Atmospheric Environment 333 (2024) 120652

Contents lists available at ScienceDirect

ATMOSPHERIC
ENVIRONMENT

Atmospheric Environment

ELSEVIER journal homepage: www.elsevier.com/locate/atmosenv

Check for

Towards integration of LOTOS-EUROS high resolution simulations and
heterogenous low-cost sensor observations

Ioanna Skoulidou® ", Arjo Segers®, Bas Henzing”, Jun Zhang”, Ruben Goudriaan”,

Maria-Elissavet Koukouli ©, Dimitrios Balis ©
2 TNO, Air Quality and Emissions Research, Utrecht, the Netherlands

Y TNO, Environmental Modelling, Sensing and Analysis Group, Petten, the Netherlands
¢ Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

HIGHLIGHTS GRAPHICAL ABSTRACT

o Assimilation of particulate matter mea-
surements over Eindhoven area in the
Netherlands using low-cost sensors.

oImpoved PMIU and PM,; simulations over

Eindhoven using measurements from official and

low-cost networks.

e Updated PM emissions estimated from
the assimilation experiments are higher
than the a priori emissions.

o Assimilations of PM suggest changes in
temporal profiles of updated emissions.

— ; :
05 PM coarse from DISAM
— PM coarse from D3ILMSAM

613 34567891011121314151617181920212223
Hour of day

ARTICLE INFO ABSTRACT

Keywords: Official air quality monitoring networks are often scarce and unevenly spatially distributed. In recent years, the
Data assimilation use of low-cost sensors next to official networks is increasing. These additional networks provide measurements
Low-cost sensors of high spatial and temporal resolution and potentially reveal patterns and emissions sources that are hard to
Il;g:;giiigRIg:tter detect with conventional methods. In this work, the data assimilation method implemented around the LOTOS-
Emissions EUROS chemistry transport model is employed to assimilate measurements from heterogenous low-cost sensor
networks around the city of Eindhoven in the Netherlands in November 2021. Three data assimilation experi-
ments are performed and evaluated against a free run of the model. In the first one, measurements from the low-
cost Innovatief Lucht Meetsysteem (ILM) network are exploited. In the second one, the citizen science network
SamenMeten is used and in the third one, a combination of both datasets is applied. In the assimilation exper-
iments at a domain around the city of Eindhoven, it is shown to be essential to use boundary conditions from an
assimilation on a larger domain to account for the variability in pollution that originates from sources outside the
domain of interest. Such an improvement in boundary conditions counts for a decrease in the initial free run
negative biases of 45% for PMjo and 23% for PMy s in the city of Eindhoven. The assimilation of low-cost
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measurements in the region after the correction of the boundary conditions decreases the absolute PMj biases in
the 3 independent official stations over the city of Eindhoven further from —4.4 pg m~ to about 0.8 pg m~>
averaged over the three experiments. Also, the correlation coefficient is increased from 0.75 to 0.89 and the
normalized root mean square is decreased from 0.47 to 0.25. We conclude that the improved boundary condi-
tions and assimilation of observations from dense low-cost networks are able to improve the LOTOS-EUROS

simulations at urban scale.

1. Introduction

Particulate matter (PM) refers to solid and liquid particles suspended
in air and forms one of the major airborne pollutants. It adversely affects
the human health as it is made of inhalable particles impacting the
respiratory and cardiovascular systems (Kampa and Castanas, 2008). In
2019, 99% of the world’s population was living in places where the
WHO air quality guidelines levels were not met (WHO, 2021). The
impact of PM on human health is associated with the size of the parti-
cles, which is mainly defined as PMy 5 and PM;( for aerodynamic di-
ameters smaller than 2.5 pm and 10 pm respectively. PM also affects the
climate due to its impact on the radiance budget of the atmosphere. High
PM concentrations contribute to haze pollution (Zhao et al., 2013) and
radiative forcing (Forster et al., 2007). The particles originate mainly
from combustion (e.g. road traffic and industry), tire and break wear,
soil erosion, forest fires and sea salt contributions (Liu et al., 2018).
Karagulian et al. (2015) found that globally PMs 5 in urban areas orig-
inates as 25% from traffic, 15% by industrial activities, 20% by domestic
activities, 22% from unspecified anthropogenic pollution sources and
18% from natural dust and sea salt.

Regional chemical transport models (CTM) give the opportunity to
understand and study the dynamics of PM and its concentration over
urban regions. CTM’s play an important role in the implementation of
air quality regulations and policy measures (Saikawa et al., 2011; Wang
et al., 2015). However, models are sensitive to uncertainties related to
parametrizations and input information needed for the simulations.
Solazzo et al. (2013) compared PM concentrations simulated with 10
different state-of-the-art regional models in Europe and concluded that
in all cases PMjy is severely under-predicted by the models, showing
mean fractional errors higher than 0.75, due to mainly underestimated
anthropogenic and natural emissions as well as errors in the meteoro-
logical data. Various studies evaluating PM concentrations from
regional models have shown an underestimation in the simulations as
well, and suggested that updates in the existing emissions inventories
and their temporal resolution are needed (Gasparac et al., 2020; Lopes
et al., 2021).

LOTOS-EUROS model has been widely used in studies covering
different regions of the globe and forms one of the eleven models that are
used in the operational ensemble of Copernicus Atmosphere Monitoring
Service (CAMS, https://atmosphere.copernicus.eu/) which provides
daily analyses and forecasts over Europe. A data assimilation system
based on the Ensemble Kalman Filter (EnKF) technique is used for
assimilation of air quality observations. Studies have been already
conducted using the data assimilation module around LOTOS-EUROS as
well. Curier et al. (2012) assimilated in situ measurements of O3z over
Europe for spring and summer of 2007. The analyzed Os in that study
showed a significant improvement with the average correlation coeffi-
cient for the daily maximum ozone concentration improving from 0.72
to 0.83 and the average Root Mean Square Error (RMSE) reducing from
20.8 to 16.9 pg m 3. Skoulidou et al. (2021) used NO,, satellite obser-
vations from TROPOspheric Monitoring Instrument (TROPOMI) on
board the Sentinel-5 Precursor (S5P) satellite with the EnKF assimilation
around LOTOS-EUROS, in order to quantify strong declines in NOy
emissions originating from power plants in Greece. The bias in NO,
between the model and the observations from a station near the biggest
power plant in the area decreased from 10.5 pg m~° to 2 pg m ™2 after the
assimilation of the satellite data. Lopez-Restrepo et al. (2020)

assimilated PM;o and PM, s measurements from a total of 12 in situ
stations in the LOTOS-EUROS model using an Ensemble Kalman Filter
(EnKF) technique. The assimilation of measurements leads to improved
simulations and more detailed emissions inventories for the region.
However, surface measurements from official stations are not always
present in a sufficient spatial coverage because of high installation and
maintenance costs and assimilation in an urban scale is therefore often
not possible.

Low-cost sensors have been widely introduced in recent years as a
result of technological advances, offering measurements of various trace
gases and aerosols. High-density networks of low-cost sensors provide
the potential of improving the temporal and spatial resolution of air
quality mapping (Schneider et al., 2017) and provide insights into pat-
terns and emission sources (Popoola et al., 2018). Mijling (2020) con-
structed high resolution NOy maps in the city of Amsterdam by
assimilating measurements of the low-cost Urban AirQ campaign (Mij-
ling et al., 2018) together with a few available reference stations. This
work revealed more detailed NO, patterns in areas which are under
sampled by the official network of Amsterdam. The study further
concluded that the error of the method depends on the accuracy of the
air quality model, the number and the quality of observations as well as
the distance of sites to the nearest assimilated observation location, with
the local error increasing when observations are available only after
distances larger than 2 km. Lopez-Restrepo et al. (2021) assimilated
hyper-dense low-cost PM measurements of a network established in
Medellin (Colombia) in order to improve the performance of the
LOTOS-EUROS model in simulating PM. The assimilated simulations
managed to reduce the biases between the model and the measurements
in the official stations from a mean fractional bias of —0.65 to almost 0.
The combination of low-cost dense networks and numerical simulations
through assimilation techniques can therefore provide an efficient
monitoring system of air pollution. Such techniques may be of added
value for health studies and policy making.

