

Reistijdverdeling en ontwikkeling van de nitraatconcentraties van bronnen in Zuid-Limburg

TNO Publiek) TNO 2023 R12084

TNO Publiek) TNO 2023 R1208 31 oktober 2023

Energy & Materials Transition www.tno.nl +31 88 866 42 56 info@tno.nl

TNO 2023 R12084 - 31 oktober 2023 Reistijdverdeling en ontwikkeling van de nitraatconcentraties van bronnen in Zuid-Limburg

Auteurs

Rubricering rapport Aantal pagina's Aantal bijlagen Projectnaam Projectnummer Mariëlle van Vliet Hans Peter Broers TNO Publiek 110 (excl. voor- en achterblad) 3 Uitwerking 3H Bronnen 060.51591

Alle rechten voorbehouden

Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of op welke andere wijze dan ook zonder voorafgaande schriftelijke toestemming van TNO.

© 2023 TNO

Samenvatting

Het RIVM heeft TNO verzocht om onderzoek te doen naar de reistijdverdeling van circa 90 bronnen en bronbeken in Zuid-Limburg gebruikmakend van nieuwe tritiumcijfers uit 2018 (zie figuur S.1). Het doel van dit onderzoek is om de leeftijdsverdeling van de bronnen beter in beeld te krijgen aan de hand van deze nieuw beschikbare tritiummetingen uit 2018 en daarmee de reconstructie van de ontwikkeling van de nitraatconcentraties in de tijd aan te scherpen en een vooruitblik op de verwachte ontwikkeling in de toekomst te verkrijgen.

Figuur S.1: Ligging van de bronnen en bronbeken weergegeven op de maaiveldhoogtekaart (AHN)

Ten opzichte van de eerdere studie uit 2018 (Broers en Van Vliet, 2018) is een iets andere methode gebruikt waarbij een verdelingsvrije reistijdverdeling is toegepast die het mogelijk maakt om ook bimodale reistijdverdelingen te evalueren. De eerdere methode voldeed niet voor de modellering van een deel van de zuidelijke bronnen. Voor die bronnen werd verwacht dat er sprake was van een duale permeabiliteitsverdeling die te maken heeft met een combinatie van diffuse matrixstroming en spleetstroming door het verkarstte kalkgesteente. Die hypothese wordt in de onderhavige studie bevestigd.

De modellering met de nieuwe tritiummetingen en nitraatgegevens heeft geresulteerd in nieuwe reistijdverdelingen en aangescherpte reconstructie en ontwikkeling van de nitraatconcentraties. Uit de analyse blijkt een duidelijke relatie tussen de nitraatconcentratie en de reistijdverdeling. Bronnen met de grootste fractie jong water (leeftijd <30 jaar) hebben de hoogste nitraatconcentratie in 2001, maar de nitraatconcentraties in deze bronnen zijn ook het snelst gedaald (zie figuur S.2). Deze bronnen liggen grotendeels op het Centraal Plateau. De bronnen met een kleine fractie jong water hebben lagere nitraatconcentraties en een langzamere afname van de nitraatconcentratie. Deze bronnen liggen voornamelijk in de grote beekdalen en op de zuidelijke plateaus. Bij vergelijking van de MTT (Mean Travel Time) met de nitraatconcentratie is een vergelijkbaar patroon zichtbaar; bij een lage MTT zijn de nitraatconcentraties in 2001 het hoogst en deze dalen het hardst.

Figuur S.2: Relatie tussen de nitraatconcentratie in de bronnen in 2001, 2009 en 2018 en de fractie jong water (% jong water < 30 jaar in de reistijdverdeling)

De 'hydrogeologische setting' is medebepalend voor de reistijdverdeling en de nitraatontwikkeling van de bronnen. Aan de hand van de 'setting' zijn de bronnen in een drietal groepen in te delen:

- 1. Bronnen op en rond het Centraal Plateau
- 2. Bronnen in de grote beekdalen in het Mergelland
- 3. Bronnen in de uitlopers van de droge dalen van de zuidelijke kalksteenplateaus

De bronnen op Centraal Plateau worden gekenmerkt door relatief jong water en hoge nitraatconcentraties. De bronnen in de grote beekdalen hebben een grote fractie van oud water (> 80 jaar) en lage nitraatconcentraties. De bronnen in de droge beekdalen van de zuidelijke plateaus hebben zowel een snelle, jonge component (5-30 jaar) als een tragere oude component (>80 jaar). De nitraatconcentraties zijn bij deze bronnen lager dan bij de bronnen op het Centraal Plateau en dalen als gevolg van de afnemende nitraatconcentraties in de bijdrage van het jonge water van deze bronnen. Bij deze bronnen is duidelijk sprake van een duaal stromingssysteem.

De methode waarbij de bronnen worden ingedeeld in vijf MTT-klassen en vervolgens wordt gekeken naar de reconstructie en ontwikkeling van de nitraatconcentratie geeft een vergelijkbaar beeld. Bronnen met jongste water (laagste MTT-klasse) hebben de hoogste nitraatconcentraties en die concentraties dalen het snelst. Dit zijn de bronnen op het

Centraal Plateau. Hoe hoger de MTT-klasse, hoe lager de nitraatconcentraties en hoe minder steil de afname in de concentraties. De maatregelen om stikstofgift in de landbouw te verminderen hebben dus een verschillend effect op de verandering van de nitraatconcentraties in de verschillende bronnen. Deze verandering is afhankelijk van de leeftijd van het water van de bron.

Uit bovengenoemde analyse bleek dat in de bronnen met de hoogste MTT-klasse (MTT>60 jaar) een afname van nitraat zichtbaar is, maar dat de gemodelleerde concentraties een stabilisatie suggereren. Deze bronnen zijn gelegen op de zuidelijke kalksteenplateaus. De nitraatconcentraties zijn bij deze bronnen waarschijnlijk lager doordat een deel van het water toestroomt via de onder de kalksteen gelegen Formatie van Vaals, waarin denitrificatie door pyriet kan plaatsvinden. In de modellering van het basisscenario is hiermee geen rekening gehouden. Daarom is voor alle zuidelijke bronnen een aanvullend model gedraaid waarbij na 30 jaar 50% nitraat reductie plaatsvindt en na 50 jaar 90% reductie (model 'pyriet 50% na 30 jaar'). Voor de zuidelijke bronnen blijkt het model met een zekere nitraatomzetting met pyriet tot betere modelreconstructies te leiden. Om die reden zijn de prognoses voor 2027 en 2035 voor de zuidelijke bronnen gebaseerd op dit modelscenario.

Als gebruik wordt gemaakt van het basisscenario voor de noordelijke bronnen en pyriet modellering (50% na 30 jaar) voor de zuidelijke bronnen is het resultaat van de nitraatvoorspelling dat in 2027 63% (57 van 90) van de bronnen de nitraatconcentratie boven de norm van 50 mg/l ligt. In 2035 is het beeld zo goed als onveranderd ten opzichte van 2027.

Inhoudsopgave

Inhoudsopgave61Inleiding72Methoden92.1Inleiding92.2Methode 'dual porosity modelling'122.1Inleiding122.2.1Inleiding122.2.2Input data132.3Verdelingsvrije methode172.3Reconstructie nitraatconcentraties183Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening.43	Samenvatting					
1Inleiding72Methoden92.1Inleiding92.2Methode 'dual porosity modelling'122.1Inleiding122.2.1Inleiding122.2.2Input data132.3Verdelingsvrije methode172.3Reconstructie nitraatconcentraties183Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	Inhou	Inhoudsopgave				
2Methoden.92.1Inleiding.92.2Methode 'dual porosity modelling'.122.2.1Inleiding.122.2.2Input data.132.2.3Verdelingsvrije methode.172.3Reconstructie nitraatconcentraties.183Resultaten.203.1Reistijdverdeling van de bronnen.203.2Reistijdverdeling en nitraatconcentraties.224Discussie.274.1Hydrogeologische randvoorwaarden.274.2Reconstructie van nitraat in 5 leeftijdsklassen.314.3Pyriet en denitrificatie.334.4Nitraatvoorspelling.375Conclusies.41Referenties.42Ondertekening.43	1	Inleiding	7			
2.1Inleiding92.2Methode 'dual porosity modelling'122.2.1Inleiding122.2.2Input data132.2.3Verdelingsvrije methode172.3Reconstructie nitraatconcentraties183Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	2	Methoden	9			
2.2Methode dudi porosity modelling122.2.1Inleiding122.2.2Input data132.2.3Verdelingsvrije methode172.3Reconstructie nitraatconcentraties183Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	2.1	Inleiding	9			
2.2.2Input data132.3Verdelingsvrije methode172.3Reconstructie nitraatconcentraties183Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	2.2	Inleiding	12			
2.2.3Verdelingsvrije methode172.3Reconstructie nitraatconcentraties183Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	2.2.2	Input data	13			
2.3Reconstructie nitraatconcentraties183Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	2.2.3	Verdelingsvrije methode	17			
3Resultaten203.1Reistijdverdeling van de bronnen203.2Reistijdverdeling en nitraatconcentraties224Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	2.3	Reconstructie nitraatconcentraties	18			
3.1Reistijdverdeling van de bronnen.203.2Reistijdverdeling en nitraatconcentraties224Discussie274.1Hydrogeologische randvoorwaarden.274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie.334.4Nitraatvoorspelling.375Conclusies.41Referenties42Ondertekening.43	3	Resultaten				
4Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	3.1 3.2	Reistijdverdeling van de bronnen Reistijdverdeling en nitraatconcentraties	20 22			
4Discussie274.1Hydrogeologische randvoorwaarden274.2Reconstructie van nitraat in 5 leeftijdsklassen314.3Pyriet en denitrificatie334.4Nitraatvoorspelling375Conclusies41Referenties42Ondertekening43	J.Z					
4.2 Reconstructie van nitraat in 5 leeftijdsklassen .31 4.3 Pyriet en denitrificatie .33 4.4 Nitraatvoorspelling .37 5 Conclusies .41 Referenties .42 Ondertekening .43	4	Hydrogeologische randvoorwaarden				
4.3 Pyriet en denitrificatie	4.2	Reconstructie van nitraat in 5 leeftijdsklassen				
4.4 Nitraatvoorspelling	4.3	Pyriet en denitrificatie				
5 Conclusies	4.4	Nitraatvoorspelling	37			
Referenties	5	Conclusies	41			
Ondertekening	Refere	Referenties				
	Onder	Ondertekening				

