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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Assimilation of particulate matter mea
surements over Eindhoven area in the 
Netherlands using low-cost sensors. 

• Impoved PM
10 and PM2.5 simulations over 

Eindhoven using measurements from official and 

low-cost networks. 

• Updated PM emissions estimated from 
the assimilation experiments are higher 
than the a priori emissions. 

• Assimilations of PM suggest changes in 
temporal profiles of updated emissions.  
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A B S T R A C T   

Official air quality monitoring networks are often scarce and unevenly spatially distributed. In recent years, the 
use of low-cost sensors next to official networks is increasing. These additional networks provide measurements 
of high spatial and temporal resolution and potentially reveal patterns and emissions sources that are hard to 
detect with conventional methods. In this work, the data assimilation method implemented around the LOTOS- 
EUROS chemistry transport model is employed to assimilate measurements from heterogenous low-cost sensor 
networks around the city of Eindhoven in the Netherlands in November 2021. Three data assimilation experi
ments are performed and evaluated against a free run of the model. In the first one, measurements from the low- 
cost Innovatief Lucht Meetsysteem (ILM) network are exploited. In the second one, the citizen science network 
SamenMeten is used and in the third one, a combination of both datasets is applied. In the assimilation exper
iments at a domain around the city of Eindhoven, it is shown to be essential to use boundary conditions from an 
assimilation on a larger domain to account for the variability in pollution that originates from sources outside the 
domain of interest. Such an improvement in boundary conditions counts for a decrease in the initial free run 
negative biases of 45% for PM10 and 23% for PM2.5 in the city of Eindhoven. The assimilation of low-cost 
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measurements in the region after the correction of the boundary conditions decreases the absolute PM10 biases in 
the 3 independent official stations over the city of Eindhoven further from − 4.4 μg m− 3 to about 0.8 μg m− 3 

averaged over the three experiments. Also, the correlation coefficient is increased from 0.75 to 0.89 and the 
normalized root mean square is decreased from 0.47 to 0.25. We conclude that the improved boundary condi
tions and assimilation of observations from dense low-cost networks are able to improve the LOTOS-EUROS 
simulations at urban scale.   

1. Introduction 

Particulate matter (PM) refers to solid and liquid particles suspended 
in air and forms one of the major airborne pollutants. It adversely affects 
the human health as it is made of inhalable particles impacting the 
respiratory and cardiovascular systems (Kampa and Castanas, 2008). In 
2019, 99% of the world’s population was living in places where the 
WHO air quality guidelines levels were not met (WHO, 2021). The 
impact of PM on human health is associated with the size of the parti
cles, which is mainly defined as PM2.5 and PM10 for aerodynamic di
ameters smaller than 2.5 μm and 10 μm respectively. PM also affects the 
climate due to its impact on the radiance budget of the atmosphere. High 
PM concentrations contribute to haze pollution (Zhao et al., 2013) and 
radiative forcing (Forster et al., 2007). The particles originate mainly 
from combustion (e.g. road traffic and industry), tire and break wear, 
soil erosion, forest fires and sea salt contributions (Liu et al., 2018). 
Karagulian et al. (2015) found that globally PM2.5 in urban areas orig
inates as 25% from traffic, 15% by industrial activities, 20% by domestic 
activities, 22% from unspecified anthropogenic pollution sources and 
18% from natural dust and sea salt. 

Regional chemical transport models (CTM) give the opportunity to 
understand and study the dynamics of PM and its concentration over 
urban regions. CTM’s play an important role in the implementation of 
air quality regulations and policy measures (Saikawa et al., 2011; Wang 
et al., 2015). However, models are sensitive to uncertainties related to 
parametrizations and input information needed for the simulations. 
Solazzo et al. (2013) compared PM concentrations simulated with 10 
different state-of-the-art regional models in Europe and concluded that 
in all cases PM10 is severely under-predicted by the models, showing 
mean fractional errors higher than 0.75, due to mainly underestimated 
anthropogenic and natural emissions as well as errors in the meteoro
logical data. Various studies evaluating PM concentrations from 
regional models have shown an underestimation in the simulations as 
well, and suggested that updates in the existing emissions inventories 
and their temporal resolution are needed (Gašparac et al., 2020; Lopes 
et al., 2021). 

LOTOS-EUROS model has been widely used in studies covering 
different regions of the globe and forms one of the eleven models that are 
used in the operational ensemble of Copernicus Atmosphere Monitoring 
Service (CAMS, https://atmosphere.copernicus.eu/) which provides 
daily analyses and forecasts over Europe. A data assimilation system 
based on the Ensemble Kalman Filter (EnKF) technique is used for 
assimilation of air quality observations. Studies have been already 
conducted using the data assimilation module around LOTOS-EUROS as 
well. Curier et al. (2012) assimilated in situ measurements of O3 over 
Europe for spring and summer of 2007. The analyzed O3 in that study 
showed a significant improvement with the average correlation coeffi
cient for the daily maximum ozone concentration improving from 0.72 
to 0.83 and the average Root Mean Square Error (RMSE) reducing from 
20.8 to 16.9 μg m− 3. Skoulidou et al. (2021) used NO2 satellite obser
vations from TROPOspheric Monitoring Instrument (TROPOMI) on 
board the Sentinel-5 Precursor (S5P) satellite with the EnKF assimilation 
around LOTOS-EUROS, in order to quantify strong declines in NOx 
emissions originating from power plants in Greece. The bias in NO2 
between the model and the observations from a station near the biggest 
power plant in the area decreased from 10.5 μg m− 3 to 2 μg m− 3 after the 
assimilation of the satellite data. Lopez-Restrepo et al. (2020) 

assimilated PM10 and PM2.5 measurements from a total of 12 in situ 
stations in the LOTOS-EUROS model using an Ensemble Kalman Filter 
(EnKF) technique. The assimilation of measurements leads to improved 
simulations and more detailed emissions inventories for the region. 
However, surface measurements from official stations are not always 
present in a sufficient spatial coverage because of high installation and 
maintenance costs and assimilation in an urban scale is therefore often 
not possible. 

Low-cost sensors have been widely introduced in recent years as a 
result of technological advances, offering measurements of various trace 
gases and aerosols. High-density networks of low-cost sensors provide 
the potential of improving the temporal and spatial resolution of air 
quality mapping (Schneider et al., 2017) and provide insights into pat
terns and emission sources (Popoola et al., 2018). Mijling (2020) con
structed high resolution NO2 maps in the city of Amsterdam by 
assimilating measurements of the low-cost Urban AirQ campaign (Mij
ling et al., 2018) together with a few available reference stations. This 
work revealed more detailed NO2 patterns in areas which are under 
sampled by the official network of Amsterdam. The study further 
concluded that the error of the method depends on the accuracy of the 
air quality model, the number and the quality of observations as well as 
the distance of sites to the nearest assimilated observation location, with 
the local error increasing when observations are available only after 
distances larger than 2 km. Lopez-Restrepo et al. (2021) assimilated 
hyper-dense low-cost PM measurements of a network established in 
Medellín (Colombia) in order to improve the performance of the 
LOTOS-EUROS model in simulating PM. The assimilated simulations 
managed to reduce the biases between the model and the measurements 
in the official stations from a mean fractional bias of − 0.65 to almost 0. 
The combination of low-cost dense networks and numerical simulations 
through assimilation techniques can therefore provide an efficient 
monitoring system of air pollution. Such techniques may be of added 
value for health studies and policy making. 

In this study, we take advantage of different dense low-cost sensor 
networks installed in and around the city of Eindhoven in the 
Netherlands, in order to improve the PM2.5 and PM10 simulations of 
LOTOS-EUROS model. PM observations from a low-cost sensor network 
and an even denser citizen science network are assimilated with model 
simulations for the month November 2021. In this period, a sufficient 
number of low-cost sensors were installed, and concentrations were 
typically quite high in the region due to (among others) domestic 
heating. In section 2 the region of Eindhoven together with the distinct 
sensor networks used in this work are described. Furthermore, the 
LOTOS-EUROS model that is used in this study and the assimilation 
method are shortly described, together with the assimilation experi
ments considered. In Section 3, the impact of improved boundary con
ditions and the results of the three different assimilations performed are 
analyzed together with an evaluation of the technique. In section 4 the 
updated emissions from the assimilation experiments and their temporal 
profiles are discussed. Finally, in section 5 concluding remarks and 
further suggestions are provided. 

