Reference number File number

Date NP 92-118 112322-23155 March 1992

Author C. Veldt

Table of contents

1	Intro	duction	3				
2	Description of the data base						
	2.1	Area	4				
	2.2	Grid					
	2.3	Substances					
	2.4	Point sources					
	2.5	Area Sources					
	2.6	Temporal distribution of emissions					
3	Orga	Organization of the update					
	3.1	General					
	3.2	CEC member countries					
	3.3	Other countries					
	3.4	Ammonia emissions					
	3.5	Point sources					
	3.6	Area sources					
	3.7	Work share-out and responsibilities					
4	Upgrading of point source data9						
	4.1	General					
	4.2	Energy production					
	4.3	Other source categories					
5	Fuel	properties	11				
6	Emission factors						
	6.1	Stationary combustion					
	6.2	Process emissions					
	6.3	Mobile sources					
	6.4	Solvent evaporation					
	6.5	Biogenic VOC emissions					
7	Composition of emissions						
	7.1	Acid oxides					
	7.2	VOC-profiles					
8	Activity data						
	8.1	Fuel consumption data					
	8.2	Production data					
9	Upda	te data for the CORINAIR inventory	18				
10	Refer	rences	19				
11	Auth	entication	36				

1 Introduction

In 1984, the PHOXA emission data base with 1980 as the reference year was prepared for photo-oxidants and acid deposition model applications. It was the first data base of air pollutants that covered large parts of both West and East Europe. Since then, the OECD and the CEC established consistent inventories of their member countries with reference years 1980/1982 and 1985 respectively. In 1987 the PHOXA data base was extended to incorporate emissions of heavy metals and some non-volatile organic compounds. This extended PHOXA data base had 1982 as a reference year. In 1989 a variant of the PHOXA data base (LOTOS) was prepared, covering Europe to 60° longitude and serving the purpose of long-term ozone modelling. Its reference year also was 1985.

Cooperation between OECD, CEC and EMEP was established and presently the objective is to use one single system for all European Countries, i.e. the CEC's CORINAIR data base. CORINAIR 90 is in preparation and it is expected that all West European countries and some eastern countries will join this project.

Coping with the high ozone level episodes during summer 1990, observed in large parts of Europe, the German Umweltbundesamt decided to anticipate this development by upgrading and updating to 1990 the PHOXA 1980/82 data base. For this, it was decided to rely substantially on the knowledge acquired within CORINAIR and LOTOS and on the data contained in these data bases. Further, due to the recent political changes, exchange of information between Western and Eastern Europe can be used. In the past this was impossible.

This report briefly describes the preparation of the PHOXA 90 emission data base and the final results.

2 Description of the data base

2.1 Area

All European countries, except Albania, Greece, Spain and Portugal. The Soviet Union to 30° east longitude. The northern boundary is 66° latitude (See figure 1). The countries involved, their codes and numbers of inhabitants are given in table 1, in which all European countries are presented.

2.2 Grid

30' longitude × 15' latitude (PHOXA).

2.3 Substances

- SO₂/SO₄", NO₂/NO, CO, VOC, (NH₃).
- VOC-profiles according to chemical mechanisms of REGOM and ADOM/ TADAP.
- Up to the present NH₃ is not treated within the update because of the intention to use the PHOXA 90 data base primarily for photo-oxidant modelling.

2.4 Point sources

- Energy production: capacities > 100 MW_e or >300 MW_{th}
- Petroleum refining.
- Chemical industry: ethene, LDPE, HDPE, VC, PVC, PS, PP, SBR, ABS.
 Primary iron- and steel industry.
- Pulp/paper.
- Cement.
- Vehicle manufacturing (VOC emissions from lacquer application).

2.5 Area Sources

- Chemical industry.
- Primary iron and steel industry.
- Other industry.
- Energy production.
- Road transport: highway/other modes, ldv/hdv, gasoline/diesel, exhaust/ evaporation, gasoline distribution.
- Non-industrial fuel consumption.
- Solvent use.
- Natural sources of VOC (vegetation).

2.6 Temporal distribution of emissions

Identical to PHOXA 80.

3 Organization of the update

3.1 General

As has been said in chapter 1 CORINAIR and LOTOS were the bases for the upgrading of PHOXA 90. No new research on emission estimating procedures was planned, instead, only available knowledge and data was to be used. In this respect reference should be made to new data that have become available since the completion of LOTOS.

Updating had to be done with changes in activity data in the time span 1985-1990 and with reported emission data for 1990 or for the nearest year.

3.2 CEC member countries

The commission's consent was obtained for the use of the CORINAIR 1985 data. These had to be processed to meet the demands of PHOXA 90 as detailed as possible.

3.3 Other countries

Of all countries, i.e. AT, BG, CH, CS, FI, HU, NO, PL, RO, SE, SU and YU, activity data and point source were to be retrieved from presently available data sources. The recent shift in the European political pattern and the increase of information resulting from it made it possible to draft inventories of the three Baltic States separately from the (now former) USSR. The part of this country comprised in PHOXA 90 consist of a very small part of Russia, a large part of Belorussia, the most western part of the Ukraine and Moldavia. St. Petersburg and the huge Ukrainian industrial zone are outside PHOXA 90.

3.4 Ammonia emissions

These can be taken from [K10].

3.5 Point sources

Initially it was planned to upgrade by inserting corrections and additions in the existing PHOXA 80/82 data base. The difference between available data and the contents of the data base, however, appeared to be so large that is was decided to perform a complete data reassessment, especially with respect to power and heat production. All relevant data were to be recorded or, if

not available, to be reasonably estimated. Less important data, e.g. age of plants, were to be recorded only if readily contained in data sources. Plants, not being of primary importance for the PHOXA 90 objections, e.g. primary non-ferrous metal, chlorine and cement, were to be treated less systematically. These activities, however, are still kept within the data base, considering future use with respect to other pollutants.

The point source file of the PHOXA 80/82 data base contains some details that at the time of its design were considered to be useful either for direct or for future application. Since then, developments in the profession of emission inventorying demonstrated, that these would not contribute to the quality of estimated emission data. An example is the attempt to improve the estimation of combustion emissions in petroleum refineries by incorporating data of selected installations. This approach appeared to be deceptive.

3.6 Area sources

The procedures for the spatial allocation of non-point source emissions, calculated from activity data and emission factors, have not fundamentally been changed since PHOXA 80/82 was designed. Surrogate parameters still are indispensable.

A remark on road transport should be made, however. The PHOXA 80/82 approach to estimate separately highway emissions and distribute them uniformly among mapped highways is considered to yield an improvement that is illusionary without – at least approximate – traffic intensity distributions. To this adds a still very incomplete knowledge about vehicle fleet characteristics and speed distributions in eastern European countries (the near-future cooperation in an UNECE/OECD/CEC framework will improve this situation). Based on an analysis of CORINAIR data it was shown that an estimation of nation-wide road transport emissions from fuel consumption data instead of one from activity data yields acceptable results in a situation where basic background data are scarce.

Road transport emissions in CEC member states have been calculated uniformly by the COPERT programme and have been distributed among territorial units by national experts with best possible means. CORINAIR data therefore can be used straightforwardly for PHOXA 90. Emissions from east European countries, on the other hand, were decided to be estimated from fuel consumption data and to be spatially distributed with population data. In EFTA countries, the additional problem of the effect of increasing use of catalytic control of exhaust made it necessary to use most recent national estimates. Spatial distribution in these countries could either be taken from reported data or prepared with population data.

Biogenic VOC emissions were to be based upon LOTOS date: vegetation data in the $2^{\circ} \times 1^{\circ}$ grid, converted to biomass data and treated with – essentially – EPA emission factors. The larger resolution needed for PHOXA $(0.5^{\circ} \times 0.25^{\circ})$ had to be made by forest coverage data from the PHOXA land use data base.

3.7 Work share-out and responsibilities

The following distribution of work and allocation of responsibilities was agreed:

- a. Upgrading of point source data.
 Collection of most recent activity date (productions and consumptions).
 Emission factors (state-of-the-art).
 IMET-TNO (C. Veldt).
- b. Processing of CORINAIR data. IGG-TNO (J. Hulshoff).
- c. Update of CORINAIR data.

 Dornier GmbH (F. Axenfeld) and IMET-TNO (C. Veldt).
- d. Basic data for biogenic VOC emissions.
 Dornier GmbH (F. Axenfeld and B. Rauschelbach) and IMET-TNO (C. Veldt).
- e. Final generation of emission data base PHOXA 90. Dornier GmbH (F. Axenfeld).
- f. Prime Contractor to Federal Environmental Agency of Germany and overall project management.
 Dornier GmbH (H. Meinl and F. Axenfeld).

4 Upgrading of point source data

4.1 General

In the region outside the EC circa 200 energy conversion plants, circa 150 refineries and chemical industries and circa 200 other plants were described as a point source (table 2). The large number of data involved is not presented in this report. Instead, tables 3a and 3b give examples of the mode of data transfer.

Notes

- a. Coordinates are decimal.
- b. Installation, type
 - E = electricity production.
 - EH = electricity and heat production (fuel used to produce heat).
 - H = heat production.
- c. Installation, number. Assignments were made when different fuels were used or because of different functions or differences in control. Only exceptionally assignments were the same as those locally in use for reasons of clarity (e.g. PL 4: 1,2,3).
- d. Year of commission. It was attempted to assess the age of plants by indicating the first year of utilization or the period of it. Data were entered only whenever readily available. Their operational value is questionable, at least because of possible intermediate reconstructions.
- e. Stack heights were taken from [U3] similarly as was done for PHOXA 80/82. Data are maximum heights, so probably many point sources will emit only a fraction of emissions at these heights.

