

Carbon Footprint Analysis of Floating PV systems

Josco Kester, Ji Liu, Ashish Binani

July 2024

Methods

- Goal and Scope
 - Assess life cycle carbon footprint of two different floating PV (FPV) systems on small inland water bodies in Western Europe with very low wave height.
 - Lifetime, performance ratio and degradation rate of PV modules in floating PV systems are assumed to be identical as in ground-mounted PV systems, since empirical data is not available.
- Technology and its modelling FPV A (side view) south PV panel 2 operational floating PV systems are assessed, Steel and aluminium FPV A: framing structure made predominantly of HDPE FPV B: steel/HDPE HDPE Foreground data on floating support structure FPV_B (side view) east from suppliers PV panel Steel
 - Background data on PV modules, electrical installation from UVEK DQRv2:2022 and other sources
- Yield simulation for Cologne (Germany) GHI: 1062 kWh/(m²yr)
- Bifaciality factor: 0, albedo: 0, degradation rate: 0.7%/year, performance ratio (PR): 0.80, lifetime: 30 year

Results

Component	Unit	FPV_A	FPV_B	GPV_ew ¹	GPV_op ¹
Main material of support structure	-	HDPE	Steel, HDPE	Steel, aluminium	Steel, <u>aluminium</u>
Orientation	٥	180	90+270	90+270	180
Tilt angle	۰	11	12	12	38
Ground coverage ratio (GCR)	%	60	87	87	60
Power density	[kWp/ha]	1.23	1.78	1.78	1.23
Location	-	Cologne (DE)	Cologne (DE)	Cologne (DE)	Cologne (DE)
Specific energy yield	kWhac/ (kWp yr)	889	795	962	962
Rated power	kWp	1'479	29'770	n.a. ²	n.a. ²

1. ew: east-west orientation and low tilt; op: optimum orientation and optimum tilt.

2. This is a reference system from a background database. Rated power is not available.

Graph below:

Carbon footprint per kWh_{AC} of floating PV systems A and B, and ground-mounted reference systems

Graph above:

Three major ways to decrease carbon footprint

- sourcing of PV modules: lower grid carbon intensity (e.g., Europe instead of China)
- sourcing of materials for support structure: secondary materials
- end-of-life treatment of support structure: HDPE recycling instead of incineration

- The estimated carbon footprint of the two example floating PV installations is ~50 g CO_2eq/kWh_{AC} , which is comparable to that for ground-mounted PV in the same location
 - This is a factor 7 lower than that of the grid mix both in Germany and in the Netherlands in 2018 (~380 gCO₂eq/kWh_{AC}), and 3-4 times lower than the EU grid mix target for 2030 (176 gCO₂eq/kWh_{AC}).
- The carbon footprint can be further reduced by over 40% with three measures:
 - Manufacturing PV modules with lower carbon electricity sources. Here we compared manufacturing in the EU instead of China (country-average) (~25%)
 - using recycled raw (secondary) materials for the support structure (~7-15%)
 - recycling the HDPE at end of life instead of incinerating it (~5-11%)
- Lifetime, performance ratio and degradation rate of the PV modules in FPV systems are the main unknowns that will determine the system performance.
- Key degradation patterns of PV modules in FPV systems should be identified, as well as the long-term benefits, if any, of dedicated PV modules for FPV systems (e.g., lower degradation rate).

Josco Kester, Ji Liu, Ashish Binani, Task 12

ashish.binani@tno.nl