Bijlagen		
Bijlage A:	Controle bronlocaties	44
Bijlage B:	Figuren reistijdverdeling, tritium- en nitraatmodellering per bron van het basisscenario	47
Bijlage C:	Figuren reistijdverdeling, tritium- en nitraatmodellering per bron van de pyrietvariant '50% na 30 jaar' voor de zuidelijke bronnen	94

1 Inleiding

Het Nederlandse mestbeleid is er op gericht om de kwaliteit van het grond- en oppervlaktewater te verbeteren door de emissies van nutriënten naar deze wateren te verminderen. De maatregelen moeten er toe leiden dat in 2027 voldaan wordt aan de verplichtingen van zowel de Nitraatrichtlijn als de Kaderrichtlijn Water. In het Landelijk Meetnet effecten Mestbeleid (LMM), dat door het RIVM wordt beheerd, worden het effect van veranderingen in het mestbeleid, en daarmee veranderingen in de landbouwpraktijk, op de kwaliteit van het grond- en oppervlaktewater gemonitord. Hierbij worden vier hoofdgrondsoortregio's onderscheiden. Een van die regio's is de Lössregio. Dit is het gebied in Zuid-Limburg.

De gronden in de Lössregio zijn gevoelig voor uitspoeling van nitraat naar het grondwater en via het grondwater naar het oppervlaktewater. Het grondwater in deze regio bevindt zich op grote diepte en is daardoor niet gemakkelijk te bemonsteren. Bovendien is het door de grote diepte en de complexe ondergrond moeilijk een relatie te leggen met de recente landbouwpraktijk. Om die reden bemonstert het Landelijk Meetnet effecten Mestbeleid (LMM) het water dat uitspoelt uit de wortelzone. Dit gebeurt door bodemvocht te bemonsteren uit de laag net onder de wortelzone (1,5-3,0 meter beneden maaiveld). Op deze wijze is goed inzicht te krijgen in wat het effect is van het beleid en de veranderingen in de landbouwpraktijk.

Om inzicht te krijgen in de mate waarin de landbouwpraktijk op de lössplateaus bijdraagt aan de belasting van het grond- en oppervlaktewater wordt sinds het midden van de jaren tachtig van de vorige eeuw met enige regelmaat water van natuurlijke bronnen bemonsterd. Deze bronnen ontspringen langs de randen van de plateaus in Zuid-Limburg. De kwaliteit van dit water geeft zowel in zicht in de kwaliteit van het grondwater als van de belasting van het oppervlaktewater dat wordt gevoed door dit bronwater. Een groot aantal bronnen (circa 90) is in 2001, 2009 en in 2018 bemonsterd door het RIVM. Ongeveer 20 bronnen worden jaarlijks bemonsterd door de Provincie Limburg in het kader van de monitoring ten behoeve van de Kaderrichtlijn Water. De resultaten laten zien dat dat de nitraatconcentraties in de bronnen vaak hoger zijn dan de norm voor nitraat van 50 mg/l. Het is echter niet goed bekend aan welke periode in het verleden deze gemeten concentratie in de bronnen te relateren zijn.

Het RIVM is in 2001 gestart met metingen van tritium in het bronwater om proberen te achterhalen wat de leeftijdsverdeling is van het bronwater (Hendrix en Meinardi, 2004). In 2009 zijn opnieuw tritiummetingen gedaan die door TNO, in samenhang met de eerdere metingen, zijn geanalyseerd met behulp van een model (Broers en Van Vliet, 2018). TNO heeft in opdracht van de Provincie Limburg deze analyse herhaald voor 15 bronnen waar voor de Provincie Limburg in 2017/2018 extra tritiummetingen zijn gedaan (Van Vliet en Broers, 2019). Bij de herbemonstering in 2018 van alle bronnen door het RIVM zijn wederom tritiummetingen verricht. Deze nieuwe cijfers waren tot op heden nog niet geïnterpreteerd.

Het RIVM heeft TNO verzocht om onderzoek te doen naar de reistijdverdeling van circa 90 bronnen in Zuid-Limburg gebruikmakend van deze nieuwe tritiumcijfers uit 2018.

Het doel van dit onderzoek is om de leeftijdsverdeling van de bronnen beter in beeld te krijgen aan de hand van nieuw beschikbare tritiummetingen en daarmee de reconstructie van de ontwikkeling van de nitraatconcentraties in de tijd aan te scherpen en een vooruitblik op de verwachte ontwikkeling in de toekomst te verkrijgen.

De werkzaamheden van deze opdracht behelzen naast de interpretatie van de nieuwe tritiummetingen uit 2018 voor ca 90 bronnen in de vorm van een geschatte reistijdverdeling per bemonsterde bron, een reconstructie van de ontwikkeling van de nitraatconcentraties in de tijd en een vooruitblik op de verwachte ontwikkeling in de toekomst, en een gevoeligheidsanalyse van de modelfits.

De resultaten worden vastgelegd in een artikel in een '*peer reviewed*' wetenschappelijk tijdschrift dat TNO samen met RIVM-auteurs opstelt. Voorliggend openbaar beschikbaar TNO rapport is een (achtergrond)document, waarin informatie wordt opgenomen die niet in het artikel kan worden opgenomen, maar waarvan het wel belangrijk is dat ze wordt gedocumenteerd voor toekomstig gebruik. Voor het artikel is additioneel ook een gevoeligheidsanalyse opgesteld waarvoor naar het artikel wordt verwezen (Broers et al., in prep.). De kennis die is opgedaan in die analyse is wel in dit rapport verwerkt, voor zover beschikbaar in augustus 2023.

In hoofdstuk 2 wordt de gebruikte methode beschreven en in hoofdstuk 3 de resultaten van modellering. Hoofdstuk 4 bevat de discussie en in het laatste hoofdstuk worden de conclusies gegeven.

2 Methoden

2.1 Inleiding

Het RIVM heeft in 2018 alle circa 90 bronnen en bronbeken (welke zijn aangeduid met codes beginnend met z.b of n.b) bemonsterd en hierbij ook monsters genomen voor tritiumbepaling. Deze tritiumgetallen uit 2018 worden in voorliggend onderzoek voor het eerst geïnterpreteerd en gebruikt voor bepaling van de reistijdverdeling. De ligging van de bronnen is weergegeven op Figuur 2.1. TNO heeft in juli 2021 veldwerk uitgevoerd in Zuid-Limburg. Hierbij zijn diverse bronlocaties bezocht, waarbij coördinaten van de bronlocaties zijn geëvalueerd zoals die door de provincie, TNO en het RIVM in het verleden zijn vastgelegd. Relevante bevindingen uit het veld zijn in een globale bureaucheck uitgewerkt en na te lezen in bijlage A.

Figuur 2.1: Ligging van de bronnen en bronbeken weergegeven op de maaiveldhoogtekaart (AHN).

De leeftijdsbepaling van de bronnen in Zuid-Limburg is reeds in eerdere rapporten behandeld. Hendrix & Meinardi (2004) gebruikten tritium- en chloridemetingen uit 2001 voor een eerste karakterisatie van beken en bronbeken. In latere jaren zijn de tritiummetingen herhaald om de reistijdverdeling te verfijnen en een reconstructie te maken van de nitraatontwikkeling in de bronnen. Daarover is gerapporteerd in Broers en Van Vliet (2018). In dat rapport zijn de resultaten van 80 bronnen beschreven op basis van gegevens uit 2001 en 2009. In Van Vliet en Broers (2019) is een soortgelijke exercitie uitgevoerd voor een deelverzameling van 15 provinciale bronnen, waarbij ook de provinciale tritiumgegevens uit 2017 en 2018 zijn betrokken.

De aanpak die in de rapporten uit 2018 en 2019 werd gevolgd was gebaseerd op een blackbox model met een van tevoren vastgestelde vorm van de reistijdverdeling, waarbij de verzadigde zone werd beschreven met een exponentiele verdeling en de onverzadigde zone met een *piston flow* verdeling. In het rapport van Van Vliet en Broers (2019) werd al geconstateerd dat die aanpak voor een aantal bronnen te wensen overliet, omdat de vastgelegde vorm van de reistijdverdeling de veronderstelde duale porositeit en permeabiliteit onvoldoende meenam). Met een gecombineerde exponentiële en '*piston flow*' aanpak zijn namelijk geen bimodale reistijdverdelingen mogelijk; dat wil zeggen reistijdverdelingen met pieken bij verschillende leeftijdsklassen zoals die bij een duale permeabiliteitsverdeling wel denkbaar zijn.

In een recente studie in het kader van het Europese GeoERA-onderzoek (CHAKA rapport, Broers et al. (2023)) werd een nieuwe methodiek besproken en toegepast waarmee de reistijdverdelingen en nitraatprognoses zijn geactualiseerd op basis van een verdelingsvrije methode die bimodale reistijdverdelingen wel mogelijk maakt (zie kader). Bij de nieuwe methode wordt qua reistijdverdeling geen expliciet onderscheid meer gemaakt tussen de verzadigde en onverzadigde zone; elke mogelijke verdeling is namelijk mogelijk en er wordt geen verdeling meer van tevoren vastgelegd of aangenomen.