Table 4 contains the references to the data sources used. Only the main sources will be discussed in this report.

4.2 Energy production

The IEA Coal Research (IEACR) compilation of coal fired power plants [M1], together with another IEACR report on the subject [C2] was the principal source of information. With the exception of the Soviet Union, all countries are considered into detail. For plants fueled with oil or gas, main references were J1, V4 and V5. Condensing power plants that deliver heat to networks were described as electricity producers. Plants, comprising separate heat generation were described as electricity and heat producers. In many cases no information was available about installed thermal capacity for heat production, making fuel allocation difficult there.

In some cases, data from different sources were in conflict so that choices had to be made. The point source data listing for PHOXA 90 is assumed to be the most probable one.

Data on SO_x emission control were taken from an IEACR compilation for coal fired plants [V1], those on NO_x control were from a VGB-members compilation [K2]. Considering that in East European countries control is only exceptionally in use until now, coverage may be fairly complete.

Miscellaneous comments per country

Austria

For AT 11, [S2] was used.

Bulgaria

There was no information about heat generating capacities for individual sites. Data are estimated, based on population (circa 15% of residential heat is provided by CHPs [C2]).

Czechoslovakia

CS 1:1 and CS 5:1 cut their output by 50% [A9]. CS 9 = 583 MW_e [V2] or $2 \times 110 + 4 \times 55$ [C2]. A study by the DIW [B2] provided the location of CS 21, fuels for CS 19, 20, 21 and 47:1 as well as data for CS 14, 32:1, 50:1 and 52:1.

Poland

Capacities and fuels of PL 28-33 have been assumed.

Romania

Data on RO 3,7,8,14,21,22,49:1.2 were from [C5]. This is a report from 1980, which was used notwithstanding its age because of the scarcity of data from this country. RO 15 is more of a representation of CHPs in Bucharest.

■ Soviet Union

Power plants >2000 MW_c are well recorded [E1, G1, M1]. The main data source for smaller plants is [G1] but this report dates back to 1982. Many locations are known but actual data are incomplete. Capacities at SU 1,2 and 11 are not known but are expected to be relatively small. Fuels used in SU1,3,6,7,10 and 11 also are not known.

Installed electric capacity in the PHOXA area is covered for 88% (table 5).

4.3 Other source categories

These were taken from year books as the main source of information. The chemical industry in Scandinavia [C12] and cement plants [W2] are due for an update.

5 Fuel properties

In the past, only few data on sulphur contents of fuels used in East European countries were available. Some of these were conflicting and difficult to compare if not specified. With present available information – although far from complete – it was possible to record data on a common basis, i.e. 'as-mined'. Sulphur contents and heats of combustion of fuels used in point sources are in the point source file. For area sources, on the other hand, average values are needed. These had to be estimated or – in some cases – even be assumed. Only exceptionally they were reported.

Values of S and H_1 are presented in table 6. Tables 7 and 8 contain additional fuel data that have been used for PHOXA 90.

Initially, it was attempted to also improve the data on sulphur retention in (brown)coal ash by correlating chosen characteristics of ash compositions with amounts of sulphur bound. The attempt failed, more because of poor correlations than because of scarcity of data. For brow9n coal ash an uniform value of 30% was therefore used for PHOXA, 5% for hard coal and 80% for oil shale [F2, H3].

6 Emission factors

6.1 Stationary combustion

Updated CORINAIR values were used. Surprisingly, the negative effect of tangential firing on NO_x emissions is not reflected anymore in the reported data. Allegedly, large ranges of values prohibit distinctions between firing modes. In table 9 all relevant information is presented. Data on condensable organic compounds are given only as a reminder, hence they need not be considered as part of VOC yet.

6.2 Process emissions

In table 10, factors for selected processes and substances are given. Factors for bulk monomer and bulk polymer production have still not been improved. It is very well possible that no improvement will turn out to be feasible, large differences in operating practice preventing factor development.

Most of the factors are the same as proposed for CORINAIR. VOC factors for the primary iron and steel industry are from [V6]. For refinery emissions, see also [V6]. It appears that there is no significant difference in specific fuel consumptions of refineries in West and East Europe. This could be explained by considering that a less efficient fuel use is compensated by the lower average complexity of refining practice in eastern Europe. Combustion emission factors therefore are assumed to be equal.

6.3 Mobile sources

As has been said in chapter 3.6 considerably more uncertainty can be expected to exist in the estimation of emissions from transportation in east European countries as compared to western Europe. In some of these countries statistical data are scarce, if available at all. This is both true for fuel consumption data and vehicle fleet characteristics. Further, emission factor development is hampered by parts of vehicle fleets that are aged and by the usage of two-stroke engines and gasoline-powered heavy duty vehicles in some countries. For the latter vehicle category information is incomplete. For two-stroke engines the same is true but, in comparison with the very roughly estimated factors used in PHOXA 80/82 and LOTOS, now at least some recently measured data are available.

A simple update of road transport emissions in West European countries is not possible because of the increasing use of catalytic control. For EC member countries use was made therefore of estimates made by COPERT.

For EFTA countries, reported data of road transport emissions were used as given in table 11. Actually, only data from Norway are complete. Those from Sweden can be used as a check because of separately reported emissions from gasoline and

diesel. Data from Austria and Switzerland are totals and thus are only limitedly useful.

Emissions from East European countries are estimated as follows.

- a. Fuel-based emission factors were developed from CORINAIR factors. From a few data on age distribution of automobiles it was assumed that factors could be derived from those, valid for CEC-regulations 15-00 through 15-03 (1970-1978).
- b. The cold start emission correction procedure was simplified to 1.3%. °C⁻¹ for VOC and 0.6%. °C⁻¹ for VOC for gasoline-powered engines.
- c. Emission factors for two-stroke engines were derived from measured data [S7,S8]. Because of differences between emissions from Trabant and Wartburg, factors were calculated for an estimated ²/₃ Trabant and ¹/₃ Wartburg contribution (based on data from DD and HU [S9]).
- d. Emission factors for inland navigation and rail transport were taken from EPA [E5] and Umweltbundesamt [U4].

Evaporative emissions have been estimated by COPERT from two measurement campaigns [C20, H8]. The effect of ambient temperature was only very roughly indicated. For LOTOS, an attempt was made to quantify this effect with data from [C20]. Much uncertainty still exists about estimating procedures and the value of 45 gVOC.vehicle⁻¹.day⁻¹ at 20 °C ambient temperature, which is an aggregation of hot soak, tank evaporative and running losses and was used for LOTOS should be considered as a first approximation only. Yet, this factor is proposed for PHOXA 90. The temperature effect is shown in figure 2.

Evaporative emissions from gasoline distribution outside refineries can be attributed to the transport source category but only the losses at filling stations can be realistically distributed with population data. The factor for depots is $0.7 \, \mathrm{g} \, \mathrm{VOC.kg^{-1}}$ of gasoline, the overall factor for filling stations is $2.8 \, \mathrm{g} \, \mathrm{VOC.kg^{-1}}$ of gasoline [C18]. In the Soviet Union the factor must be considerably higher [W6] but this does not mean that this is true also for other East European countries. An approximate value of $5 \, \mathrm{g} \, \mathrm{VOC.kg^{-1}}$ could be used (for the USA circa $4.5 \, \mathrm{g.kg^{-1}}$ can be derived for the reference year 1980).

Transport emission factors are presented in table 12.

6.4 Solvent evaporation

In PHOXA 80/82, an uniform assumed value of 5 kg.cap.⁻¹.y⁻¹ was used to account for solvent losses in East European countries, in contrast with an estimated value of 13 kg.cap⁻¹.y⁻¹ for West European countries. Pacyna [P5] estimate for East European countries 3.3 kg for non-industrial losses and half of this value for industrial losses and hence arrived at the same figure as used for PHOXA.

For LOTOS it was attempted to differentiate between countries by considering the effects of the main economic activities involved. Thus, for paint solvents it was assumed that the production in European COMECON countries was used in the same region, which was reasonably well confirmed by [F4]. For metal degreasing, printing and the chemical industry, production volumina and contributions to

GNP were compared for metal products manufacturing, printing industry, printing paper consumption and the chemical industry. Results are presented in table 13. The estimation of losses from chemical cleaning and from consumer products is only a guess.

Neither of these approaches has a really sound basis. Unless consumption data, reliably estimated by national experts, become available, the contribution to total anthropogenic VOC emissions in eastern Europa will remain more or less a guess.

Data for EFTA countries are available from the OECD-MAP inventory for the reference year 1980 [O7]. EC members reported data to CORINAIR for 1985. Differences might be attributable to changes in consumption but also to revised emission estimation procedures (table 14). More recent data are provided by [Z3]. Generally, no substantial changes seem to have occurred, but at least part of this estimation is attributable to a lack of reliable data. Nevertheless, for PHOXA 90, these data could be used. Table 14 also gives the fraction of non-industrial emissions (including printing industry) for spatial allocation purposes.

6.5 Biogenic VOC emissions

The first attempt to develop a methodology for the estimation of biogenic VOC emissions in Europe, as used in PHOXA, must be considered as obsolete now. Based on a thorough reinterpretation of measured data in the USA by Lamb et al [L11] a biogenic emissions inventory system (BEIS) now is in use by EPA [P6]. Measured data outside the USA in many cases appear to be different, however, but might give not enough support for a proposal to review the factors used in BEIS. Nevertheless a report, aiming at an intercontinental discussion, has been prepared [V7]. Topics are emission factors, leaf biomass factors and temperature – radiation – emission algorithms.

