𝜎𝑦◦ Yield stress at 𝜀̄𝑝𝑙 = 0.
𝜎𝑦 Yield stress at a particular 𝜀̄𝑝𝑙.
𝜏𝛼 Resolved shear-stress on a particular 𝛼th

slip system.
𝛩𝑟[𝑛𝑔] Orientation-set for 𝑛𝑔 number of grains,

where each orientation is expressed in terms
of Rodriguez vector.

𝜀′𝑓 Fatigue ductility coefficient.
𝜀𝑒𝑓𝑓 Effective strain amplitude for theory of

critical distance.
𝑑𝑎𝑣𝑔,𝑚(𝑥⃗𝑛𝑚) Average displacement vector used for defin-

ing boundary condition at 𝑥⃗𝑛𝑚.
𝑑𝑚𝑎𝑥,𝑀 (𝑥⃗) Displacement vector at the peak applied

stress, of a point with position vector 𝑥⃗ in
the macroscale FE model.

𝑑𝑚𝑎𝑥,𝑚(𝑥⃗) Displacement vector at the peak applied
stress, of a point with position vector 𝑥⃗ in
the mesoscale FE model.

𝑒𝑥, 𝑒𝑦 Cartesian unit base vectors in the plane of
the macroscale model.

𝑥⃗𝑛2𝐷,𝑚 2D projection of 𝑥⃗𝑛𝑚 in the plane of the
macroscale FE model.

𝑥⃗𝑛𝑚 Position vector of a node at the non-free
surface with respect to central root point in
mesoscale FE model.

𝑎 Material parameter for isotropic hardening
in mesoscale model.

𝑏 Material parameter for isotropic hardening
in macroscale model.
2

𝑏𝑓 Fatigue strength exponent.
𝑐𝑓 Fatigue ductility exponent.
𝐶𝜒 Material parameter for kinematic hardening

in mesoscale model.
𝐶𝑖𝑗 Component of Stiffness Tensor at indices

(𝑖, 𝑗).
𝐶𝑘 Material parameter for kinematic hardening

in macroscale model.
𝑑 Average grain size.
𝑑∗ Underlying microstructural length scale

used to specify the range of values of 𝐿.
𝐷𝜒 Material parameter for kinematic hardening

in mesoscale model.
𝐹−1
𝑌 Inverse Cumulative distribution function of

Y.
𝐹𝑌 Cumulative distribution function of Y.
𝑓𝑌 Probability density function of Y.
𝐺𝑘 Material parameter for kinematic hardening

in macroscale model.
ℎ◦ Material parameter for isotropic hardening

in mesoscale model.
𝐾𝑡 Stress concentration factor.
𝑘𝐹𝑆 Fatemi-Socie FIP constant.
𝐿 Critical distance
𝑙𝐷 Length of an embedded defect.
𝑙𝑣 Length of 𝑣𝑚.
𝑚 Inverse strain rate sensitivity exponent.
𝑚◦ Exponent in crack nucleation model.
𝑁𝐹 Total fatigue life.
𝑁𝐼 Crack initiation life.
𝑁𝑛′′

𝐾𝑡 ,𝑙𝐷
Normalized crack nucleation life for defect
characterized with 𝐾𝑡 and 𝑙𝐷.

𝑁𝑛′
𝐾𝑡 ,𝑙𝐷

Normalized crack nucleation life for defect
characterized with 𝐾𝑡 and 𝑙𝐷.

𝑁𝑛 Crack nucleation life.
𝑁𝑛

𝐾𝑡 ,𝑙𝐷
𝑁𝑛 for defect characterized with 𝐾𝑡 and 𝑙𝐷.

𝑁𝑢
𝐾𝑡 ,𝑙𝐷

Unscaled crack nucleation life for defect
characterized with 𝐾𝑡 and 𝑙𝐷.

𝑛◦ Number of 𝑉 ◦
𝑚 in 𝑉𝑚.

𝑛𝑔 Number of grains.
𝑛𝑟 Number of microstructure realizations.
𝑁𝑠𝑠 Number of loading cycles for achieving

stabilized state.
𝑛𝑋 Number of backstresses.
𝑃 𝑝𝑚𝑎𝑥 for whole defect.
𝑝𝛼,𝑔 Cycle stabilized value of 𝑝𝛼,𝑔𝑁 .
𝑝𝛼,𝑔𝑁 Grain averaged value of 𝑝𝛼𝑁 .
𝑝𝛼𝑁 Fatemi Socie FIP value for 𝛼-th slip system

and for 𝑁-th loading cycle.
𝑃 ◦ 𝑝𝑚𝑎𝑥 in 𝑉 ◦

𝑚 .
𝑝𝑐𝑟𝑖𝑡 Material parameter in crack nucleation

model.
𝑃𝐾𝑡 ,𝑙𝐷 𝑃 for defect characterized with 𝐾𝑡 and 𝑙𝐷.
𝑝𝑚𝑎𝑥 Maximum value of 𝑝𝛼,𝑔 in a grain-agregate.
𝑞𝛼𝛽 Latent hardening ratio.
𝑄∞ Material parameter for isotropic hardening

in macroscale model.
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𝑟1, 𝑟2 Radii of a defect of a semi-elliptical cylinder
shape.

𝑅𝜎,𝑀 Stress ratio in macroscale model.
𝑅𝜀,𝑚 Strain ratio in mesoscale model.
𝑠𝛼 Slip-resistance on a particular 𝛼th slip

system.
𝑠◦ Initial slip resistance.
𝑠𝑠 Saturation slip resistance.
𝑉 ◦
𝑀 Subvolume in 𝑉𝑀 serving as independent

statistical unit.
𝑉 ◦
𝑚 Subvolume in 𝑉𝑚 serving as independent

statistical unit.
𝑉𝑔 Volume of a grain.
𝑉𝑀 Volume of material in the designated win-

dow of two-scale approach modeled with
continuum treatment.

𝑉𝑚 Volume of material in the designated win-
dow of two-scale approach modeled with
micromechanical treatment.

𝑣𝑀 Counterpart of 𝑣𝑚 in macroscale FE model.
𝑣𝑚 Generic defect-root volume element in

mesoscale FE model.

researchers also refer to this stage as ‘‘formation’’ [15] and view it to
be consisting of the stages of formation of a stable crack embryo and
growth to the size of the nucleant [11]. Depending on the applied load,
an early crack growth stage of a fatigue crack, such as crack nucleation,
can be a considerable portion of 𝑁𝐹 of the material both in smooth and
notched conditions [10,16–18].

From the understanding of the physics of fatigue crack forma-
tion [19], it is well known that the microstructure of the material
plays an important role in the crack nucleation process and causes
material-related scatter in 𝑁𝑛. Different features of microstructure such
s secondary phase particles, inclusions, micro-pores, coarse grains,
tc. can govern the crack nucleation process. In the absence of mi-
roscopic material defects, for a fairly equiaxed microstructure, the
eterogeneous irreversible deformation in grains oriented favorably for
lip leads to the formation of persistent-slip bands [6,11,14], which
ventually lead to fatigue crack nucleation. Hence grain orientations
re one of the important microstructural features in regard to crack nu-
leation. It has been noted in [20] that the presence of defects enhances
he process of crack nucleation, however, the basic microstructural
echanism remains similar to that of without defects. Apart from

he local microstructure, an obvious factor governing crack nucleation
s the imposed stress or strain field. For a given applied load, the
ocal stresses and strains in the vicinity of defects are higher than
n the rest of the structure, with their magnitude depending on the
hape and size of the defects and the load applied. Therefore, for a
iven applied load, both the global driving force, governed by the
eometrical characteristics of the defect, and the local driving force,
overned by the local microstructure in the vicinity of the defect, are
mportant for the prediction of 𝑁𝑛 in a structure with a defect. This is
chematically shown in Fig. 1. It is important to highlight that while the
efinition of 𝑁𝑛 is founded fundamentally in terms of microstructure,
n traditional engineering approaches and practice, the crack-length-
ased criterion of 𝑁𝐼 is used for characterizing the early fatigue crack
rowth behavior. In this paper, the crack growth characteristics, when
stimated from traditional engineering approaches and experiments,
re discussed using traditional definitions of 𝑁𝐼 and 𝑁𝐹 .

In engineering approaches, defects are treated like notches [21]
for the prediction of fatigue life. Local stress and local strain-based
3

approaches are used, along with empirical corrections or notch-root
stress–strain state approximation methods, to estimate the crack ini-
tiation life from such geometrical discontinuities [5,22,23]. The local
stress-based approach typically uses fatigue strength reduction factor,
calculated from formulae such as those given by Peterson [24] and
Neuber [25], along with S-N curves obtained using smooth specimens,
to estimate the fatigue life of notched/defected components under both
finite life and infinite life conditions [26]. On the other hand, the local
strain-based approach uses local strain history at the notch root along
with the material strain-life curve to predict crack initiation life [22].
To take the local plasticity effect into account, linear elastic solutions
of strain-state at notches are modified by plasticity corrections using
approximation formulae such as those given by Neuber [27] and Molski
and Glinka [28]. However, due to their empirical nature, both local-
stress and local-strain-based methods have their limitations in terms
of applicability to different deformation conditions e.g. sharp notches,
where these approaches tend to be very conservative [22,29,30]. To
address this and other shortcomings, other approaches such as critical
distances [31], highly stressed volume approach [32], stress-gradient
approach [33], etc. are used. A review of such approaches is given
in [34]. Although the above-discussed approaches are easy to use in a
practical setting, they rely on empirical and correction factors that take
into account experimentally observed phenomena such as size effects,
scatter, etc., but which do not address the underlying responsible
factors, among which microstructural heterogeneity is a prominent
one. Microstructural heterogeneities can behave differently in different
deformation conditions existing in the vicinity of different defects. For
example, the probability of crack nucleation in a grain oriented sub-
optimally for slip and located at the defect root will be higher in the
case of a sharp defect than a shallow defect. Such an interaction of
microstructural heterogeneities with imposed non-homogeneous strain
fields can affect the distribution of crack nucleation life. Traditional
approaches do not address such details, but introduce the scatter in
fatigue life as an aleatoric uncertainty either in the material parameters
or in the initiation life [35–37]. This approach may not be generalizable
to different load values, defect shapes, and material characteristics
such as local texture in the vicinity of the defect. To include these
aspects, the underlying microstructure description should be a part of
the fatigue model, for which crack nucleation can be used to denote
the early crack growth stage.