In de volgende paragraaf wordt na een uitleg over de veronderstelde duale porositeit en permeabiliteit, deze methodiek kort toegelicht.

Convolutie in de oude en nieuwe methode

In zowel de oude als de nieuwe methode wordt gebruik gemaakt van het principe van convolutie, waarbij het concentratieverloop dat het gevolg is van een belasting met stoffen aan het maaiveld (C_{input}) door een systeem worden geleid met verschillende reistijden. Het concentratieverloop in de bron (C_{output}) raakt daarbij vervormd door die reistijdverdeling omdat in de bron water van verschillende leeftijden toestroomt en wordt gemengd. Voor een zeer simpel geval ziet dat er bijvoorbeeld als volgt uit:

Deze convolutie wordt numeriek op de volgende wijze geïmplementeerd:

$$C_{output t} = \sum_{i=1}^{n} f_i \cdot C_{input, t-(i-1/2)\Delta t}$$

De formule beschrijft hoe de concentratie in de uitvoer op een bepaald moment *t* (ofwel $C_{output, t}$) wordt bepaald door de concentratie in de invoer op tijdstippen in het verleden $(C_{t-(i-1/2)dt})$ én door de fracties f_i van de reistijdverdeling. Die fracties komen overeen met de fracties van het intrekgebied van de bron tussen twee reistijden (Δt) zoals bijvoorbeeld tussen 1 en 2 jaar geleden, 2 en 3 jaar geleden, etc.

Het verschil tussen de oude en nieuwe methode is dat de fracties f_i op een andere manier worden verkregen. Bij de oude methode uit 2018 en 2019 volgden de fracties f_i een exponentiele verdeling, terwijl de fracties in de nieuwe methode elke mogelijke verdeling kunnen krijgen op basis van combinaties van leeftijdsbakjes (zie paragraaf 2.2.3). Bij de oude methode werden de exponentiële fracties gebruikt als proxy voor de stroming door de verzadigde zone, en werden die fracties in de tijd verschoven als er sprake was van vertraging in de onverzadigde zone. Als er bijvoorbeeld sprake was van 10 jaar vertraging van het water in de onverzadigde zone, dan kon dat water nog niet worden afgevoerd via de verzadigde zone en droegen die fracties dus nog niet aan de concentraties in de bron bij gedurende die eerste 10 jaar. Qua implementatie komt dat overeen met een verschuiving van de fracties, waarbij het water dan uiteindelijk wel wordt afgevoerd, maar pas na die periode van vertraging.

Bij zowel de nieuwe als de oude methode wordt een tijdserie van tritium in de neerslag en van nitraat in het uitspoelende water gebruikt als C_{input} in de convolutie (zie Figuur 2.4 en Figuur 2.8).

2.2 Methode 'dual porosity modelling'

2.2.1 Inleiding

Op de zuidelijke plateaus is de grondwaterstroming voornamelijk in de zachte kalksteen van de Formatie van Gulpen en meer naar het noorden ook in de kalksteen van de Formatie van Maastricht (zie ook par. 4.1). In kalksteen vindt een ontwikkeling plaats van een systeem met weinig spleten naar een steeds verder verkarst gebied met veel en vaak onderling verbonden spleten (zie Figuur 2.2). Het linker plaatje in Figuur 2.2 geeft het stromingspatroon van diffuse stroming door de poreuze matrix van het gesteente, in het midden het patroon van een mix van diffuse en spleetstroming en rechts van spleetstroming. Het beeld bestaat dat de Limburgse kalksteen tot een gemengde, duale permeabiliteitsverdeling leidt waarbij de bron deels gevoed wordt door wat tragere diffuse stroming samen met sneller transport via verbonden, en deels door karstwerking verwijde, splijt- en laagvlakken in het gesteente (zie Figuur 2.3). Deze veronderstelde duale porositeit en permeabiliteit met een tragere diffuse stroming en snellere stroming door spleten kan met de nieuwe methode beter gemodelleerd worden.

Figuur 2.2: De ontwikkeling van spleetsystemen in steeds sterker verkarst gebied (van links naar rechts: 1) diffuse stroming ('diffuse'), 2) gemengde diffuse stroming en spleetstroming ('mixed') en 3) spleetstroming ('conduit'). Bron: Quinlan & Ewers, 1995). Let ook op de ontwikkeling van duidelijke richtingen in het geval van spleetstroming, die vaak ook in de topografie doorwerken.

Figure 9. Conceptual spring hydrograph showing changes in slope and dominant flow regime (conduit, mixed, diffuse) due to differing hydraulic responses (artwork by Earl Greene, U.S. Geological Survey).

Figuur 2.3: Uitwerking van de gemengde diffuse stroming en spleetstroming op de afvoercurve van een bron in verkarst gesteente. De indruk bestaat dat de Limburgse kalksteen tot een gemengde, duale permeabiliteitsverdeling leidt waarbij de bron deels gevoed wordt door wat tragere diffuse stroming samen met sneller transport via verbonden splijtvlakken in het gesteente (Bron: USGS).

2.2.2 Input data

Tritium

Om een goede schatting te hebben van de tritiumconcentraties in de neerslag is gebruik gemaakt van de tritiumdata van het Global Network of Isotopes in Precipitation (GNIP) van de meetstations Koblenz en Emmerich. Figuur 2.4 toont de meetreeksen van beide meetstations en van het basisscenario (*base case*). Het basisscenario is het gemiddelde van Koblenz en Emmerich en wordt in voorliggende studie gebruikt als invoer in de modellering. Voor de periode tot aan halverwege de jaren 60 vallen de tijdreeksen van Emmerich en Koblenz samen met die van het basisscenario, omdat die is gereconstrueerd vanuit andere meetstations, zoals Wenen, Sindorf en Ottawa (zie ook Hendrix & Meinardi, 2004).

Figuur 2.4: Invoerreeks tritiumconcentraties in neerslag (log-schaal) van het basisscenario ('base case', oranje lijn) op basis GNIP data van Koblenz (groene lijn) en Emmerich (blauwe lijn) (GNIP = Global Network of Isotopes in Precipitation).

Nitraat

Om een zo goed mogelijke inschatting te maken van de concentraties van het uit de bodem uitspoelende nitraat naar het grondwater zijn gegevens gebruikt van de bodemvochtmetingen uit het Limburgse meetnet (BVM) en van het Landelijk Meetnet Effecten Mestbeleid (LMM). Deze methode en data zijn beschreven in Broers en Van Vliet (2018). De inputreeks uit Broers en Van Vliet (2018) is voor het onderhavige onderzoek aangevuld met recentere LMM-data van de meetjaren 2011 t/m 2021. Figuur 2.5 en Figuur 2.6 tonen de nieuwe inputreeks voor respectievelijk bouwland en gras/maisland.

Met data over landgebruik per gemeente van Statline (CBS) is nagegaan hoe de verdeling tussen bouwland en gras/maisland op zowel de noordelijke als zuidelijk plateaus is. De noordelijke plateaus hebben circa 53% bouwland en 47% gras/maisland en de zuidelijke plateaus respectievelijk 35% en 65%. Als met deze weging een verschillende inputreeks wordt gemaakt, is het resultaat twee vergelijkbare inputreeksen zoals getoond in Figuur 2.7. De verschillen liggen binnen de foutenmarges van de reeksen en daarom is gemodelleerd met één inputreeks van het gemiddelde van deze twee reeksen.

Voor de periode voor 1990 is deze inputreeks aangevuld met gegevens uit een boekhouding van stoffen die via mest en kunstmest zijn ingebracht, met een correctie voor gewasopname (Broers & van der Grift 2004, Visser et al. 2009), zoals ook al in Broers en Van Vliet (2018) was gedaan. Figuur 2.8 geeft de inschatting van de uitspoeling van nitraat uit de bodemzone in Zuid-Limburg, zoals gebaseerd op metingen uit het BVM, het LMM en uit historische gegevens over mestgebruik. In 2021 is de concentratie gemiddeld 62 mg/l en deze laten we aflopen naar een constante waarde van 50 mg/l in 2027.

Deze nitraatinput wordt gebruikt voor convolutie om reconstructie en voorspelling van nitraat in de bronnen (zie paragraaf 2.3). Opgemerkt moet worden dat deze "staart" van 50 mg/l hoger ligt dan in eerdere rapporten werd aangehouden, omdat de meest recente uitspoelingscijfers en bodemvochtmetingen tot een wat pessimistischer scenario aanleiding geven.

Figuur 2.6: Gemiddelde nitraatconcentraties per meetjaar onder gras/maisland, waarbij LMM en BVM-data zijn gecombineerd.

Figuur 2.8: Inschatting van de uitspoeling van nitraat uit de bodemzone in Zuid-Limburg, zoals gebaseerd op metingen uit het BVM, het LMM en uit historische gegevens over mestgebruik.

2.2.3 Verdelingsvrije methode

Om het effect van de duale porositeit te modelleren is gebruik gemaakt van een verdelingsvrije methode en een bakjesmodel. In deze verdelingsvrije methode (*shape free method*) worden 7 bakjes met een verschillende reistijd gevuld in stapjes van 10%. Elk bakje kan voor minimaal 0% en maximaal 100% worden gevuld, maar het totaal in alle bakjes samen is 100%. In het voorbeeld van Figuur 2.9 is dus 40% gevuld met water dat minder dan 5 jaar oud is, 20% met water tussen de 5 en 10 jaar oud, 15% met water tussen 10 en 15 jaar oud, etc. Alle bakjes tellen dan samen op tot 100%. In totaal zijn er dan met stappen van 10% en met 7 bakjes 8008 verschillende reistijdverdelingen mogelijk. Voor al die mogelijke 8008 combinaties van reistijdverdelingen is uitgerekend wat de betreffende tritium- en nitraatconcentraties zouden zijn in elk van de meetjaren tussen 1950 en 2050.