In this study, we take advantage of different dense low-cost sensor
networks installed in and around the city of Eindhoven in the
Netherlands, in order to improve the PMy s and PM;( simulations of
LOTOS-EUROS model. PM observations from a low-cost sensor network
and an even denser citizen science network are assimilated with model
simulations for the month November 2021. In this period, a sufficient
number of low-cost sensors were installed, and concentrations were
typically quite high in the region due to (among others) domestic
heating. In section 2 the region of Eindhoven together with the distinct
sensor networks used in this work are described. Furthermore, the
LOTOS-EUROS model that is used in this study and the assimilation
method are shortly described, together with the assimilation experi-
ments considered. In Section 3, the impact of improved boundary con-
ditions and the results of the three different assimilations performed are
analyzed together with an evaluation of the technique. In section 4 the
updated emissions from the assimilation experiments and their temporal
profiles are discussed. Finally, in section 5 concluding remarks and
further suggestions are provided.

2. Materials and methods
2.1. Region of study

The city of Eindhoven is situated in the south of the Netherlands and
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is the fifth largest city in the country with a population density in 2020
of more than 2.670 habitants per km? (CBS, 2019). The center of
Eindhoven is mainly composed by low-rise commercial and residential
buildings (Blocken et al., 2016). The city is characterized by a temperate
oceanic climate, affected both by the North Sea and the Atlantic Ocean
(Ascenso et al., 2021), with cool summers and moderate winters while
the predominant winds are South-West. The region of the study is shown
in Fig. 1 with the city of Eindhoven in the center, and also showing the
surrounding cities and villages, the major high-ways and roads, and the
airport. In the area surrounding Eindhoven a lot of livestock farming is
present too, and PM pollution from these activities is an increasing
concern of inhabitants in the region.

According to Ascenso et al. (2021) Eindhoven is largely influenced
by traffic emissions and probably also by emissions related to household-
and office-heating during winter-time. Various industries are located in
the city of Eindhoven while in the west side of the city the second largest
airport of the Netherlands (Fig. 1) is operating which hosted more than
6.5 million passengers in year 2019 (https://opendata.cbs.nl/#/CBS/
en/dataset/37478eng/table). Most polluted areas are also found in the
west part of the city. In February, March and November fine mode
aerosol is dominant in the region, which could be attributed to emissions
from domestic heating. In summer, a larger contribution of coarse mode
aerosol is present, which could be attributed to harvesting activities. The
study is conducted for November 2021 because a sufficient number of
low-cost sensors was installed and the PM concentrations in the area
were relatively high.

2.2. LOTOS-EUROS model setup and input data

2.2.1. LOTOS-EUROS simulations
In this study the 3D CTM LOTOS-EUROS (Manders et al., 2017) is
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used to simulate PM;o and PMjy 5 concentrations in the lower tropo-
sphere. The gas-phase chemistry in the model is a modified updated
version of CBM-IV (Gery et al., 1989), while for secondary inorganic
chemistry ISORROPIA II (Fountoukis and Nenes, 2007) is used. Sec-
ondary organic aerosols (SOA) are not considered in this study. Both
mineral dust and sea salt emissions are calculated online in the model.
Mineral dust emissions in the model can be a result of wind-blown dust,
resuspension caused by traffic and agricultural practices and are calcu-
lated using meteorology-dependent parameterizations that are further
described in details in Schaap et al. (2009). Sea salt emissions are
calculated based on wind speed at 10 m and sea surface temperature
following Martensson et al., 2004 and Monahan et al. (1986). NO
emissions from soils are calculated online as well using a parameteri-
zation depending on soil type and soil temperature (Novak and Pierce,
1993). Emissions from forest fires are obtained from the Global Fire
Assimilation System (GFAS) (Kaiser et al., 2012).

Model simulations were performed in a nested domain configuration
as seen in Fig. 2. Three different domains were used in order to achieve a
high resolution simulation over the area of Eindhoven. A summarized
description of the three domains is shown in Table 1. Domain 1 (in blue
color) is the largest domain with the lowest resolution (0.25° x 0.25°
longitude x latitude, about 15 km x 25 km at this latitude) covering
neighboring urban agglomerations that emit large amount of pollutants,
such as Brussels, Dusseldorf, Amsterdam and Rotterdam. The boundary
conditions in this domain are obtained by the Copernicus Atmosphere
Monitoring Service global Near Real Time product (CAMS NRT, http
s://atmosphere.copernicus.eu/, last access: 25/11/2021) at a spatial
resolution of 35 km x 35 km and a 3 hourly temporal resolution. The
first inner domain, called hereafter domain 2 (in green color), was set
with a resolution of 0.10° x 0.10° (about 5 km x 10 km) and is
configured to use the concentrations from domain 1 as boundary
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Fig. 1. Map of the main region of interest in this study.
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Fig. 2. The threefold nested domains with increasing spatial resolution
considered in this work. The city of Eindhoven is depicted with the red star.

Table 1
Description of the three domains.
Domain Domain edges Spatial Boundary Emissions
name resolution conditions
domain 1 - 4 °-7° E, 50.5°- 0.25° x CAMS-NRT CAMS-REG
D1 52.5° N 0.25°
domain2-  4.5°-6.5°E,51°-  0.10° x D1 CAMS-REG
D2 52.° N 0.10°
domain 3 - 5.11 °-5.9° E, 0.01° x D2 Dutch
D3 51.3°-51.65° N 0.01° inventory

conditions. Finally, domain 3 (in red color) is the smallest domain within
domain 2 with the finest resolution (0.01° x 0.01°, about 0.5 km x 1
km) and covers the domain of interest for this study and includes the city
of Eindhoven and the surrounding municipalities. In each simulation
domain the model is driven by meteorological data obtained at 7 km x 7
km horizontal resolution from the Integrated Forecasting System (IFS) of
the European Centre for Medium-Range Weather Forecast (ECMWF).
Although the resolution of this meteorological data is rather coarse, it
provides sufficient information for the chosen domains where elevated
orographic elements are hardly present; for future studies, a dedicated
higher resolution meteorology should be considered however.

2.2.2. A priori emissions

The a priori anthropogenic emissions used in domain 1 and domain 2
were taken from the CAMS-Regional European emissions (CAMS REG)
database for 2017 (Kuenen et al., 2022) with a spatial resolution of
0.10° x 0.05° (about 5 km x 5 km). Maps of the total PM;o and PM3 5
emissions in November 2021 are shown in Fig. 3. The emissions used are
re-gridded at the horizontal resolution of the two domains. The
anthropogenic emissions used in domain 3 were obtained from the
country’s Emission Register (http://www.emissieregistratie.nl/, last
access: 19/11/2021) which provides the annual releases of more than
350 pollutants to air, soil and water in the Netherlands. The emissions
are obtained at a horizontal resolution of 0.01° x 0.01° and are valid for
the year 2018. This inventory was only used for domain 3 since it is only
available for the Dutch domain and does not cover domain 2 and domain
1. Higher spatial resolution emissions were not available for domain 2
and domain 1 and as a results model simulation resolution in these
domains was much lower. The aggregated emissions of PM;y and PM3 5
used as input in the model simulations are also shown in the right panels
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of Fig. 3. Highest PM; and PM, 5 emissions are reported for the city of
Eindhoven and in the south of the domain where the industrial area in
the north of Valkenswaard municipality is located. Furthermore, high
emissions are found east from Eindhoven in the city of Helmond, and to
the north in the region of Veghel.