A plethora of crack nucleation life models exist that take into
account the microstructural descriptors with varied degrees of com-
plexity. For example, some analytical models take into account simple
1-D microstructure descriptors such as grain size, slip band size, or
a dislocation pile-up size in the prediction of crack nucleation life. A
brief review of such models is presented in [19,38,39]. Other numerical
models address crack nucleation with more complex microstructure
descriptions (2-D and 3-D) at different length scales [39–43]. In the
context of this work, of particular interest are the crystal plasticity-
based finite element (CPFE) models for cyclic loading of the material. A
general review of these models used for fatigue is presented in [10,44,
45]. Such models take into account the microstructure of the material
(often 3-D) in a finite element (FE) modeling scheme via statistical or
representative volume elements (RVE), along with the crystallographic
orientations of individual grains. Using such a model, Manonukul and
Dunne [46] introduced a simple crack nucleation criterion based on
the accumulated slip, which enabled them to predict the fatigue crack
nucleation life in a nickel alloy in the conditions of both gross and
local plasticity. Similarly, Shenoy et al. [47] used a statistical volume
element based CPFE model along with the concepts of fatigue indicator
parameters (FIP) to study the crack nucleation and microstructural
small crack growth in IN100 superalloy. These models are usually used
to study the fatigue response of material with a primary focus on the
microstructural features. For example, Przybyla et al. [48] used 3D
CPFE models to study the influence of primary 𝛼 grains in the fatigue
response of Ti-6Al-4V. Sharaf et al. [49] studied the influence of the

microstructure on the fatigue response of structural steels using 2D
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Fig. 1. Crack nucleation near a defect is a multiscale phenomenon. The macroscopic scale governs the global driving force and the mesoscopic scale governs the local driving
force for crack nucleation. At the microscopic scale, persistent-slip bands form that lead to crack nucleation.
CPFE models. Since the inherent microstructural variability is captured
in these models, some researchers have leveraged this aspect to study
its influence on the variability of the fatigue response [50] as well as to
include associated size effects [15,51]. Since such models are set up in a
FE framework, they can be tailored to study the fatigue response of ma-
terial in complex deformation conditions. In the past, such models have
been used for studying crack nucleation either in pristine microstruc-
tures [52,53] or in microstructures with microscopic defects [54,55],
where macroscopically homogeneous deformation boundary conditions
(BC) can be assumed in the model. A very limited number of studies
have attempted to use such models for studying crack nucleation in
engineering structures [56] or from engineering-scale (or macroscopic)
defects and notches [57–60]. The computationally intensive nature
of such models, along with the difference in length scales involved,
is a major factor that restricts their usage in such cases. For such
applications, it makes sense to use a two-scale approach, which employs
two different but coupled models at different length scales [43]. Such
an approach can take into account the microstructural heterogeneities
at the mesoscale in one model and the non-homogeneous smooth strain
fields at the macroscale in another model, without being computa-
tionally costly. Although there have been few attempts at using a
two-scale approach to analyze specific cases of crack nucleation from
holes using 2-D RVEs [55,61], to the best of the knowledge of the
authors, no generalized framework has been presented that can be
used to address crack nucleation and associated variability and size
effects for defects, taking into account the geometrical shapes of the
defect and the local 3-D microstructure description. In comparison to
the aforementioned engineering and microstructure-based models, such
a generalized framework would be able to capture the interaction of
non-homogeneous strain fields arising from the shape of the defect
and the underlying microstructural heterogeneities, without relying on
empirical corrections and assumed material-related variabilities.

Within this background, this work presents a two-scale modeling
approach to compare defects in terms of the associated 𝑁𝑛 values. In
terms of the scope of the work, the current study focuses on defects
that have a finite local root radius. This is because defects with a local
root radius tending to zero are expected to have negligible associated
𝑁𝑛 values. For such defects, other stages of crack growth are more
relevant, and hence they are out-of-scope for this work. The outline of
this article is as follows: Section 2 gives an overview of the two-scale
approach. Thereafter, Section 3 presents the theoretical description of
the material and microstructure models used in this work, and Section 4
describes the crack nucleation model. Section 5 gives the details of the
case study and FE implementation of the two-scale approach. Section 6
contains the main results of this study and a discussion on them. The
article ends with Section 7 in which the key conclusions of the study
are summarized.

2. Two-scale approach

The two-scale approach developed in this work consists of two
models: (1) a macroscopic-scale model, hereafter referred to as the
4

macroscale model, to address the structure with the defect; (2) a
mesoscopic-scale model, hereafter referred to as the mesoscale model,
to account for the local microstructure in the vicinity of the defect.
The type and the scope of the defects of interest are already discussed
in Section 1. In the subsequent paragraphs, the modeling approach
and the associated approximations used in this work are motivated
based on theoretical concepts, empirical understanding, and practical
constraints. Two different ways of analyzing material in a cyclic de-
formation model of a structure are distinguished here: continuum and
micromechanical. The material is treated as homogeneous in the con-
tinuum model, whereas the microstructure of the material is explicitly
taken into account in the micromechanical model.

Fig. 2a schematically shows a grain-resolved, simple metallic struc-
ture, containing a semi-circular defect and undergoing cyclic loading.
The fatigue crack nucleation driving force for every grain in this
structure is expressed in terms of the FIP, which is a microscopic
deformation-associated quantity [9,10,47]. The grain with the highest
value of cycle-stabilized FIP (𝑝𝑚𝑎𝑥) is the critical grain that nucleates the
crack in the structure. It is obvious that in a structure with a defect, the
crack nucleating grain will be located in the vicinity of the defect. Such
a potential critical grain is highlighted in red in the inset of Fig. 2a.

The microstructure of a metallic structure is not known apriori but
can be described statistically. Therefore, to address the microstructure-
related variability of the fatigue life of the considered structure, it is es-
sential to analyze multiple realizations of its microstructure, described
in terms of the distribution functions of the associated microstructural
features of interest. Since the analysis of one microstructural realization
is independent of another, each realization of the microstructure results
in an independent statistical unit. Moreover, since each realization
results in a different critical grain and thus a different value of 𝑝𝑚𝑎𝑥
for the defect, therefore 𝑝𝑚𝑎𝑥 for the defect has to be represented by
a random, i.e. stochastic, variable 𝑃 , having an associated distribution
that, for a given load, depends on the microstructure and the defect
characteristics. This distribution addresses the microstructure-related
uncertainty observed in 𝑁𝑛 values of a structure with a defect. The ma-
jor aim of the modeling approach developed in this work is to estimate
the distribution of 𝑃 for a defect by analyzing multiple realizations of
the underlying microstructure.

Formally, the deformation of a critical grain, besides its own ori-
entation, depends on all the grains in the structure, the structure’s
geometry, and the applied load, as shown in Fig. 2a. This implies
that establishing the distribution of 𝑃 for a defect by analyzing mul-
tiple independent statistical units through a cyclic deformation model
requires a micromechanical analysis of the whole structure. Such a
deformation model is referred to as model construct#1 in Fig. 2a and
belongs to the category of Direct Numerical Simulations [62]. However,
the computational requirement of such a model is exorbitantly high and
often needs petascale and exascale computing resources [62]. Tackling
such a problem with more modest computing resources requires ap-
proximations. In the following paragraphs, these approximations are

discussed.
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Fig. 2. Crack nucleating grain in a structure with a defect, analyzed using different model constructs: (a) Model construct#1 with only micromechanical treatment of the material.
Crack nucleating grain (in red) with FIP value 𝑝𝑚𝑎𝑥 is shown in the inset. The window outside of which the micromechanical treatment of material may be replaced with continuum
treatment is also shown. (b) Model construct#2 with the micromechanical treatment of material in volume 𝑉𝑚 of structure and continuum treatment outside it. (c) Model construct#3
with continuum treatment of material in the macroscale model of the structure and micromechanical treatment in the mesoscale model of 𝑉𝑚, and boundary condition (BC) transfer
from 𝑉𝑀 of macroscale to 𝑉𝑚.
Regarding the dependency of the deformation of a grain on other
grains in the structure, it has been shown for homogeneous defor-
mation conditions, that the deformation of a grain depends on the
deformation characteristics of its neighboring grains and this depen-
dency decreases with the distance between the grains [63–66]. For
non-homogeneous deformation conditions, such as in the vicinity of a
defect, the influence of the neighboring grains on the critical grain is
expected to be limited to an even smaller grain distance, depending
on the local stress gradient of the maximum principal stress along that
direction. The steeper the gradient is, the shorter the aforementioned
distance. Hence, it can be reasoned that in cyclic deformation analysis
of different independent statistical units, for a given remote loading,
the actual micromechanical behavior of the material outside a certain
window around the root of the defect is not required to estimate the
distribution of 𝑃 . Instead, an average or a continuum treatment of the
material can be adopted. As an example, such a window is shown for
the defect in Fig. 2a, and the resultant approximate model is shown
as Model construct#2 in Fig. 2b. For such a deformation model, the
suggested window should satisfy certain size criteria [59,61] to attain
the desired level of accuracy. The volume bounded by the window and
described with a micromechanical treatment of the material is referred
to as 𝑉𝑚. Model construct#2 belongs to the category of embedded
models [61], which have been used in the literature to address different
problems [57,59,60]. Although such models are computationally less
expensive than the type based on direct numerical simulations, they can
still be expensive especially when multiple independent statistical units
need to be evaluated. Moreover, such a modeling approach requires the
incorporation of different material models, addressing both continuum
and micromechanical descriptions of the material in the same modeling
domain, which is not possible for some of the open-source FE modeling
softwares.

Model construct#3, shown in Fig. 2c, is based on model construct#2
but overcomes some of its limitations. Theoretically, for an indepen-
dent statistical unit analyzed with model construct#2, the boundary
conditions experienced by 𝑉𝑚 depend on the microstructure realization
of 𝑉𝑚, and would vary for each realization. However, if the size of the
chosen window (and hence the size of 𝑉𝑚) is large enough, an additional
approximation can be made that the boundary conditions experienced
by the different realizations of 𝑉𝑚 do not vary significantly for mi-
crostructure realizations. In Fig. 2c, a model for the cyclic deformation
of the structure with a defect, using only a continuum description of the
5

material, is shown as the macroscale model. The volume of the struc-
ture bounded by the window and described with a continuum material
model is referred to as 𝑉𝑀 , shown in Fig. 2c. A further approximation
can be adopted that during cyclic deformation, the boundary conditions
experienced by all possible realizations of 𝑉𝑚 in model construct#2
do not differ significantly from the boundary conditions experienced
by 𝑉𝑀 in the macroscale model of Fig. 2c. Therefore, by choosing 𝑉𝑚
of an appropriate size, the boundary conditions for any realization of
𝑉𝑚 can be assumed to be independent of its microstructure realization
and can be derived from the continuum analysis of the material. This
results in two separate cyclic deformation models at different scales:
(1) a macroscale model for the whole structure with only a continuum
description of the material, and (2) a mesoscale model of 𝑉𝑚 with only
a micromechanical model of the material. To couple the two models,
the boundary conditions for the mesoscale model can be obtained
from the macroscale model. By modeling the cyclic deformation of 𝑉𝑚
in this two-scale approach, the value of the associated 𝑝𝑚𝑎𝑥 can be
approximated, as shown in Fig. 2c. Further, as shown in Fig. 3, multiple
independent statistical units can be analyzed by generating multiple
mesoscale model realizations for 𝑉𝑚 only. The boundary conditions
of each realization follow from the same macroscale model and the
associated 𝑝𝑚𝑎𝑥 values can be calculated to retrieve an estimate of
the distribution of 𝑃 for the defect. Such a deformation model can
be realized using the technique of submodeling or global-local model-
ing [67–70]. As described before, 𝑉𝑚 should satisfy certain size criteria
to get the desired level of accuracy of distribution of 𝑃 . Specifically,
for this application, 𝑉𝑚 should satisfy two size criteria (SC):

SC1: 𝑉𝑚 is large enough, i.e. contains enough grains, that the distribu-
tion of 𝑃 estimated from it is insensitive to its size [59,61] with
a reasonable degree of accuracy.