2. Materials and methods 

2.1. Region of study 

The city of Eindhoven is situated in the south of the Netherlands and 
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is the fifth largest city in the country with a population density in 2020 
of more than 2.670 habitants per km2 (CBS, 2019). The center of 
Eindhoven is mainly composed by low-rise commercial and residential 
buildings (Blocken et al., 2016). The city is characterized by a temperate 
oceanic climate, affected both by the North Sea and the Atlantic Ocean 
(Ascenso et al., 2021), with cool summers and moderate winters while 
the predominant winds are South-West. The region of the study is shown 
in Fig. 1 with the city of Eindhoven in the center, and also showing the 
surrounding cities and villages, the major high-ways and roads, and the 
airport. In the area surrounding Eindhoven a lot of livestock farming is 
present too, and PM pollution from these activities is an increasing 
concern of inhabitants in the region. 

According to Ascenso et al. (2021) Eindhoven is largely influenced 
by traffic emissions and probably also by emissions related to household- 
and office-heating during winter-time. Various industries are located in 
the city of Eindhoven while in the west side of the city the second largest 
airport of the Netherlands (Fig. 1) is operating which hosted more than 
6.5 million passengers in year 2019 (https://opendata.cbs.nl/#/CBS/ 
en/dataset/37478eng/table). Most polluted areas are also found in the 
west part of the city. In February, March and November fine mode 
aerosol is dominant in the region, which could be attributed to emissions 
from domestic heating. In summer, a larger contribution of coarse mode 
aerosol is present, which could be attributed to harvesting activities. The 
study is conducted for November 2021 because a sufficient number of 
low-cost sensors was installed and the PM concentrations in the area 
were relatively high. 

2.2. LOTOS-EUROS model setup and input data 

2.2.1. LOTOS-EUROS simulations 
In this study the 3D CTM LOTOS-EUROS (Manders et al., 2017) is 

used to simulate PM10 and PM2.5 concentrations in the lower tropo
sphere. The gas-phase chemistry in the model is a modified updated 
version of CBM-IV (Gery et al., 1989), while for secondary inorganic 
chemistry ISORROPIA II (Fountoukis and Nenes, 2007) is used. Sec
ondary organic aerosols (SOA) are not considered in this study. Both 
mineral dust and sea salt emissions are calculated online in the model. 
Mineral dust emissions in the model can be a result of wind-blown dust, 
resuspension caused by traffic and agricultural practices and are calcu
lated using meteorology-dependent parameterizations that are further 
described in details in Schaap et al. (2009). Sea salt emissions are 
calculated based on wind speed at 10 m and sea surface temperature 
following Mårtensson et al., 2004 and Monahan et al. (1986). NO 
emissions from soils are calculated online as well using a parameteri
zation depending on soil type and soil temperature (Novak and Pierce, 
1993). Emissions from forest fires are obtained from the Global Fire 
Assimilation System (GFAS) (Kaiser et al., 2012). 

Model simulations were performed in a nested domain configuration 
as seen in Fig. 2. Three different domains were used in order to achieve a 
high resolution simulation over the area of Eindhoven. A summarized 
description of the three domains is shown in Table 1. Domain 1 (in blue 
color) is the largest domain with the lowest resolution (0.25◦ × 0.25◦

longitude × latitude, about 15 km × 25 km at this latitude) covering 
neighboring urban agglomerations that emit large amount of pollutants, 
such as Brussels, Dusseldorf, Amsterdam and Rotterdam. The boundary 
conditions in this domain are obtained by the Copernicus Atmosphere 
Monitoring Service global Near Real Time product (CAMS NRT, http 
s://atmosphere.copernicus.eu/, last access: 25/11/2021) at a spatial 
resolution of 35 km × 35 km and a 3 hourly temporal resolution. The 
first inner domain, called hereafter domain 2 (in green color), was set 
with a resolution of 0.10◦ × 0.10◦ (about 5 km × 10 km) and is 
configured to use the concentrations from domain 1 as boundary 

Fig. 1. Map of the main region of interest in this study.  
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conditions. Finally, domain 3 (in red color) is the smallest domain within 
domain 2 with the finest resolution (0.01◦ × 0.01◦, about 0.5 km × 1 
km) and covers the domain of interest for this study and includes the city 
of Eindhoven and the surrounding municipalities. In each simulation 
domain the model is driven by meteorological data obtained at 7 km × 7 
km horizontal resolution from the Integrated Forecasting System (IFS) of 
the European Centre for Medium-Range Weather Forecast (ECMWF). 
Although the resolution of this meteorological data is rather coarse, it 
provides sufficient information for the chosen domains where elevated 
orographic elements are hardly present; for future studies, a dedicated 
higher resolution meteorology should be considered however. 

2.2.2. A priori emissions 
The a priori anthropogenic emissions used in domain 1 and domain 2 

were taken from the CAMS-Regional European emissions (CAMS REG) 
database for 2017 (Kuenen et al., 2022) with a spatial resolution of 
0.10◦ × 0.05◦ (about 5 km × 5 km). Maps of the total PM10 and PM2.5 
emissions in November 2021 are shown in Fig. 3. The emissions used are 
re-gridded at the horizontal resolution of the two domains. The 
anthropogenic emissions used in domain 3 were obtained from the 
country’s Emission Register (http://www.emissieregistratie.nl/, last 
access: 19/11/2021) which provides the annual releases of more than 
350 pollutants to air, soil and water in the Netherlands. The emissions 
are obtained at a horizontal resolution of 0.01◦ × 0.01◦ and are valid for 
the year 2018. This inventory was only used for domain 3 since it is only 
available for the Dutch domain and does not cover domain 2 and domain 
1. Higher spatial resolution emissions were not available for domain 2 
and domain 1 and as a results model simulation resolution in these 
domains was much lower. The aggregated emissions of PM10 and PM2.5 
used as input in the model simulations are also shown in the right panels 

of Fig. 3. Highest PM10 and PM2.5 emissions are reported for the city of 
Eindhoven and in the south of the domain where the industrial area in 
the north of Valkenswaard municipality is located. Furthermore, high 
emissions are found east from Eindhoven in the city of Helmond, and to 
the north in the region of Veghel. 

Both emission inventories contain for every sector considered the 
annual total, which is distributed into hourly values applying profiles for 
the month-in-the-year, day-of-the-week and hour-of-the-day. The break 
down of annual to hourly emissions used in this study is based on the 
default temporal profiles provided with the TNO-MAC-II (TNO-Moni
toring Atmospheric Composition and Climate) inventory (Kuenen et al., 
2014). The available temporal profiles that accompany the anthropo
genic emissions are generally based on statistics and form one of the 
main sources of uncertainty in the model. The annual emissions of 
pollutants are distributed in hourly emissions using monthly, weekly, 
daily and hourly profiles per pollutant sector in order to produce hourly 
simulations. However, these profiles are mainly based on usual Western 
European conditions. Therefore more uncertainties may exist over other 
European countries. Furthermore, they are based on old and probably 
outdated source of information and as a result they do not take into 
account sudden changes in human behaviors such us the changes during 
COVID-19 restrictions (Fioletov et al., 2021) or implementation of new 
environmental laws (Castellanos and Boersma, 2012). 