Anticipating this discussion, for PHOXA 90 the same factors as used for LOTOS are proposed, the only difference being the influence of ambient temperature on terpene emissions which, according to [V7] is less pronounced than as was described in LOTOS. Factors are given in table 15.

7 Composition of emissions

7.1 Acid oxides

Since the completion of the PHOXA 80 data base no research has been done to collect more information about NO_2 and SO_4 " fractions. For the PHOXA 90 data base these fractions therefore will remain unchanged (table 15).

7.2 VOC-profiles

In terms of reliability, VOC profiles underwent no substantial change in the past years. Unavoidably applied as average data sets for modelling, as is done e.g. in PHOXA and LOTOS they clearly contribute to the overall error of emission inventories. The variability of some activities makes a better approach impracticable as in the case with stationary combustion, refineries and many chemical processes. Others can be improved if basic data are sufficiently available (gasoline vapour, solvents).

Some profiles that are used in PHOXA 90 are based on an up-to-date literature search (non-industrial combustion, refineries and coke ovens) [V6].

But this does not mean that their basis always is a sound one. The combustion of coal notably is a more default because there is hardly any information on this source type. Profiles for gasoline vapour and chemical processes were taken from CORINAIR [C18] and profiles for solvents and uncontrolled exhaust were from [V9]. It should be noted that these are planned to be subject to further research. It should also be noted that the overall composition of solvents, based on data from 1978-1982 are not conflicting with more recent data from European countries [V9] but still might not adequately reflect the present situation, drastic as measures in some countries are becoming now.

To make possible an adaptation of the gasoline exhaust profile to catalytic control, a profile for 3-way catalytically controlled exhaust has been included ([K7], profile no. 1203).

Exhaust from 2-stroke engines has a profile which differs from exhaust from 4-stroke engines because a considerable amount of unburned gasoline is emitted. No quantitative data being available, a profile for 2-stroke exhaust was used in PHOXA 80 and LOTOS composed of 10% 4-stroke exhaust and 90% gasoline vapour. This assumption was based on engineering judgement. At present, there are still no profile data available so the same assumption has to be made. However, measured data [S7,S8] suggest fractions of 20% 4-stroke exhaust and 80% of gasoline vapour.

Profiles are presented in table 17. Table 18 gives the same profiles but transformed to the ADOM chemical mechanism.

8 Activity data

8.1 Fuel consumption data

Consumption data for EFTA countries of the main fuels by source category were taken from statistical year books and from OECD statistics. Data for AT and SE were available for 1990, data for CH, FI and NO only for 1989. For BG, CS, H, PL and RO 1989 data were available from various data sources (table 3). Updating to 1990 was done with Plan Econ estimates [P4]. Plan Econ calculates apparent consumptions from production + import and export; these data are the most recent available. To facilitate data comparison with other sources, 1989 data for these countries were also recorded.

For the Baltic States, data were available from [F2] for 1988 (ET), 1985/1989 (LA) and – planned – data for 1990 (LI). No means were available for updating ET and LA. The same applies to YU, for which country only 1989 data were available.

The USSR is a special case. The small part inside the PHOXA 90 area of this huge country, not to mention large regional differences makes extrapolation impossible. An estimation, including some spatial allocation, was done with data from EMEP/MSC-E [E4] and statistical data for the USSR [B3, P4b]. The following notes about the calculations will be made here (see also figure 3).

- For the area involved, data on SO_x emissions from [B3] and [E4] are the same.
 NO_x data differ because [B3] does not include non-industrial fuel combustion and other transport.
- In order to check whether Plan Econ data on contributions to national industrial performance from regions could be used together with estimated emission data, a comparison was made between LOTOS data (1985) and data from [B3] (1989). VOC and SO_x data from LOTOS appeared to be 35% higher. NO_x from all stationary sources except the non-industrial ones— was 25% higher but NO_x from road transport was 50% higher. Differences probably have to do with emission factors.
- It was therefore concluded that the methodology for inventorying stationary sources as used in the USSR does not significantly differ from the approach used for PHOXA and LOTOS (special reference is made here to emission factors). For the allocation of energy use as well for emissions the following data can be compared (percentages of national totals):

	NO _x - emissions stat.sources [B3]	Inhabitants (×10 ⁶)		Industrial output [P4b]			Electric
		Total	PHOXA area	prim. Fe	chem.	other	[P4b]
Ukraine, South-west	4.9	7	5	0.4	6.0	7.5	7.9
Belorussia	2.6	3.5	3.4	0.4	5.5	4.5	4.7
Moldavia	1.2	1.4	1.4	0.1	0.4	1.5	2.0

- To the NO_x emissions the contribution from the non-industrial sector (LOTOS data) has been added. The share of electric power has been corrected for non-thermal generation.
- No gross deviations distort the pattern, so these data were used together with national fuel consumption data. Fuel consumption by point source power plants was separately estimated. Fuel consumption by industrial branches was allocated with per-branche shares of industrial output (5 to 10 branches) and fuel consumption by other source categories was allocated with population data. The unlikeliness of the assumption of homogeneity in fuel-use patterns throughout the whole USSR was, of course, recognized.

The small parts of the USSR, assigned LEN and ZAP (except Kaliningrad) west from 30° longitude could not be treated in this way. Simply assuming this region to be comparable to Latvia, its ca. 10⁶ inhabitants are taken to consume 40% of the fuels, used in that country. For Kaliningrad, only data from [H3] were used.

Consumption data on fuel wood usually are not in official statistics. Existent data are not easily comparable because they may include various kinds of vegetational wastes and definitions are not always clear. What was found in data sources and used for this study is presented in table 19.

Fuel consumption data for road transport need differentiation if used for emission estimation because of the different emission factors involved. This is in the first place necessary for East European countries (see paragraph 6.3). Fuel splits between 2-stroke and 4-stroke engines and between gasoline powered ldv and hdv as well as the share of diesel consumption for mobile sources are not easy to estimate, hence data are of varying reliability (table 20).

8.2 Production data

Main sources for production data were statistical year books, branch-specific UN statistics, CEDUCEE data and miscellaneous branch-specific data compilations.

Data of the non-CEC countries are given in table 21. The table is not complete. Reasons are: data are classified, further research needed or data are not suitable for a relation with emissions. In these cases, production may be estimated as an assumed fraction of capacity. National capacities may be assumed to be fully covered by point source capacities.

9 Update data for the CORINAIR inventory

With production and consumption data from national statistical year books and – for most fuel data – OECD statistics, update factors can be prepared. The application of these is a primitive approach, assuming a linear relationship between activity and emissions and neglecting various effects that can influence the latter.

Still better update factors can be obtained from shifts in fuel consumptions for an activity. This approach was used wherever possible. In the first place, however, reported emission data from CEC member countries were used. Results from fuel – based and production – based update factors have to be checked – and, if necessary – corrected with help of reported emission data.

For each SNAP code-emission combination, as part of national total emissions, an update factor was prepared. Bases for these factors were emission data (DK, FR: '90 (SO_x, NO_x); IT: '89 (SO_x, NO_x, VOC); NL: '90 (SO_x, NO_x, VOC); GB: '88 (SO_x, NO_x, VOC) and fuel/production data from '89. Extrapolations to '90 appeared to be illusionary.

Road transport emissions for 1990 might be generated by COPERT. A tentative set of update factors was taken from graphs in [S18] (table 22).

Evidently, emission control must be taken into account. For power plants, relevant data are given in table 23.

10 References

- [A.1] Anon (1990)
 Heat Recovery in Hungary, Intern. Power Generation, May 1990, p. 40.
- [A.2] Anon (1990)
 Finland Advances Commercial Peat-firing Technologies, Power
 Intern. Ed., June 1990, p. 62-63.
- [A.3] Anon (1990)
 Largest Peat-fired Plant Features Once-through Reheat Steam Cycle,
 Power Intern. Ed., September 1990, p. 32, 34.
- [A.4] Anon (1990)
 Värtan is put through its paces, Modern Power Systems, November 1990, p. 33, 35, 37.
- [A.5] Afgan, N. and Lj. Jovanovic (1984)
 Bildung van Ascheablagerungen bei der Verfeuerung jugoslawischer
 Braunkohle, In: International VGB-Conference 'Slagging, Fouling and
 Corrosion in Thermal Power Plants', Essen (FRG), February 29 March 2.
- [A.6] ANEP '90
 European Petroleum Year book, Vol. 23 (1990), Urban Verlag, Hamburg Vienna.
- [A.7] Anon (1988)
 Glasnost and Hungary's Motor Sector, EIU, The International Motor Business 134, April 1988, 63-76.
- [A.8] Andersson, C. (1989)
 Poland's biggest fossil fuel power station, Acid Magazine 8, p. 9
 (September 1989) (Coal Abstr. 90: 01912).
- [A.9] Anon (1991)
 Czech stations cut output, Int. Power Generation, March 1991, p. 4.
- [A.10] Alperowicz, N. and T. Cox (1981) A Time of Transition: The East European Chemical Industry 1981-1985; Chemicon Surveys Ltd., London.
- [A.11] Anon (1989)
 Jugoslawien: Investitionen in Kraftwerke, Nachr. f. Aussenhandel 52, 168, 31 August.