SC2: 𝑉𝑚 is large enough such that the difference between the average
stress–strain response of the material in 𝑉𝑀 and the average
stress–strain responses of different realizations of 𝑉𝑚 is small [67–
69].

The required size of 𝑉𝑚 for 3-D defects can still be large depending
on the dimensions of the defect, resulting in a computationally inten-
sive mesoscale model. However, a statistics-based upscaling approach,
similar to the one used by [51,71], can be used to analyze long defects
embedded in the bulk of the structures. Fig. 4 shows a portion of the
structure with a defect of length 𝑙𝐷, and its associated 𝑉𝑚. This defect
has the following characteristics:
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Fig. 3. Estimating the distribution of 𝑝𝑚𝑎𝑥 with model construct#3. Multiple independent statistical units of structure can be analyzed with multiple realizations (instantiations) of
the mesoscale model.
Fig. 4. Multiple independent statistical unit volumes 𝑉 ◦
𝑚 in 𝑉𝑚 along the length of a

constrained defect 𝑙𝐷 . The grains of one 𝑉 ◦
𝑚 volume are not affected by the grains of

adjoining unit volumes.

1. 𝑙𝐷 ≫ 𝑑, where 𝑑 is the average grain-size of the material.
2. The shape of the defect does not vary much along its length.
3. The defect is embedded in the bulk of the structure such that

plane-strain deformation conditions can be assumed along the
length of the defect.

As shown schematically in Fig. 4, in a two-scale approach for
analyzing such a defect, the associated 𝑉𝑚 can be further split along
𝑙𝐷 into smaller equal-size unit volumes: 𝑉 ◦

𝑚 (with their corresponding
𝑉 ◦
𝑀 in the macroscale model) such that each unit 𝑉 ◦

𝑚 complies with
the size criteria SC1 and SC2. For such unit volumes, as per SC1,
the grains confined in one unit 𝑉 ◦

𝑚 do not noticeably influence the
deformation of grains in adjoining unit volumes, as shown in Fig. 4.
Hence each unit 𝑉 ◦

𝑚 volume in 𝑉𝑚 can be treated as an independent
statistical unit and can be analyzed independently using a two-scale
approach. Exploiting this scale separation, a two-scale approach has
been developed in this work focusing on a single unit volume 𝑉 ◦

𝑚
associated with such long defect. The macroscale model addresses the
cyclic deformation of the full section of the plate containing the 𝑉 ◦

𝑀
volume with the macroscopic continuum description of the material,
whereas the mesoscale model addresses the cyclic deformation of the
volume 𝑉 ◦

𝑚 with a micromechanical description of the material, as
shown in Fig. 5. By implementing a two-scale approach for 𝑉 ◦

𝑚 , the
𝑝𝑚𝑎𝑥 values for 𝑉 ◦

𝑚 are evaluated, which is represented by the random
variable 𝑃 ◦ having the cumulative distribution function (CDF) 𝐹 .
6

𝑃 ◦
Fig. 5. Two scale approach used in this work to estimate the distribution of 𝑝𝑚𝑎𝑥
for 𝑉 ◦

𝑚 for a structure with a defect, with multiple mesoscale model realizations
(instantiations).

Then, using a weakest link approach [51,71], the CDF associated with
𝑃 , referred to as 𝐹𝑃 , is expressed as:

𝐹𝑃 =
(

𝐹𝑃 ◦
)𝑛◦ (1)

where, 𝑛◦ denotes the number of 𝑉 ◦
𝑚 volume elements along the length

of the entire defect, and is expressed as:

𝑛◦ =
𝑉𝑚
𝑉 ◦
𝑚

(2)

In this way, the distribution of 𝑃 for embedded defects of different
idealized shapes and lengths is approximated through 𝐹𝑃 . Since for
a given load, 𝑉 ◦

𝑚 for a defect is used to characterize the associated
distribution of 𝑃 through Eq. (1), this volume is henceforth termed here
as the statistically representative defect-root volume element (DVE).
Once 𝐹𝑃 for a defect has been established using a proper choice for the
DVE, the associated 𝑁𝑛 values for the defect can be obtained by using
a crack nucleation model which expresses a functional dependency
between 𝑁𝑛 and 𝑃 .

3. Material and microstructure models

The material analyzed in this work is pure 𝛼-iron. The choice of
pure 𝛼-iron as the studied material for this work is based on two
arguments: (i) it is crystallographically and compositionally similar to
the ferrite phase, which has experimentally been found to be the main
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Table 1
Parameters used in the Macroscale Material Model.
𝜎𝑦◦ 𝑄∞ 𝑏 𝐶1 𝐺1 𝐶2 𝐺2 𝐶3 𝐺3 𝐶4 𝐺4 𝐶5 𝐺5
[MPa] [MPa] [GPa] [GPa] [GPa] [GPa] [GPa]

135 60 7 6.8 360 10.2 359 10.7 359 28.1 1466 133.5 3948
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crack nucleating phase in the microstructure of structural steels [49];
(ii) its single-phase nature makes it easier to study than multiphase
steel. For this purpose, the material data corresponding to the 99.5%
pure 𝛼-iron sample studied by Briffod et al. [55,72], has been used
n this work. This material is reported to have an average grain size
= 35 μm without any texture. The cyclic yield stress (𝜎𝑐𝑦𝑐) for this
aterial was found to be 273 MPa [73]. The monotonic yield stress of

he material is not reported. However, based on the Hall-Petch relation
or commercially pure 𝛼-iron given in [74] and the cyclic yield stress-
onotonic yield stress relation given in [75], the monotonic yield-stress

f the material is estimated between 200–250 MPa. The material and
icrostructure models used in the current two-scale approach are
iscussed in the following subsections.

.1. Macroscale material model

The cyclic deformation of the material at the macroscale is modeled
sing a continuum elastoplasticity material model based on von Mises
ield criteria and incorporating backstresses. Isotropic elasticity is mod-
led with Young’s modulus of 210 GPa and a Poisson’s ratio of 0.33.
or plastic deformation, the following expression is used to describe the
ield surface:

3
2
(𝝈𝒅𝒆𝒗 −𝑿𝒅𝒆𝒗) ∶ (𝝈𝒅𝒆𝒗 −𝑿𝒅𝒆𝒗) = 𝜎𝑦 (3)

where, 𝝈𝒅𝒆𝒗 is the deviatoric part of the stress tensor 𝝈, 𝑿𝒅𝒆𝒗 is the
deviatoric part of the overall backstress tensor 𝑿 and 𝜎𝑦 is the scalar
yield stress at the given equivalent plastic strain (𝜀̄𝑝𝑙). The isotropic
hardening is modeled by using the Voce-hardening type evolution law
for 𝜎𝑦:

𝜎𝑦 = 𝜎𝑦◦ +𝑄∞(1 − 𝑒−𝑏𝜀̄
𝑝𝑙
) (4)

where, 𝜎𝑦◦ is the initial yield stress at zero plastic strain and 𝑄∞
and 𝑏 are material parameters. The kinematic hardening is modeled
using multiple backstresses, where each 𝑘th backstress (𝑿𝒌) follows a
non-linear hardening evolution law expressed as:

𝑿̇𝒌 =
𝐶𝑘
𝜎𝑦

(𝝈 −𝑿) ̇̄𝜀𝑝𝑙 − 𝐺𝑘𝑿𝒌 ̇̄𝜀𝑝𝑙 (5)

where, 𝐶𝑘 and 𝐺𝑘 are the material parameters and ̇̄𝜀𝑝𝑙 is the equivalent
lastic strain rate. Finally, the overall backstress tensor is calculated by
umming its individual components:

=
𝑛𝑋
∑

𝑘=1
𝑿𝒌 (6)

here, 𝑛𝑋 is the number of backstress contributions.
Such a material model can individually capture cyclic harden-

ng [76] and cyclic softening (as long as the average mechanical
ehavior remains stable) [77], based on the appropriate choice of
sotropic hardening parameters. For this work, the material model pa-
ameters for pure 𝛼-iron are taken from the work of Briffod et al. [55],
here 𝑛𝑋 is taken as 5. Table 1 shows the material parameters used in

his work. The material model is invoked through the commercial FE
odeling suite ABAQUS, via the in-built option of combined hardening
lasticity. The implementation of the material model is verified by
omparing the cycle-stabilized stress–strain curves predicted from the
urrent implementation with the reference simulation results reported
7

n [55].
.2. Mesoscale material and microstructure model

Given the body-centered cubic (BCC) crystal structure of 𝛼-iron,
t has been modeled to deform elastically following cubic elasticity.
or accommodating plastic deformation, BCC crystals involve 48 slip
ystems (three families). However, {110} ⟨111⟩ family of slip systems
re often regarded as the primary slip systems at room temperatures
or iron and similar materials [78]. For this, and computational rea-
ons, in this work 𝛼-iron is modeled to deform plastically by slip on
welve {110} ⟨111⟩ slip systems. The deformation is modeled using a
ate-dependent crystal plasticity model [79] with both isotropic and
inematic material hardening, as implemented in the rate-dependent
ersion of open-source CPFE code PRISMS-Plasticity [80,81], which
as been implemented on top of the open-source deal.II [82] C++ FE
ibrary. The reader is referred to the publications of the developers of
he code [80,81] for a detailed explanation of the implementation of the
aterial model. However, for the sake of completeness, the essential

eatures of the model are mentioned here. The elastic deformation is
odeled with Generalized Hooke’s law using three independent elastic

onstants for the stiffness tensor: 𝐶11, 𝐶12 and 𝐶44. For plastic defor-
ation, the slip rate on a particular 𝛼-th slip system (𝛾̇𝛼) is expressed

hrough a flow rule of the form:

𝛾̇𝛼 = 𝛾̇◦
|

|

|

|

𝜏𝛼 − 𝜒𝛼

𝑠𝛼
|

|

|

|

𝑚
𝑠𝑖𝑔𝑛(𝜏𝛼 − 𝜒𝛼) (7)

where, 𝜏𝛼 , 𝜒𝛼 and 𝑠𝛼 are the resolved shear-stress, backstress and slip
esistance of the slip system, respectively. 𝛾̇◦ and 𝑚 are the material

parameters and refer to the reference slip rate and inverse strain rate
sensitivity exponent, respectively. Since all slip systems belong to the
same family, therefore they have been modeled with the same initial
slip resistance (𝑠◦). To model the isotropic hardening, the rate of
evolution of slip resistance on the 𝛼-th slip system (𝑠̇𝛼) due to the slip
activity on the 𝛽-th slip system is given by:

̇ 𝛼 =
∑

𝛽
𝑞𝛼𝛽ℎ◦

(

1 − 𝑠𝛽

𝑠𝑠

)𝑎
|

|

|

𝛾̇𝛽 ||
|

(8)

where, ℎ◦ and 𝑎 are the material parameters for hardening and 𝑠𝑠
is the saturation slip resistance of the slip system. 𝑞𝛼𝛽 is the latent
ardening ratio which has a value of 1 when 𝛼 = 𝛽 and a value of 1.4

when 𝛼 ≠ 𝛽 [49,55]. To model the evolution of backstress, Armstrong-
Fredrick type [83] nonlinear kinematic hardening law is used, as given
by:

̇ 𝛼 = 𝐶𝜒 𝛾̇
𝛼 −𝐷𝜒 |𝛾̇𝛼|𝜒𝛼 (9)

where, 𝐶𝜒 and 𝐷𝜒 are material parameters. Similar to the macroscale
material model, this material model can capture cyclic hardening [49]
and cyclic softening (with stable average mechanical behavior) [77],
based on the appropriate choice of isotropic hardening parameters. For
this work, the parameters for 𝛼-iron have been taken from the work of
Briffod et al. [55] and are given in Table 2.

As discussed in Section 2, the microstructure is described in terms of
its microstructural features of interest. In this work, the microstructural
feature for studying the microstructure-related variability is the orien-
tations of the grains. Hence for each realization of the microstructure, a
unique orientation set of the constituent grains is used. The number of
grains in the microstructure captured in the mesoscale model is referred
to by the symbol 𝑛𝑔 . To model a material with no texture, orientation
sets are generated such that the orientations of the individual grains
closely conform to a uniform distribution. For this, the sampling tech-

nique proposed in [84] is used. This technique results in the generation
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Table 2
Parameters used in the Mesoscale Material Model.
𝐶11 𝐶12 𝐶44 𝛾̇◦ 𝑚 𝑠◦ 𝑠𝑠 ℎ◦ 𝑎 𝐶𝜒 𝐷𝜒
[GPa] [GPa] [GPa] [s−1] [MPa] [MPa] [MPa] [MPa]

233.3 135.5 118 0.001 4 60 110 150 2.25 33 000 900
Fig. 6. {100} Pole Figure for one of the orientation sets of 216 grains.

of orientation sets in the Bunge-Euler convention. However, for model-
ing the deformation of a microstructure realization, PRISMS-Plasticity
requires the input of the orientation set of the constituent grains in
terms of the Rodriguez vector. For this, another open-source software
MTex [85] is used to convert orientation sets from Bunge-Euler conven-
tion to Rodriguez vector. The orientation set of 𝑛𝑔 grains when defined
in terms of the Rodriguez vector is referred to with the symbol 𝛩𝑟[𝑛𝑔].
Using the aforementioned procedure, multiple 𝛩𝑟[𝑛𝑔] are generated for
multiple microstructure realizations with 𝑛𝑔 grains. As an example,
Fig. 6 shows the pole figure associated with one such 𝛩𝑟[𝑛𝑔] generated
for one microstructure realization with 𝑛𝑔 = 216. The morphology
of the grains is another microstructural feature, but, for simplicity,
this will not be explored in this work to study the microstructure-
related variability. Hence, a rather simple choice of cuboidal grains
with size 35 μm has been used in this work, which remains fixed in the
different realizations. Such a cuboidal grain morphology has also been
used in the past for modeling the deformation and crack nucleation
in materials [58,60,86,87]. Sauzay et al. [88], using regularized FE
models of RVEs, compared a realistic microstructural morphology with
the cuboidal morphology and reported that for relatively homogeneous
microstructures, not much difference is obtained in the calculated val-
ues of RVE-averaged quantities and the distribution of grain-averaged
quantities. Since in this work such volume-averaged quantities are
calculated from the mesoscale model, the choice of a fixed cuboidal
morphology is deemed reasonable.

The implementation of the material model along with the current
microstructure model is verified by comparing the cycle-stabilized
stress–strain curves predicted from the current implementation with the
reference simulation results reported in [55].

4. Crack nucleation model

Different types of FIPs have been used in the literature to charac-
terize the crack nucleation phenomenon, as reviewed in [10,44,45].
Amongst them, the critical-plane based Fatemi-Socie FIP has been
8

extensively used [47,49,50,52,53,57,87]. The Fatemi-Socie damage pa-
rameter was originally developed as a phenomenological concept ap-
plied to multiaxial fatigue and was an extension of the concept of
critical planes responsible for fatigue damage [89]. In the past, the
Fatemi-Socie parameter has been found to be representative of fun-
damental crack growth driving force parameters such as the stress-
intensity factor range, the 𝛥J-integral, and the crack-tip displacement
in slip bands [90–92]. It has also been found to correlate well with
Stage I fatigue crack growth exhibiting planar slip [93]. Since for crack
nucleation active slip planes can act as critical planes, Castelluccio and
McDowell [94] extended the idea to introduce the Fatemi-Socie FIP for
a crystal plasticity model. With this background, the Fatemi-Socie FIP
is exploited in this work, which is expressed for the 𝛼-th slip system
and 𝑁-th loading cycle, as:

𝑝𝛼𝑁 =
𝛥𝛾𝛼𝑁
2

(

1 + 𝑘𝐹𝑆

𝜎𝛼𝑛,𝑁
𝜎𝑐𝑦𝑐

)

(10)

where, 𝑝𝛼𝑁 is the value of the FIP, 𝛥𝛾𝛼𝑁 is the slip range and 𝜎𝛼𝑛,𝑁 is
the peak normal stress. 𝑘𝐹𝑆 is the material parameter that governs
the influence of normal stress. The value of 𝑘𝐹𝑆 for materials is typ-
ically obtained through identification on experiments [95], and in this
work, a value of 1 is used, which is a value generally suggested for
steels [95,96]. In a numerical model, the FIP, as expressed in Eq. (10), is
calculated for an arbitrary volume of material which is governed by the
modeling discretization scheme. Hence, this quantity can be affected
by the choice of the discretization scheme of the numerical model.
Moreover, this arbitrary volume may not be a physically realistic crack
nucleating volume. To address these issues, the values of FIP are often
volume-averaged over different choices of physically realistic domains
that may represent the crack nucleating volume [81]. In this work, a
grain-averaging scheme is adopted, as follows:

𝑝𝛼,𝑔𝑁 =
∫𝑉𝑔 𝑝

𝛼
𝑁𝑑𝑉𝑔
𝑉𝑔

(11)

in which 𝑉𝑔 represents the volume of the 𝑔-th grain to which the arbi-
trary volumes belong and 𝑝𝛼,𝑔𝑁 is the value of FIP for the combination of
the 𝑔-th grain, 𝛼-th slip system and 𝑁-th cycle. Such a grain-averaging
scheme for FIPs has been used in the literature to characterize fa-
tigue crack nucleation [47,72,87]. As observed by Castelluccio and
McDowell [87], the grain-averaged FIP closely represents the FIP value
existing at the mid-section of the grain. Since grain orientations are
the primary microstructural features analyzed in this work, a single
FIP value per slip system per grain is a reasonable choice. Moreover,
given the choice of the cuboidal grain morphology used in this work,
the grain-averaging scheme also reduces possible morphological edge
effects in the calculated FIP value. Since 𝑝𝛼,𝑔𝑁 evolves with loading
cycles, only the characteristic cycle-stabilized value of FIP (𝑝𝛼,𝑔) is used
for further calculation:

𝑝𝛼,𝑔 = 𝑝𝛼,𝑔𝑁𝑠𝑠
(12)

where, 𝑁𝑠𝑠 is the number of cycles needed to obtain a cyclic-stabilized
state, defined as:
(

𝛥𝑝𝛼,𝑔𝑁
𝛥𝑁

→ 0

)

𝑁=𝑁𝑠𝑠

(13)

This implicitly assumes that the number of cycles needed by a material
to attain a stabilized state is significantly smaller than the number of
cycles for crack nucleation. Thus, fatigue damage during the transient
state can be neglected compared to the stabilized state fatigue damage
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Table 3
Radii of the defects analyzed in this work and their
corresponding 𝐾𝑡 values.
𝑟1 𝑟2 𝐾𝑡
[mm] [mm] [–]

1 1 3
1 0.68 4
1 0.5 5.2
1 0.25 9.7

(note that this assumption is not valid in the case of ultra-low-cycle
fatigue). After obtaining 𝑝𝛼,𝑔 , the associated maximum value (𝑝𝑚𝑎𝑥) for
the considered mesoscale volume is evaluated as follows:

𝑝𝑚𝑎𝑥 = max
𝛼,𝑔

(𝑝𝛼,𝑔) (14)

Based on the explanation in Section 2, the associated 𝑝𝑚𝑎𝑥 value is
represented by the random variable 𝑃 and is used for predicting the
crack nucleation life of the defect, as follows [94,96]:

𝑁𝑛 =
𝑝𝑐𝑟𝑖𝑡
(𝑃 )𝑚◦

(15)

where, 𝑝𝑐𝑟𝑖𝑡 is a material parameter that depends on the grain size and
irreversibility of dislocation activity [14,94]. The exponent 𝑚◦ for the
Fatemi-Socie FIP is often assigned the value of 2 [94,96].

5. Case study: Comparison of defects

This section presents the case study analyzed in this work which
focuses on comparing different defects in a simple engineering structure
for the prediction of their crack nucleation characteristics. First, the
choices made for the geometry, FE strategies, and boundary conditions
for the macroscale model of the structure and the mesoscale model
of the microstructure are presented. Finally, the two-scale approach
implemented using the two models is described, which enables the
comparison of the defects.