2.3. Measurement networks 

2.3.1. Official network 
Hourly measurements of PM are available from the official air 

monitoring network via the European Environmental Agency (EEA, 
https://www.eea.europa.eu/). The locations of the official air quality 
stations used in this study are shown in Fig. 4 and denoted with blue 
color if they provide measurements of both PM10 and PM2.5 and green 
color if only PM10 is measured. Time series from 3 stations in the city of 
Eindhoven, 6 stations in the surroundings, and 3 stations just over the 
country border are obtained for November 2021 for the needs of the 
current study. The official stations located in the center of Eindhoven 
consist of two urban traffic stations (NL00236 and NL00237) measuring 
only PM10 and one urban background station, NL00247, measuring both 
PM10 and PM2.5. Four stations located outside the city and characterized 
as regional background stations are the NL00131, NL00230, NL00246 
and NL00644, while two stations (NL00241 and NL00442) are classified 
as urban background stations. Furthermore, hourly data of PM10 and 
PM2.5 are obtained from 2 stations in Belgium (BETN016 and BELHH08) 
characterized as rural and urban background respectively and PM10 
measurements from a rural background station in Germany (DENW066). 

Some stations of the official network are used for the assimilation of 
PM in domain 2 while the rest of them are used to evaluate the results. 
Only the ones characterized as background stations are used for the 
improvement of concentrations in domain 2 since they have to be 
representative for background concentrations and not local contribu
tions. Moreover, stations are chosen in order to be well distributed over 
the domain. Stations located outside the Netherlands are considered 
essential for representing transboundary pollution into the country as 
well as stations located in the Netherlands but close to the edges of 
domain 2 to represent pollution transported from sources outside of the 
domain. For this reason three stations in Belgium and Germany 
(BETN016, BELHH08 and DENW066) as well as stations NL00644 and 
NL00246 located near the domain edges are used to assimilate PM. 
Finally, stations NL00230 and NL00131 are selected for the assimilation 
process since they provide measurements both on PM2.5 and PM10, are 
characterized as background stations and are better distributed in the 
domain considering the stations that have already been selected for the 
process. The assimilation stations are denoted with a circle marker in 
Fig. 4, while the stations in star symbols are used to evaluate the results 
(validation stations). 

Fig. 2. The threefold nested domains with increasing spatial resolution 
considered in this work. The city of Eindhoven is depicted with the red star. 

Table 1 
Description of the three domains.  

Domain 
name 

Domain edges Spatial 
resolution 

Boundary 
conditions 

Emissions 

domain 1 – 
D1 

4 ◦–7◦ E, 50.5◦- 
52.5◦ N 

0.25◦ ×

0.25◦

CAMS-NRT CAMS-REG 

domain 2 – 
D2 

4.5 ◦–6.5◦ E, 51◦- 
52.◦ N 

0.10◦ ×

0.10◦

D1 CAMS-REG 

domain 3 – 
D3 

5.11 ◦–5.9◦ E, 
51.3◦-51.65◦ N 

0.01◦ ×

0.01◦

D2 Dutch 
inventory  
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2.3.2. ILM low-cost sensors 
The low-cost sensors used in this study belong to the urban ILM 

system (Innovatief Lucht Meetsysteem, English: Innovative Air Mea
surement System). The sensors are installed in and around the city of 
Eindhoven under the AiREAS initiative (https://aireas.com/en/, last 
access: 10/01/2022) as a collaboration of public health authorities, 

research institutes and university in order to monitor air quality. The 
basic sensor for PM is the Shinyei PPD42 optical sensor. The sensors 
have carefully been installed depending on the spatial and temporal 
variability of the air quality in the region and on local sources (roads, 
industry, traffic lights, building works, airport and locations that people 
are exposed) (Hamm et al., 2016). 

Measurements of PM10 and PM2.5 of the ILM network are assimilated 
in domain 3 and the simulated results are evaluated by the official 
network, LML stations. For this study, 10 min temporal resolution PM10 
and PM2.5 measurements from 44 ILM airboxes located around the city 
of Eindhoven were obtained for November 2021 from https://ilm2.site. 
dustmonitoring.nl (last access, 10/01/2022). The hourly averaged data 
were calculated. Furthermore, the PM10 levels were set equal to PM2.5 
when the PM2.5 levels exceeded the PM10 values. This occurs on average 
13 times per month based on the 10 min measurements. The mean 
hourly PM10 and PM2.5 values over all stations in November together 
with the standard deviation is given in Fig. 5. The stations spatially cover 
mostly the city of Eindhoven with some stations located in the sur
rounding rural areas and Eindhoven airport. The spatial distribution of 
ILM stations is shown in Fig. 6 (light blue cycles). 

2.3.3. Calibration and modification of ILM sensors 
The reliability of PM measurements from low cost sensors is many 

times questionable. Canu et al. (2021) studied in detail the performance 
of Shinyei PPD42 sensors explaining the difficulty that these sensors 
have to differentiate a large particle from a set of two or more small 
particles when the sensors are used without any modification. As a 
result, they suggest the use of a non-trivial algorithm in order to estimate 
well the particle concentration. They also conclude that these sensors 
are not suitable for mobile applications but on the other hand for static 

Fig. 3. PM10 (top) and PM2.5 (bottom) a priori emissions summed in November 2021 as used for the domain 1 (left), domain 2 (middle) and domain 3 (right) fine 
resolution simulations. 

Fig. 4. Stations from the official network used in domain 2, shown in the green 
rectangle. Domain 3 is delimited by the red rectangle. 
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applications (as they are used in this study), it is possible to reach an 
acceptable accuracy by integrating the measurements during a long 
operation time and using a suitable humidity correction. 

The commercially available sensors are modified before the setup of 
the ILM network. The hardware is altered to directly read out the filter’s 
voltage outputs. The generated pulses are related to the particle size 
because Mie diffusion intensity depends on this. We use this information 
to deduce the relevant size information to produce independent PM2.5 

and PM10 concentrations by application of different threshold values. 
Further discussion on the algorithm effectiveness can be found in sup
plement. In order to calculate the correct concentrations, the calculated 
mass concentration of the sensors is compared to the Fidas 200 S and the 
correct calibration factors are determined for the individual particle 
channels before their installation in the network. The calibration of ILM 
sensors takes place at a calibration rack in the region of Alkmaar, the 
Netherlands (Goudriaan et al., 2022). The measurements of each sensor 

Fig. 5. Hourly mean PM2.5 (blue line) and PM10 (orange line) over all ILM station in November 2021. The shaded area denotes the standard deviation over all 
stations over each hour. 

Fig. 6. Locations of the stations of the three different measurement networks in domain 3, depicted in the red rectangle. The official stations are denoted with star 
symbols in green and blue when they measure both PM10 and PM2.5 or just PM10, respectively. The ILM stations available for November 2021 are depicted by light 
blue markers, while the SamenMeten sensors are shown by orange markers. 
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for a period of at least 2 weeks and assuming sufficient variation in the 
concentrations are compared with the reference equipment, Fidas 200S, 
in open air. The calibration is carried out for the different particulate 
matter fractions. During calibration of the sensors against the reference 
instrument it was found that both PM25 and PM10 show high correlations 
across all boxes. However, it is also found that the deviations of the 
sensor measurements from reference measurements are magnified at 
higher values. 

The measurements of ILM after their installation are compared with 
observations from the official network (LML) in order to assess their 
quality. Furthermore the behavior between ILM stations was examined 
(Goudriaan et al., 2022). In general, the concentration patterns 
measured by ILM stations over time were found similar to the LML, with 
higher absolute differences during wintertime. The measurement 
network was found suitable for identifying and indicating patterns in 
particulate matter in time and space at local and regional scale. In 
particular, comparison between daily LML Genovevalaan PM10 
(NL10236) and daily ILM station I37 PM10 are studied. On average, ILM 
station measures higher PM10, ~20.9 μg/m3, than the LML, ~17.2 
μg/m3 for year 2021. The regression slope between ILM and LML mea
surements is between 1.49 for December and 0.96 for June, while the 
annual slope is 1.20. The Root Mean Square Deviation (RMSD) is higher 
in winter than in summer and the annual RMSD is equal to 7.1 μg/m3. 
ILM higher deviations during wintertime, when PM concentrations are 
higher, could also be explained by the results of the calibration; i.e de
viations of sensors are magnified at higher values. 

As a result, the low-cost sensors observations from the ILM network 
are considered good enough for the actual scope of this work which is to 
test and evaluate the added value they can have when we combine them 
with LOTOS-EUROS model. 