- [A.12] Anon (1991)
 IISI-Länder: Rohstahlerzeugung September 1991, Stahl u. Eisen 111, 11, 117.
- [A.13] Anon (1991) Chemieproduktion in Ungarn, Europa Chemie 47/91, p. 7.
- [A.14] Anon (1986) Adhäsion, November 1986, p. 26.
- [A.15] Anon (1991)
 European Energy Report, East Europa Suppl. no. 10, 28 June 1991,
 p. 23, Fin. Times Business Information, London.
- [A.16] Anon (1988)
 Roheisen-und-rohstahlerzeugung 1987, Stahl u, Eisen 108, 565 568;
 112, 102 (1992).
- [A.17] Anon (1991)
 Shell Norway refinery upgraded as unleaded sales leap ahead,
 European Energy Report 334, March 8, p. 2, 3.
- [A.18] Anon (1990) Study of Environmental Protection: Poland, Rep.no. PEF/NIB, Ekono Oy, Otaniemi, Finland, June 1990.
- [A.19] Anon 1991
 Development of emissions in Finland, Finnish Air Pollution
 Prevention News 4-5/91, p. 55.
- [A.20] Anon 1991 Utsläpp av försurande ämnen 1989 (Emission of acidifying substances), Rep.no. 3882, Naturvårdsverket, Solna, Sweden.
- [B.1] Breihofer, D., O. Rentz and J. Ribero Air Pollution and Control in East European Countries.
- [B.2] Bethkenhagen, J. und M. Lodahl (1986) SO₂-Emissionskataster für die CSSR 1982, Forschungsauftrag des Kernforschungszentrums Karlsruhe, DIW (Deutches Institut für Wirtschaftsforschung, Berlin.
- [B.3] Berlyand, M.E. (Ed.) (1990) Annual report on the State of the Air Pollution and Anthropogenic Emissions in Cities and Industrial Centres of the Soviet Union. Vol. 'Emissions of Harmful Substances' 1989, Leningrad (in Russ.).

- [B.4] BHGI (1980) Brennstoffstatistik 1980 der Wärmekraftwerke für die öffentliche Elektrizitätsversorgung in Österreich, Bundesministerium für Handel, Gewerbe und Industrie, Bundeslastverteiler.
- [B.5] Borzeda, A. (1990) L'économie Polonaise en 1989-1990: avant la 'thérapie de choc', Le Courrier des Pays de l'Est 349, Avril 1990, p. 58 (Source: Zycie Gaspodarcze, Jan. 18, 1990 and other).
- [B.6] Blaha, J. (1989) L'économie Tchécoslovaque en 1988: la montée des incertitudes, Le Courrier des Pays de l'Est 338, Mars 1989, p. 55 (source: Hospodarske Noviny no. 6, 1989).
- [B.7] Beranek (1983) Neue Entwicklungen bei der Wirbelschichtverbrennung in der CSSR, Energietechnik 33, 244-246.
- [B.8] Business news from Poland, No. 35 (Febr. 9, 1991), Polish Press Agency, Economic Service Section, Warszawz.
- [B.9] BUS (1987) Vom Menschen verursachte Schadstoff-Emissionen in der Schweiz 1950-2010, Schriftenreihe Umweltschutz Nr. 76, Bundesamt für Umweltschutz, Bern.
- [B.10] Ballaman, R. (1991)
 Federal Office of Environment, Bern. Personal Communication to
 Dornier GmbH.
- [C.1] Couch, G.R. (1988) Lignite Resources and Characteristics, Rep. IEACR/13, Dec. 1988, IEA Coal Research, London.
- [C.2] Couch, G.R., M. Hessling, A.-K. Hjalmarsson, E. Jamieson and J. Jones (1990)
 Coal Prospects in Eastern Europe, Rep. IEACR/31, Dec. 1990, IEA Coal Research, London.
- [C.3] Couch, G.R. (1989)
 Power Generation from Lignite, Rep. IEACR/19, Dec. 1989, IEA Coal Research London.
- [C.4] ČEZ (1986)
 České Energetické Závody, Prague
 Basic information on the Czech Power Works (Leaflet).

- [C.5] CFC (1980) Le Marche des Equipements de Lutte contre la Pollution en Roumanie; Centre Français du Commerce extérieur, Direction des Marchés Étrangers, Paris.
- [C.6] Cieslar, R (1982)General Information on Polish Coking Industry, (in Polish), Koks,Smola, Gaz; 27 (1/7) Jan. 1982 (s.a. C.A. 6, 12, 8157).
- [C.7] Crosnier, M.-A. (1990) Désarroi et crise d'autorité en URSS, l'économie en 1989, les chiffresclés des quinze républiques, le Courrier des Pays de l'Est 349, Avril 1990, p. 34-37, (Source: Izvestia).
- [C.8] Crosnier, M.-A. (1991) L'économie de l'URSS au bord de souffre. Le Courrier des Pay de l'Est 359, Avril 1991, p. 56, 57 (Source: Ekonomika i Zizn, Jan. 1991, no. 5).
- [C.9] Crosnier, M.-A. (1989)
 La perestroika embourbée, l'économie soviétique en 1988, Le Courrier des Pays de l'Est 339, Avril 1989, p. 26-28 (Source: Izvestia).
- [C.10] Csaba, L. (1989) Quo vadis COMECON? Le point de vue des petits pays de l'Europe de L'Est, Le Courrier des Pays de l'Est 344, Nov. 1989, p. 20 (source: Strany Cleny SEV v cifrah 1989).
- [C.11] Chabert, L.-A. (1981)
 Vers un doublement de la production de lignite en Pologne: la mise en exploitation de Belchatow, Revue de l'Énergie 337, Sept. 1981, 428-437.
- [C.12] Chemfacts Chemical Data Services, IPC Industr. Press Ltd., Sutton, Surrey, UK. Scandinavia, 2nd Ed., 1981.
- [C.13] Cielinski, J. and Baranowski (1987)
 Fluctuations in level and concentration of gas-dust emissions from boilers of the Belchatov power plant. In: Nat.l Sci.-Technol.Conf.,
 Environmental protection in the Belchatov industrial region, Belchatov (CA 89:05286).
- [C.14] Czeczot-Bicka, G. and D. Laudyn (1987)
 Belchatov power plant and environmental protection. Ref.: see C13
 (CA 89:05283).
- [C.15] Cherubin, W., J. Marecki, J. Rosada, W. Wasilewski and J. Wojcicki (1989)
 Actual and prospective district heating development in Poland; advantages and setbacks. In: 14th Congress of the World Energy Conference, Montreal, paper 1.2.19.

- [C.16] Ciuk, E. (1990)
 Full power at the Belchatow power plant and what later?, Gornictwo Odkrywkowe 32 (1) 97-100 (CA 91:01464).
- [C.17] Cygan, R (1991)
 The state and perspectives of oil industry in Poland, Euroil 2, 7/8, 91-95.
- [C.18] CORINAIR Inventory (1991) Commission of the European Community, Default emission factors handbook, 2nd Ed., CITEPA, Paris.
- [C.19] Cofala, J. and Bojarski, W. (1987)
 Emissions of sulphur and nitrogen oxides resulting from the energetic utilization of fuels; the situation in Poland, KfK report no. 4257
 (Oct. 1987). Kernforschungszentrum Karlsruhe.
- [C.20] CONCAWE (1987)
 An investigation into evaporative hydrocarbon emissions from European vehicles, Rep.no. 87/60, CONCAWE, the Hague.
- [C.21] Czech environmental statistical data, personal communication Dr. J. Kurfürst (1991).
- [D.1] Doyle, G. (1989)
 Prospects for Polish and Soviet Coal Exports, Rep. IEACR/16, June 1989, IEA Coal Research London.
- [D.2] Durič, M. (1985) The electric power industry in Yugoslavia, 1945-1985, Yugoslav Survey 26, 2, 77-98 (May 1985).
- [D.3] A directory of Poland's Major Industrial Companies (1990) 2nd Ed., Red Square Trade Information Ltd., Wheatley, UK, Sept. 1990.
- [E.1] EIU (1986)
 Energy USSR and Eastern Europe, 1986/87 Year book, The Economic Intelligence Unit, London.
- [E.2] Eronen, J. (1990) L'industrie des pâtes et papiers en URSS: tendances et perspectives, Le Courrier des Pays de l'Est 355, Dec. 1990, p. 66.
- [E.3] European Energy Report, Country Profile Yugoslavia (1990) Financial Times Business Information, London, June 1990.

- [E.4] EMEP, Estimation of airborne transport of oxidised nitrogen and sulphur in Europe 1988, 1989; MSC-E, Moscow.
- [E.5] EPA (1985)
 Compilation of air pollutant emission factors; Vol. II: Mobile Sources, Rep. AP-42, 4th Ed.
- [F.1] Fertilizer Manufacturers World Directory (7th Ed. 1990) The British Sulphur Corporation Ltd., London.
- [F.2] Fenhann, J. (1991) Energy and environment in Estonia, Latvia and Lithuania, Risø report no. M-2943, Risø Natl. Lab., Roskilde, Denmark.
- [F.3] Fernwärme international (1991) Jahrbuch 1991, Länder-Fernwärme-Statistik 1989.
- [F.4] Farbe + Lack (1988, 1989)

 Montly columns about economy and statistics in this periodical.
- [G.1] Gicquiau, H. (1982)
 Bilan et Perspectives de l'Industrie électrique de l'URSS, face au Défi Énergétique, Le Courrier des Pays de l'Est, No. 262, 3-41.
- [G.2] Gertsen, R. (1991)
 De markt voor milieutechnologie in Polen (The market for Environmental Technology in Poland) (in Dutch), EVD, The Hague, April 1991.
- [G.3] Galas, Z. (1989)
 Identification of production processes in the Konin fuel-energy basin,
 Gornictwo Odkrywkowe 31, 2/3 81-91 (Coal Abstr. 90:00789).
- [H.1] Halzl, J. (1990)
 Kraft-Wärme-Kopplung in Ungarn: Probleme und Chancen, BWK 42, 30-34.
- [H.2] Hansson, G (1990) Industri och Miljö i Polen, Utlandsrapport STATT 9005 (ISSN 0280-1094).
- [H.3] Hedlund, R. and M. Widengren (1990) Miljöteknik i Baltikum samt Leningrad-och Kaliningradom rådena, Utlandsrapport Sovjetunionen 9003 (ISSN 0280-1108).
- [H.4] Hoff, H.-G. (1990) Die Stahlindustrie in Ungarn, Stahl u. Eisen 110, 8, 169-175.