5.1. Macroscale model

The macroscale FE model consists of a thick rectangular plate
with a defect at the center of one of its long edges. A plane-strain
deformation condition is assumed for the plate which is representative
of the deformation conditions existing in the bulk of the structures. This
assumption also makes it convenient to analyze the plate with a 2D
FE model. Fig. 7 shows the 2D FE model of the plate along with its
dimensions. The macroscale FE model is discretized with 8-noded plane
strain quadrilateral elements CPE8. The considered defect in the plate is
of a semi-elliptical cylinder shape, which, in a 2D plane-strain model,
is modeled as a semi-ellipse. The shape of the defect is parametrized
by the two radii: 𝑟1 and 𝑟2, corresponding to the two semi-axes, as
shown in the inset of Fig. 7. Four different defects with a fixed value
of 𝑟1 = 1 mm and different values of 𝑟2 are analyzed in this work,
resulting in four macroscale models. Mesh refinement is carried out
in the vicinity of the defects with an average element size of about
10 μm, which is found to be sufficient for mesh-converged results for
all the defects. The linear elastic stress concentration factors (𝐾𝑡) of the
defects, for plane strain conditions, based on the principal stress values
in the direction of the semi-minor axis of the defect, are summarized in
Table 3. Fig. 8 shows the close-ups of the four defects in their respective
macroscale models.

The cyclic deformation of the plate is simulated by applying a cyclic
load on its top edge, as shown in Fig. 7, with a maximum applied stress
of 𝜎𝐴= 122 MPa, a stress ratio of 𝑅𝜎,𝑀 = −1 and with a symmetrical
triangular loading waveform. The value of 𝜎𝐴 is chosen as 90% of initial
yield stress 𝜎𝑦◦. The cyclic load is applied for 25 cycles to reach a cycle-
stabilized stress–strain state in the vicinity of the defect. For the nodes
located along the bottom edge, the displacement degree of freedom
9

Fig. 7. Macroscale Model of a section of a thick plate with a defect, loaded in its
plane. The two radii used to define the shape of the defect are shown in the inset.

Fig. 8. Close-ups on the defect of different 𝐾𝑡 in their respective macroscale models:
(a) 𝐾𝑡 = 3 (b) 𝐾𝑡 = 4 (c) 𝐾𝑡 = 5.2 (d) 𝐾𝑡 = 9.7.

along the Y direction is constrained, thus allowing lateral contraction.
A corner node on the bottom edge is constrained in X-direction to
eliminate rigid body motion.

5.2. Mesoscale model

The mesoscale FE model and the two-scale approach are imple-
mented for a generic defect-root volume element of the material (𝑣𝑚)
around the central root point of the defect. Such 𝑣𝑚 is shown schemat-
ically in Fig. 9. The reason for implementing the methodology for
a generic defect-root volume elements is as follows: As discussed in
Section 2, to compare different defects, mesoscale models for their as-
sociated DVEs are required, and for establishing the required DVE size,
a size sensitivity needs to be conducted to address the two size criteria.
Implementing the mesoscale FE model and the two-scale approach for
a generic defect-root volume element enables such sensitivity studies.
When 𝑣𝑚 complies with the two size criteria, it serves as DVE for the
defect, also shown schematically in Fig. 9. These size sensitivity studies
are later discussed in Section 5.3. In the spirit of the explanations
made in Section 2, 𝑣𝑚 has a counterpart 𝑣𝑀 in the macroscale model.
The microstructure description used in the FE model of 𝑣𝑚 is already
described in Section 3.2. The coordinate system of the mesoscale FE
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Fig. 9. Schematic diagram showing a generic defect-root volume element (𝑣𝑚) and the
required DVE (𝑉 ◦

𝑚 ) in the mesoscale model.

Fig. 10. 𝑣𝑀 in macroscale model and 𝑣𝑚 in mesoscale model for the case of 𝐾𝑡 = 3
and 𝑛𝑔 = 216.

model of a defect is parallel to the coordinate system of the macroscale
FE model of the defect, such that their central root points coincide. As
an example, Fig. 10 shows 𝑣𝑚 and 𝑣𝑀 for the case 𝐾𝑡 = 3 and 𝑛𝑔 = 216.

Each cuboidal grain in the FE model is discretized with 64 8-noded
hexahedral elements, which is based on mesh-sensitivity studies. Since
𝑣𝑚 is the volume of the material in the vicinity of the defect, apart
from the microstructure of the material, the shape of the defect also
plays a role in its description. Depending on the dimensions of the 𝑣𝑚,
the mesoscale FE model of 𝑣𝑚 incorporates a portion of the curved free
surface of the defect. This is shown in Fig. 10, through the linear size
of 𝑣𝑚 (𝑙𝑣). The relationship between 𝑙𝑣 and 𝑛𝑔 is expressed as

𝑙𝑣 = 𝑑 3
√

𝑛𝑔 (16)

The boundary conditions are imposed on all enclosed surfaces of 𝑣𝑚
(excluding the free surface), termed as the non-free surfaces of 𝑣𝑚.
The displacement boundary conditions of the non-free surface of 𝑣𝑚
are obtained from the last cycle results of the macroscale model. If
𝑑𝑚𝑎𝑥,𝑚(𝑥⃗) and 𝑑𝑚𝑎𝑥,𝑀 (𝑥⃗) are the displacement vectors at the peak applied
stress, of a point which has position vector 𝑥⃗ with respect to the central
root point of the defect in the mesoscale model and macroscale model
respectively, the displacement vector of the non-free surface nodes of
the mesoscale model reads:

𝑑𝑚𝑎𝑥,𝑚(𝑥⃗𝑛𝑚) = 𝑑𝑚𝑎𝑥,𝑀 (𝑥⃗𝑛2𝐷,𝑚) (17)

where 𝑥⃗𝑛𝑚 denotes the position vector of a node at a non-free surface
with respect to the central root point in the mesoscale model and 𝑥⃗𝑛2𝐷,𝑚
is its 2D projection in the plane of the macroscale model. 𝑥⃗𝑛2𝐷,𝑚 is
mathematically expressed as:

𝑥⃗𝑛2𝐷,𝑚 =
(

𝑥⃗𝑛𝑚 ⋅ 𝑒𝑥
)

𝑒𝑥 +
(

𝑥⃗𝑛𝑚 ⋅ 𝑒𝑦
)

𝑒𝑦 (18)

where 𝑒𝑥 and 𝑒𝑦 are the Cartesian unit base vectors of the coordinate
system in the plane of the macroscale model. It is often found that the
10
extent of the local stress–strain reversal near the notch or defect root
can be different from the globally applied stress–strain reversal [5,97].
To address this, a simple and easy-to-implement approach based on the
average strain ratio is adopted. In this approach, the principal strain
ratio for the mesoscale boundary conditions (𝑅𝜀,𝑚) is calculated from
the results of the last cycle of the macroscale model as follows:

𝑅𝜀,𝑚 =
𝜀̄𝑚𝑖𝑛,𝑀
𝜀̄𝑚𝑎𝑥,𝑀

(19)

where 𝜀̄𝑚𝑖𝑛,𝑀 and 𝜀̄𝑚𝑎𝑥,𝑀 denote the cycle minimum and cycle maxi-
mum values of the volume-averaged principal strain over the volume
𝑣𝑀 . Thereafter, a displacement 𝑑𝑎𝑣𝑔,𝑚(𝑥⃗𝑛𝑚)±

(

𝛥𝑑𝑚(𝑥⃗𝑛𝑚) ||𝑅𝜀,𝑚
|

|

)

is imposed
on the non-free surface nodes in the FE model to simulate cyclic loading
of 𝑣𝑚, where:

𝑑𝑎𝑣𝑔,𝑚(𝑥⃗𝑛𝑚) =

(

1 + 𝑅𝜀,𝑚
)

𝑑𝑚𝑎𝑥,𝑚(𝑥⃗𝑛𝑚)
2

(20)

𝛥𝑑𝑚(𝑥⃗𝑛𝑚) =

(

1 − 𝑅𝜀,𝑚
)

𝑑𝑚𝑎𝑥,𝑚(𝑥⃗𝑛𝑚)
2

(21)

The average principal strain rate of the cyclic straining is kept at
the value of 0.002 s−1, which is the strain rate of the cyclic load-
ing for which the material parameters were identified [55]. With
the prescribed boundary conditions, the cyclic loading of 𝑣𝑚 is car-
ried out for 25 cycles to ensure the attainment of a cycle-stabilized
volume-averaged stress–strain response, as well as cycle-stabilized 𝑝𝛼,𝑔𝑁
values.

After simulating the cyclic loading of 𝑣𝑚 for 25 cycles, the 𝑝𝑚𝑎𝑥 value
for a particular microstructure realization of 𝑣𝑚 is calculated based on
the methodology presented in Section 4. In order to remove the local
influence of the boundary conditions, the grains residing at the non-free
surface of 𝑣𝑚 are not considered for the determination of 𝑝𝑚𝑎𝑥. Different
𝑝𝑚𝑎𝑥 values are obtained for different microstructure realizations of 𝑣𝑚.

5.3. Two-scale implementation

The procedure of the two-scale approach to extract the distribution
of the 𝑝𝑚𝑎𝑥 values is outlined in Algorithm 1, where the number of
microstructure realizations analyzed for a generic defect-root volume
𝑣𝑚 of a defect is denoted by 𝑛𝑟. As explained before, to compare defects
of different 𝐾𝑡, the distributions for 𝑝𝑚𝑎𝑥 values corresponding to the
DVEs are needed. The size of the DVE for the defects is identified by
conducting a size-sensitivity study using Algorithm 1. In this work, the
size of a DVE is established for the shallowest defect, i.e. the defect
with 𝐾𝑡 = 3. As discussed in Section 2, the required DVE for this
defect should satisfy the two size criteria: SC1 and SC2. Since the
shallowest defect will have the lowest strain gradient in the two in-
plane directions, the established DVE for this defect is sufficient for
studying other defects if it satisfies SC2, see Section 2, for all other
defects.