2.3.4. SamenMeten citizen science network 
SamenMeten (English: Measuring Together) is an innovation citizen 

science program in the Netherlands launched by the National Institute 
for Public Health and the Environment (RIVM) in 2016 together with 
other research institutes, the government, companies and citizens 
(Rubio-Iglesias et al., 2020). The program was established with a portal 
(https://samenmeten.rivm.nl, last access: 10/01/2022) as central hub 
for citizen science and air quality. Citizens can obtain air quality data 
from this platform but also upload it. Low-cost sensors established by 
citizens focus mainly on nitrogen dioxide (NO2) and particulate matter 
(PM10 and PM2.5) pollutants. There is a number of uncertainties 
involved with citizen science low-cost sensors. In particular the mea
surement errors for particulate matter by the low-cost sensors are highly 
affected by humidity. Low-cost sensors mainly use optical systems to 
measure the particles and this leads in interpreting water drops into 
particles (Wesseling et al., 2019). The RIVM has developed a calibration 
method to perform corrections concerning the relative humidity of the 
measurements. The properly calibrated sensors of the network can give 
an indication of the spatial distribution of the average air quality in an 
area and the relative variation of concentrations over time. The cali
bration method continues to evolve, since more robust methods are 
needed because the data quality is currently not sufficiently high, and 
more important, the data quality is actually often unknown. Further
more, the sensor measuring errors can differ between the different types 
of sensors. In SamenMeten program different types of sensors may be 
hired by citizens. In addition, the type of location of sensors selected by 
citizens is not known and any inappropriate use cannot always be 
identified, for example indoor installation of sensors. The spatial dis
tribution of the SamenMeten network is more irregular than the distri
bution of ILM sensors and covers mostly the surrounding areas of 
Eindhoven providing information for the neighboring municipalities of 
the province. Moreover, the data availability is less reliable, and the 
time series of some sensors are interrupted or even absent after some 
moment. The distribution of the sensors is shown by the orange cycles in 
Fig. 6 together with the locations of the ILM and official stations. 

Hourly data from 300 stations located in the study area are obtained 
from the hub. The calibrated values of PM10 and PM2.5 are filtered for 
negative values and for the cases when PM2.5 is higher than PM10. This 
occurs on average 115 ± 82 times in November 2021 based on the 
hourly measurements for 300 sensors measuring. It should also be 
mentioned that instruments at some stations record very high values 
that are not in accordance with the general measurement levels of the 
official network. For this reason we performed a further data filtering in 
the data in order to discard the time series that would affect the 
assimilation results in a deceptive way. As we do not expect the PM 
concentrations to differ much in a relatively small region as the one in 
this study, the measurements from the official stations in the region were 
used to extract information on the PM distribution over the area. Ac
cording to these, time series of PM10 and PM25 were rejected when more 
than 10% of the measurements exceeded the maximum values measured 
by the official stations, i.e. 180 μg/m3 and 160 μg/m3 respectively. 
Further, time series were rejected when extreme differences between 
two sequent measurements appeared. The differences between the 
sequent measurements of the official stations were calculated and the 
threshold for the values to be excluded was set to 3 times their standard 
deviation. In particular, when 10% of sequent measurements of PM10 
was higher than the 50 μg/m3 (40 μg/m3 for PM25), the time series were 
rejected for the assimilation process. Time series of PM10 from 26 and of 
PM25 from 21 stations were hence discarded from the study. 

It should be mentioned at this point that the goal of this study is not 
to validate SamenMeten data but to investigate the impact of the citizen 
science data in the assimilation approach, and the (future) potential of 
low-cost sensor observations for monitoring particulate matter consid
ering the unknown uncertainties of this data. 

2.4. Assimilation experiments 

The networks of ILM and SamenMeten sensors that have been 
introduced in the Eindhoven area monitor the air quality at a resolution 
that is unprecedentedly high for the region. To explore the potential of 
these sensor networks for air quality monitoring, we assimilate obser
vations of PM2.5 and PM10 in high spatial resolution particulate matter 
simulations performed over the city of Eindhoven and its surroundings. 
Because of its rather long atmospheric lifetime, particulate matter 
pollution in the city of Eindhoven is also (highly) affected by pollution 
originating from the surrounding areas outside domain 3. According to 
the modelled source specific PM concentrations performed by the TNO 
Operational Pollution Apportionment Service (TOPAS, https://topas. 
tno.nl), during November 2021 a large amount of PM10 near Eind
hoven finds its origin in the wider region containing large urbanized or 
industrialized areas in the Netherlands and other countries such as 
Belgium, Germany, France and sometimes even from Poland and Great 
Britain. Also, sea salt can reach the city. Because of incoming pollution 
from outside the region, the configuration of assimilation experiments in 
this study includes also an assimilation of particulate matter measured 
by official stations in the Netherlands and in the neighboring regions of 
Belgium and Germany outside of domain 3. 

For convenience the different experimental runs are named after 
their domain and whether assimilation of a specific measurement 
network took place. Following the nesting configuration used in our 
study and presented in section 2.2.1, experiments are performed along 
two different lines in order to gradually move from the low resolution 
domain 1 simulations (“D1free”) to the high resolution domain 3 (D3), 
as seen in the flow chart presented in Fig. 7 and described in Table 2. In 
the first type of experiments, the “D2free” simulation on Domain 2 uses 
the simulations from “D1free” as boundary conditions and subsequently, 
“D3free” uses the “D2free” simulations as boundary conditions. In the 
second type of experiments, the “D2OF” simulation at domain 2 uses 
“D1free” simulations as boundary conditions, and assimilates observa
tions of official stations (“OF”) in its domain in order to provide 
improved simulations and thus improved boundary conditions for D3. 
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Then, four experimental runs are assumed for domain 3 depending on 
whether assimilation of measurements is performed and what type of 
low-cost sensors are assimilated each time. In the first experiment 
(“D3D2OF”), the improved boundary conditions from “D2OF” are used, 
while no assimilation of measurements takes place. Then, 3 experiments 
in domain 3 are performed that assimilate PM2.5 and PM10 observations 
from either ILM, or SamenMeten, or from both networks (named as 
“D3ILM”, “D3SAM” and “D3ILMSAM” respectively). 

In the case of “D2OF” assimilation, which takes place over domain 2 
and is further used to provide improved boundary conditions in domain 
3 runs, both boundary conditions and emissions are considered uncer
tain. On the other hand, in the experimental assimilation runs over 
domain 3 (i.e. “D3ILM”, “D3SAM” and “D3ILMSAM”) only local emis
sions are considered as uncertain parameters since the boundary con
ditions used in this case are already corrected in “D2OF”. 

2.5. Assimilation technique and configuration 

The assimilation technique used in this study is based on a Local 
Ensemble Transform Kalman Filter (LETKF) that is implemented around 
the LOTOS-EUROS CTM, following the implementation by Shin et al. 
(2016) and already described in Skoulidou et al. (2021). The main goal 
of EnKF is to estimate an optimal state (analysis) by combining model 
simulations and observations while taking into account their respective 
uncertainties. Uncertainties in model simulations could be defined for 
any parameter in the model or input data used that is partly responsible 
for the deviations between the forecast and the true state, for example a 
priori emissions, boundary conditions, meteorology, and chemistry. The 
observation simulation uncertainties may originate from different 
sources such as instrumental errors, retrieval errors and representation 
errors. In this study, emissions and boundary conditions are considered 
as the uncertain model parameters. The uncertain parameters are 
multiplied by randomly perturbed correction factors which are defined 
as a colored noise in order to maintain a temporal correlation with the 
uncertainties and have over a long time window mean of 1 and standard 
deviation of σ. This temporal length scale, τ, is used to describe varia
tions of the uncertain parameters in time. 