- [H.5] Hoff, H.-G. (1990)
 Die Eisen- und Stahlindustrie in der Tschechoslowakei, Stahl u. Eisen 109, 7, 379-383.
- [H.6] Hall, D.O. (1991) Biomass energy, Energy Policy, October 1991, 711-737.
- [H.7] Handbook of Emission Factors (1988)
 Part 3, Stationary Combustion Sources, Ministry of Housing, Physical Planning and Environment, The Hague; Staatsuitgeverij, The Hague.
- [H.8] Heine, P. and A. Baretti (1987)
 Emissionsfaktoren für die Verdampfungsemissionen von Kraftfahrzeugen mit Ottomotoren, Im Auftrag des Umweltbundesamtes, Berlin, Nov. 1988.
- [H.9] Hungarian Statistical Year book 1990, KSH Budapest 1991
- [I.1] Iron and Steel Works of the World, 10th Ed. (1991)
 Metal bulletin Books Ltd., Worcester Park, Surrey, UK.
- [I.2] International Petroleum Encyclopaedia, Vol. 23 (1990) Penn Well Publ. Comp. Tulsa, OK, USA.
- [I.3] International Pulp and Paper Directory 1989Miller Freeman Publ. Inc., San Francisco, Cal. USA (1988).
- [J.1] Jahrbuch Bergbau, Öl und Gas, Elektrizität, Chemie 89/90 (1990) Verlag Glückauf GmbH, Essen.
- [J.2] Josephson, J. (1988) Finland's Environmental Trends, Environ. Sci. Technol. 22, 998-1003.
- [K.1] Krüger (1984)Der grosse Krüger Weltatlas, W. Krüger Verlag, München, FRG.
- [K.2] Krüger, H. (1991)
 Stand der NO_x-Minderungstechnik bei VGB-Mitgliedern, VGB
 Kraftw.techn. 71, 371-395.
- [K.3] Kubin, M. and J. Tuma (1986) Prospects and innovations of existing technologies of power and heat supply, 13th Congress of the World Energy Conference, Cannes, Paper 4.1.

- [K.4] Keresztesi, B. (1986) Increase of wood fuel production in Hungary, In: Proc. IUFRO Project Group P1.09.00, IUFRO 18th World Congress, Ljubljana, Yugoslavia, p. 26-28, L. Sennerby-Forsse and C.P. Mitchell (Ed.s) (Swedish University of Agricultural Sciences).
- [K.5] Ksiezopolski, J. (1990) Present state and projected development of the Polish electric power system; In: Seminar on Energy in East and West: The Polish case, Copenhagen, April 1990, p. 106-121.
- [K.6] Kielland, G. (red.) (1991) Comprehensive review of national pollutant emissions 1990, STF-Document no. 91:05, Statens Forurensningstilsyn, Oslo (in Norwegian).
- [K.7] Kuykendal, W.B. and C.C. Masser (1989) Addendum to the Air emissions species manual, EPA-450/2-88-003 c (PB 90-146416).
- [K.8] Konoplyanik, A.A. (1990) In the mirror of official statistics: Soviet Energy Sector in figures (1970s-1980s), Energy Exploration & Exploitation 8, 130-149.
- [K.9] Kump, S., M. Novak, H.-G. Rych, M. Enzersdorf and G. Zellinger (1989)
 Stickoxidminderung in Österreichischen Wärmekraftwerken, Energiewirtschaftliche Tagesfragen 39, 672-677.
- [K.10] Klaassen, G. (1990) Emissions of ammonia in Europe, working paper WP-90-68, International Institute for Applied System Analysis, Laxenburg, Austria.
- [L.1] Lešnjak, M., D. Hrček, F. Batič, M. Šolar, I. Kolar and F. Ferlin (1989)
 Air Pollution and Damage on Vegetation near Te- Šoštanj Thermal Power Plant in Slovenia (Yugoslavia), Proc. 8th World Clean Air Congress, The Hague, Sept. 1989, Vol. 2, p. 125-130.
- [L.2] Laby Y.M. (1987) Specific Features of Vanadium and Lead Technogenic Pollution of the Biosphere of the Carpathian Region (in Russ.). See Environm. Management Abstr. 3, no. 4, 4.87.65.
- [L.3] Lippmaa, E.T. and M.M. Mytus (1989)
 The Effect of the Oil Shale Power Industry on the Environment (in Russ.), See Environm. Management Abstr. 4, no. 2, 2.87.69.

- [L.4] Lange, M. (1986) SO₂- und NO_x-Emissionsminderung bei stationären Anlagen, Staub Reinh. Luft 46, 400-406.
- [L.5] Lhomel, E (1991)
 Roumanie 1990-1991; Le saut dans le vide, Le Courrier des Pays de l'Est 359, Avril 1991, p. 80 (source: Rom. statistics; Economic Digest, Bucarest, Febr. 1991).
- [L.6] Lyons, P.K. (1990)

 The new energy markets of the Soviet Union and East Europe, Fin. Times Managem. Rep., Fin. Times Business Information, London.
- [L.7] Lengyel, L. and F. Bohoczky (1991)

 The structure of energy consumption in Hungary and the place and role of renewable energy sources, Int. J. of Ambient Energy 12, 31-37.
- [L.8] Lipták, A. (1991) Der Stand und die Entwicklungsmöglichkeiten der ungarischen Fernheizung, Fernwärme international 20, 488-497.
- [L.9] Lipka, L. (1990)
 District heating systems in Poland, In: Seminar on Energy in East and
 West: The Polish case, Copenhagen, April 1990, p. 228-231.
- [L.10] Lumme, E. (1987)
 Summary of NO_x emission estimates from stationary combustion processes in Finland, EURASAP Workshop on Emission Inventories, Paris; P. Bessemoulin (Ed.), p. 405-408.
- [L.11] Lamb, B., A. Guenther, D. Gay and H. Westberg (1987) A national inventory of biogenic hydrocarbon emissions, Atmos. Environm. 21, 1695-1705.
- [L.12.a] Länderbericht Jugoslawien 1987 (1987) Statistisches Bundesamt Wiesbaden, Kohlhammer GmbH, Stuttgart, Mainz.
- [L.13.a] Länderbericht Albanien 1987 (1987) Statistisches Bundesamt Wiesbaden, Kohlhammer GmbH, Stuttgart, Mainz.
- [L.14.a] Länderbericht Rumänien 1986 (1986) Statistisches Bundesamt Wiesbaden, Kohlhammer GmbH, Stuttgart, Mainz.
- [M.1] Mannini, A., M. Daniel, A. Kirchner and H. Soud (1990) World Coal-fired Power Stations, Rep. IEACR/28, Sept. 1990, IEA Coal Research, London.

- [M.2] Mészáros, E., I. Mersich and T. Szentimrey (1987) The Air Pollution Episode of January 1985 as Revealed by Background Data Measured in Hungary, Atmos. Environm. 21, 2505-2510.
- [M.3] Mačala, J. (1989)
 Air Pollution Sources and the Emission Situation in the Eastern Slovakia Region (in Czech.), See Environm. Management Abstr. 4, no. 6, 6.87.150.
- [M.4] Mink, G. (1989) L'économie Polonaise en 1988, Le Courrier des Pays de l'Est 338, Mars 1989.
- [M.5] Matlak, W., M. Jaczewski, J. Filipowicz and J. Solinski (1989) Strategy of energy economy development in Poland upto 2000, In: 14th Congress of the Word Energy Conference, Montreal, paper 1.2.28.
- [M.6] Mining 1991 (1990) 104th Ed., Financial Times International Year books, Longman, London.
- [M.7] Molnár, A. (1990) Estimation of VOC emissions from Hungary, Atmosph. Environm. 24A, 2855-2860.
- [M.8] Mangushev, K.I. (1989)
 USSR energy development: a critical overview, Energy Exploration & Exploitation 7, 426-442.
- [M.9] Minemet Annuaire Statistique (1990) Minemet Holding, Paris 1991.
- [M.10] Mining Annual Review (1991) Mining Journal, London.
- [M.11] Metals & Minerals Annual Review (1991) Mining Journal, London.
- [M.12] Munday, P.K. (19)
 UK Emissions of Air Pollutants 1970-1988, WSL Rep.
 no. LR 764 (AP)M, Warren Spring Laboratory, Stevenage, UK.
- [N.1] Non-Ferrous Metal Works of the World, 5th Ed. (1989) Metal Bulletin Books Ltd., Worcester Park Surrey, UK.