Both emission inventories contain for every sector considered the
annual total, which is distributed into hourly values applying profiles for
the month-in-the-year, day-of-the-week and hour-of-the-day. The break
down of annual to hourly emissions used in this study is based on the
default temporal profiles provided with the TNO-MAC-II (TNO-Moni-
toring Atmospheric Composition and Climate) inventory (Kuenen et al.,
2014). The available temporal profiles that accompany the anthropo-
genic emissions are generally based on statistics and form one of the
main sources of uncertainty in the model. The annual emissions of
pollutants are distributed in hourly emissions using monthly, weekly,
daily and hourly profiles per pollutant sector in order to produce hourly
simulations. However, these profiles are mainly based on usual Western
European conditions. Therefore more uncertainties may exist over other
European countries. Furthermore, they are based on old and probably
outdated source of information and as a result they do not take into
account sudden changes in human behaviors such us the changes during
COVID-19 restrictions (Fioletov et al., 2021) or implementation of new
environmental laws (Castellanos and Boersma, 2012).

2.3. Measurement networks

2.3.1. Official network

Hourly measurements of PM are available from the official air
monitoring network via the European Environmental Agency (EEA,
https://www.eea.europa.eu/). The locations of the official air quality
stations used in this study are shown in Fig. 4 and denoted with blue
color if they provide measurements of both PM;o and PM; 5 and green
color if only PM; is measured. Time series from 3 stations in the city of
Eindhoven, 6 stations in the surroundings, and 3 stations just over the
country border are obtained for November 2021 for the needs of the
current study. The official stations located in the center of Eindhoven
consist of two urban traffic stations (NL00236 and NL00237) measuring
only PM;( and one urban background station, NL00247, measuring both
PM;¢ and PMy 5. Four stations located outside the city and characterized
as regional background stations are the NL0O0131, NL00230, NL00246
and NL00644, while two stations (NL00241 and NL00442) are classified
as urban background stations. Furthermore, hourly data of PM;, and
PM, 5 are obtained from 2 stations in Belgium (BETN016 and BELHHO08)
characterized as rural and urban background respectively and PM;q
measurements from a rural background station in Germany (DENWO066).

Some stations of the official network are used for the assimilation of
PM in domain 2 while the rest of them are used to evaluate the results.
Only the ones characterized as background stations are used for the
improvement of concentrations in domain 2 since they have to be
representative for background concentrations and not local contribu-
tions. Moreover, stations are chosen in order to be well distributed over
the domain. Stations located outside the Netherlands are considered
essential for representing transboundary pollution into the country as
well as stations located in the Netherlands but close to the edges of
domain 2 to represent pollution transported from sources outside of the
domain. For this reason three stations in Belgium and Germany
(BETNO16, BELHHO8 and DENWO066) as well as stations NL00644 and
NL00246 located near the domain edges are used to assimilate PM.
Finally, stations NL00230 and NL0O0131 are selected for the assimilation
process since they provide measurements both on PMy 5 and PM;, are
characterized as background stations and are better distributed in the
domain considering the stations that have already been selected for the
process. The assimilation stations are denoted with a circle marker in
Fig. 4, while the stations in star symbols are used to evaluate the results
(validation stations).


http://www.emissieregistratie.nl/
https://www.eea.europa.eu/

~

Skoulidou et al.

Aggregated PM;, emissions (domain 1)

Aggregated PMy, emissions (domain 2)

Atmospheric Environment 333 (2024) 120652

Aggregated PM,, emissions (domain 3)
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2.3.2. ILM low-cost sensors

The low-cost sensors used in this study belong to the urban ILM
system (Innovatief Lucht Meetsysteem, English: Innovative Air Mea-
surement System). The sensors are installed in and around the city of
Eindhoven under the AiREAS initiative (https://aireas.com/en/, last
access: 10/01/2022) as a collaboration of public health authorities,

research institutes and university in order to monitor air quality. The
basic sensor for PM is the Shinyei PPD42 optical sensor. The sensors
have carefully been installed depending on the spatial and temporal
variability of the air quality in the region and on local sources (roads,
industry, traffic lights, building works, airport and locations that people
are exposed) (Hamm et al., 2016).

Measurements of PM;( and PM; 5 of the ILM network are assimilated
in domain 3 and the simulated results are evaluated by the official
network, LML stations. For this study, 10 min temporal resolution PM;(
and PM; 5 measurements from 44 ILM airboxes located around the city
of Eindhoven were obtained for November 2021 from https://ilm2.site.
dustmonitoring.nl (last access, 10/01/2022). The hourly averaged data
were calculated. Furthermore, the PM;( levels were set equal to PMj 5
when the PMj 5 levels exceeded the PM; values. This occurs on average
13 times per month based on the 10 min measurements. The mean
hourly PM;o and PM; 5 values over all stations in November together
with the standard deviation is given in Fig. 5. The stations spatially cover
mostly the city of Eindhoven with some stations located in the sur-
rounding rural areas and Eindhoven airport. The spatial distribution of
ILM stations is shown in Fig. 6 (light blue cycles).

2.3.3. Calibration and modification of ILM sensors

The reliability of PM measurements from low cost sensors is many
times questionable. Canu et al. (2021) studied in detail the performance
of Shinyei PPD42 sensors explaining the difficulty that these sensors
have to differentiate a large particle from a set of two or more small
particles when the sensors are used without any modification. As a
result, they suggest the use of a non-trivial algorithm in order to estimate
well the particle concentration. They also conclude that these sensors
are not suitable for mobile applications but on the other hand for static
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applications (as they are used in this study), it is possible to reach an
acceptable accuracy by integrating the measurements during a long
operation time and using a suitable humidity correction.

The commercially available sensors are modified before the setup of
the ILM network. The hardware is altered to directly read out the filter’s
voltage outputs. The generated pulses are related to the particle size
because Mie diffusion intensity depends on this. We use this information
to deduce the relevant size information to produce independent PMj 5

and PM; concentrations by application of different threshold values.
Further discussion on the algorithm effectiveness can be found in sup-
plement. In order to calculate the correct concentrations, the calculated
mass concentration of the sensors is compared to the Fidas 200 S and the
correct calibration factors are determined for the individual particle
channels before their installation in the network. The calibration of ILM
sensors takes place at a calibration rack in the region of Alkmaar, the
Netherlands (Goudriaan et al., 2022). The measurements of each sensor
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for a period of at least 2 weeks and assuming sufficient variation in the
concentrations are compared with the reference equipment, Fidas 2008,
in open air. The calibration is carried out for the different particulate
matter fractions. During calibration of the sensors against the reference
instrument it was found that both PMys and PM;( show high correlations
across all boxes. However, it is also found that the deviations of the
sensor measurements from reference measurements are magnified at
higher values.

The measurements of ILM after their installation are compared with
observations from the official network (LML) in order to assess their
quality. Furthermore the behavior between ILM stations was examined
(Goudriaan et al., 2022). In general, the concentration patterns
measured by ILM stations over time were found similar to the LML, with
higher absolute differences during wintertime. The measurement
network was found suitable for identifying and indicating patterns in
particulate matter in time and space at local and regional scale. In
particular, comparison between daily LML Genovevalaan PM;j,
(NL10236) and daily ILM station 137 PM; are studied. On average, ILM
station measures higher PM;o ~20.9 pg/m°, than the LML, ~17.2
pg/m? for year 2021. The regression slope between ILM and LML mea-
surements is between 1.49 for December and 0.96 for June, while the
annual slope is 1.20. The Root Mean Square Deviation (RMSD) is higher
in winter than in summer and the annual RMSD is equal to 7.1 pg/m?®.
ILM higher deviations during wintertime, when PM concentrations are
higher, could also be explained by the results of the calibration; i.e de-
viations of sensors are magnified at higher values.