The LETKF analysis updates the ensemble per grid cell. For each cell, 
the available observations at time k are collected within a user specified 
area surrounding the model grid cell, and these will be used to update 
the forecast ensemble into an analysis ensemble for this grid cell. 
Selecting only observations nearby the grid cell is part of the localization 
procedure which is essential to avoid spurious correlations between el
ements of the state due to the use of a finite ensemble. These spurious 
correlations can cause observations to randomly affect the analysis in 
distant locations (Hunt et al., 2007). For the localization procedure in 
this case a spatial length scale, ρ, is introduced. The weight of the 
collected measurements in the analysis decays exponentially from one to 

Fig. 7. Flow chart of the steps and the experiments performed in this study. The different domains (D1, D2 and D3) and their spatial resolution is denoted.  

Table 2 
The description of the model simulations and assimilation experimental runs.  

Experiment Assimilation datasets Domain Boundary conditions 

Model simulations 
D1free No assimilation D1 CAMS 
D2free No assimilation D2 D1free 
D3free No assimilation D3 D2free 
D3D2OF No assimilation D3 D2OF 
Assimilated runs 
D2OF Official network D2 D1free 
D3ILM ILM D3 D2OF 
D3SAM SamenMeten D3 D2OF 
D3ILMSAM ILM and SamenMeten D3 D2OF  
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zero as their distance from the analysis grid pixel increases. When a 
small ρ is chosen the analysis is changing only the grid cells located close 
to the observations, while if ρ is larger more observations are used for 
the analysis of the grid cell. Only observations within a distance of 3.5ρ 
from a grid cell are selected and a Gaussian function is used as the 
weighting function of the observation localization, given by: 

f = exp

(

− 0.5
(

d
ρ

)2
)

(1)  

where d is the Euclidean distance between the respective grid pixel to be 
analyzed and each observation’s location. 

The optimal configuration of the assimilation experiments was found 
by performing distinct assimilation tests for the period January 10–15 
2021 (while the actual period of interest is November 2021). The goal 
was to choose the optimal values for the assimilation parameters ρ 
(spatial scale), τ (temporal scale) and σ (standard deviation of the noise 
distribution attributed to the correction factors). To achieve this, 
assimilation results using different values for these parameters were 
evaluated against the official validation stations, whose data was not 
included in the assimilation. To evaluate these sensitivity tests and 
choose the optimal values, statistical parameters have been examined 
and in particular the correlation coefficient, the bias and the NRMSE. 
The configuration that suggests better statistics and assimilated simu
lations closer to the measurements was chosen. The optimal values 
chosen are shown in Table 3. 

For the “D2OF” experiment, the most suitable value for the length 
scale ρ was found to be 35 km, and for the temporal scale τ a value of 1 
day was found. The standard deviation for the relative uncertain pa
rameters σ was set to 50%. The runs in domain 3 are performed on a 
much higher resolution representative for a more local scale, and hence 
the optimal configuration for the case of “D3ILM” was also investigated 
using multiple assimilation experiments. The optimal ρ (length scale) 
was found to be 3 km and the temporal length τ was in this case as well 
equal to 1 day. The standard deviation σ was found equal to 500% in this 
case. This means that the correction factors were permitted to increase 
the emissions with a factor 5 or more in order to let the model decrease 
the large discrepancies between the simulations and observations due to 
the high PM underestimation. Very large and unrealistic corrections to 
the emissions would be derived in this way, while the underestimation 
of PM observations should also be attributed to model uncertainties 
other than the uncertainties in the a priori emissions, e.g. missing sec
ondary organic aerosol formation from precursor gaseous emissions, 
limited chemistry, and incorrect meteorology. For example, Timmer
mans et al. (2022) suggested that to obtain the total contribution in PM 
concentrations from combustion processes in LOTOS-EUROS the sec
ondary organic aerosols need to be implemented. Further, Hama et al. 
(2022) studied the characteristics of PM10-associated organic and 
elemental carbon over 5 cities in North Europe and found that annual 
secondary organic carbon contribution to total organic carbon is very 
significant (more than 50%) with the highest concentrations observed 
during spring and summer and lowest during winter. This emphasizes 
further the significance of secondary organic aerosol and its possible 
impact in the underestimated PM simulation. For this reason a 
maximum threshold of 5 times the a priori emissions was set and larger 
changes are not allowed. The optimal configuration found for “D3ILM” 
was also used for the domain 3 assimilations of SamenMeten network 
(“D3SAM” experiment) and when both ILM and SamenMeten networks 
were assimilated (“D3ILMSAM” experiment) considering that we focus 

on very local scales and over the same area. 
In this study the background and local contributions within domain 3 

are corrected with a two step approach. The first step includes the 
assimilation of the LML measurements representative of background 
areas in domain 2 and the subsequent use of the assimilated simulations 
as boundary conditions in domain 3. The second step includes the 
assimilation of the low-cost sensors representative of local contributions 
in high resolution simulations within domain 3. Low cost sensors in 
domain 3 measure PM close to local emissions (roads, households, 
agricultural areas). This is considered in the assimilation process by 
selecting a small length scale for the assimilation of low-cost sensors in 
domain 3 and excluding in this way sources from longer distance. Future 
developments will focus on different ways to approach this problem in 
one step. This can include the use of a distinct length scale for each 
station depending on their type (i.e. urban, traffic, background). In this 
way, stations considered as background will affect pixels in a larger 
radius around the measurement location compared to traffic stations 
during the assimilation process. In this approach the localization length 
scale, ρ, should be defined by the correlations between measurements 
and simulations as function of their distance. Similarly the standard 
deviation, σ, for the background and local uncertainties will be defined 
separately in one each step. 

2.6. Evaluation of the experiments 

Simulations from free and assimilated runs are compared to obser
vations of ground based stations of the official network (LML) to eval
uate their performance. The metrics used are the absolute (b) and 
relative biases (rb), correlation coefficients (r) and normalized root 
mean square error (NRMSE). 

The absolute bias investigates the differences between the model 
simulations, either assimilated or not (SIM), and the observations (OBS) 
and is calculated according to: 

b=
∑

(SIM − OBS)
N

(2) 

The relative bias (rb) is useful to evaluate the differences in biases 
between different concentration levels and was calculated according to: 

rb=
∑

(SIM − OBS)
∑

OBS
× 100 (3) 

The correlation coefficients (r) indicates how strong the relationship 
between SIM and OBS is and is given by: 

r=
∑

(SIM − SIM) (OBS − OBS)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(SIM − SIM)
2∑

(OBS − OBS)2
√ (4)  

where SIM and OBS are the mean values of the simulations and obser
vations respectively. 

Finally Root Mean Square (RMSE) reveals how close are the differ
ences between simulations and observations and the Normalized RMSE 
(NRMSE) facilitates the comparison between different concentration 
scales. 

NRMSE=
RMSE
OBS

(5)  

where: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(SIM − OBS)2

N

√

(6)  

3. Results 

In these sections the results of all different experiments in domain 2 
and domain 3 are presented. The evaluation of the “D2free” and “D2OF” 

Table 3 
Optimal values chosen for the assimilation scenarios.  

Name of run ρ (km) τ (days) σ 

D2OF 35 1 0.5 
D3ILM, D3SAM, D3ILMSAM 3 1 5  
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runs against official stations in domain 2 and the importance of 
improved boundary conditions are shown. Then, the different assimi
lation experiments using low-cost sensors are evaluated and compared 
to the free model run in the domain 3. 

3.1. Improved boundary conditions 

The mean concentrations of PM2.5 and PM10 in domain 2 generated 
from the model free run (“D2free”) and the assimilation run (“D2OF”) in 
November 2021 are shown in Fig. 8. The monthly mean measured values 
used for the assimilation “D2OF” are shown in the circles, while the 
mean monthly measurements from validation stations are shown in 
triangles. Both PM10 and PM2.5 are increased throughout the domain 
after the assimilation. The largest changes are found in the south, over 
the Belgium area, and over the city of Eindhoven. A strong increase in 
the PM2.5 concentrations is also observed in the north of the domain. 