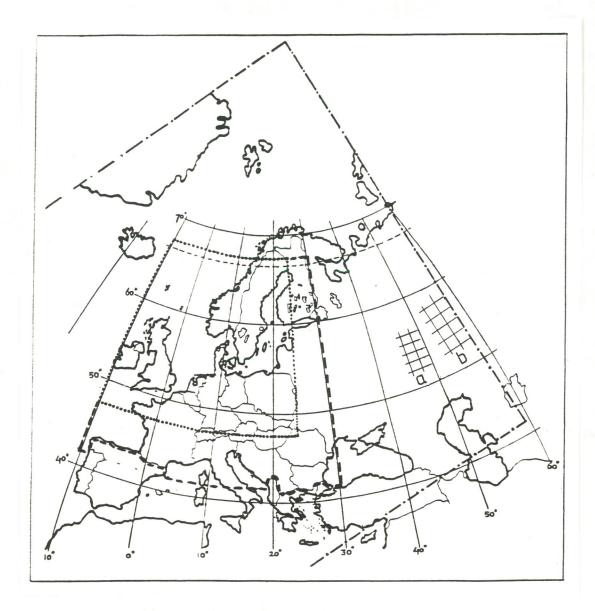
- [N.2] Neporozhniy, P.S. and V.B. Kozlov (1990) Environmental problems associated with the Soviet electric power industry: a survey, Energy Systems and Policy 14, 1-36.
- [O.1] OECD-IEA (19)
 Coal Use and the Environment, Report by the Coal Industry Advisory
 Board Environment Committee, Vol. II, Book D, Sweden UK.
- [O.2] Orthofer, R. und G. Urban (1989) Abschätzung der Emissionen von flüchtigen organischen Verbindungen in Österreich, Rep. no. OEFZS-4492, NU-97/89, Österreichisches Forschungszentrum Seibersdorff.
- [O.3] Orzeszek, W. and W. Wojcik (1987)
 Environmental effects of emission from the Kozienice power plant. In:
 Nat. 1 Sci.-Technol. Conf., Environm. Protect. in the Belchatov industr. region, Belchatov, Sept. '87, p. 172-181 (Coal Abstr. 89:05284).
- [O.4] OECD-IEA (19) Coal information 1991, Paris.
- [O.5] OECD-IEA (19) Energy Statistics of OECD Countries 1980-1989, Paris.
- [O.6] OECD-IEA (19)
 Energy Statistics and Balances of Non-OECD Countries 1988-1989,
 Paris.
- [O.7] OECD (1990)
 Control strategies for photochemical oxidants across Europe, Paris.
- [O.8] OECD (1991)
 The iron and steel industry in 1989, Paris.
- [O.9] OECD (19)
 Iron and steel statistics 1989, Paris.
- [O.10] Okken, P. et al. (1992) Houtkachels in Nederland (Wood stoves in The Netherlands), draft report, Jan. 1992.
- [O.11] Orthofer, R., W. Loibl, T. Piechl, G. Urban (1991)
 Flüchtige Nicht-Methan-Kohlenwasserstoffe in Österreich:
 Regionalisierte Emissionsinventur und Strategien der
 Emissionsminderung, Endbericht, Rep.Nr. OEFZS-A-2065,
 Österreichisches Forschungszentrum Seibersdorf.

- [P.1] Pawlowski, L. (1990) Chemical Threat to the Environment in Poland, Sci. Tot. Environm. 96, 1-21.
- [P.2] Penn Well Worldwide Petrochemical Directory 1990, 28th Ed., Penn Well Publ. Comp., Tulska, OK, USA 1989.
- [P.3] Popa, T., C. Totolo and I. Müller (1984) Verfeuerungsversuche mit aschereicher Braunkohle, VGB Kraftwerkstechn. 64, 343-348.
- [P.4] Plan Econ Reports
 - a. Vol VI (1990), 9-10, Mar. 7, Soviet energy situation update for 1989.
 - b. Vol. VII (1991), 1-2, Jan. 15 Regional aspects of the Soviet economy.
 - c. Vol. VII (1991), 6-7-8, Mar. 6 Soviet and East European energy overview.
 - d. Vol. VII (1991), 9-10, Mar. 20 Economic situation in Yugoslavia in 1990.
 - e. Vol. VII (1991), 11-12, Mar. 27 Soviet economic performance in 1990.
 - f. Vol. VII (1991), 13-14, April 18 Poland's economic performance in 1990.
 - g. Vol. VII (1991), 15-16, May 9 Albania
 - h. Vol. VII (1991), 20-21, June 19 Hungarian economic performance in 1990.
 - Vol. VII (1991), 22-24, July 1
 Overview of consumer markets in Eastern Europe and the Soviet Union in 1980-1989.
 - j. Vol. VII (1991), 25-26, July 15
 Recent Romanian economic and foreign trade performance.
 - k. Vol. VII (1991), 32-33, Sept. 16 State of the Soviet economy in mid. 1991.
- [P.5] Pacyna, J.M. (1989)
 Emissions of major air pollutants emitted in Eastern Europe, NILU
 Rep. OR 48/89, Norwegian Institute for Air Research.
- [P.6] Pierce, T.E., B.K. Lamb and A.R. van Meter (1990)

 Development of a biogenic emissions inventory system for regional scale air pollution models, Proc. 83th Air & Waste Management Ann. Mtg., Pittsburgh, PA, paper 90-94.3.
- [R.1] Reményi, K., L. Voros, F. Horvath and G. Voltay (1986) Rational Power-station Utilization of High Ash- and Moisture-Content Hungarian Brown Coals in Purpose-built Firing Equipment, 13th Congress of the World Energy Conference, Cannes, Paper 4.2.1.

- [R.2] Rosada, J. and J. Troszkiewics (1990)
 Wärmetechnik aus der Bundesrepublik Deutschland in Polen,
 Fernwärme international 19, 175-185.
- [R.3] Rizopoulos, Y. (1990) L'industrie chimique a l'est: l'état du marche, Le Courrier des Pays de l'Est 353, Oct. 1990, 3-21.
- [R.4] Raport o Stanie, Zagrozeniu i Ochronie Srodowiska 1990
 Glowny Urzad Statystyczny, Warszawa 1990
 (Conditions, hazards and protection of environment 1990, Main Statistical Office, Warsaw).
- [R.5] Rutkowski, J. and E. Koldras (1987)
 Measuring SO₂ and dust in the Belchatow power plant area.
 In: (see O.3), p. 201-213 (Coal Abstr. 89:05285).
- [R.6] Raport o Stanie, Zagrozeniu i Ochronie Środowiska 1989 Glowny Urzad Statystyczny warszawa 1989 (s.a. R4).
- [S.1] Simonović, M., M. Prodanović and J. Pop-Jardanov (1986) The Yugoslav Experience in Using Lignites, Proc. 13th Congress of the World Energy Conference, Cannes, Paper 4.1.22.
- [S.2] Schröfelbauer, H., J. Kakl, J. Tauschitz and W. Knyrim (1986) Umbau der Kesselfeuerung von Braunkohle auf Steinkhole im Dampfkraftwerk Zeltweg, VGB Kraftw. techn. 66, 462-472.
- [S.3] Smola, J., K. Prášek and F. Ledvina (1989) Solid fuel combustion and environmental protection in Czechoslovakia, 14th Congress of the World Energy Conference, Montreal paper 2.2.14.
- [S.4] Suva, J. (1988)

 The development and perspectives of the heat and power economy in Czechoslovakia, Fernwärme International, 17, 233-239.
- [S.5] Schmidt, G. (1990)
 Energy management in the steel industry, In: Seminar on Energy in East and West; The Polish case, Copenhagen, April 1990.
- [S.6] Statistisches Handbuch für die Republik Österreich 1991 Österreichischen Statistischen Zentralamt.
- [S.7] Samaras, Z. (1991) Letter with data on exhaust from 2-stroke automobiles: [S.8], Univ. of Thessaloniki and Min. of Environm. Prague.


- [S.8] Stendel, D. and H. Appel (1989) Abgasemissionen von Wartburg und Trabant, Informationsreihe zur Luftreinhaltung in Berlin Nr. 8., Senatsverwaltung für Stadtentwicklung und Umweltschutz.
- [S.9] Szepesi, D.J. (1990)Inst. for Atm. Physics, Budapest and Scherer, B. (1991)GEOS, Berlin; personal communication.
- [S.10] Statistisches Jahrbuch der Schweiz 1992
 Bundesamt für Statistik, Verlag neue Zürcher Zeitung.
- [S.11] Statistical Year book of Sweden 1992 Vol. 78, Statistics Sweden, Örebro 1991.
- [S.12] Schulting, F.L., G.M. Meyer and R.M. van Aalst (1980) Emission of hydrocarbons by vegetation and its contribution to air pollution in The Netherlands, CMP-TNO report 80/16.
- [S.13] Sinyak, Y. (1991)USSR: Energy efficiency and prospects, Energy 16, 791-815.
- [S.14] Sagers, M.J. and T. Shabad (1990) The chemical industry in the USSR, an economic geography, ACS Professional Reference Book, Westview Press; Boulder, San Francisco and Oxford.
- [S.15] Statističky Godišnjak Jugoslavije 1990 (1990), Beograd.
- [S.16] Stanovnik, T. (1986) Household energy consumption in Slovenia, Energy Policy, June 1986, 272-280.
- [S.17] Statistisch Zakjaarboek 1990Nat. Inst. voor de Statistiek, Brussel.
- [S.18] Samaras, Z.C. and K.-H. Zierock (1991)
 Forecast of emissions from road traffic in the European Communities,
 Final report L.A.T., Envicon. Berlin.
- [T.1] Todoriev, N.H. and H.M. Hristov (1989)
 Use of Low-grade Fuels for Heat and Energy Generation. Results,
 Problems and Perspectives in Bulgaria, Proc. 14th Congress of the
 World Energy Conference, Montreal, Paper 4.2.3.
- [T.2] Todoriev, N. and H. Marinov (1986) Technologies for Low-grade Lignites Utilization, Procs. 13th Congress of the World Energy Conference, Cannes. Paper 4.2.1.