As a result, the low-cost sensors observations from the ILM network
are considered good enough for the actual scope of this work which is to
test and evaluate the added value they can have when we combine them
with LOTOS-EUROS model.

2.3.4. SamenMeten citizen science network

SamenMeten (English: Measuring Together) is an innovation citizen
science program in the Netherlands launched by the National Institute
for Public Health and the Environment (RIVM) in 2016 together with
other research institutes, the government, companies and citizens
(Rubio-Iglesias et al., 2020). The program was established with a portal
(https://samenmeten.rivm.nl, last access: 10/01,/2022) as central hub
for citizen science and air quality. Citizens can obtain air quality data
from this platform but also upload it. Low-cost sensors established by
citizens focus mainly on nitrogen dioxide (NO3) and particulate matter
(PM;p and PMy5s) pollutants. There is a number of uncertainties
involved with citizen science low-cost sensors. In particular the mea-
surement errors for particulate matter by the low-cost sensors are highly
affected by humidity. Low-cost sensors mainly use optical systems to
measure the particles and this leads in interpreting water drops into
particles (Wesseling et al., 2019). The RIVM has developed a calibration
method to perform corrections concerning the relative humidity of the
measurements. The properly calibrated sensors of the network can give
an indication of the spatial distribution of the average air quality in an
area and the relative variation of concentrations over time. The cali-
bration method continues to evolve, since more robust methods are
needed because the data quality is currently not sufficiently high, and
more important, the data quality is actually often unknown. Further-
more, the sensor measuring errors can differ between the different types
of sensors. In SamenMeten program different types of sensors may be
hired by citizens. In addition, the type of location of sensors selected by
citizens is not known and any inappropriate use cannot always be
identified, for example indoor installation of sensors. The spatial dis-
tribution of the SamenMeten network is more irregular than the distri-
bution of ILM sensors and covers mostly the surrounding areas of
Eindhoven providing information for the neighboring municipalities of
the province. Moreover, the data availability is less reliable, and the
time series of some sensors are interrupted or even absent after some
moment. The distribution of the sensors is shown by the orange cycles in
Fig. 6 together with the locations of the ILM and official stations.
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Hourly data from 300 stations located in the study area are obtained
from the hub. The calibrated values of PM7y and PM, 5 are filtered for
negative values and for the cases when PM, 5 is higher than PM; . This
occurs on average 115 + 82 times in November 2021 based on the
hourly measurements for 300 sensors measuring. It should also be
mentioned that instruments at some stations record very high values
that are not in accordance with the general measurement levels of the
official network. For this reason we performed a further data filtering in
the data in order to discard the time series that would affect the
assimilation results in a deceptive way. As we do not expect the PM
concentrations to differ much in a relatively small region as the one in
this study, the measurements from the official stations in the region were
used to extract information on the PM distribution over the area. Ac-
cording to these, time series of PM;o and PMy5 were rejected when more
than 10% of the measurements exceeded the maximum values measured
by the official stations, i.e. 180 pg/m> and 160 pg/m® respectively.
Further, time series were rejected when extreme differences between
two sequent measurements appeared. The differences between the
sequent measurements of the official stations were calculated and the
threshold for the values to be excluded was set to 3 times their standard
deviation. In particular, when 10% of sequent measurements of PM;
was higher than the 50 pg/m? (40 ug/m® for PMys), the time series were
rejected for the assimilation process. Time series of PM;( from 26 and of
PMys from 21 stations were hence discarded from the study.

It should be mentioned at this point that the goal of this study is not
to validate SamenMeten data but to investigate the impact of the citizen
science data in the assimilation approach, and the (future) potential of
low-cost sensor observations for monitoring particulate matter consid-
ering the unknown uncertainties of this data.

2.4. Assimilation experiments

The networks of ILM and SamenMeten sensors that have been
introduced in the Eindhoven area monitor the air quality at a resolution
that is unprecedentedly high for the region. To explore the potential of
these sensor networks for air quality monitoring, we assimilate obser-
vations of PMy 5 and PM; in high spatial resolution particulate matter
simulations performed over the city of Eindhoven and its surroundings.
Because of its rather long atmospheric lifetime, particulate matter
pollution in the city of Eindhoven is also (highly) affected by pollution
originating from the surrounding areas outside domain 3. According to
the modelled source specific PM concentrations performed by the TNO
Operational Pollution Apportionment Service (TOPAS, https://topas.
tno.nl), during November 2021 a large amount of PM;(y near Eind-
hoven finds its origin in the wider region containing large urbanized or
industrialized areas in the Netherlands and other countries such as
Belgium, Germany, France and sometimes even from Poland and Great
Britain. Also, sea salt can reach the city. Because of incoming pollution
from outside the region, the configuration of assimilation experiments in
this study includes also an assimilation of particulate matter measured
by official stations in the Netherlands and in the neighboring regions of
Belgium and Germany outside of domain 3.

For convenience the different experimental runs are named after
their domain and whether assimilation of a specific measurement
network took place. Following the nesting configuration used in our
study and presented in section 2.2.1, experiments are performed along
two different lines in order to gradually move from the low resolution
domain 1 simulations (“D1free”) to the high resolution domain 3 (D3),
as seen in the flow chart presented in Fig. 7 and described in Table 2. In
the first type of experiments, the “D2free” simulation on Domain 2 uses
the simulations from “D1free” as boundary conditions and subsequently,
“D3free” uses the “D2free” simulations as boundary conditions. In the
second type of experiments, the “D20F” simulation at domain 2 uses
“D1free” simulations as boundary conditions, and assimilates observa-
tions of official stations (“OF”) in its domain in order to provide
improved simulations and thus improved boundary conditions for D3.
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Fig. 7. Flow chart of the steps and the experiments performed in this study. The different domains (D1, D2 and D3) and their spatial resolution is denoted.

Table 2
The description of the model simulations and assimilation experimental runs.

Experiment Assimilation datasets Domain Boundary conditions
Model simulations

Dilfree No assimilation D1 CAMS
D2free No assimilation D2 Difree
D3free No assimilation D3 D2free
D3D20OF No assimilation D3 D20OF
Assimilated runs

D20F Official network D2 Difree
D3ILM ILM D3 D20OF
D3SAM SamenMeten D3 D20OF
D3ILMSAM ILM and SamenMeten D3 D20OF

Then, four experimental runs are assumed for domain 3 depending on
whether assimilation of measurements is performed and what type of
low-cost sensors are assimilated each time. In the first experiment
(“D3D20F”), the improved boundary conditions from “D20OF” are used,
while no assimilation of measurements takes place. Then, 3 experiments
in domain 3 are performed that assimilate PMj 5 and PM;( observations
from either ILM, or SamenMeten, or from both networks (named as
“D3ILM”, “D3SAM” and “D3ILMSAM” respectively).

In the case of “D20F” assimilation, which takes place over domain 2
and is further used to provide improved boundary conditions in domain
3 runs, both boundary conditions and emissions are considered uncer-
tain. On the other hand, in the experimental assimilation runs over
domain 3 (i.e. “D3ILM”, “D3SAM” and “D3ILMSAM”) only local emis-
sions are considered as uncertain parameters since the boundary con-
ditions used in this case are already corrected in “D20F”.