In order to evaluate the “D2free” and “D2OF” simulations we 
compare them with daily averaged values over the validation stations. 
Fig. 9 shows the time series of the daily average PM10 concentrations 
and standard deviation over the 5 available validation stations together 
with similar values of the “D2free” and “D2OF” runs taken from the 
corresponding model pixels. The “D2free” run underestimates PM10 
during the whole period, except for November 24 where the free run 

simulations are higher than the measurements (and also the “D2OF” 
simulations). The assimilated concentrations in the “D2OF” run are 
strongly increased and approach the measurements. For November 16 
the averaged assimilated concentrations are actually about 50% higher 
than the observations; the shaded area shows that the variability in the 
assimilated simulations is quite high during that day. 

The statistics for PM2.5 and PM10 in November 2021 are summarized 
in Table 4. For the “D2free” and “D2OF” runs, the simulated concen
trations for the grid cells containing the observation sites are averaged 
for the comparisons (average simulation). The simulations of “D2free” 
consistently underestimate the measurements by − 40% compared to the 
PM10 measurements from the validation stations. After assimilation, the 
average biases in PM10 concentrations are strongly decreased to about 
− 10% when comparing “D2OF” simulations with the measurements. 
The average correlation coefficient between the measurements and the 
simulations increases from 0.61 to 0.78 after the assimilation and the 
NRMSE decreases from 0.55 to 0.37. Similar results are found in the case 
of PM2.5 for which 2 validation stations are available. The PM2.5 simu
lations of “D2free” highly underestimate the measurements in the sta
tions by about − 50%; after assimilation, these biases are decreased to 
about − 30% for “D2OF”. The correlation coefficients also increased 
from 0.68 to 0.83 after the assimilation of the measurements and the 
NRMSE decreased from 0.68 to 0.44. 

Fig. 8. Monthly mean PM10 (top) and PM2.5 (bottom) concentrations in domain 2 before (left) and after (right) assimilation. The stations used for the assimilation are 
denoted with circles, and the validation stations with triangles. The colors of the markers denote the mean values of PM measured by the in situ stations for the same 
month as the simulations. The black rectangle denotes domain 3. 
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The results for “D2OF” show an improvement of the simulations in 
domain 2 compared to the free run “D2free” simulations. It should be 
noted here that the whole city of Eindhoven is represented by only one 
model pixel in this case, hence fine scale urban variations cannot be 
represented by the model in this experiment. Instead, the “D2OF” sim
ulations are used as lateral boundary conditions in the high resolution 
runs in domain 3 where dense low-cost networks are assimilated at a 
resolution that is more suitable for the urban scale. 

3.2. Improvement of high resolution PM simulations 

The average monthly concentrations from the 5 different experi
ments performed in domain 3 are shown in Fig. 10 for PM2.5 (left) and 
PM10 (right). In the same plots the average monthly measurements from 
the validation stations in the region are shown in circles using the same 
color scale. The “D3free” simulations without assimilation (first row) 
tend to strongly underestimate both PM10 and PM2.5 over the entire 
region during the month of interest when compared to the official sta
tions. The high underestimation of both PM2.5 and PM10 is partly 
removed when the improved boundary conditions are used in the 
“D3D2OF” simulation (Fig. 10, second row). However, the mean simu
lations remain low compared to the mean observations in the center of 
Eindhoven. When assimilating the ILM measurements, in the “D3ILM” 
experiment (third row) higher concentrations are obtained in and 
around the city of Eindhoven for both PM2.5 and PM10. However, since 
there are no ILM observation sites in the west of domain 3 concentra
tions remain unchanged near the west. Note that the concentrations are 
higher in the western part of the domain compared to “D3free” experi
ment due to the improved lateral conditions used in this run, already 
seen in “D3D2OF” results, which illustrates that the improved boundary 

conditions are indeed important. In the fourth row, the mean monthly 
simulations after the assimilation of SamenMeten observations are 
shown (“D3SAM”). The irregular spatial distribution of the SamenMeten 
sensors is depicted in the assimilated results together with the lack of 
measurements in the western part of the domain. Regions such as Best 
and Helmond, situated north and east of Eindhoven respectively, host 
many sensors, and increased particulate matter concentrations are 
simulated. Opposite to this, the west part of the domain shows no 
important changes due to the scarcity of sensors there. The assimilated 
concentrations in the eastern part of the domain show extreme high 
PM10 concentrations. It is possible that extreme and unrealistic mea
surements of PM10 from the SamenMeten network result in abnormally 
high simulations, since the data are not evaluated and only a first order 
filtering of the stations has been applied in this study. In the last row, the 
ILM and SamenMeten networks are used together in the assimilation 
process this time (“D3ILMSAM”). Increased concentrations of particu
late matter are shown in the center of Eindhoven as well as in more rural 
areas such as in Veghel and Sint-Oedenrode in the north of the domain, 
as visible in the “D3SAM” results. If in addition also the ILM stations are 
included in the assimilation too (“D3ILMSAM”) the extreme values that 
are found in “D3SAM” experiment are lowered, such as in the area of 
Helmond located east of Eindhoven. 

To obtain a more detailed insight in the performance of the different 
experiments, the daily average time series at the grid cell where the 
official station NL00237 is measuring PM10 in the center of Eindhoven is 
given in Fig. 11. The results of the 5 different experiments are shown by 
lines of distinct colors, and the measurements are given by the black 
lines. The time series show a high underestimation of PM10 throughout 
the month in the “D3free” model simulation (red line), while this un
derestimation is decreased when improved boundary conditions are 
taken into account in “D3D2OF” (green line). The “D3ILM” experiment 
is represented by the light blue color and follows the measurements 
quite well, showing increased PM10 throughout the period. Similar to 
“D3ILM”, the “D3SAM” experiment (orange line) shows higher con
centrations that are closer to the observations in many cases. Between 14 
and 17 of November the assimilated experiments overestimate the 
measurements, while the “D3free” run is actually closer to the mea
surements. In this period the ILM sensors throughout the city of Eind
hoven measure much higher PM concentrations than the official 
stations. This is illustrated in Fig. 12 where the 2 ILM sensors, #08 and 
#30, that are located less than 1 km away from station NL00237, are 
plotted together. As already discussed in section 2.3.3 ILM sensors might 
positively deviate from LML sensors during wintertime. The “D3ILM
SAM” experiment assimilating both ILM and SamenMeten data show 
quite similar behavior as the “D3ILM” and “D3SAM” runs assimilating 

Fig. 9. Mean daily PM10 time series of the D2free and D2OF experiments and the average values of observation in the 5 validation stations. The shaded areas stand 
for the standard deviation of the distribution of mean daily values of the available stations or model pixels. 

Table 4 
Statistics of the non-assimilation (D2free) run and assimilation of the official 
stations (D2OF) run compared to the mean PM2.5 and PM10 observations over 
the 5 validation stations.   

PM type PM10 PM2.5 

Average [μg/m3] Observations 20.68 15.16 
D2free 12.76 7.47 
D2OF 19.11 10.55 

Corr. Coeff. [-] D2free 0.61 0.68 
D2OF 0.78 0.83 

Bias (μg.m− 3 [%]) D2free − 7.93 (− 39%) − 7.69 (− 48%) 
D2OF − 1.58 (− 8%) − 4.61 (− 27%) 

NRMSE D2free 0.55 0.68 
D2OF 0.37 0.44  
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just one of the networks, with increase PM10 concentrations compared to 
the free model simulations. Only at November 3 and 27, the “D3ILM
SAM” experiment shows better agreement ith the official station than 
the “D3SAM” and “D3ILM” experiments. 

The statistical results of the 5 different experimental scenarios are 
summarized in Fig. 13 using relative bias in percent (rb), correlation 
coefficient (r) and normalized root mean square error (NRMSE) of the 

daily values as well as in Table 5 in terms of absolute bias (b), correlation 
coefficient (r) and normalized root mean square error (NRMSE) of the 
daily values. Most changes are found around the city of Eindhoven 
because of the availability of low-cost sensors, while simulations near 
the edges of the domain are mostly changed due to the improved 
boundary conditions and not the assimilation of low-cost sensors. 
However this is not the case for the northeast of the domain and for the 

Fig. 10. Mean PM25 (left) and PM10 (right) surface simulations of the 5 different experiments in domain 3 for November 2021. Starting from top to the bottom the 
experiments shown are: “D3free”, “D3D2OF”, “D3ILM”, “D3SAM” and “D3ILMSAM”. The monthly average value of the validation stations from the official network 
are denoted with circles and use the same color scale. 