In het GeoERA onderzoek CHAKA is voor het eerst gerekend met een verdelingsvrije methode voor de bronnen, die elke mogelijke combinatie van jonger en ouder water in de reistijdverdeling mogelijk maakt (Broers et al., 2023). Die methode is eerder gebruikt in grondwateronderzoek te Holten (Visser et al., 2013) en in Noord-Brabant (Broers & de Weert, 2015, Broers et al., 2021).

Figuur 2.9: Bakjesmodel dat gebruikt is voor de verdelingsvrije methode om reistijdverdelingen mee te evalueren. Elk van de 7 bakjes kan worden gevuld met 0%, 10%, 20% ... 100% van de afvoer van de bron. Samen bevatten de bakjes maximaal 100% van de afvoer van de bron. Er zijn 8008 mogelijkheden om deze bakjes te vullen.

Die nitraat- en tritiumconcentraties van de 8008 bakjes worden daarna vergeleken met alle beschikbare gemeten tritium- en nitraatconcentraties in elke bron. Van 50 van 8008 van deze reistijdmodellen, die het beste pasten bij de gemeten tritium- en nitraatconcentraties, zijn vervolgens de gemiddelde percentages bepaald en hun standaardafwijking. Op die manier worden de gemiddelde reistijdverdeling, de gemiddelde reistijd en de onzekerheid rond die gemiddelden vastgesteld. Figuur 2.10 geeft het resultaat hiervan voor bron z.001, de Sint Brigidabron, weer.

Figuur 2.10: Verdelingsvrije reistijdverdeling voor St Brigidabron z.001. De roze balkjes geven de gemiddelde percentages weer van de bijdrage van de reistijdklasse aan de afvoer van de bron. De oranje error bars geven de onzekerheid rond die schatting aan als standaarddeviatie rond dit gemiddelde. De rode lijn geeft de cumulatieve percentages van de bijdrage per reistijdklasse aan de afvoer van de bron.

2.3 Reconstructie nitraatconcentraties

De hiervoor genoemde 50 best passende reistijdverdelingen leveren een reconstructie en voorspelling van nitraatconcentraties op. Dit is weergegeven in Figuur 2.11. Het bovenste figuur toont de 'fit' van de tritiumconcentraties en de onderste van de nitraatconcentraties voor wederom de Sint Brigidabron (z.001). De grijze lijnen in deze grafieken zijn de 50 modellen die het beste passen bij de gemeten tritium- en nitraatconcentraties. De rode lijn geeft het gemiddelde van deze 50 beste modellen. De gemeten concentraties zijn in deze grafieken weergegeven met bolletjes, waarbij paars de metingen van de Provincie Limburg zijn en rood de metingen van het RIVM.

Figuur 2.11: Fit van de tritiumconcentraties (boven) en de nitraatconcentraties (onder) voor de St. Brigidabron (z.001). De grijze lijnen geven alle 50 realisaties die het beste pasten bij de gegeven tritium- en nitraatconcentraties. De rode lijn geeft het gemiddelde van deze 50. De paarse en rode bolletjes zijn de gemeten concentraties. In de figuur van de nitraatfit geven de paarse bolletjes de metingen van Provincie Limburg en de rode bolletjes de metingen van het RIVM weer.

3 Resultaten

3.1 Reistijdverdeling van de bronnen

Figuur 3.1 toont de reistijdverdelingen van alle bronnen in een staafdiagram per bron. Iedere reistijdklasse is met een verschillende kleur weergegeven: donkeroranje voor het jongste water met een leeftijd kleiner dan 5 jaar, tot donkerpaars voor het oudste water dat ouder is dan 80 jaar. De bronnen zijn gesorteerd op gemiddelde reistijd (MTT, Mean Travel Time). Bovenaan staan de bronnen met de jongste gemiddelde reistijd en naar onderen neemt de MTT toe, waarmee onderaan de bronnen met de oudste MTT zijn te vinden.

Een aantal bronnen heeft uitsluitend of bijna uitsluitend water met een leeftijd van 30 jaar of jonger, bijvoorbeeld n.030, n.006, n.020, n.002 en n.003. Deze bronnen met de jongste reistijdverdeling liggen allemaal rond het Centraal Plateau. De bronnen rond de zuidelijke plateaus en in de grote beekdalen hebben duidelijk ouder water (Figuur 3.1).Voor meer informatie over de relatie tussen de afgeleide reistijdverdelingen en de hydrologische setting van de bronnen wordt verwezen naar hoofdstuk 4 van dit rapport en voor een meer uitgebreide hydrogeologische karakterisatie naar de rapportage van Broers et al., 2023.

3.2 Reistijdverdeling en nitraatconcentraties

In Tabel 3.1 is het resultaat van de modellering gegeven. In de modellering van nitraatconcentraties is uitgegaan van volledig conservatief transport waarmee de opgeloste stoffen met het water meereizen zonder vertraging of omzetting door chemische processen. In het vervolg wordt dit conservatieve basismodel de '*base case*' of het basisscenario genoemd.

Per bron wordt de gemiddelde reistijd (MTT), de fractie van jong (<30 jaar) en oud water (>80 jaar) getoond. Daarnaast is in deze tabel ook de door RIVM gemeten nitraatconcentratie in 2001, 2009 en 2018 opgenomen. De in 2018 gemeten nitraatconcentraties per bron zijn ook weergegeven op Figuur 3.2 De figuren van de reistijdverdeling, de tritium- en nitraatmodellering zijn in Bijlage B per bron opgenomen.

Tabel 3.1: Overzicht per bron van de gemiddelde reistijd (MTT in jaren), de fractie jong water (% <30 jaar), fractie oud water (% >80 jaar) van het basisscenario ('base case') en de nitraatconcentratie (mg/l) in meetjaren 2001, 2009 en 2018 van de meetronden van het RIVM. De bronnen zijn gesorteerd op MTT (van jong naar oud).

naam bron	MTT base case	fractie jong (%) base case	fractie oud (%) base case	NO3 (mg/l) 2001	NO3 (mg/l) 2009	NO3 (mg/l) 2018
n.030	11	91	8	36		
n.016	12	100	0	150	118	98
n.100	13	93	7	136	48	42
n.050	14	88	12	95	36	36
n.020	14	98	2	247	167	40
n.017	16	74	0	92	97	96
n.002	16	96	4	128	106	103
n.005	17	95	5	205	74	79
n.003	17	100	0	151	146	132
n.049	19	90	10	37	182	80
n.091	20	98	2		83	110
n.044	20	95	1	244	178	128
n.087	22	77	0	161	104	
n.021a	23	80	20	140	42	
n.104	24	83	17	147	65	40
n.043b	24	73	0	154		124
n.004	25	77	13	113	86	80
n.034	25	74	26	106	53	
n.mb3	26	74	16	92	91	91
n.006	27	77	13	96	99	96
n.084	28	55	15	79	63	84
n.001	28	71	19	82		91
n.015	29	72	15	104	104	94

naam bron	MTT base case	fractie jong (%) base case	fractie oud (%) base case	NO3 (mg/l) 2001	NO3 (mg/l) 2009	NO3 (mg/l) 2018
n.035	29	85	13	129	121	88
n.008	30	75	14	100	112	109
n.076	30	76	24	95	77	53
n.011	30	62	12	86	99	83
n.085	30	57	13	87	78	78
n.080	32	60	20	100		44
n.b86	33	63	17	97	95	91
n.025	34	69	15	93	104	91
n.b20	36	64	26	95	74	65
n.043	37	64	19	125		57
n.042	37	61	24	103		62
n.b05	38	63	23	100	89	79
z.005	38	59	29	79	65	43
n.099	38	64	26	101	99	91
n.009	40	55	25	86	85	75
n.086	40	52	21	92		87
Z.210	41	68	32			27
n.022	41	49	32	84	73	65
n.029	41	46	24	91	87	84
n.b10	41	38	22	75	78	85
n.018	42	42	38	45	54	49
z.006	44	56	34	77	81	52
n.b16	45	54	36	79	81	68
z.033	45	46	34	77	75	
n.010	45	55	34	86	74	73
n.b18	47	43	31	74	81	68
z.001	47	50	36	85	73	59
z.025	48	45	35	65	61	56
z.b10	49	45	41		57	44
n.b21	49	42	40	74	51	40
n.b80	49	39	37	64	65	56
z.036	50	31	40	63		
z.008	50	39	41	68	69	59
n.023	50	40	50	74	56	57
n.024	50	31	39	55		48
z.002	50	44	40	72		56

naam bron	MTT base case	fractie jong (%) base case	fractie oud (%) base case	NO3 (mg/l) 2001	NO3 (mg/l) 2009	NO3 (mg/l) 2018
n.077	51	43	47	40	58	46
n.027	52	31	39	43	39	10
n.037b	52	39	52	46	94	66
z.007	54	35	45	63		32
n.031	54	35	45	58	61	
n.037s	55	41	49	79	47	47
n.040	56	37	46	66	56	56
z.032	56	31	47	49		51
z.031	57	34	46	55	62	47
n.041	57	46	50	89	47	33
z.038	59	35	55	56	54	
n.012	60	24	56	38		30
z.026	61	27	53	54		33
z.021	61	24	56	23	12	2
z.027	61	25	54	42	38	36
z.004	62	26	55	50	43	42
z.022	63	23	55	23		20
n.096a	63	18	51	28	35	36
z.028	63	25	55	42	40	25
z.037	64	31	59	42	41	38
z.023	64	25	56	35	45	37
n.b12	64	19	56	30	27	27
z.b21	65	20	61	36	12	12
Z.200	65	31	58			
Z.205	65	26	61			44
z.035	65	27	60	41	28	21
z.024	65	21	58	27	32	25
z.034	67	23	60	31		31
z.040	68	25	64	33	33	25
Z.203	68	24	65			20
z.039	69	22	65	41	37	34

Uit de analyse van de resultaten blijkt een duidelijke relatie tussen de nitraatconcentratie en de reistijdverdeling (Figuur 3.3). Bronnen met de grootste fractie jong water (leeftijd <30 jaar) hebben de hoogste nitraatconcentratie in 2001, maar de nitraatconcentraties in deze bronnen zijn ook het snelst gedaald. Deze bronnen liggen grotendeels op het Centraal Plateau. De bronnen met een kleine fractie jong water hebben lagere nitraatconcentraties

en een langzamere afname van de nitraatconcentratie. Deze bronnen liggen voornamelijk in de grote beekdalen en op de zuidelijke plateaus.