2.5. Assimilation technique and configuration

The assimilation technique used in this study is based on a Local
Ensemble Transform Kalman Filter (LETKF) that is implemented around
the LOTOS-EUROS CTM, following the implementation by Shin et al.
(2016) and already described in Skoulidou et al. (2021). The main goal
of EnKF is to estimate an optimal state (analysis) by combining model
simulations and observations while taking into account their respective
uncertainties. Uncertainties in model simulations could be defined for
any parameter in the model or input data used that is partly responsible
for the deviations between the forecast and the true state, for example a
priori emissions, boundary conditions, meteorology, and chemistry. The
observation simulation uncertainties may originate from different
sources such as instrumental errors, retrieval errors and representation
errors. In this study, emissions and boundary conditions are considered
as the uncertain model parameters. The uncertain parameters are
multiplied by randomly perturbed correction factors which are defined
as a colored noise in order to maintain a temporal correlation with the
uncertainties and have over a long time window mean of 1 and standard
deviation of . This temporal length scale, 7, is used to describe varia-
tions of the uncertain parameters in time.

The LETKF analysis updates the ensemble per grid cell. For each cell,
the available observations at time k are collected within a user specified
area surrounding the model grid cell, and these will be used to update
the forecast ensemble into an analysis ensemble for this grid cell.
Selecting only observations nearby the grid cell is part of the localization
procedure which is essential to avoid spurious correlations between el-
ements of the state due to the use of a finite ensemble. These spurious
correlations can cause observations to randomly affect the analysis in
distant locations (Hunt et al., 2007). For the localization procedure in
this case a spatial length scale, p, is introduced. The weight of the
collected measurements in the analysis decays exponentially from one to
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zero as their distance from the analysis grid pixel increases. When a
small p is chosen the analysis is changing only the grid cells located close
to the observations, while if p is larger more observations are used for
the analysis of the grid cell. Only observations within a distance of 3.5p
from a grid cell are selected and a Gaussian function is used as the
weighting function of the observation localization, given by:

f=exp ( -05 <g) 2) @

where d is the Euclidean distance between the respective grid pixel to be
analyzed and each observation’s location.

The optimal configuration of the assimilation experiments was found
by performing distinct assimilation tests for the period January 10-15
2021 (while the actual period of interest is November 2021). The goal
was to choose the optimal values for the assimilation parameters p
(spatial scale), 7 (temporal scale) and o (standard deviation of the noise
distribution attributed to the correction factors). To achieve this,
assimilation results using different values for these parameters were
evaluated against the official validation stations, whose data was not
included in the assimilation. To evaluate these sensitivity tests and
choose the optimal values, statistical parameters have been examined
and in particular the correlation coefficient, the bias and the NRMSE.
The configuration that suggests better statistics and assimilated simu-
lations closer to the measurements was chosen. The optimal values
chosen are shown in Table 3.

For the “D20F” experiment, the most suitable value for the length
scale p was found to be 35 km, and for the temporal scale 7 a value of 1
day was found. The standard deviation for the relative uncertain pa-
rameters ¢ was set to 50%. The runs in domain 3 are performed on a
much higher resolution representative for a more local scale, and hence
the optimal configuration for the case of “D3ILM” was also investigated
using multiple assimilation experiments. The optimal p (length scale)
was found to be 3 km and the temporal length 7 was in this case as well
equal to 1 day. The standard deviation ¢ was found equal to 500% in this
case. This means that the correction factors were permitted to increase
the emissions with a factor 5 or more in order to let the model decrease
the large discrepancies between the simulations and observations due to
the high PM underestimation. Very large and unrealistic corrections to
the emissions would be derived in this way, while the underestimation
of PM observations should also be attributed to model uncertainties
other than the uncertainties in the a priori emissions, e.g. missing sec-
ondary organic aerosol formation from precursor gaseous emissions,
limited chemistry, and incorrect meteorology. For example, Timmer-
mans et al. (2022) suggested that to obtain the total contribution in PM
concentrations from combustion processes in LOTOS-EUROS the sec-
ondary organic aerosols need to be implemented. Further, Hama et al.
(2022) studied the characteristics of PMjg-associated organic and
elemental carbon over 5 cities in North Europe and found that annual
secondary organic carbon contribution to total organic carbon is very
significant (more than 50%) with the highest concentrations observed
during spring and summer and lowest during winter. This emphasizes
further the significance of secondary organic aerosol and its possible
impact in the underestimated PM simulation. For this reason a
maximum threshold of 5 times the a priori emissions was set and larger
changes are not allowed. The optimal configuration found for “D3ILM”
was also used for the domain 3 assimilations of SamenMeten network
(“D3SAM” experiment) and when both ILM and SamenMeten networks
were assimilated (“D3ILMSAM” experiment) considering that we focus

Table 3

Optimal values chosen for the assimilation scenarios.
Name of run p (km) T (days) c
D20OF 35 1 0.5
D3ILM, D3SAM, D3ILMSAM 3 1 5
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on very local scales and over the same area.

In this study the background and local contributions within domain 3
are corrected with a two step approach. The first step includes the
assimilation of the LML measurements representative of background
areas in domain 2 and the subsequent use of the assimilated simulations
as boundary conditions in domain 3. The second step includes the
assimilation of the low-cost sensors representative of local contributions
in high resolution simulations within domain 3. Low cost sensors in
domain 3 measure PM close to local emissions (roads, households,
agricultural areas). This is considered in the assimilation process by
selecting a small length scale for the assimilation of low-cost sensors in
domain 3 and excluding in this way sources from longer distance. Future
developments will focus on different ways to approach this problem in
one step. This can include the use of a distinct length scale for each
station depending on their type (i.e. urban, traffic, background). In this
way, stations considered as background will affect pixels in a larger
radius around the measurement location compared to traffic stations
during the assimilation process. In this approach the localization length
scale, p, should be defined by the correlations between measurements
and simulations as function of their distance. Similarly the standard
deviation, o, for the background and local uncertainties will be defined
separately in one each step.

2.6. Evaluation of the experiments

Simulations from free and assimilated runs are compared to obser-
vations of ground based stations of the official network (LML) to eval-
uate their performance. The metrics used are the absolute (b) and
relative biases (rb), correlation coefficients (r) and normalized root
mean square error (NRMSE).

The absolute bias investigates the differences between the model
simulations, either assimilated or not (SIM), and the observations (OBS)
and is calculated according to:

p_ 2 (SIM — 0BS)

N @

The relative bias (rb) is useful to evaluate the differences in biases
between different concentration levels and was calculated according to:

> (SIM — OBS)

b ="="5"08s

x 100 3)
The correlation coefficients (r) indicates how strong the relationship
between SIM and OBS is and is given by:

S (SIM — SIM) (OBS — OBS)

= )
\/Z (SIM — SIM)* 5" (OBS — OBS)*

where SIM and OBS are the mean values of the simulations and obser-
vations respectively.

Finally Root Mean Square (RMSE) reveals how close are the differ-
ences between simulations and observations and the Normalized RMSE
(NRMSE) facilitates the comparison between different concentration
scales.

NRMSE:R(I)WT‘? (5)
where:

RMSE = E(S#W ©)
3. Results

In these sections the results of all different experiments in domain 2
and domain 3 are presented. The evaluation of the “D2free” and “D20F”
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runs against official stations in domain 2 and the importance of
improved boundary conditions are shown. Then, the different assimi-
lation experiments using low-cost sensors are evaluated and compared
to the free model run in the domain 3.

3.1. Improved boundary conditions

The mean concentrations of PM3 5 and PM;( in domain 2 generated
from the model free run (“D2free”) and the assimilation run (“D20F”) in
November 2021 are shown in Fig. 8. The monthly mean measured values
used for the assimilation “D20F” are shown in the circles, while the
mean monthly measurements from validation stations are shown in
triangles. Both PM;o and PMj 5 are increased throughout the domain
after the assimilation. The largest changes are found in the south, over
the Belgium area, and over the city of Eindhoven. A strong increase in
the PMj 5 concentrations is also observed in the north of the domain.