Fig. 11. Time series of mean measured daily PM10 concentrations for official station NL10237 and the corresponding simulations of the different experimental runs 
in the same grid pixel. 
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experiments in which SamenMeten network sensors are taking into ac
count in the assimilation (i.e. D3SAM and D3ILMSAM). In these cases, 
changes in PM concentrations are observed due to the availability of 
SamenMeten sensors in this regions. The “D3free” simulation highly 
underestimate the PM10 and PM2.5 measurements in every stations in the 
region by an average of around − 36% and − 56% respectively. The 

relative biases remain negative when using improved boundary condi
tions (“D3D2OF”) but decrease to − 20% for PM10 and -43% for PM2.5. 
The relative changes in biases over the stations between “D3D2OF” and 
“D3free” are about − 46% for PM10, suggesting that about 45% of the 
negative bias in “D3free” is originating by sources outside the domain 
and removed when using the improved boundary conditions. The rela
tive decrease in PM2.5 bias in “D3D2OF” run compared to “D3free” run 
in the station located near the center of Eindhoven is lower than in PM10 
and is about − 23%. 

The biases in PM10 between the reference stations and the “D3ILM” 
are strongly reduced by the assimilation. The biases found between the 
simulations and the measurements for the three stations in Eindhoven 
are very small and positive and on average about 6%, suggesting that the 
bias that has not been removed when using corrected boundary condi
tions is removed due to the correction of the local emissions in domain 3. 
The average correlation coefficient and root mean squared are also 
slightly improved by the assimilation of ILM data (r = 0.87 and NRMSE 
= 0.28 compared to r = 0.75 and NRMSE = 0.47) in the city of Eind
hoven. For PM2.5 there is only one official station measuring near 
Eindhoven showing a decreased bias, with rb = − 27% compared to rb =
− 56% for the “D3free”. The relative decrease in the bias of “D3ILM” 
compared to “D3free” is about 50%, including both corrections due to 
boundary conditions and emissions. In the “D3SAM” experiment, PM10 
simulations are improved over Eindhoven with relative biases of − 14%, 
− 2%, and 12% for stations NL00247, NL00237, and NL00236 respec
tively, and a high mean correlation coefficient of 0.91. Similar results 
are found for the “D3ILMSAM” experiment assimilating both networks, 
with average relative biases of − 1%, 4% and 15% for NL00247, 
NL00237 and NL00236 respectively and a mean correlation coefficient 

Fig. 12. Time series of mean measured daily PM10 concentrations for official station NL00237 and two closest ILM stations #08 and #30.  

Fig. 13. The relative biases (left), correlation coefficient (middle) and NRMSE (right) of PM10 measurements from the official network and the free run and 
assimilation runs. 

Table 5 
Statistics (correlation coefficient, biases, NRMSE) for the PM10 and PM2.5 con
centrations between the observations in Eindhoven and the free and assimilated 
runs.  

PM type PM10 PM2.5 

Station NL 
00247 

NL 
00237 

NL 
00236 

NL 
00247 

Corr. coef. D3free 0.71 0.80 0.74 0.82 
D3D2OF 0.83 0.87 0.83 0.90 
D3ILM 0.84 0.87 0.90 0.85 
D3SAM 0.88 0.95 0.91 0.89 
D3ILMSAM 0.87 0.89 0.91 0.86 

Bias (μg.m− 3) D3free − 8.34 − 7.91 − 6.91 − 10.64 
D3D2OF − 4.86 − 4.51 − 3.67 − 8.20 
D3ILM 0.59 0.96 2.50 − 5.12 
D3SAM − 2.93 − 0.37 2.53 − 6.77 
D3ILMSAM − 0.26 0.84 3.03 − 5.14 

NRMSE D3free 0.50 0.45 0.46 0.62 
D3D2OF 0.33 0.30 0.32 0.48 
D3ILM 0.30 0.26 0.27 0.37 
D3SAM 0.26 0.16 0.27 0.41 
D3ILMSAM 0.25 0.23 0.27 0.36  
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of 0.89. The NRMSE decreases even more in “D3SAM” and “D3ILMSAM” 
and reaches 0.23 and 0.25 respectively. It should be mentioned that in 
all three experiments the measurements in station NL00236 are slightly 
overestimated (between 2.5 and 3.0 μg m− 3), which could be partly 
explained for the experiments using ILM sensors since as already shown 
in Fig. 12, ILM sensors in the center of Eindhoven measure higher PM10 
than official stations between 13 and 21 of November. Also the “D3ILM” 
assimilation slightly overestimates measurements of PM10 in all 3 sta
tions in Eindhoven, which can be partly explained by the higher values 
that the ILM network observed in the period between 14 and 17 of 
November. 

4. Updated emissions 

In the assimilation experiments, the emissions that contribute to the 
formation of PM or that are directly emitted as PM, are considered as the 
uncertain parameters. The emissions of primary PM (i.e. elemental 
carbon (EC), primary organic matter (POM), dust, and remaining un
specified primary particulate matter (PPM)) as well as emissions that are 
precursors of secondary inorganic aerosols (i.e. nitrogen oxides (NOx), 
ammonia (NH3) and sulphur oxides (SOx)) are perturbed in the ensemble 
using emission correction factors in the assimilation process. It should be 
noted here that we refer to PM fine (i.e. PM2.5) and PM coarse (i.e. PM10 
– PM2.5) and not directly to PM2.5 and PM10 in order to avoid considering 
PM2.5 twice as an uncertain parameter. 

In Fig. 14 the sum of the PM fine and coarse emissions over the 
month November are shown as present in the prior emissions used for 
the model runs, and as used in during the assimilation of the different 
low-cost sensor observations. All assimilation experiments increase the 
emissions in order to compensate for the underestimation of PM ob
servations. For the city of Eindhoven, a larger increase in PM fine than 
PM coarse emission fraction is estimated. Furthermore, PM coarse is 
found to increase more in the surrounding areas than over the city 
center. These results suggest that the model needs much higher emis
sions in particular areas in order to compensate for the large discrep
ancies between measurements and simulations of PM. However, such 
large increase on the emissions might not be realistic and could point to 
additional uncertainties in the model that are not taken into account, 

such as deposition schemes, chemistry, meteorology and the need of 
including secondary organic aerosol in the model simulations. 

The sum of the emissions over domain 3 per component (PM fine, PM 
coarse, NOx, NH3, and SOx) are shown in Fig. 15. In the “D3ILM” 
assimilation, the emissions of all 5 components are increased compared 
to the a priori emissions; the increase is even stronger for the “D3SAM” 
and “D3ILMSAM” experiments. In all experiments, PM fine is increased 
more than PM coarse; PM fine is 160%, 180% and 210% higher than the 
a priori PM fine emissions for the “D3ILM”, “D3SAM” and “D3ILMSAM” 
experiments respectively, while PM coarse is increased with 100%, 
120% and 140% for the same experiments. We should note here, that 
NH3 emissions are very low during this period since important sources of 
NH3 are in Europe most prominent in spring due to agricultural pro
cesses (Paulot et al., 2014; Viatte et al., 2020). 

An estimation on the uncertainties of the main pollution sector cat
egories is available from the EMEP/EEA Guidebook (EEA, 2019), and 
has been adapted to the Gridded Nomenclature For Reporting (GNFR) 
categories used for CAMS-REG emission inventory by Kuenen et al. 
(2022). The uncertainty range for PM emissions from road transport, 
industrial sources and power plants range is estimated to be 50–200%, 
while for other stationary combustion uncertainties of 100–300% are 
possible. For agricultural emissions no uncertainty estimate is available 
because these emission estimates strongly depend on meteorological 
conditions and assumptions on agricultural practices. The relative 
importance of different source categories during the month of interest is 
illustrated in Fig. 16 by time series derived from the TOPAS source 
apportionment service around the LOTOS-EUROS model (https://topas. 
tno.nl/). The time series shows in November 2021 for the center of 
Eindhoven the sectors residential combustion, road transport, industry, 
energy, and agriculture contribute most to PM10 and PM2.5 concentra
tions. The change in the emissions compared to the a priori, as 
mentioned before, range between 100% and 210%, and are in the range 
of the reported uncertainties. However, we do not believe that the 
consistent emission update that is suggested by the assimilation, is a 
realistic indication of the error in the a priori emission estimates, as 
already discussed before the large emission changes found could point to 
additional uncertainties in the model (i.e. deposition schemes, chemistry 
and meteorology). Further, the necessary increase in PM emissions (i.e. 