Als de nitraatconcentratie wordt uitgezet tegen de MTT is een vergelijkbaar patroon zichtbaar (Figuur 3.4): bij een lage MTT zijn de nitraatconcentraties in 2001 het hoogst en deze dalen het hardst.

Figuur 3.2: Gemeten nitraatconcentraties in de bronnen in 2018.

Figuur 3.3: Relatie tussen de nitraatconcentratie in de bronnen in 2001, 2009 en 2018 en de fractie jong water (% jong water < 30 jaar in de reistijdverdeling).

Figuur 3.4: Relatie tussen de nitraatconcentratie in de bronnen in 2001, 2009 en 2018 en de gemiddelde reistijd ('mean travel time' MTT in jaren) van de bronnen.

4 Discussie

4.1 Hydrogeologische randvoorwaarden

Broers et al. (2023) geven aan dat de onderzochte bronnen zijn in te delen in een drietal groepen op basis van de hydrogeologische 'setting':

- 1. Bronnen op en rond het Centraal Plateau
- 2. Bronnen in de grote beekdalen in het Mergelland
- 3. Bronnen in de uitlopers van de droge dalen van de zuidelijke kalksteenplateaus.

De bronnen in de eerste groep worden niet gevoed door de kalksteenpakketten, omdat deze op het Centraal Plateau relatief diep liggen (zie Figuur 4.1). Deze bronnen ontspringen uit Pleistocene en Tertiaire formaties: de rivierafzettingen van de Maas behorend tot de Formatie van Beegden (licht-violet), de mariene zanden uit de Formatie van Breda (groen) en/of zandige lagen in de daaronder gelegen Rupel Formatie (paars)(Broers et al., 2023).

Figuur 4.1: Hydrogeologische setting van vier bronnen op en rond het Centraal Plateau: Geulle=n.010, Elsloo=n.002, Valkenbrug=n.020 en Beek=n.091. Loess = okergeel, F. van Beegden is licht violet, F. van Breda is groen, Rupel F. is paars, F. van Tongeren is blauw. In de doorsnede van bron Valkenburg is kalksteenformatie van de Formatie van Maastricht (roze-bruin) zichtbaar. Bron: www.grondwaterkwaliteitinbeeld.nl en Broers et al., 2023.

De tweede groep bronnen ontspringt vanuit de kalksteenformaties van de Formatie van Gulpen en Formatie van Maastricht en liggen in de diep ingesneden beekdalen van de Geul en de Gulp (Figuur 4.2). Deze bronnen bevinden zich dicht bij het laagste topografische punt in hun gebied, in het diep ingesneden beekdal van de Geul of de Gulp. Meestal ontspringen de bronnen op een hellingknik of zoals in het geval van de bron bij Kasteel Wittem ter hoogte van een dagzomende breuk in de onderliggende kalksteen (Broers et al., 2023).

Figuur 4.2: Hydrogeologische setting van een viertal onderzochte bronnen in de dalen van de Gulp en de Geul: Beutenaken=z.035, Schoonbron=n.037s, Kasteel Wittem=z.203 en Wijlre=z.039. Loess = okergeel, F. van Maastricht is roze-bruin, F. van Gulpen is beige, F. van Vaals is groen. Formatie van Gulpen (beige) en Formatie van Maastricht (roze-bruin) zijn formaties met kalksteen. De positie van een aantal breuken die volgens REGIS II v2.2 een duidelijk verzet te zien gegeven is geaccentueerd met een verticaal oranjebruin lijnelement. Bron: www.grondwaterkwaliteitinbeeld.nl en Broers et al., 2023.

De laatste groep bronnen ligt in de uitlopers van de droge dalen van de zuidelijke kalksteenplateaus en ontspringen vaak halverwege de droge beekdalen in de ZW-NO gerichte zwaktezones (Figuur 4.3). De bronnen lijken een duidelijk karakter van duale permeabiliteit te kennen met een relatief snelle (5-30 jaar) en een relatief langzame component (>80 jaar). Veel van de bronnen lijken niet alleen door de kalksteenformaties (Formatie van Gulpen en Maastricht) te worden gevoed, maar ook vanuit de dieper gelegen groenzanden en kleiige zandstenen van de Formatie van Vaals (Broers et al., 2023). In paragraaf 4.3 gaan we hier verder op in.

Figuur 4.3: Hydrogeologische setting van een zestal onderzochte bronnen in de droge dalen van de zuidelijke kalksteenplateaus: Nutbron=z.027, St Brigidabron=z.001, Paulusbron=z.025, Bermetijnbron=z.205, Landeus=z.028 en Belletbron=z.210. Loess = okergeel, F. van Beegden = licht violet, F. van Gulpen is beige, F. van Vaals is groen, F. van Heyenrath is roodbruin. Formatie van Gulpen (beige) en Formatie van Maastricht (roze-bruin) zijn formaties met kalksteen. Bron: <u>www.grondwaterkwaliteitinbeeld.nl</u> en Broers et al., 2023.

Figuur 4.4 geeft de reistijdverdeling en nitraatreconstructie en voorspelling weer voor 3 bronnen die representatief zijn voor de drie genoemde groepen. De bovenste figuren van bron n.002 te Elsloo, representatief voor de bronnen op Centraal Plateau, geven weer dat deze bronnen worden gekenmerkt door relatief jong water en hoge nitraatconcentraties. De middelste figuren zijn representatief voor de bronnen in de grote beekdalen. Deze bronnen hebben een grote fractie van oud water (> 80 jaar) en lage nitraatconcentraties. De figuren van Sint Brigidabron z.001, de onderste figuren, representeren de bronnen in de droge beekdalen van de zuidelijke plateaus. Uit de reistijdverdeling blijkt dat deze bronnen zowel bestaan uit een snelle, jonge component (5-30 jaar) als uit en tragere oude component (>80 jaar). De nitraatconcentraties zijn bij deze bronnen lager dan bij de bronnen op het Centraal Plateau en dalen als gevolg van de afnemende nitraatconcentraties in de bijdrage van het jonge water van deze bronnen. Bij de bronnen uit deze laatste groep is duidelijk sprake van een duaal stromingssysteem.

Figuur 4.4: Histogram van de afgeleide reistijdverdeling (links) en reconstructie en ontwikkeling van de nitraatontwikkeling in 3 bronnen die representatief zijn voor de 3 genoemde groepen. Boven: bron n.002 te Elsloo (op Centraal Plateau), midden: bron z.039 te Wijlre (bronnen in grote beekdalen) en beneden: St. Brigidabron z.001 (bronnen op zuidelijke kalksteenplateaus).

4.2 Reconstructie van nitraat in 5 leeftijdsklassen

Per leeftijdsklasse hebben we de gemeten nitraatconcentraties ook vergeleken met de gemodelleerde nitraatconcentraties. Daarvoor zijn de bronnen in gedeeld in 5, enigszins arbitraire leeftijdsklassen, welke zijn gebaseerd op de MTT (zie Figuur 4.5):

-) MTT<20 jaar
-) MTT 20-30 jaar
-) MTT 30-45 jaar
-) MTT 45-60 jaar
-) MTT>60 jaar

In de figuren van Figuur 4.5 zijn de gemeten nitraatconcentraties weergegeven in een boxplot voor de afzonderlijke meetjaren voor elk van de MTT leeftijdsklassen. De boxplots representeren dus de metingen. De grijze lijnen representeren het gemodelleerde verloop van nitraat, zoals dat steeds was weergegeven met de rode lijn in de nitraatfiguren, zoals die in Figuur 4.4. Van elk van de bronnen die behoren tot de betreffende MTT-klasse is dus met de grijze lijn de gemiddelde modelrespons getoond. Ook in Figuur 4.5 is zichtbaar dat bronnen met jongste water (laagste MTT-klasse) de hoogste nitraatconcentraties hebben en het snelst dalen. Dit zijn met name de bronnen op het Centraal Plateau die gevoed worden vanuit de Formatie van Beegden of vanuit Tertiaire Formaties. Hoe hoger de MTT-klassen (dus figuren van links naar rechts) hoe lager de nitraatconcentraties en hoe minder steil de afname in de concentraties. De maatregelen om stikstofgift in de landbouw te verminderen hebben dus een verschillend effect op de verandering van de nitraatconcentraties in de verschillende bronnen. Deze verandering is dus afhankelijk van de leeftijdsverdeling van het water van de bron, zowel qua steilheid van de afname maar ook qua moment van de nitraatpiek in de bron.