In order to evaluate the “D2free” and “D20F” simulations we
compare them with daily averaged values over the validation stations.
Fig. 9 shows the time series of the daily average PMj( concentrations
and standard deviation over the 5 available validation stations together
with similar values of the “D2free” and “D20F” runs taken from the
corresponding model pixels. The “D2free” run underestimates PM;o
during the whole period, except for November 24 where the free run

PM,, concentration November 2021 D2free

20
PMyo (ug/m?)

PM, s concentration November 2021 D2free

12
PM, 5 (ng/m?)

16
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simulations are higher than the measurements (and also the “D20F”
simulations). The assimilated concentrations in the “D20OF” run are
strongly increased and approach the measurements. For November 16
the averaged assimilated concentrations are actually about 50% higher
than the observations; the shaded area shows that the variability in the
assimilated simulations is quite high during that day.

The statistics for PM5 5 and PM; o in November 2021 are summarized
in Table 4. For the “D2free” and “D20OF” runs, the simulated concen-
trations for the grid cells containing the observation sites are averaged
for the comparisons (average simulation). The simulations of “D2free”
consistently underestimate the measurements by —40% compared to the
PM;( measurements from the validation stations. After assimilation, the
average biases in PM; concentrations are strongly decreased to about
—10% when comparing “D20F” simulations with the measurements.
The average correlation coefficient between the measurements and the
simulations increases from 0.61 to 0.78 after the assimilation and the
NRMSE decreases from 0.55 to 0.37. Similar results are found in the case
of PM5 5 for which 2 validation stations are available. The PM5 5 simu-
lations of “D2free” highly underestimate the measurements in the sta-
tions by about —50%; after assimilation, these biases are decreased to
about —30% for “D20F”. The correlation coefficients also increased
from 0.68 to 0.83 after the assimilation of the measurements and the
NRMSE decreased from 0.68 to 0.44.

PM,, concentration November 2021 D20OF

15 20
PMyo (ug/m?)

PM, s concentration November 2021 D20OF

PM 5 (Hg/m?3)

Fig. 8. Monthly mean PM;, (top) and PM, 5 (bottom) concentrations in domain 2 before (left) and after (right) assimilation. The stations used for the assimilation are
denoted with circles, and the validation stations with triangles. The colors of the markers denote the mean values of PM measured by the in situ stations for the same

month as the simulations. The black rectangle denotes domain 3.
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Fig. 9. Mean daily PM;, time series of the D2free and D20F experiments and the average values of observation in the 5 validation stations. The shaded areas stand
for the standard deviation of the distribution of mean daily values of the available stations or model pixels.

Table 4

Statistics of the non-assimilation (D2free) run and assimilation of the official
stations (D20F) run compared to the mean PM; s and PM;, observations over
the 5 validation stations.

PM type PM;o PM, 5
Average [pug/m°] Observations 20.68 15.16
D2free 12.76 7.47
D20OF 19.11 10.55
Corr. Coeff. [-] D2free 0.61 0.68
D20F 0.78 0.83
Bias (pg.m’3 [%]) D2free —7.93 (-39%) —7.69 (—48%)
D20OF —1.58 (—8%) —4.61 (—27%)
NRMSE D2free 0.55 0.68
D20F 0.37 0.44

The results for “D20F” show an improvement of the simulations in
domain 2 compared to the free run “D2free” simulations. It should be
noted here that the whole city of Eindhoven is represented by only one
model pixel in this case, hence fine scale urban variations cannot be
represented by the model in this experiment. Instead, the “D20F” sim-
ulations are used as lateral boundary conditions in the high resolution
runs in domain 3 where dense low-cost networks are assimilated at a
resolution that is more suitable for the urban scale.

3.2. Improvement of high resolution PM simulations

The average monthly concentrations from the 5 different experi-
ments performed in domain 3 are shown in Fig. 10 for PMy 5 (left) and
PMj (right). In the same plots the average monthly measurements from
the validation stations in the region are shown in circles using the same
color scale. The “D3free” simulations without assimilation (first row)
tend to strongly underestimate both PM;o and PMy 5 over the entire
region during the month of interest when compared to the official sta-
tions. The high underestimation of both PMys and PM;q is partly
removed when the improved boundary conditions are used in the
“D3D20F” simulation (Fig. 10, second row). However, the mean simu-
lations remain low compared to the mean observations in the center of
Eindhoven. When assimilating the ILM measurements, in the “D3ILM”
experiment (third row) higher concentrations are obtained in and
around the city of Eindhoven for both PM; 5 and PM;o. However, since
there are no ILM observation sites in the west of domain 3 concentra-
tions remain unchanged near the west. Note that the concentrations are
higher in the western part of the domain compared to “D3free” experi-
ment due to the improved lateral conditions used in this run, already
seen in “D3D20F” results, which illustrates that the improved boundary
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conditions are indeed important. In the fourth row, the mean monthly
simulations after the assimilation of SamenMeten observations are
shown (“D3SAM”). The irregular spatial distribution of the SamenMeten
sensors is depicted in the assimilated results together with the lack of
measurements in the western part of the domain. Regions such as Best
and Helmond, situated north and east of Eindhoven respectively, host
many sensors, and increased particulate matter concentrations are
simulated. Opposite to this, the west part of the domain shows no
important changes due to the scarcity of sensors there. The assimilated
concentrations in the eastern part of the domain show extreme high
PM;( concentrations. It is possible that extreme and unrealistic mea-
surements of PM; from the SamenMeten network result in abnormally
high simulations, since the data are not evaluated and only a first order
filtering of the stations has been applied in this study. In the last row, the
ILM and SamenMeten networks are used together in the assimilation
process this time (“D3ILMSAM”). Increased concentrations of particu-
late matter are shown in the center of Eindhoven as well as in more rural
areas such as in Veghel and Sint-Oedenrode in the north of the domain,
as visible in the “D3SAM” results. If in addition also the ILM stations are
included in the assimilation too (“D3ILMSAM”) the extreme values that
are found in “D3SAM” experiment are lowered, such as in the area of
Helmond located east of Eindhoven.

To obtain a more detailed insight in the performance of the different
experiments, the daily average time series at the grid cell where the
official station NL00237 is measuring PM in the center of Eindhoven is
given in Fig. 11. The results of the 5 different experiments are shown by
lines of distinct colors, and the measurements are given by the black
lines. The time series show a high underestimation of PM; throughout
the month in the “D3free” model simulation (red line), while this un-
derestimation is decreased when improved boundary conditions are
taken into account in “D3D20OF” (green line). The “D3ILM” experiment
is represented by the light blue color and follows the measurements
quite well, showing increased PM; throughout the period. Similar to
“D3ILM”, the “D3SAM” experiment (orange line) shows higher con-
centrations that are closer to the observations in many cases. Between 14
and 17 of November the assimilated experiments overestimate the
measurements, while the “D3free” run is actually closer to the mea-
surements. In this period the ILM sensors throughout the city of Eind-
hoven measure much higher PM concentrations than the official
stations. This is illustrated in Fig. 12 where the 2 ILM sensors, #08 and
#30, that are located less than 1 km away from station NL00237, are
plotted together. As already discussed in section 2.3.3 ILM sensors might
positively deviate from LML sensors during wintertime. The “D3ILM-
SAM” experiment assimilating both ILM and SamenMeten data show
quite similar behavior as the “D3ILM” and “D3SAM” runs assimilating
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Fig. 10. Mean PMys (left) and PM; (right) surface simulations of the 5 different experiments in domain 3 for November 2021. Starting from top to the bottom the
experiments shown are: “D3free”, “D3D20F”, “D3ILM”, “D3SAM” and “D3ILMSAM”. The monthly average value of the validation stations from the official network

are denoted with circles and use the same color scale.
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Fig. 11. Time series of mean measured daily PM;, concentrations for official station NL10237 and the corresponding simulations of the different experimental runs

in the same grid pixel.

just one of the networks, with increase PM; o concentrations compared to
the free model simulations. Only at November 3 and 27, the “D3ILM-
SAM” experiment shows better agreement ith the official station than
the “D3SAM” and “D3ILM” experiments.