Fig. 14. PM fine (top) and PM coarse (bottom) emissions summed over the month of November 2021 in domain 3 derived from the a priori inventory (first column), 
and the “D3ILM” (second column), the “D3SAM” (third column) and “D3ILMSAM” (fourth column) assimilations. 
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pm fine and pm coarse) and their precursors (NOx, SOx) to obtain PM 
simulations that better describe the measurements can be explained by 
the model’s need to compensate for missing secondary organic aerosols. 

The temporal profiles of the updated emissions in November 2021 
over a grid cell located in the city center of Eindhoven have been 

compared with the a priori profiles. The average of the emissions per 
day-of-week normalized to the day-average of the week are calculated in 
order to compare the a priori with the updated weekly profiles. Fig. 17 
shows these normalized values of PM fine (left) and PM coarse (right) 
emissions per day of the week for the a priori-inventory and the 

Fig. 15. Sum of emissions in November 2021 over domain 3 from the a priori inventory (in green), the D3ILM (in cyan), the D3SAM (in orange) and D3ILMSAM (in 
purple) experiments. 

Fig. 16. PM10 (top) and PM2.5 (bottom) sector contributed concentrations from TOPAS product between mid-October and November 2021 in the center of Eindhoven 
together with the corresponding measurements from ILM #36 station. 
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estimated by the assimilations. Both PM fine and PM coarse emissions 
estimated with the “D3ILM” assimilation show an abrupt decline on 
Tuesday that is only slightly seen in PM coarse a priori profiles, while a 
peak is found on Friday which is most prominent in the PM coarse 
component. The “D3SAM” and “D3ILMSAM” emission profiles show as 
well a similar decline on Tuesday for the PM coarse component. The PM 
fine emissions from the “D3SAM” assimilation show a decrease on 
Wednesday which is not found in the experiments. In general the as
similations seem to suggest that a priori emissions should be decreased 
early in the week, but increased by the end of week and the weekend. We 
should note here that these results are based on few samples since this 
study covers a short time-period of a month. It is essential to study a 
longer period to extract more accurate results on temporal profiles. 

Similar profiles for emissions as function of hour-of-the-day for the 
same city center cell are shown in Fig. 18. The profile of both PM fine 
and PM coarse emissions after assimilation follow quite well the profile 
of the a priori emissions during the early hours of the day (1 a.m.–6 a. 
m.). However, the a posteriori profile of the “D3ILM” assimilation shows 
a shorter (in duration) morning peak in both PM fine and PM coarse 
emissions compared to the a priori. The afternoon peak shown in the a 
priori profile around 16p.m. and 17p.m. is not present in any of the 
assimilation experiments, while a new peak is found between 11a.m. 
and 15p.m. During nighttime the a priori and a posteriori profiles agree 
quite well. 

The fact that the two assimilation runs “D3ILM” and “D3SAM”, that 
rely on observations of two independent networks, both suggest similar 
changes in day-of-week and hour-of-day profiles prompts to the 
importance of further research over longer time periods to find whether 
these changes are persistent and if specific source sectors require up
dates of their a priori profiles. 

5. Conclusions and discussion 

In this study we presented a methodology for integrating particulate 
matter measurements from heterogenous in situ networks and the 
LOTOS-EUROS CTM through a data assimilation technique. The exper
iments focus on a domain of about 0.5 km × 1 km resolution around the 
city of Eindhoven in the Netherlands. In this domain, two low-cost 
sensor networks observing particulate matter concentrations are avail
able: ILM network and the SamenMeten citizen science network. In 

addition, a limited number of observations from the national official air 
quality monitoring network is available. Simulations for the target 
domain are nested into a wider domain in which additional stations from 
the official network are available too. The final results were obtained 
from 5 experiments that differ in the type of measurements that are 
assimilated and whether boundary conditions are incorporated from the 
wider domains from a standard model run or an assimilation of obser
vations from the official network. 

The results shown in this work indicate that simulations of PM 
concentrations over Eindhoven strongly improve when boundary con
ditions from an assimilation on the wider domain are used, and 
improved even further when measurements from low-cost sensors are 
assimilated too. A large underestimation of the measurements in the free 
run is strongly decreased in all different experiments that assimilate 
observations. For locations in the center of Eindhoven, the mean bias of 
PM10 (PM2.5) in the free model run is equal to − 36% (− 56%) and re
duces to − 20% (− 43%) when using boundary conditions from an 
assimilation. These results suggest that, for the chosen simulation period 
and the model setup, about 45% (23%) of the initial PM10 (PM2.5) bias in 
the free model run is due to missing concentrations from outside the 
domain. Mean relative biases of PM10 in the city of Eindhoven drop to 
+6%, − 1% and +6% when improved boundary conditions are used 
together with assimilation from the ILM, SamenMeten, or both networks 
together respectively. The correlation coefficient is improved from 0.75 
in the free model run to a range between 0.87 and 0.91 depending on the 
assimilated sensors. Finally, the NRMSE decreases on average with 
about 0.25 compared to 0.47 in the free model run. In the only available 
official station near the city measuring PM2.5 the assimilations including 
ILM data decrease the bias with about − 27% compared to about − 56% 
in the free model run and − 43% for the free model run using assimilated 
boundary conditions. 

The assimilation system was configured to estimate emission 
changes that lead to smaller difference between observations and sim
ulations and to subsequently update the default temporal profiles of 
emissions which form one of the main sources of uncertainty in the 
model. The day-of-the-week and hour-of-the-day emission profiles 
derived from the assimilation of low-cost sensors suggest differences 
compared to the a priori profiles used. An abrupt decline in emissions on 
Tuesday and on Wednesday is suggested from the assimilations of ILM 
and SamenMeten data. In the hour-of-the-day profiles the assimilations 

Fig. 17. Day-of-the-week profiles for the PM fine (left) and PM coarse (right) emissions for city center pixel normalized to day-average for the week.  

Fig. 18. Normalized hourly profiles for the PM fine (left) and PM coarse (right) emissions for city center pixel.  
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suggest an afternoon peak in PM fine and PM coarse between 11a.m. and 
14p.m., while this peak is shown later (between 15p.m. and 18p.m.) in a 
priori profiles. 

Despite the uncertainties and limitations that characterize the 
SamenMeten citizen science network, the experiments show that it is 
feasible to exploit the dataset and extract useful information. Assimila
tion of these observations lead to similar adjustments of concentrations 
as seen for assimilation of the low-cost sensor data from the ILM 
network. The result supports the idea of monitoring urban air quality 
using additional networks next to the official measurement stations. 

When evaluated of a longer time period, the assimilation results 
could point to adjustments or uncertainties in the prior emissions in
ventories that are used to adjust concentrations. It should however kept 
in mind that the uncertainties currently assigned to emissions probably 
also account for other model uncertainties. In this context the experi
ments shown for example the high importance of the boundary condi
tions in the studied region. 

Future work should focus on a more detailed study of the emission 
correction factors extracted from this method in order investigate which 
emission sources are in particular uncertain and might be under
estimated in the region. Temporal profiles of PM emissions need also 
further investigation since both independent experimental runs (using 
ILM or SamenMeten sensors) suggest similar changes in a priori profiles. 
Secondary organic aerosols should be prioritized in model imple
mentations since their contribution in total PM is important, and is 
highly advised to include this in similar studies. Finally, the parame
terization of emission and other model uncertainties in terms of their 
amplitude and spatial and temporal correlation scales requires perma
nent attention and improvement. 
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