Figuur 4.5: Gemeten nitraatconcentraties in boxplots per meetjaar en gemodelleerde nitraatconcentraties van de 'base case' (grijze lijnen) voor 5 leeftijdsklassen: MTT <20 jaar, MTT 20-30 jaar, MTT 30-45 jaar, MTT 45-60 jaar en MTT >60 jaar.

4.3 Pyriet en denitrificatie

In het meest rechter figuur van Figuur 4.5 vertonen de metingen van nitraat, weergegeven in de boxplots, een afname van nitraat, maar geven de gemodelleerde concentraties, de grijze lijnen, een stabilisatie weer. Deze nitraatconcentraties zijn bij deze bronnen met een hoge MTT, gelegen op de zuidelijke kalksteenplateaus, waarschijnlijk lager doordat een deel van het water toestroomt via de onder de kalksteen gelegen Formatie van Vaals. De Formatie van Vaals bestaat uit een afwisseling van glauconiethoudende zanden en kleilagen, maar bevat ook kalksteenbanken die deels verbroken en watervoerend zijn. De Formatie bevat naast glauconiet ook pyriet (Felder & Bosch, 2000), waardoor denitrificatie in combinatie met autotrofe oxidatie van pyriet kan optreden. In de modellering van nitraatconcentraties van het basisscenario, zoals in hoofdstuk 3 zijn besproken, is hiermee geen rekening gehouden en is uitgegaan van volledig conservatief transport waarmee de opgeloste stoffen met het water meereizen zonder vertraging of omzetting door chemische processen.

Om het effect van pyrietoxidatie en nitraatomzetting te incorporeren is een simpele aanpak gekozen die is gebaseerd op de reistijdverdeling. Er wordt aangenomen dat het water na verloop van een bepaalde tijd arriveert in de Formatie van Vaals en dat vervolgens een deel van nitraat wordt omgezet. Uit een eerste analyse bleek dat een vrij sterke vermindering van nitraatconcentraties nodig is om de gevonden nitraatconcentraties te kunnen verklaren. In dit rapport worden de resultaten getoond van een model waarin 50% reductie van nitraat optreedt als het water ouder wordt dan 30 jaar, en 90% reductie als het water ouder is dan 50 jaar. Dergelijke reducties zijn in overeenstemming met de observatie dat in geen van de bronnen duidelijk sprake is van de uittreding van ijzerhoudend water, zoals dat kan worden verwacht als alle nitraat uit reactieve zones zou zijn omgezet.

Figuur 4.6: Vergelijking van de nitraatreconstructie voor de bronnen z.001 (St. Brigida, boven) en z.028 (Landeus, onder) voor het basisscenario ("base case") model (links) en het "pyriet 50% vanaf 30 jaar" model (rechts).

Figuur 4.6 laat zien hoe het model met nitraatomzetting uitwerkt voor de St. Brigidabron en de Landeus. In beide gevallen verbetert de reconstructie, en in beide gevallen is het ook waarschijnlijk dat een deel van het water de Formatie van Vaals doorstroomt. Om die reden wordt voor de zuidelijke bronnen een verzwakkende invloed van pyriet op de nitraatconcentraties aannemelijk geacht, vooral omdat er een voorzichtige tendens is van toenemende sulfaatconcentraties in de bronnen (zie Broers et al., 2023 voor meer details). Het verwerken van pyrietoxidatie leidt bij beide bronnen tot een leeftijdsverdeling met een wat kleinere bijdrage van het oude water. Dat heeft ook tot gevolg dat sommige bronnen in

een andere MTT-leeftijdsklasse terechtkomen. Daarom toont Figuur 4.7 de resultaten van dit model voor alle bronnen waarbij na 30 jaar 50% nitraat reductie plaatsvindt en na 50 jaar 90% reductie (model 'pyriet 50% na 30 jaar') voor alle vijf de MTT-leeftijdsklassen. In dit figuur sluit de modellering van de nitraatontwikkeling wel goed aan bij de afname van nitraat in de MTT-klasse >60 jaar, en ook wat beter in de klasse 45-60 jaar. Dat dit model de werkelijkheid mogelijkerwijs goed benadert blijkt zoals vermeld ook uit de toename van de sulfaatconcentraties in een deel van de bronnen, waaronder bijvoorbeeld de Landeus (z.028, zie ook Broers et al., 2023).

Figuur 4.7: Gemeten nitraatconcentraties in boxplots per meetjaar en gemodelleerde nitraatconcentraties volgens de pyrietvariant '50% nitraat reductie na 30 jaar' (grijze lijnen) voor 5 leeftijdsklassen: MTT <20 jaar, MTT 20-30 jaar, MTT 30-45 jaar, MTT 45-60 jaar en MTT >60 jaar.

4.4 Nitraatvoorspelling

De resultaten van de modellering kunnen ook worden gebruikt voor een voorspelling van de nitraatconcentratie. In Tabel 4.1 is voor de (KRW-)jaren 2027 en 2035 een nitraatvoorspelling per bron gegeven. Voor alle noordelijke bronnen is daarbij het base case model gebruikt. Voor de zuidelijke bronnen (z. codes) is op basis van de discussie in paragraaf 4.3 echter gebruik gemaakt van het model waarbij na 30 jaar 50% nitraat reductie plaatsvindt en na 50 jaar 90% reductie (model 'pyriet 50% na 30 jaar'). In bijlage C zijn de figuren van de reistijdverdeling, tritium- en nitraatmodellering van deze "pyrietvariant" weergegeven voor de zuidelijke bronnen.

In de overzichtstabel (Tabel 4.1) is in de tweede kolom aangegeven welk model is gebruikt. Vervolgens is in de volgende kolommen de bij dat model horende MTT, fractie jong, fractie oud en nitraatvoorspelling in 2027 en 2035 weergegeven (in blauw). Tevens zijn de gemeten nitraatconcentraties in de jaren 2001, 2009 en 2018 gegeven. Figuur 4.8 toont een kaart met daarop weergegeven de voorspelde nitraatconcentratie per bron in het jaar 2035.

Volgens de berekening (zie Tabel 4.1) zal in 2027 in 37% (33 van 90) van de bronnen de nitraatconcentratie onder 50 mg/l liggen. Dit zijn allemaal zuidelijke bronnen aangevuld met de noordelijke bronnen n.041 en n.037s. Dit betekent dat bij 63% (57 van 90) bronnen de nitraatconcentratie in 2027 nog steeds boven de norm van 50 mg/l ligt. In 2035 is het beeld bijna onveranderd ten opzichte van 2027. Naast de eerdergenoemde bronnen met een nitraatconcentratie in 2035 is afgenomen naar waarden onder de 50 mg/l (zie ook Figuur 4.8). Bij vergelijking van de kaarten met gemeten nitraatconcentraties in 2018 (Figuur 3.2) met de voorspelde concentraties in 2035 (Figuur 4.8) valt op dat de in 2018 op het Centraal Plateau gemeten concentraties van 80-120 mg/l of zelfs boven 120 mg/l in 2035 niet meer voorkomen en zijn gedaald naar concentraties van 50-80 mg/l, waarbij er vanuit is gegaan de nitraatconcentratie in het water dat uitspoelt uit de wortelzone in 2027 is gedaald tot 50 mg/l (zie Figuur 2.8).

Tabel 4.1: Overzicht per bron van de gemeten nitraatconcentraties in 2001, 2009, 2018 en de nitraatvoorspelling in (KRW-) jaren 2027 en 2035. Per bron is aangegeven welk model ('base case' of 'pyriet 50% reductie na 30 jaar') is gebruikt en voor het gebruikte model is de MTT (gemiddelde reistijd), fractie jong (% <30 jaar), fractie oud (% >80 jaar) en nitraatvoorspelling gegeven. De bronnen zijn gesorteerd op gemiddelde reistijd (MTT).

naam bron	base case of pyriet model	MTT	fractie jong (%)	fractie oud (%)	NO3 (mg/l) 2001	NO3 (mg/l) 2009	NO3 (mg/l) 2018	NO3 (mg/l) 2027	NO3 (mg/l) 2035
n.030	base case	11	91	8	36			56	52
n.016	base case	12	100	0	150	118	98	65	56
n.100	base case	13	93	7	136	48	42	60	51
n.050	base case	14	88	12	95	36	36	54	50
n.020	base case	14	98	2	247	167	40	58	59
n.017	base case	16	74	0	92	97	96	86	72
n.002	base case	16	96	4	128	106	103	64	55
n.005	base case	17	95	5	205	74	79	55	58