The statistical results of the 5 different experimental scenarios are
summarized in Fig. 13 using relative bias in percent (rb), correlation
coefficient (r) and normalized root mean square error (NRMSE) of the

12

daily values as well as in Table 5 in terms of absolute bias (b), correlation
coefficient (r) and normalized root mean square error (NRMSE) of the
daily values. Most changes are found around the city of Eindhoven
because of the availability of low-cost sensors, while simulations near
the edges of the domain are mostly changed due to the improved
boundary conditions and not the assimilation of low-cost sensors.
However this is not the case for the northeast of the domain and for the
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Fig. 12. Time series of mean measured daily PM; concentrations for official station NL0O0237 and two closest ILM stations #08 and #30.
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Table 5

Statistics (correlation coefficient, biases, NRMSE) for the PM;, and PM, 5 con-
centrations between the observations in Eindhoven and the free and assimilated
runs.

PM type PM10 PM2.5
Station NL NL NL NL
00247 00237 00236 00247
Corr. coef. D3free 0.71 0.80 0.74 0.82
D3D20OF 0.83 0.87 0.83 0.90
D3ILM 0.84 0.87 0.90 0.85
D3SAM 0.88 0.95 0.91 0.89
D3ILMSAM 0.87 0.89 0.91 0.86
Bias (ug.m™>) D3free —8.34 -7.91 —6.91 —10.64
D3D20F —4.86 —4.51 —3.67 —8.20
D3ILM 0.59 0.96 2.50 —5.12
D3SAM —-2.93 -0.37 2.53 —6.77
D3ILMSAM —0.26 0.84 3.03 -5.14
NRMSE D3free 0.50 0.45 0.46 0.62
D3D20F 0.33 0.30 0.32 0.48
D3ILM 0.30 0.26 0.27 0.37
D3SAM 0.26 0.16 0.27 0.41
D3ILMSAM 0.25 0.23 0.27 0.36

experiments in which SamenMeten network sensors are taking into ac-
count in the assimilation (i.e. D3SAM and D3ILMSAM). In these cases,
changes in PM concentrations are observed due to the availability of
SamenMeten sensors in this regions. The “D3free” simulation highly
underestimate the PM; o and PM; 5 measurements in every stations in the
region by an average of around —36% and —56% respectively. The
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relative biases remain negative when using improved boundary condi-
tions (“D3D20F”) but decrease to —20% for PM; and -43% for PM, s.
The relative changes in biases over the stations between “D3D20F” and
“D3free” are about —46% for PM;(, suggesting that about 45% of the
negative bias in “D3free” is originating by sources outside the domain
and removed when using the improved boundary conditions. The rela-
tive decrease in PM, 5 bias in “D3D20F” run compared to “D3free” run
in the station located near the center of Eindhoven is lower than in PM;¢
and is about —23%.

The biases in PM;o between the reference stations and the “D3ILM”
are strongly reduced by the assimilation. The biases found between the
simulations and the measurements for the three stations in Eindhoven
are very small and positive and on average about 6%, suggesting that the
bias that has not been removed when using corrected boundary condi-
tions is removed due to the correction of the local emissions in domain 3.
The average correlation coefficient and root mean squared are also
slightly improved by the assimilation of ILM data (r = 0.87 and NRMSE
= 0.28 compared to r = 0.75 and NRMSE = 0.47) in the city of Eind-
hoven. For PMy s there is only one official station measuring near
Eindhoven showing a decreased bias, with rb = —27% compared to rb =
—56% for the “D3free”. The relative decrease in the bias of “D3ILM”
compared to “D3free” is about 50%, including both corrections due to
boundary conditions and emissions. In the “D3SAM” experiment, PM;(
simulations are improved over Eindhoven with relative biases of —14%,
—2%, and 12% for stations NL00247, NL00237, and NL00236 respec-
tively, and a high mean correlation coefficient of 0.91. Similar results
are found for the “D3ILMSAM” experiment assimilating both networks,
with average relative biases of —1%, 4% and 15% for NL00247,
NL00237 and NL00236 respectively and a mean correlation coefficient
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of 0.89. The NRMSE decreases even more in “D3SAM” and “D3ILMSAM”
and reaches 0.23 and 0.25 respectively. It should be mentioned that in
all three experiments the measurements in station NL00236 are slightly
overestimated (between 2.5 and 3.0 pg m~), which could be partly
explained for the experiments using ILM sensors since as already shown
in Fig. 12, ILM sensors in the center of Eindhoven measure higher PM;,
than official stations between 13 and 21 of November. Also the “D3ILM”
assimilation slightly overestimates measurements of PMj in all 3 sta-
tions in Eindhoven, which can be partly explained by the higher values
that the ILM network observed in the period between 14 and 17 of
November.

4. Updated emissions

In the assimilation experiments, the emissions that contribute to the
formation of PM or that are directly emitted as PM, are considered as the
uncertain parameters. The emissions of primary PM (i.e. elemental
carbon (EC), primary organic matter (POM), dust, and remaining un-
specified primary particulate matter (PPM)) as well as emissions that are
precursors of secondary inorganic aerosols (i.e. nitrogen oxides (NOy),
ammonia (NHs) and sulphur oxides (SOy)) are perturbed in the ensemble
using emission correction factors in the assimilation process. It should be
noted here that we refer to PM fine (i.e. PM5 5) and PM coarse (i.e. PM1o
—PM, 5) and not directly to PM; 5 and PM; in order to avoid considering
PM, 5 twice as an uncertain parameter.

In Fig. 14 the sum of the PM fine and coarse emissions over the
month November are shown as present in the prior emissions used for
the model runs, and as used in during the assimilation of the different
low-cost sensor observations. All assimilation experiments increase the
emissions in order to compensate for the underestimation of PM ob-
servations. For the city of Eindhoven, a larger increase in PM fine than
PM coarse emission fraction is estimated. Furthermore, PM coarse is
found to increase more in the surrounding areas than over the city
center. These results suggest that the model needs much higher emis-
sions in particular areas in order to compensate for the large discrep-
ancies between measurements and simulations of PM. However, such
large increase on the emissions might not be realistic and could point to
additional uncertainties in the model that are not taken into account,
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such as deposition schemes, chemistry, meteorology and the need of
including secondary organic aerosol in the model simulations.

The sum of the emissions over domain 3 per component (PM fine, PM
coarse, NOy, NH3, and SOy) are shown in Fig. 15. In the “D3ILM”
assimilation, the emissions of all 5 components are increased compared
to the a priori emissions; the increase is even stronger for the “D3SAM”
and “D3ILMSAM” experiments. In all experiments, PM fine is increased
more than PM coarse; PM fine is 160%, 180% and 210% higher than the
a priori PM fine emissions for the “D3ILM”, “D3SAM” and “D3ILMSAM”
experiments respectively, while PM coarse is increased with 100%,
120% and 140% for the same experiments. We should note here, that
NH3 emissions are very low during this period since important sources of
NHj are in Europe most prominent in spring due to agricultural pro-
cesses (Paulot et al., 2014; Viatte et al., 2020).