For addressing SC1, a number of two-scale analyses are carried out
using Algorithm 1, with 𝑟1 = 1 mm, 𝑟2 = 1 mm and 𝑛𝑟 = 50, each with a
different 𝑣𝑚 and hence a different value of 𝑛𝑔 , ranging from 27(= 3×3×3)
to 343(= 7×7×7). From each of these two-scale analyses, the distribution
of 𝑝𝑚𝑎𝑥 values for each 𝑣𝑚 is obtained and is characterized by estimating
the associated mean (E

[

𝑝𝑚𝑎𝑥
]

) and coefficient of variation (V
[

𝑝𝑚𝑎𝑥
]

). It
is observed that beyond 𝑛𝑔 = 216, a negligible change (<10%) in the
estimated E

[

𝑝𝑚𝑎𝑥
]

and V
[

𝑝𝑚𝑎𝑥
]

are obtained for higher values of 𝑛𝑔 ,
thereby confirming that SC1 is satisfied. Furthermore, for each defect,
the cycle-stabilized volume-averaged stress–strain curves for 𝑣𝑚 and 𝑣𝑀
associated with 𝑛𝑔 = 216 are in adequate agreement with each other,
thereby satisfying SC2. Hence, it is concluded that for each defect,
volume 𝑣𝑚 with 𝑛𝑔 = 216 qualifies to serve as a proper DVE. This
results in a linear size of DVE, 𝑙◦ = 0.21 mm for all the defects. The
relative error associated with 95% confidence intervals of estimated



International Journal of Fatigue 188 (2024) 108489D. Khan et al.
Fig. 11. The DVEs of defects with different 𝐾𝑡: (a) 𝐾𝑡 = 3 (b) 𝐾𝑡 = 4 (c) 𝐾𝑡 = 5.2 (d) 𝐾𝑡 = 9.7.
Algorithm 1: Procedure for the two-scale implementation.

Input : 𝑟1, 𝑟2, 𝑛𝑔 ,𝑛𝑟,
{

𝛩𝑟
1[𝑛𝑔], 𝛩

𝑟
2[𝑛𝑔], ...𝛩

𝑟
𝑛𝑟
[𝑛𝑔]

}

Output:
{

𝑝𝑚𝑎𝑥,1, 𝑝𝑚𝑎𝑥,2, ...𝑝𝑚𝑎𝑥,𝑛𝑟
}

1 Set-up the macroscale FE model of the structure with 𝑟1 and 𝑟2
2 Simulate the macroscopic cyclic loading of the structure and

store the results
3 Set-up the mesoscale FE model of j-th realization of 𝑣𝑚 with

𝑟1,𝑟2, 𝑛𝑔 and 𝛩𝑟
𝑗 [𝑛𝑔]

4 Extract the values of 𝑑𝑚𝑎𝑥,𝑚(𝑥⃗𝑛𝑚) and 𝑅𝜀,𝑚 from the results of the
macroscale model

5 Simulate the mesoscale cyclic loading of 𝑣𝑚
6 Extract the value of 𝑝𝑚𝑎𝑥
7 Repeat Steps 3-6 for 𝑛𝑟 realizations

E
[

𝑝𝑚𝑎𝑥
]

and V
[

𝑝𝑚𝑎𝑥
]

, expressed as twice the margin of error per unit
estimated value, are calculated using the bootstrap method with 9999
resamples, and are found to be 5% and 42% respectively. The relative
error associated with 95% confidence intervals indicates the error in the
determination of the estimates [15] and is governed here by the sample
size of 𝑝𝑚𝑎𝑥, and hence the number of realizations 𝑛𝑟. For this work, a
value of 𝑛𝑟 = 50 is deemed sufficient to get estimates with reasonable
accuracy within the constraints of computational resources. With the
established values of 𝑛𝑔 = 216 and 𝑛𝑟 = 50 for DVEs of all the defects,
Algorithm 1 is then further used to analyze different defects (different
values of 𝑟1 and 𝑟2) for their associated 𝑝𝑚𝑎𝑥 distribution, represented
by the random variable 𝑃 ◦. The DVEs of defects with different values of
𝐾𝑡 are shown in Fig. 11, where different colors denote different grains.

6. Results and discussion

In this section, the results of the comparison of the defects are
presented. First, the results of the distribution of predicted 𝑃 ◦ and 𝑃
for the defects are presented. Thereafter, the predicted trends of the
distribution of 𝑁𝑛 of defects are described. Finally, these trends are
compared with the results of an empirical approach and experimental
data sets.

6.1. Distribution of 𝑃 ◦ and 𝑃

To characterize the CDF of 𝑃 ◦ of all defects, the Gumbel distribution
is used. The Gumbel distribution is one of the extreme value distribu-
tions [98] and thus appropriate for characterizing the distribution of
𝑝𝑚𝑎𝑥 in the vicinity of a defect. The Gumbel distribution has also been
used in the literature for characterizing the maximum value of different
types of FIPs of microstructures [15,49–51,71,81]. Using the Gumbel
distribution, the CDF associated with 𝑃 ◦ (𝐹𝑃 ◦ ) for a defect is expressed
as [15,51]:

𝐹𝑃 ◦ (𝑝;𝜇◦, 𝜎◦) = exp
[

−exp
(

−
𝑝 − 𝜇◦

𝜎◦

)]

(22)

where 𝑝 denotes a specific value of 𝑃 ◦ and 𝜇◦ and 𝜎◦ denote the
location and scale parameter of the distribution, respectively. 𝜇◦ and
11
Fig. 12. 𝑃 ◦ values calculated for defects of different 𝐾𝑡 values, shown with open
circles, and their Gumbel fit, shown with solid lines, plotted on the Gumbel probability
scale.

Table 4
Gumbel Parameters associated with 𝑃 ◦ for different 𝐾𝑡.

𝜇◦[−] 𝜎◦[−]

𝐾𝑡 = 3 0.0016 0.00014
𝐾𝑡 = 4 0.0028 0.00028
𝐾𝑡 = 5.2 0.0044 0.00049
𝐾𝑡 = 9.7 0.0074 0.00072

𝜎◦ are collectively referred to as the Gumbel parameters. The Gumbel
parameters of the four defect cases have been identified by the method
of linearization and fitting, based on the procedure outlined in [50]. In
summary, as per this procedure, Eq. (22) (also elsewhere) is expressed
as:

− ln
(

− ln𝐹𝑃 ◦
)

=
𝑝
𝜎◦

−
𝜇◦

𝜎◦
(23)

which is a linear equation between − ln
(

− ln𝐹𝑃 ◦
)

and 𝑝. Then, using the
empirical values of 𝐹𝑃 ◦ for different values of 𝑝, the values of 𝜇◦ and
𝜎◦ are obtained by fitting the data to Eq. (23). Table 4 summarizes the
values of Gumbel parameters obtained from the fitting procedure for
the four defects, using the 50 values of 𝑃 ◦ obtained from the two-scale
analysis of their respective DVEs. Fig. 12 shows the Gumbel approxi-
mation graphically. A good match (𝑅2 > 0.95) has been obtained for
all defects. Based on the Gumbel parameters obtained, the probability
density functions (PDF) associated with 𝑃 ◦ (𝑓𝑃 ◦ ) for the defects are
obtained, as shown in Fig. 13. The PDF of 𝑃 ◦ shifts to higher values
as the value of 𝐾𝑡 increases. This is understandable since a defect with
higher 𝐾𝑡 has a higher driving force for crack nucleation [99]. It can
also be observed that the standard deviation of 𝑝𝑚𝑎𝑥 increases as 𝐾𝑡
increases.

The 𝑝𝑚𝑎𝑥 values associated with a defect of a particular shape and
length (𝑙𝐷) are represented by the random variable 𝑃 . To obtain the
distribution of 𝑃 for defects of different lengths from the distribution of
their corresponding 𝑃 ◦, a weakest link-based upscaling technique [15,
51,71], as discussed in Section 2, is used. Based on this approach, the
CDF associated with 𝑃 is estimated using Eq. (1), with 𝑛 now expressed
◦
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Fig. 13. Estimated PDF of 𝑃 ◦ of defects with different 𝐾𝑡 values.

as:

𝑛◦ =
𝑙𝐷
𝑙◦

(24)

In terms of the Gumbel distribution of 𝑃 ◦, Eq. (1) is reformulated
as [15,51]:

𝐹𝑃 (𝑝;𝜇𝐷, 𝜎𝐷) = exp
[

−exp
(

−
𝑝 − 𝜇𝐷

𝜎𝐷

)]

(25)

here
𝐷 =

(

𝜇◦ + 𝜎◦ ln(𝑛◦)
)

(26)

𝐷 = 𝜎◦ (27)

q. (25) shows that for a given defect 𝑃 follows a Gumbel distribution
ith corresponding Gumbel parameters that depend on the Gumbel
arameters of the associated 𝑃 ◦. Using Eq. (25), 𝐹𝑃 is evaluated for
hree values of 𝑙𝐷 for each value of 𝐾𝑡 of a defect: 0.21 mm, 0.5 mm
nd 1 mm. The case of 𝑙𝐷 = 0.21 mm refers to the case where the defect
s of the same size as DVE, i.e. 𝑛◦ = 1. Fig. 14 shows 𝐹𝑃 obtained for
he defects with different values of 𝑙𝐷 and 𝐾𝑡.

.2. Distribution of 𝑁𝑛

Since 𝑃 changes with 𝐾𝑡 and 𝑙𝐷, it is denoted further as 𝑃𝐾𝑡 ,𝑙𝐷 .
imilarly, using Eq. (15), 𝑁𝑛 for a defect with a particular 𝐾𝑡 and 𝑙𝐷 is
xpressed as:
𝑛
𝐾𝑡 ,𝑙𝐷

=
𝑝𝑐𝑟𝑖𝑡

(

𝑃𝐾𝑡 ,𝑙𝐷

)𝑚◦
(28)

Since 𝑃𝐾𝑡 ,𝑙𝐷 is a random variable, the term 1
(

𝑃𝐾𝑡,𝑙𝐷

)𝑚◦ is also a random

ariable. The term 1
(

𝑃𝐾𝑡,𝑙𝐷

)𝑚◦ is called unscaled crack nucleation life

and is referred to with the symbol 𝑁𝑢
𝐾𝑡 ,𝑙𝐷

. Eq. (28) is then rewritten as:

𝑁𝑛
𝐾𝑡 ,𝑙𝐷

= 𝑝𝑐𝑟𝑖𝑡𝑁
𝑢
𝐾𝑡 ,𝑙𝐷

(29)

The distribution of 𝑁𝑢
𝐾𝑡 ,𝑙𝐷

depends on the distribution of 𝑃𝐾𝑡 ,𝑙𝐷 . For
𝑃𝐾𝑡 ,𝑙𝐷 that follows a Gumbel distribution with Gumbel parameters 𝜇𝐷

and 𝜎𝐷, the CDF for the 𝑁𝑢
𝐾𝑡 ,𝑙𝐷

(𝐹𝑁𝑢 ), based on the derivation in [15],
is expressed as:

𝐹𝑁𝑢 (𝑛;𝜇𝐷, 𝜎𝐷) = 1 − exp

⎡

⎢

⎢

⎢

⎣

−exp

⎛

⎜

⎜

⎜

⎝

−

(

1
𝑛

)𝑚◦
− 𝜇𝐷

𝜎𝐷

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(30)

here 𝑛 denotes a specific value of 𝑁𝑢
𝐾𝑡 ,𝑙𝐷

. The parameter 𝑝𝑐𝑟𝑖𝑡 is not
vailable for pure 𝛼-iron and hence Eq. (29) cannot be used directly.
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herefore, to compare the defects, two normalized crack nucleation
ives (𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
and 𝑁𝑛′′

𝐾𝑡 ,𝑙𝐷
) are defined as follows:

𝑁𝑛′
𝐾𝑡 ,𝑙𝐷

=
𝑁𝑛

𝐾𝑡 ,𝑙𝐷

E
[

𝑁𝑛
𝐾𝑡=3,𝑙𝐷

] (31)

𝑁𝑛′′
𝐾𝑡 ,𝑙𝐷

=
𝑁𝑛

𝐾𝑡 ,𝑙𝐷

E
[

𝑁𝑛
𝐾𝑡=3,𝑙𝐷=0.21

] (32)

where E
[

𝑁𝑛
𝐾𝑡=3,𝑙𝐷

]

refers to the mean value of 𝑁𝑛
𝐾𝑡 ,𝑙𝐷

for the defect with

𝑡 = 3 and length = 𝑙𝐷 and E
[

𝑁𝑛
𝐾𝑡=3,𝑙𝐷=0.21

]

refers to the mean value
f 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
for the defect with 𝐾𝑡 = 3 and 𝑙𝐷 = 0.21. Such normalized

ives not only enable a relative comparison of the defects but also
acilitate the prediction of the crack nucleation life of a particular
efect, once the mean life has been identified from experimental data
f the normalizing case. Eqs. (29), (31)–(32) show that 𝑁𝑢

𝐾𝑡 ,𝑙𝐷
, 𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
nd 𝑁𝑛′′

𝐾𝑡 ,𝑙𝐷
are scaled versions of the actual 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
with different scaling

actors. Using Eq. (29) and properties of the mean value of a random
ariable, Eq. (31) and (32) are rewritten as:

𝑛′
𝐾𝑡 ,𝑙𝐷

=
𝑁𝑢

𝐾𝑡 ,𝑙𝐷

E
[

𝑁𝑢
𝐾𝑡=3,𝑙𝐷

] (33)

𝑁𝑛′′
𝐾𝑡 ,𝑙𝐷

=
𝑁𝑢

𝐾𝑡 ,𝑙𝐷

E
[

𝑁𝑢
𝐾𝑡=3,𝑙𝐷=0.21

] (34)

From Eq. (33), it is inferred that the Q-th quantile of 𝑁𝑛′
𝐾𝑡 ,𝑙𝐷

(𝐹−1
𝑁𝑛′

(𝑄))
and Q-th quantile of 𝑁𝑢

𝐾𝑡 ,𝑙𝐷
(𝐹−1

𝑁𝑢 (𝑄)) are related as follows:

−1
𝑁𝑛′ (𝑄) =

𝐹−1
𝑁𝑢 (𝑄)

E
[

𝑁𝑢
𝐾𝑡=3,𝑙𝐷

] (35)

here 𝐹−1
𝑁𝑛′

and 𝐹−1
𝑁𝑢 are the inverse CDF of 𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
and 𝑁𝑢

𝐾𝑡 ,𝑙𝐷
respec-

tively. Similarly,

𝐹−1
𝑁𝑛′′ (𝑄) =

𝐹−1
𝑁𝑢 (𝑄)

E
[

𝑁𝑢
𝐾𝑡=3,𝑙𝐷=0.21

] (36)

where 𝐹−1
𝑁𝑛′′

is the inverse CDF of 𝑁𝑛′′
𝐾𝑡 ,𝑙𝐷

. Using Eqs. (35) and (36) the
first, second, and third quartiles of 𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
and 𝑁𝑛′′

𝐾𝑡 ,𝑙𝐷
are calculated

using the quantile values of 𝑄 = 0.25, 0.5 and 0.75, respectively, for
each 𝐾𝑡 and 𝑙𝐷 value. These are then used to plot 𝐾𝑡 vs 𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
and

𝐾𝑡 vs 𝑁𝑛′′
𝐾𝑡 ,𝑙𝐷

in terms of interquartile ranges. The resultant graphs are
shown in Figs. 15(a) and 15(b). Since both 𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
and 𝑁𝑛′′

𝐾𝑡 ,𝑙𝐷
are scaled

versions of 𝑁𝑛
𝐾𝑡 ,𝑙𝐷

, all the relative characteristics of the graph of 𝐾𝑡 vs
𝑁𝑛

𝐾𝑡 ,𝑙𝐷
on a log–log scale can be extracted from Figs. 15(a) and 15(b).

A few observations are made from these figures regarding the variation
of 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
with 𝐾𝑡:

• It is observed that for all 𝑙𝐷, 𝑁𝑛
𝐾𝑡 ,𝑙𝐷

decreases with an increase
in 𝐾𝑡. This prediction is in line with the concept of stress con-
centration [4], which leads to early crack initiation in structures.
Defects with higher 𝐾𝑡 entail higher stresses and strain fields in
the vicinity of the defect, which leads to higher values of 𝑃 and
lower values of 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
.

• 𝑁𝑛′
𝐾𝑡 ,𝑙𝐷

can be viewed as the life-reduction (or life debit) [100]
which occurs when the value of 𝐾𝑡 is increased for a particular
value of 𝑙𝐷, expressed as a fraction of the life of the normalizing
case. In this view, it is observed from Fig. 15(a), that the trend
of life-reduction of 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
with 𝐾𝑡 is nearly independent of 𝑙𝐷.

Specifically, it is found that irrespective of 𝑙𝐷, 𝑁𝑛
𝐾𝑡 ,𝑙𝐷

reduces to
about 5% of its value when 𝐾 is increased from 3 to 9.7.
𝑡
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(

Fig. 14. CDF plots of 𝑃 for different 𝑙𝐷 values, obtained from the two-scale approach, fitting to Gumbel and statistical upscaling, for defects with different 𝐾𝑡 values: (a) 𝐾𝑡 = 3
b) 𝐾𝑡 = 4 (c) 𝐾𝑡 = 5.2 (d) 𝐾𝑡 = 9.7.
Fig. 15. Variation of different normalized lives with 𝐾𝑡 values of defects: (a) 𝑁𝑛′
𝐾𝑡 ,𝑙𝐷

obtained from two-scale approach for different 𝑙𝐷 values and 𝑁𝐹

𝑁𝐹 for 𝐾𝑡=3
obtained from the

Theory of critical distances with different values of 𝐿 (b) 𝑁𝑛′′
𝐾𝑡 ,𝑙𝐷

obtained from two-scale approach for different 𝑙𝐷 values.
• Fig. 15(b) reveals that for a particular 𝐾𝑡, 𝑁𝑛
𝐾𝑡 ,𝑙𝐷

decreases with
increase in 𝑙𝐷. This is in line with the various types of size
effects [101] which are typically observed in materials, wherein
the fatigue strength or fatigue life of a material decreases with
an increase of the fatigue-affected material volume [15,32,34].
In this work, this effect in the non-stress-gradient direction of a
defect is captured by the statistics-based upscaling approach used.
At a particular 𝐾𝑡, the defect with a higher 𝑙𝐷 will have a higher
fatigue crack nucleation-relevant material volume(= 𝑛◦×Volume
of DVE) in the vicinity of the defect, which increases the proba-
bility of finding a crack nucleating grain with a larger value of
𝑃 . This eventually leads to a decrease in the mean (or median)
crack nucleation life. Specifically, a reduction of about 21%–26%
is observed in the median value of 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
, on increasing 𝑙𝐷 from

0.21 to 1 mm, for all the 𝐾𝑡 analyzed.
• It is observed that for a particular 𝑙𝐷 value, on a log–log scale, the

spread of the interquartile range does not vary significantly with
𝐾𝑡. This is confirmed by calculating the coefficient of variation
of 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
(V [𝑁𝑛]) of all the defects. Since, as per Eq. (29), 𝑁𝑢

𝐾𝑡 ,𝑙𝐷is also a scaled version of 𝑁𝑛
𝐾𝑡 ,𝑙𝐷

, the coefficient of variation of
𝑁𝑢

𝐾𝑡 ,𝑙𝐷
is equal to V [𝑁𝑛]. Therefore V [𝑁𝑛] is calculated from a

large sample that follows the CDF expressed in Eq. (30). Values
of V [𝑁𝑛] calculated for different 𝐾𝑡 and 𝑙𝐷 are summarized in
Table 5. For a particular 𝑙𝐷 value, the V [𝑁𝑛] values do not differ
significantly. This prediction is in line with the homoscedastic
nature of the logarithm of the fatigue life of materials, which is
often observed experimentally [102]. Experimentally, there is a
large variation observed in the coefficient of variation of the fa-
tigue life of materials, both in notched and un-notched conditions,
ranging from as low as 0.1 to even more than 1 [26,102–106].
The values obtained here are on the lower side of this range. This
likely relates to the fact that only one type of microstructural
13
Table 5
Coefficient of variation of 𝑁𝑛 for defects with different 𝐾𝑡 and 𝑙𝐷 .

𝑙𝐷 = 0.21 mm 𝑙𝐷 = 0.5 mm 𝑙𝐷 = 1 mm

𝐾𝑡 = 3 0.19 0.18 0.17
𝐾𝑡 = 4 0.22 0.20 0.19
𝐾𝑡 = 5.2 0.24 0.22 0.21
𝐾𝑡 = 9.7 0.21 0.20 0.19

uncertainty is incorporated, i.e. the grain orientations, whereas
experimentally there may be multiple factors contributing to
the observed scatter [26,105]. The framework developed in this
work can also be used to account for the microstructure-related
uncertainty originating from the grain morphology and spatial
arrangement, besides the texture. Assessment of the influence of
morphology, spatial arrangement, and multiple phases is part of
the future work.

• It is observed that, on a log–log scale, 𝐾𝑡 vs 𝑁𝑛
𝐾𝑡 ,𝑙𝐷

results in a non-
linear plot. Since all defects have the same depth in the direction
of the principal stress gradient, i.e. 𝑟1, this non-linear relationship
is also reflected in a graph of the normalized local root radius
of the defects versus 𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
. Normalized local root radius for

a defect of a particular 𝑙𝐷 is defined here as 𝜌
𝜌 for 𝐾𝑡=3

, where

𝜌 is the local root radius of the defect, calculated as
(

𝑟2
)2 ∕𝑟1.