naam bron	base case of pyriet model	MTT	fractie jong (%)	fractie oud (%)	NO3 (mg/l) 2001	NO3 (mg/l) 2009	NO3 (mg/l) 2018	NO3 (mg/l) 2027	NO3 (mg/l) 2035
n.003	base case	17	100	0	151	146	132	70	59
n.049	base case	19	90	10	37	182	80	60	54
n.091	base case	20	98	2		83	110	69	59
n.044	base case	20	95	1	244	178	128	75	64
n.087	base case	22	77	0	161	104		89	75
n.021a	base case	23	80	20	140	42		55	53
n.104	base case	24	83	17	147	65	40	51	51
n.043b	base case	24	73	0	154		124	93	79
n.004	base case	25	77	13	113	86	80	70	60
n.034	base case	25	74	26	106	53		56	55
n.mb3	base case	26	74	16	92	91	91	69	61
n.006	base case	27	77	13	96	99	96	74	63
n.084	base case	28	55	15	79	63	84	84	73
n.001	base case	28	71	19	82		91	66	58
n.015	base case	29	72	15	104	104 94		77	67
n.035	base case	29	85	13	129	121	88	64	55
n.008	base case	30	75	14	100	112	109	77	66
n.076	base case	30	76	24	95	77	53	53	48
n.011	base case	30	62	12	86	99	83	86	72
n.085	base case	30	57	13	87	78	78	88	74
n.080	base case	32	60	20	100		44	72	64
n.b86	base case	33	63	17	97	95	91	80	69
n.025	base case	34	69	15	93	104	91	79	66
n.b20	base case	36	64	26	95	74	65	61	54
z.005	pyriet 50% vanaf 30 jaar	36	61	29	79	65	43	49	41
n.043	base case	37	64	19	125		57	72	63
n.042	base case	37	61	24	103		62	68	58
n.b05	base case	38	63	23	100	89	79	68	59
n.099	base case	38	64	26	101	99	91	66	61
n.009	base case	40	55	25	86	85	75	73	63
n.086	base case	40	52	21	92		87	81	68
Z.210	pyriet 50% vanaf 30 jaar	40	69	31			27	22	20
n.022	base case	41	49	32	84	73	65	66	63
n.029	base case	41	46	24	91	87	84	85	75
n.b10	base case	41	38	22	75	78	85	92	78
z.b10	pyriet 50% vanaf 30 jaar	42	57	33		57	44	44	38

naam bron	base case of pyriet model	MTT	fractie jong (%)	fractie oud (%)	NO3 (mg/l) 2001	NO3 (mg/l) 2009	NO3 (mg/l) 2018	NO3 (mg/l) 2027	NO3 (mg/l) 2035
n.018	base case	42	42	38	45	54 49		68	66
z.001	pyriet 50% vanaf 30 jaar	42	58	32	85	73	59	48	41
z.025	pyriet 50% vanaf 30 jaar	43	55	29	65	61	56	42	36
z.006	pyriet 50% vanaf 30 jaar	45	55	35	77	81	52	46	39
z.033	pyriet 50% vanaf 30 jaar	45	47	33	77	75		49	42
z.008	pyriet 50% vanaf 30 jaar	45	50	37	68	69	59	46	39
z.036	pyriet 50% vanaf 30 jaar	45	43	36	63			48	41
n.b16	base case	45	54	36	79	81	68	61	58
n.010	base case	45	55	34	86	74	73	60	54
z.002	pyriet 50% vanaf 30 jaar	46	54	36	72		56	45	38
n.b18	base case	47	43	31	74	81	68	75	65
z.007	pyriet 50% vanaf 30 jaar	48	39	41	63		32	40	35
n.b21	base case	49	42	40	74	51	40	60	56
n.b80	base case	49	39	37	64	65	56	69	62
n.023	base case	50	40	50	74	56	57	58	63
n.024	base case	50	31	39	55		48	74	68
n.077	base case	51	43	47	40	58	46	51	49
z.032	pyriet 50% vanaf 30 jaar	51	37	43	49	51		42	35
n.027	base case	52	31	39	43	39	10	73	65
n.037b	base case	52	39	52	46	94	66	61	65
n.031	base case	54	35	45	58	61		67	62
n.037s	base case	55	41	49	79	47	47	49	46
z.031	pyriet 50% vanaf 30 jaar	56	37	44	55	62	47	40	34
n.040	base case	56	37	46	66	56	56	58	54
z.026	pyriet 50% vanaf 30 jaar	57	31	49	54		33	35	31
n.041	base case	57	46	50	89	47	33	43	40
z.004	pyriet 50% vanaf 30 jaar	57	35	49	50	43	42	36	31
z.027	pyriet 50% vanaf 30 jaar	58	30	50	42	38	36	30	26
z.038	pyriet 50% vanaf 30 jaar	59	36	54	56	54		34	29
z.023	pyriet 50% vanaf 30 jaar	59	36	50	35	45	37	31	26
z.021	pyriet 50% vanaf 30 jaar	59	23	56	23	12	2	28	24
n.012	base case	60	24	56	38		30	60	60
z.035	pyriet 50% vanaf 30 jaar	60	35	55	41	28	21	27	24
Z.205	pyriet 50% vanaf 30 jaar	60	34	55			44	32	28
z.022	pyriet 50% vanaf 30 jaar	61	25	53	23		20	29	25
z.037	pyriet 50% vanaf 30 jaar	62	34	56	42	41	38	30	26

naam bron	base case of pyriet model	MTT	fractie jong (%)	fractie oud (%)	NO3 (mg/l) 2001	NO3 (mg/l) 2009	NO3 (mg/l) 2018	NO3 (mg/l) 2027	NO3 (mg/l) 2035
z.028	pyriet 50% vanaf 30 jaar	62	27	53	42	40	25	29	25
z.b21	pyriet 50% vanaf 30 jaar	63	19	61	36	12 12		25	22
n.096a	base case	63	18	51	28	35	36	69	63
z.024	pyriet 50% vanaf 30 jaar	63	24	56	27	32	25	27	24
Z.200	pyriet 50% vanaf 30 jaar	63	34	56				30	27
n.b12	base case	64	19	56	30	27	27	61	57
z.039	pyriet 50% vanaf 30 jaar	64	29	60	41	37	34	29	25
z.040	pyriet 50% vanaf 30 jaar	65	28	62	33	33	25	27	24
Z.203	pyriet 50% vanaf 30 jaar	66	25	62			20	26	23
z.034	pyriet 50% vanaf 30 jaar	66	27	58	31		31	26	23

Figuur 4.8: Voorspelling van de nitraatconcentratie in de bronnen in het jaar 2035, waarbij voor de noordelijke bronnen gebruik is gemaakt van het basisscenario en voor de zuidelijke bronnen van het model 'pyriet 50% na 30 jaar'.

5 Conclusies

De modellering met de nieuwe tritiummetingen uit 2018 en nitraatgegevens heeft geresulteerd in nieuwe reistijdverdelingen en aangescherpte reconstructie en ontwikkeling van de nitraatconcentraties. Uit de analyse blijkt een duidelijke relatie tussen de nitraatconcentratie en de reistijdverdeling. Bronnen met de grootste fractie jong water (leeftijd <30 jaar) hebben de hoogste nitraatconcentratie in 2001, maar de nitraatconcentraties in deze bronnen zijn ook het snelst gedaald. Deze bronnen liggen grotendeels op het Centraal Plateau. De bronnen met een kleine fractie jong water hebben lagere nitraatconcentraties en een langzamere afname van de nitraatconcentratie. Deze bronnen liggen voornamelijk in de grote beekdalen en op de zuidelijke plateaus. Bij vergelijking van de MTT met de nitraatconcentratie is een vergelijkbaar patroon zichtbaar; bij een lage MTT zijn de nitraatconcentraties in 2001 het hoogst en deze dalen het hardst.

De 'hydrogeologische setting' is mede bepalend voor de reistijdverdeling en de nitraatontwikkeling van de bronnen. De bronnen op Centraal Plateau worden gekenmerkt door relatief jong water en hoge nitraatconcentraties. De bronnen in de grote beekdalen hebben een grote fractie van oud water (> 80 jaar) en lage nitraatconcentraties. De bronnen in de droge beekdalen van de zuidelijke plateaus hebben zowel een snelle, jonge component (5-30 jaar) als een tragere oude component (>80 jaar). De nitraatconcentraties zijn bij deze bronnen lager dan bij de bronnen op het Centraal Plateau en dalen als gevolg van de afnemende nitraatconcentraties in de bijdrage van het jonge water van deze bronnen. Bij deze bronnen is duidelijk sprake van een duaal stromingssysteem.

De methode waarbij de bronnen worden ingedeeld in vijf MTT-klassen en vervolgens wordt gekeken naar de reconstructie en ontwikkeling van de nitraatconcentratie geeft een vergelijkbaar beeld. Hoe hoger de MTT-klassen hoe lager de nitraatconcentraties en hoe minder stijl de afname in de concentraties. De maatregelen om stikstofgift in de landbouw te verminderen hebben dus een verschillend effect op de verandering van de nitraatconcentraties in de verschillende bronnen. Deze verandering is afhankelijk van de leeftijd van het water van de bron.

In de bronnen met de hoogste MTT-klasse (MTT>60 jaar) is een afname in de gemeten nitraatconcentraties zichtbaar, maar de gemodelleerde concentraties van het basisscenario gaven een stabilisatie weer. De nitraatconcentraties zijn bij deze bronnen, gelegen op de zuidelijke kalksteenplateaus, waarschijnlijk lager doordat een deel van het water toestroomt via de onder de kalksteen gelegen Formatie van Vaals, waarin denitrificatie door pyriet kan plaatsvinden. In de modellering van het basisscenario is hiermee geen rekening gehouden. Voor de zuidelijke bronnen blijkt het model met een zekere nitraatomzetting met pyriet tot betere modelreconstructies te leiden.

Om die reden zijn de prognoses voor 2027 en 2035 voor de zuidelijke bronnen gebaseerd op dit modelscenario. Het resultaat van de nitraatvoorspelling is dan dat in 2027 63% (57 van 90) van de bronnen de nitraatconcentratie boven de norm van 50 mg/l ligt. In 2035 is het beeld zo goed als onveranderd ten opzichte van 2027.