An estimation on the uncertainties of the main pollution sector cat-
egories is available from the EMEP/EEA Guidebook (EEA, 2019), and
has been adapted to the Gridded Nomenclature For Reporting (GNFR)
categories used for CAMS-REG emission inventory by Kuenen et al.
(2022). The uncertainty range for PM emissions from road transport,
industrial sources and power plants range is estimated to be 50-200%,
while for other stationary combustion uncertainties of 100-300% are
possible. For agricultural emissions no uncertainty estimate is available
because these emission estimates strongly depend on meteorological
conditions and assumptions on agricultural practices. The relative
importance of different source categories during the month of interest is
illustrated in Fig. 16 by time series derived from the TOPAS source
apportionment service around the LOTOS-EUROS model (https://topas.
tno.nl/). The time series shows in November 2021 for the center of
Eindhoven the sectors residential combustion, road transport, industry,
energy, and agriculture contribute most to PM;( and PMj 5 concentra-
tions. The change in the emissions compared to the a priori, as
mentioned before, range between 100% and 210%, and are in the range
of the reported uncertainties. However, we do not believe that the
consistent emission update that is suggested by the assimilation, is a
realistic indication of the error in the a priori emission estimates, as
already discussed before the large emission changes found could point to
additional uncertainties in the model (i.e. deposition schemes, chemistry
and meteorology). Further, the necessary increase in PM emissions (i.e.
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Fig. 14. PM fine (top) and PM coarse (bottom) emissions summed over the month of November 2021 in domain 3 derived from the a priori inventory (first column),
and the “D3ILM” (second column), the “D3SAM” (third column) and “D3ILMSAM” (fourth column) assimilations.
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purple) experiments.
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Fig. 16. PM;, (top) and PM, 5 (bottom) sector contributed concentrations from TOPAS product between mid-October and November 2021 in the center of Eindhoven

together with the corresponding measurements from ILM #36 station.

pm fine and pm coarse) and their precursors (NOy, SOx) to obtain PM
simulations that better describe the measurements can be explained by
the model’s need to compensate for missing secondary organic aerosols.

The temporal profiles of the updated emissions in November 2021
over a grid cell located in the city center of Eindhoven have been

compared with the a priori profiles. The average of the emissions per
day-of-week normalized to the day-average of the week are calculated in
order to compare the a priori with the updated weekly profiles. Fig. 17
shows these normalized values of PM fine (left) and PM coarse (right)
emissions per day of the week for the a priori-inventory and the
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Fig. 17. Day-of-the-week profiles for the PM fine (left) and PM coarse (right) emissions for city center pixel normalized to day-average for the week.

estimated by the assimilations. Both PM fine and PM coarse emissions
estimated with the “D3ILM” assimilation show an abrupt decline on
Tuesday that is only slightly seen in PM coarse a priori profiles, while a
peak is found on Friday which is most prominent in the PM coarse
component. The “D3SAM” and “D3ILMSAM” emission profiles show as
well a similar decline on Tuesday for the PM coarse component. The PM
fine emissions from the “D3SAM” assimilation show a decrease on
Wednesday which is not found in the experiments. In general the as-
similations seem to suggest that a priori emissions should be decreased
early in the week, but increased by the end of week and the weekend. We
should note here that these results are based on few samples since this
study covers a short time-period of a month. It is essential to study a
longer period to extract more accurate results on temporal profiles.

Similar profiles for emissions as function of hour-of-the-day for the
same city center cell are shown in Fig. 18. The profile of both PM fine
and PM coarse emissions after assimilation follow quite well the profile
of the a priori emissions during the early hours of the day (1 a.m.-6 a.
m.). However, the a posteriori profile of the “D3ILM” assimilation shows
a shorter (in duration) morning peak in both PM fine and PM coarse
emissions compared to the a priori. The afternoon peak shown in the a
priori profile around 16p.m. and 17p.m. is not present in any of the
assimilation experiments, while a new peak is found between 11la.m.
and 15p.m. During nighttime the a priori and a posteriori profiles agree
quite well.

The fact that the two assimilation runs “D3ILM” and “D3SAM”, that
rely on observations of two independent networks, both suggest similar
changes in day-of-week and hour-of-day profiles prompts to the
importance of further research over longer time periods to find whether
these changes are persistent and if specific source sectors require up-
dates of their a priori profiles.

5. Conclusions and discussion

In this study we presented a methodology for integrating particulate
matter measurements from heterogenous in situ networks and the
LOTOS-EUROS CTM through a data assimilation technique. The exper-
iments focus on a domain of about 0.5 km x 1 km resolution around the
city of Eindhoven in the Netherlands. In this domain, two low-cost
sensor networks observing particulate matter concentrations are avail-
able: ILM network and the SamenMeten citizen science network. In
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addition, a limited number of observations from the national official air
quality monitoring network is available. Simulations for the target
domain are nested into a wider domain in which additional stations from
the official network are available too. The final results were obtained
from 5 experiments that differ in the type of measurements that are
assimilated and whether boundary conditions are incorporated from the
wider domains from a standard model run or an assimilation of obser-
vations from the official network.

The results shown in this work indicate that simulations of PM
concentrations over Eindhoven strongly improve when boundary con-
ditions from an assimilation on the wider domain are used, and
improved even further when measurements from low-cost sensors are
assimilated too. A large underestimation of the measurements in the free
run is strongly decreased in all different experiments that assimilate
observations. For locations in the center of Eindhoven, the mean bias of
PM;( (PMy5) in the free model run is equal to —36% (—56%) and re-
duces to —20% (—43%) when using boundary conditions from an
assimilation. These results suggest that, for the chosen simulation period
and the model setup, about 45% (23%) of the initial PM;o (PM> 5) bias in
the free model run is due to missing concentrations from outside the
domain. Mean relative biases of PMjy in the city of Eindhoven drop to
+6%, —1% and +6% when improved boundary conditions are used
together with assimilation from the ILM, SamenMeten, or both networks
together respectively. The correlation coefficient is improved from 0.75
in the free model run to a range between 0.87 and 0.91 depending on the
assimilated sensors. Finally, the NRMSE decreases on average with
about 0.25 compared to 0.47 in the free model run. In the only available
official station near the city measuring PM, 5 the assimilations including
ILM data decrease the bias with about —27% compared to about —56%
in the free model run and —43% for the free model run using assimilated
boundary conditions.

The assimilation system was configured to estimate emission
changes that lead to smaller difference between observations and sim-
ulations and to subsequently update the default temporal profiles of
emissions which form one of the main sources of uncertainty in the
model. The day-of-the-week and hour-of-the-day emission profiles
derived from the assimilation of low-cost sensors suggest differences
compared to the a priori profiles used. An abrupt decline in emissions on
Tuesday and on Wednesday is suggested from the assimilations of ILM
and SamenMeten data. In the hour-of-the-day profiles the assimilations
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Fig. 18. Normalized hourly profiles for the PM fine (left) and PM coarse (right) emissions for city center pixel.
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suggest an afternoon peak in PM fine and PM coarse between 11a.m. and
14p.m., while this peak is shown later (between 15p.m. and 18p.m.) in a
priori profiles.

Despite the uncertainties and limitations that characterize the
SamenMeten citizen science network, the experiments show that it is
feasible to exploit the dataset and extract useful information. Assimila-
tion of these observations lead to similar adjustments of concentrations
as seen for assimilation of the low-cost sensor data from the ILM
network. The result supports the idea of monitoring urban air quality
using additional networks next to the official measurement stations.

When evaluated of a longer time period, the assimilation results
could point to adjustments or uncertainties in the prior emissions in-
ventories that are used to adjust concentrations. It should however kept
in mind that the uncertainties currently assigned to emissions probably
also account for other model uncertainties. In this context the experi-
ments shown for example the high importance of the boundary condi-
tions in the studied region.

Future work should focus on a more detailed study of the emission
correction factors extracted from this method in order investigate which
emission sources are in particular uncertain and might be under-
estimated in the region. Temporal profiles of PM emissions need also
further investigation since both independent experimental runs (using
ILM or SamenMeten sensors) suggest similar changes in a priori profiles.
Secondary organic aerosols should be prioritized in model imple-
mentations since their contribution in total PM is important, and is
highly advised to include this in similar studies. Finally, the parame-
terization of emission and other model uncertainties in terms of their
amplitude and spatial and temporal correlation scales requires perma-
nent attention and improvement.
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