Such a graph is shown in Fig. 16(a). This predicted non-linear
relationship between the root radius and 𝑁𝑛

𝐾𝑡 ,𝑙𝐷
is in line with

the experimentally reported nonlinear trend between the root
radius of notches and observed 𝑁𝐼 values [17,107,108]. Based
on such a trend, it is often deduced that the influence of the local
root radius of the notches on the fatigue life decreases with a
decrease in root radius values [107,109]. This trend is also related
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Fig. 16. Variation of life-reduction, obtained from two-scale approach (𝑁𝑛′
𝐾𝑡 ,𝑙𝐷

for different 𝑙𝐷 values) and experiments ( 𝑁𝐼

𝑁𝐼 for 𝐾𝑡=3
), with (a) normalized root-radius and (b) 𝐾𝑡.
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to the observed phenomenon that the fatigue strength reduction
by sharper notches is much less than that one would expect solely
based on 𝐾𝑡 [4,110]. There are many possible explanations given
for this phenomenon such as the presence of local plasticity, stress
gradient, etc [5]. In practice, this is often dealt with by intro-
ducing empirical formulations of the fatigue strength reduction
factor [24,25]. In this work, the non-linearity between root radius
and crack nucleation life is captured naturally and inherently by
the combined effects of grain-level non-linear material behavior,
rate dependency, and the grain-averaging scheme adopted to
define the crack nucleation driving force.

.3. Comparison with an empirical approach and experiments

The predictions of this model are first compared to the results
btained by applying the Theory of critical distances (TCD) [30,111],
hich is typically used to predict the fatigue life of notched com-
onents. The reason for choosing TCD as the method of comparison
s that this method has been shown to predict the fatigue life of
hallow to sharp notches with a reasonable degree of accuracy [30].
pecifically, the elastoplastic line-method version of TCD is used [30],
s per which the fatigue life of the notch can be calculated using
he following two equations of effective strain amplitude (𝜀𝑒𝑓𝑓 ) and
train-life relationship:

𝑒𝑓𝑓 = 1
2𝐿 ∫

2𝐿

0
𝜀𝑎(𝑟)𝑑𝑟 (37)

𝑒𝑓𝑓 =
𝜎′𝑓
𝐸

(2𝑁𝐹 )𝑏𝑓 + 𝜀′𝑓 (2𝑁𝐹 )𝑐𝑓 (38)

where 𝜎′𝑓 , 𝜀′𝑓 , 𝑏𝑓 , 𝑐𝑓 are the strain-life parameters, 𝜀𝑎(𝑟) is the princi-
pal strain amplitude of a point in the macroscale model at a distance 𝑟
rom the central root point along the bisector of the defect, parallel
o the semi-major axis, and 𝐿 is the critical distance specific to the
aterial of the study. 𝐿 is a constant for the elastoplastic deformation

case [30], and its value needs to be established from experimental
fatigue life data of smooth and notched specimens. It is important
to highlight that TCD falls under the category of non-mechanistic
models [112] and the complete physical basis of 𝐿 is still under
study [112]. However, based on the compiled values of 𝐿 related to
different materials (metals and non-metals) and different properties of
interest, it has been found that a reasonable range for values of 𝐿 is
between 𝑑∗ and 10𝑑∗ [111], where 𝑑∗ is an underlying microstructural
length scale, such as grain size. Hence in this work, three values of 𝐿 are
used, to simultaneously assess the sensitivity of the predictions by TCD
to the values of 𝐿 and to compare these predictions with the predictions
14

of the two-scale approach. These values are 𝐿 = 𝑑, 5𝑑, and 10𝑑. The
Table 6
Strain-life parameters for pure 𝛼-iron [73].
𝜎′

𝑓 [MPa] 𝜀′𝑓 𝑏𝑓 𝑐𝑓
630 0.14 −0.08 −0.44

values of 𝜎′𝑓 , 𝜀′𝑓 , 𝑏𝑓 , 𝑐𝑓 for the case of pure 𝛼-iron are extracted from
he data given in [73], and are summarized in Table 6. Using this
pproach, for each value of 𝐿, 𝑁𝐹 for different defects are estimated
rom the macroscale defect model and, analogous to 𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
, the life

eduction is calculated as 𝑁𝐹

𝑁𝐹 for 𝐾𝑡=3
. This life reduction is compared

with the prediction of the two-scale approach in Fig. 15(a). As can
be observed from this figure the predictions of TCD are sensitive to
the value of 𝐿, displaying a larger reduction in fatigue life for sharper
defects for a smaller value of 𝐿. Note that an adequate agreement exists
between the predictions of the case 𝐿 = 𝑑 and the predictions of the
two-scale approach. This result resonates with the general observation
that for fatigue in metallic materials, the value of 𝐿 is of the order of the
grain size [112]. It has also been observed by Taylor [112] that values
of 𝐿 in the order of the grain size imply that the failure mechanism
is governed by the underlying microstructure. Note that, for the case
𝐿 = 𝑑, the mean-stress corrected version of elastoplastic TCD [30]
gives the same results as the one shown here, except for the case of
𝐾𝑡 = 9.7 where the mean-stress corrected version is more conservative
and predicts a life-reduction that is 66% of the one presented here. The
point method version of TCD is also assessed. However, it predicts non-
realistic results for higher values of 𝐿, wherein the normalized life is
found to increase with 𝐾𝑡.

The authors have not found experimental values of crack nucleation
lives for the same material and deformation conditions as the ones
considered here. Nevertheless, five data sets are found that report 𝑁𝐼

values, examined at low stress-amplitudes, for notched-specimen of
low-carbon steels, having different values of root radius and thus 𝐾𝑡
values [17,107,113]. The experimental conditions of these data sets are
closest to the ones analyzed here of all data found in the literature.
The salient details of materials and test conditions used in the data sets
and those analyzed in this study are summarized in Table 7. For each
data set, the life-reduction for a notch of a particular 𝐾𝑡 is estimated
as 𝑁𝐼

𝑁𝐼 for 𝐾𝑡≈3
, where 𝑁𝐼 for 𝐾𝑡 ≈ 3 refers to 𝑁𝐼 of the notch with 𝐾𝑡

closest to 3. In the same way, normalized root radii are also calculated
for different notches of a particular dataset. These life reductions along
with their respective normalized root radii and 𝐾𝑡 values are then
plotted in the corresponding 𝐾𝑡 vs Normalized root radius and 𝐾𝑡 vs
𝑁𝑛′

𝐾𝑡 ,𝑙𝐷
graphs of this study, respectively, as shown in Fig. 16.

It can be seen from both Figs. 16(a) and 16(b) that the data set

from [17] shows a reasonable agreement with the predictions of the
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Table 7
Comparison of material and testing conditions for the experimental data sets used in this work with the current case study.

[17] [107] [113] Current case study

Material Carbon-Manganese
Steel

Mild-Steel Deep-drawing steel 99.5% pure 𝛼-iron

YS (MPa) 214 185 200-250
UTS (MPa) 375 310
E(GPa) 206 191 210
𝑑(μm) 32 20 35
Specimen Type Single Edged Notched Single Edged Notched Double edged notched Thick Plate with

defect on one edge
Notch/Defect Type V-type U and V type Elliptical
Notch/Defect Depth (mm) 2 2.54 10 1
Notch Radius (mm) 0.02–2.54 0.05–1.27 0.1–10 0.0625-1
𝐾𝑡 3-10.7 3.82-15.18 (calculated) 3.24–9.81 3-9.7
Stress Amplitude (MPa) 82 103 89, 79, 59 122
Stress Ratio 0.3 0 0.1 −1
Initiation Criterion 0.1mm crack Electric Potential Technique 0.5mm crack Crack Nucleation
s
i
q
a
s
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–
&
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two-scale approach. For the data set of [107] as well, the experimental
data points are scattered in reasonable proximity to the predicted curve
in Fig. 16(a). In Fig. 16(b), the predictions are in reasonable proximity
to experimental points of [107] at high 𝐾𝑡 values, in comparison to
low 𝐾𝑡 values. All three data sets of [113] show smaller reduction
in life compared to the predictions of the two-scale approach in both
Figs. 16(a) and 16(b). A possible explanation is that the material
studied in [113] was a high-ductility, low-notch-sensitive material. On
comparing the reported values of monotonic and cyclic stress–strain,
and strain-life parameters for this material in [113], with the respective
reported values [73] of the pure 𝛼-iron analyzed in this study, it follows
hat the material analyzed in [113] is less notch sensitive than the one
nalyzed here. Nevertheless, the predicted trend of variation of life-
eduction with normalized root radius and 𝐾𝑡 are generally in line with
ll five data sets.

. Conclusions

In this work, a generalized two-scale approach is presented for ad-
ressing crack nucleation from macroscopic defects of different shapes
nd lengths while taking into account the local microstructural de-
cription in the vicinity of the defect. For a particular defect, the
pproach uses a macroscale model incorporating the geometrical de-
cription of the defect and several instantiations of mesoscale models to
ddress the microstructural grain orientation variability in the vicinity
f the defect. The cyclic deformation of the structure is modeled in
he macroscale model to extract the strain fields in the vicinity of
he defect, which are characteristic of the defect shape and material
ehavior at the macroscale. This strain field is then used to derive
he boundary conditions for modeling the cyclic deformation in the
esoscale model. For the mesoscale model, the idea of a statistically

epresentative defect-root volume element (DVE) is presented which
nables the analysis of defects with different lengths embedded in
he structure using a statistics-based upscaling approach. The cyclic
eformation of the DVE of a defect is modeled under the extracted
oundary conditions and the Fatemi-Socie fatigue indicator parameter,
long with the associated crack nucleation model, is used to estimate
he crack nucleation life of a defect. Using the established approach,
ultiple defects with different 𝐾𝑡 values and lengths, in a plate of
ure 𝛼-iron material, are analyzed to assess the fatigue crack nucleation
ives under plane strain conditions. The approach is found to inherently
apture experimentally observed characteristics related to the fatigue
ife of defects without introducing any empirical factors, such as an
nverse dependence on 𝐾𝑡, non-linear relationship with the local defect-
oot radius, homoscedastic nature, and size effects. Moreover, the
rend of life-reduction with an increase in 𝐾𝑡 values predicted by the
urrent two-scale approach is found to be in adequate agreement with
prediction by the theory of critical distances. Finally, a comparison

f the predictions is also made with five experimentally reported data
15
ets of different low-carbon steels. The predictions are found to be
n reasonable quantitative agreement with most datasets and good
ualitative agreement with all the datasets. Overall, the implemented
pproach is found to be promising and motivates further extension to
tructural steels.
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