- [T.3] Todoriev, N.H. (1989) On the Problem of Energy Supply of a Country with Insufficient Own Energy Resources, Proc. 14th Congress of the World Energy Conference Montreal, paper 1.2.7.
- [T.4] Tiraspolsky, A. (1990)
 L'autopsie de l'économie Bulgare avant un nouveau départ, Le
 Courrier des Pays de l'Est 350, Mai-June 1990, p. 51 (Source: BIKI,
 April 10, 1990).
- [T.5] Tretyakova, A. and M.J. Sagers (1990)

 Trends in fuel and energy use and programmes for energy conservation by economic sector in the USSR, Energy Policy, Oct. 1990, 726-739.
- [U.1] Energy Statistics Year book 1989 United Nations, New York 1991.
- [U.2] Annual Bulletin of Steel Statistics for Europe 1989 United Nations, New York 1990.
- [U.3] USDOC (1987) DOD aeronautical charts. Editions of 1986 and 1987; US Dept. of Commerce, National Oceanic and Atmospheric Administration; National Ocean Service, Riverdale, Md.
- [U.4] UBA (1989)
 Luftreinhaltung '88, Tendenzen-Probleme- Lösungen,
 Umweltbundesamt, Erich Schmidt Verlag, Berlin.
- [U.5] Industrial Statistics Year book 1988, United Nations, New York, 1990.
- [U.6] Umweltbundesamt Österreich (1991) personal communication to Dornier GmbH.
- [V.1] Vernon, J.L. and H.N. Soud (1990)
 FGD Installations on coal-fired Plants, Rep. IEACR/22, April 1990,
 IEA Coal Research, London.
- [V.2] VUPEK (1990) Research Institute of Fuel & Energy Complex, Prague, private communication.
- [V.3] Van Holst & Koppies/SCMO-TNO (1990)
 The State of the Polish Economy and Sources of Pollution. Joint report VH&K/TNO, September 1990.

- [V.4] VGB (1985)
 Tätigkeitsbericht 1984/1985; Technische Vereinigung der Grosskraftwerksbetreiber E.V., Essen FRG.
- [V.5] VGB (1990) Tätigkeitsbericht 1989/1990; Technische Vereinigung der Grosskraftwerksbetreiber E.V., Essen FRG.
- [V.6] Veldt, C. (1991) Development of EMEP and CORINAIR emission factors and species profiles for emissions of organic compounds; IMET-TNO report 91-299 (draft).
- [V.7] Veldt, C. (1991) The use of biogenic VOC measurements in emission inventories, IMET-TNO report 91-323.
- [V.8] Veldt, C. (1991)
 Leaf biomass factors for the estimation of biogenic VOC emissions,
 MT-TNO report 89-306.
- [V.9] Veldt, C. (1985) VOC composition of automotive exhaust and solvent use in Europe, In: Proc. 2nd Ann. Acid Deposition Emission Inventorying Symposium, Charleston SC, J.B. Homolya and P.A. Cruse (compilers) EPA-600/9-86-010.
- [W.1] Wulff, H.W.L. and Van Alphen, A. (1986)
 Verslag van het bezoek aan een Nederlandse milieudelegatie aan
 Polen, 15-19 juni 1986, Par. 4, p. 10-11. Confidential.
- [W.2] World Cement Directory 1983 CEMBUREAU, Paris, 1983.
- [W.3] Walker, S. (1990) Consolidation in copper and coal, Int. Mining, July 1990, p. 11-15.
- [W.4] Wendenburg, L. (1991) Rote Karte für den RGW, Chemische Industrie, nr. 7, p. 28-31.
- [W.5] World Road Statistics 1985-1989 International Road Federation, Geneva.
- [W.6] Wilson, D. (1986) Soviet energy to 2000, EIU Special Report no. 231, The Economist Intelligence Unit, London.

- [Y.1] Year book of Nordie Statistics 1991
 Vol. 29, NORD 1991:1, Nordic Statistical Secretariat, Nordic Council of Ministers.
- [Z.1] Žyvotni Prostředi České Republiky (1990) (not to be quoted).
- [Z.2] Žiolkowski, R. (1980) Betriebsergebnisse und Erhöhung der Betriebssicherkeit von Dampferzeugern grosser Kraftwerksblöcke in der VR Polen, Energietechnik 30, 408-412.
- [Z.3] Zierock, K.-H. and T.I. Zachariadis (1991)
 Volatile Organic Compounds: Estimated emissions of the European
 Communities for the Eighties and the year 2000, Final Report XI/605/
 91, Envicon, Berlin.

Europe in geographic and EMEP grids. EMEP area: -. -. -. -Figure 1 PHOXA 80 area:

PHOXA 90 area: -----

 $Grid\ cells\ shown:\ a=geographical\ grid,\ b=EMEP\ grid$

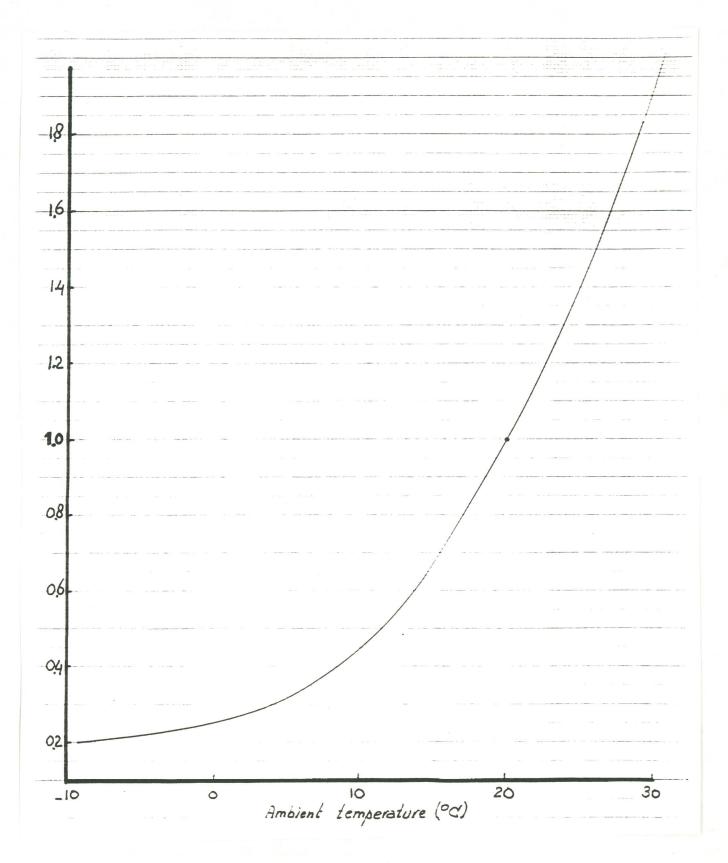


Figure 2 Evaporative VOC emissions from gasoline-powered vehicles as a function of temperature

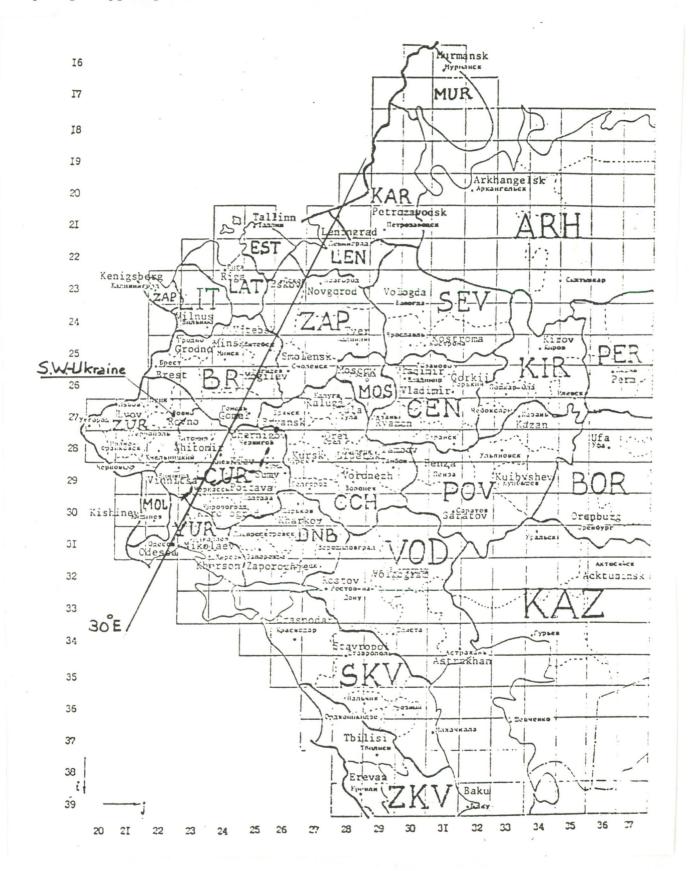


Figure 3 USSR territory division (MSC-E EMEP)

Table 1 Inhabitants of European Countries

Country	Code	li	nhabitants (×10	"
		1980	1985	1990
Albania	AL	2671	3000	3278
Austria	AT	7549	7552	7614
Belgium	BE	9859	9859	9881
Bulgaria	BG	8862	8979	8995
Switzerland	CH	6385		6724
Czechoslovakia	CS	15265	15509	15664
Germany-East	DD	16737	16703	16598
Germany-West	DE	61566	60940	61156
Denmark	DK	5123	5109	5141
Spain	ES	37424	38765	39322
Estonia	ET			1573 ¹⁾
Finland	FI	4780	4910	4971
France	FR	53880	55191	56342
United Kingdom	GB	56330	56518	57376
Greece	GR	9643	9976	10141
Hungary	HU	10708	10645	10563
Ireland	IE	3415	3614	3509
Italy	IT	56434	57079	57461
Iceland	IS	228	243	255
Latvia	LA			2681 ¹⁾
Lithuania	LI			3690 ¹⁾
Luxembourg	LU	364	366	377
The Netherlands	NL	14150	14472	14927
Norway	NO	4086	4157	4245
Poland	PL	35578	37160	38064
Portugal	PT	9766	10151	10434
Romania	RO	22201	22715	23278
Sweden	SE	8310	8345	8523
Soviet Union-Eur	SU		200100 ²⁾	
Soviet Union	SU	265542	277500	290417
Yugoslavia	YU	23304	23235	23861

Source: Britannica World Data 1986, 1990, Encyclopaedia Britannica Inc.