Referenties

- Broers & van der Grift (2004). Regional monitoring of temporal changes in groundwater quality, Journal of Hydrology, 296(1-4), 192-220.
- Broers, H.P. en M.E. van Vliet (2018). Dateringsonderzoek bronnen en bronbeken Zuid-Limburg. Prognose van de nitraatconcentraties in Limburgse bronnen voor het KRWjaar 2027, rapport TNO 2018 R10421, TNO, Utrecht.
- Broers, H.P., M.E. van Vliet, R.W. Vernes en T.E. Kivits (2023). Synthese van de resultaten van het GeoERA RESOURCE project CHAKA: karakterisatie van Karst en Chalk in het pilotgebied Zuid-Limburg, rapport TNO 2023 R10270, TNO, Utrecht
- Broers, H. P., Sültenfuß, J., Aeschbach, W., Kersting, A., Menkovich, A., de Weert, J., & Castelijns, J. (2021). Paleoclimate signals and groundwater age distributions from 39 public water works in the Netherlands: insights from noble gases and carbon, hydrogen and oxygen isotope tracers. *Water Resources Research*, 57(7), e2020WR029058
- Broers & de Weert (2015). Dating for drinking water production: isotopes and noble gases in the mixed water of Brabant water (In Dutch). Deltares report 1208195-000.
- Hendrix, W.P.A.M. en C.R. Meinardi (2004). Bronnen en bronbeken van Zuid-Limburg. RIVMrapport 500003003/2004.
- Van Vliet en Broers (2019). Reistijdverdelingen en nitraatprognoses voor 15 bronnen in het KRW-meetnet Krijt-Maas op basis van metingen van tritium in 2001, 2009 en 2017, rapport TNO 2019 R11581, TNO, Utrecht.
- Visser, A., et al. (2009). Trends in pollutant concentrations in relation to time of recharge and reactive transport at the groundwater body scale, Journal of Hydrology (3-4), 427-439.
- Visser, A., Broers, H. P., Purtschert, R., Sültenfuß, J., & de Jonge, M. (2013). Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (85Kr, 3H/3He, and 39Ar). Water Resources Research, 49(11), 7778-7796.

Ondertekening

TNO) Energy & Materials Transition) Utrecht, 14 november 2023

Naam en paraaf tweede lezer

T.E. Kivits MSc

Ondertekening

Autorisatie vrijgave

Drs. M.E. van Vliet Auteur

Drs. D. Maljers Research manager

Bijlage A Controle bronlocaties

TNO heeft in juli 2021 veldwerk uitgevoerd in Zuid-Limburg. Hierbij zijn diverse bronlocaties bezocht, waarbij coördinaten van de bronlocaties zijn geëvalueerd zoals die door de provincie, TNO en het RIVM zijn vastgelegd. Relevante bevindingen uit het veld zijn in een globale bureaucheck uitgewerkt en opgenomen in deze bijlage.

Voor de steekproef in het veld hadden we zowel de coördinaten van de Provincie Limburg als van het RIVM uit de meest recente meetronde (2018) en eerdere meetronden ("oude" coördinaten) in het veld voorhanden. Aanvullend hierop hadden we van het RIVM locatieschetsen van de bronnen ontvangen.

In het veld heeft TNO de coördinaten bepaald met een Differentiaal Global Positioning Systeem (DGPS). Deze GPS kan in principe XY op cm en Z tot op mm bepalen. De nauwkeurigheid hangt echter af van hoe goed het signaal is. In het open veld is het signaal erg goed, maar in dicht bos of met veel bebouwing is het signaal slechter. Na het meten van de coördinaten levert de DGPS ook een nauwkeurigheid mee voor zowel XY als Z.

Naar aanleiding van onze steekproef is de indruk dat de GPS van RIVM niet precies genoeg is. Uit het kaartje van Figuur a.1 blijkt bijvoorbeeld dat de coördinaten van RIVM uit 2018 niet op de betonnen bak van de bron vallen. De DGPS coördinaten van TNO zijn op de hoek van de betonnen bak bepaald en vallen daar ook precies op. Overigens zijn de "oude" coördinaten van RIVM wel de juiste coördinaten bij deze bron. Voor het bepalen van de coördinaten bevelen we aan een nauwkeurige GPS te gebruiken.

Daarnaast bemonstert RIVM soms echt op een iets andere plek dan de Provincie Limburg, maar wel uit dezelfde bronzone. Dit is bijvoorbeeld het geval bij n.091 en n.010 (zie Figuur a.2 en Figuur a.3). Overigens heeft de Provincie Limburg stippen op de bomen gezet om de bron gemakkelijker terug te vinden.

Kleinere bronnen met debietsvariaties zullen qua plaats onontkoombaar verschuiven. Het bezoeken van kleinere bronnen met een tussentijd van 8 jaar is daardoor eigenlijk te lang. Voor deze bronnen is overleg met de Provincie en/of samen het veld in gaan aan te raden. Tabel a.1 geeft een overzicht van de bevindingen van de steekproef van de bronlocaties.

Al met al gaf de veldcontrole geen aanleiding om tijdreeksen van bronnen of bronidentificaties aan te passen. In de meeste gevallen passen de RIVM metingen goed op de meer in de tijd gedetailleerde provinciale metingen. Eventuele afwijkingen zijn de in de bijlagen te herkennen doordat voor de verschillende opdrachtgevers aparte kleuren zijn gebruik (rood voor RIVM, paars voor provincie).

Figuur A.1: Meetlocaties bron Z.205 (bron Bermetijn) en links een foto van betonnen bak van de bronlocatie. TNO heeft de coördinaten met de DGPS bepaald op de hoek van de bak.

Figuur A.2: Meetlocaties van bron n.091 (Beek).

Figuur A.3: Meetlocaties van bron n.010.

RIVM naam	Provincie naam	Opmerkingen m.b.t. locatie van de bron
n.003		Stroomt zacht. Bron terug te vinden via pijl op boom (voor de aanlooproute) en rode stip op boom
n.010	CPMA-034	CPMA-034 en n.010 zijn zeer waarschijnlijk niet dezelfde bron, maar alle data is wel consistent en representatief voor deze bronzone
n.091	CPGB-022	Coördinaten provincie en RIVM zijn enigszins verschillend maar consequenties lijken niet groot want het is wel dezelfde bronzone
n.015		Sint Catharinabron. "Oude" coördinaten RIVM zijn beter dan coördinaten uit 2018.
z.004		Foto's locatieschets niet bij meetstuw. Foto's uit 2018 of 2009?
z.035	CRGU-005	Exacte plek niet gevonden (Beutenaken). Data is wel consistent en er wordt wel dezelfde bronzone bemonsterd
z.025	CRGE-032	Paulusbron in dorpskern Epen. Coördinaten RIVM wijken af. Maar we zijn er wel zeker van dat dezelfde bron wordt bemonsterd
z.205	VYGE-058	Bron in betonnen bak in weilandje. Coördinaten RIVM "ouder" zijn de juiste, RIVM 2018 zijn niet juist We zijn er wel zeker van dat dezelfde bron wordt bemonsterd
z.028	CRGE-033	Bron de Landeus. Provincie en TNO bepalen exact dezelfde coördinaten. RIVM coördinaten wijken af. Wel wordt dezelfde bron bemonsterd, maar mogelijk iets verder stroomafwaarts

Tabel A.1:	Opmerkingen o	/er de bronlocatie	e voor enkele gecontr	oleerde bronnen
			5	

Bijlage B Figuren reistijdverdeling, tritiumen nitraatmodellering per bron van het basisscenario

In deze bijlage zijn voor alle 90 bronnen en bronbeken per bron de volgende 3 figuren van het basisscenario ('**base case modellering**') opgenomen:

- Linker figuur: Fit van de tritiumconcentraties. De grijze lijnen geven alle 50 realisaties die het beste pasten bij de gegeven tritiumconcentraties. De rode lijn geeft het gemiddelde van deze 50. De paarse bolletjes zijn de gemeten tritiumconcentraties.
- Middelste figuur: Historgram van de verdelingsvrije reistijdverdeling. De roze balkjes geven de gemiddelde percentages weer van de bijdrage van de reistijdklasse aan de afvoer van de bron. De oranje error bars geven de onzekerheid rond die schatting aan als standaarddeviatie rond dit gemiddelde. De rode lijn geeft de cumulatieve percentages van de bijdrage per reistijdklasse aan de afvoer van de bron.
- Rechter figuur: Fit van de nitraatconcentraties (rechts). De grijze lijnen geven alle 50 realisaties die het beste pasten bij de gegeven nitraatconcentraties. De rode lijn geeft het gemiddelde van deze 50. De paarse en rode bolletjes zijn de gemeten concentraties van respectievelijk Provincie Limburg en RIVM.

Bijlage C Figuren reistijdverdeling, tritiumen nitraatmodellering per bron van de pyrietvariant '50% na 30 jaar' voor de zuidelijke bronnen

In deze bijlage zijn voor alle **zuidelijke** bronnen per bron de volgende 3 figuren van de pyriet variant '50% reductie na 30 jaar' opgenomen:

- Linker figuur: Fit van de tritiumconcentraties. De grijze lijnen geven alle 50 realisaties die het beste pasten bij de gegeven tritiumconcentraties. De rode lijn geeft het gemiddelde van deze 50. De paarse bolletjes zijn de gemeten tritiumconcentraties.
- Middelste figuur: Historgram van de verdelingsvrije reistijdverdeling. De roze balkjes geven de gemiddelde percentages weer van de bijdrage van de reistijdklasse aan de afvoer van de bron. De oranje error bars geven de onzekerheid rond die schatting aan als standaarddeviatie rond dit gemiddelde. De rode lijn geeft de cumulatieve percentages van de bijdrage per reistijdklasse aan de afvoer van de bron.
- Rechter figuur: Fit van de nitraatconcentraties (rechts). De grijze lijnen geven alle 50 realisaties die het beste pasten bij de gegeven nitraatconcentraties. De rode lijn geeft het gemiddelde van deze 50. De paarse en rode bolletjes zijn de gemeten concentraties van respectievelijk Provincie Limburg en RIVM.

) Bijlage C

Energy & Materials Transition

Princetonlaan 6 3584 CB Utrecht www.tno.nl