^{1) [}F2] 2) SU < 60° longitude (LOTOS estimation)

 $Up dating \ and \ upgrading \ the \ PHOXA \ emission \ data \ base \ to \ 1990$

Table 2 Numbers of point sources in European countries, outside the EC

Country code	Electricity/ heat production	Refineries chem.ind.	Prim. Fe	Prim. non-Fe	Cement	Pulp/ paper	Auto- mobiles	Total
AT	13	5	3	4	8			33
BG	9	7	2	4	4			26
CH	1	4	3	2	6			16
CS	30	17	6	2	9		1	65
ET 1)	5	1			1			7
FI	16	9	4	2	4	5		40
HU	10	8	5	3	4		3	33
LA 2)	2		1		2			5
LI 3)	10	3			1			14
NO		10	2	9	3	1		25
PL	33	17	15	5	13	2	7	92
RO	22	23	5	5				55
SE	18	22	8	2	3	3		56
SU	11	9	1		4	4		29
YU	27	20	8	8	11			74
ji -	207	155	63	46	73	15	11	570

Estonia

Latvia Lithuania

Table 3a Example of point source input data sheet (energy production)

iox.	Na	ine,	100	at		(dec	imal) t	ype		Year of comm	Inst capa MWe	alled dity MWth	Max. stack ht. (m)	type :	S (%)	H ₁ (M) kg l	Fuel Emiso fac (g.G.) SO _x	or -I)	year/		SO _X year of comm	conti	rol Nox year % of cont	Emies (Gg y (scs))
1	Sz	az	am	en	ti,	1892	47	ra E	H			3×150 6×215		195	- 0	3		1470	!	i						
2	77	szen	in	310	>\$	2/0	8 4/5		EH	2		4x = 36 3x 55 235 200 2335	(380)	250	89	14	lo	21/00	150	,						
3	9	29.	yön	9	ós	200	7 47.5	x8 £	F.			2×100 3×200		205	B	0,85	6.7	1800	260		,					
4		ro	52/	an		18.2	8 47	529	E			3x60 1x55 235	-	120	B	2.4	13.7	2450	260							
5	2	Per	S			182	746	0) 1	EH			20 3×30 .2×60 230	(500)	115				(20pa)	200							
6	1	Sai	Sac	2		203	7 48	7/	54			9× <3	(650)	90	8	1.7	10	2400	150							

Table 3.b Example of point source input data sheet (industry)

A PO						lon	10	ord	inat	6 8 T	net.	Year of		uct		city	Btac	k ty	Fue: consi	umpt	ion (P.J	(Gg	Em1	8810 -1)(ns scs	T	\dagger	+		1	+		+
23	B	2	,	Ple) e	sti	2	000	44.	88	23	(6s)	/sei /20/	rh E	4	40	17.	-													+		-
24	P.	Le	s t	;			2	50:	3 44	28	12345	974	10	tr th E E S	4	300	110																
25	8	r2	25	ti,	Bere	ures	15 2	6,08	94	33	12345	80	120	Ir IC IS BR		200	7	5								3 24	シング	and.	40	ورد	ho.i	22	· ·
26	Te	lec	je	en,	7	loies	ti 2	808	44.7	25	1234	80	pe HU	tr h r E S		220		6															
27	M. Vě	10/	da	ri	Ste	nta		26	49	£34	45 EN	79 83	40	PE		220 00 /20										h							
28	3	عو	20	,			2	95	- 40	52	1		live	21.		250 25										byr.	120						

Table 4 Data sources for data base and inventory data

y	Main	AT	BG	СН	CS	FI	HU	NO	PL	RO	SE	SU	YU
Energy prod.	C2, M1	J1, S2, V4, V5, O4	B1, K1, T1, T2	J1, V4	A9, B2, B7, C4, F3, M3, S4, V2	A2, A3, J1, O4	A1, E1, H1, L7		A8, C15, G2, G3, L9, M5, P1, R2, W1, Z2	C5, E1	A4, J1 O1	G1, H3, L2, L3	A11, D2, J1, L1, S1, V4
SO _x /NO _x control	K2, V1	L4, O4		450									
Petr. refineries	12		L6						C17, V3				
Chem. industry	A10, F1, P2	A6, B4, O2	L6			C12		C12			C12		
Prim. iron & steel	A12, I1, U2				H5		H4		B8, C6, V3, W1				
Prim. non-ferrous	M9, N1								M6, W3				1
Cement	W2								1				
Pulp/paper	13								1				
Vehicle manuf.	A7	late of					-						
Fuel properties	C1, C2, M1	B4, S2	D1, T1, T2		S3, V2	A2, J2	M2, R1		C11, C13, C14, C16, C19, D1	C5, P3	H3	D1, H3, N2	A5, L1
Fuel consumption	C2, F3, H6, L6, P4, U1	O5, S6, O2	T1, T2, T3, P5	O5, S10	K3, P5, W5	O5, Y1, F3	H1, K4, L8, M7, P5, W5	O5, Y1, K6	C15, H2, K2, L9, O6, P5	P5	O5, S11, Y1	O6, T5, S13	E3, O6, W5, S15
Reported emissions		U6	T1	B10	V2, Z1	A19		K6	H2, O3, R4, R5, R6, V3			B3, E4, H3, F2	
Activity data	A16, C10, E3, M9, O8, P4, U1, U5, W4	S6	T4		B6, H5		H9		B5, D3, V3	L5, L12 _c		C7-9, E2, S14	L12a, S14, S15

Table 5 Percentages of energy production capacities covered by point sources in European countries outside the EC (except USSR)

Country		Public		Industrial
code	Electricity	F	leat	electricity
	incl. CHPs	CHPs	Heating stations	
AT	96	34	0	41
BG	99	25	0	54
CH	51	0	0	0
CS	100 1)	16	6	47
ET	99	70	11	0
FI	83	32	0	46
H.	100 ²⁾	92	0	0
LA	86	0	0	0
LI	98	72	0	0
NO	0	0	0	0
PL	94	35	18	28
RO	81	0	0	0
SE	88	54	0	28
YU	98	0	0	0
Total	94 ³⁾ (93.1of 99.2 Gw _e)		8 ⁴⁾ 221 Gw _{th})	31 ^{3) 4)} 3.6 of 11.6 GW _e)

¹⁾ s.a. A9

N.B. In the Soviet Union <30°/at, except the Baltic States, 9.77 GW_e has been recorded. Capacities of 3 plants are unknown but expected to be relatively small. Total coverage in the PHOXA area may be 88%.

²⁾ apparently industrial capacity included

³⁾ Total capacity for electricity: 87% (96.6 of 110.9 GW_e)

⁴⁾ except Ro

Table 6 Lower heat values (H₁, Mj.kg⁻¹) and sulphur contents (S, %ww) of fuels used in European countries, outside the EC

Country		Industria	sources	•	N	on-indus	trial sourc	es	Allso	urces
code	Hard	coal	Brow	n coal	Haro	d coal	Brow	n coal	Res. oil	Dist. oil
	н	S	н	S	н	S	н	S	S	S
AT	28	1.2	10.9	1	28	0.9	10.9 20 ¹⁾	1 0.2 ¹⁾	(2)	(0.2)
ВG	25	2.5	n.a.	n.a.	25	2.5	20 ¹⁾	4 1)	(2.5)	(0.5)
CH	25	(1)	n.a.	n.a.	25	(1)	(20) ¹⁾	(0.2)	2 ²⁾ [B9]	0.2 [B9]
CS	19	1	12.5	1.3	24.2	0.8	15.3	1.3	2.5 [V2]	1.5 [V2]
ET	8.7 ³⁾ 28	1.5 ³⁾ 0.9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	(2.5)	(0.5)
FI	25	1.2	n.a.	n.a.	2.5	1.2	n.a.	n.a.	(1)	(0.2)
HU	n.a.	n.a.	12	2	n.a.	n.a.	12 21 ¹⁾	2 3 ¹⁾	3 [M2]	(0.5)
LA	25	8.0	n.a.	n.a.	25	0.8	n.a.	n.a.	2 ⁴⁾ [F2] (2.5)	(0.5)
LI	25	2.5	n.a.	n.a.	25	2.5	n.a.	n.a.	3 ⁴⁾ [H3] (2.5)	(0.5)
NO	(25)	(1)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	(1)	(0.2)
PL	22	1.3	9	0.8	25	1	n.a.	n.a.	2.5 [C19]	(0.5)
RO	n.a.	n.a.	6.5	0.85	24	(1)	(20) ¹⁾	(2) ¹⁾	3-4 [C5] (3.5)	(0.5)
SE	25	0.8	n.a.	n.a.	25	0.8	n.a.	n.a.	<1 [H3] (0.8)	(0.2)
SU	24	2	10.6	1.3	24	2	10.6	1.3	2.5 [H3]	0.5 [H3]
YU	24	(1)	9	0.2	n.a.	n.a.	9	0.2	(2)	(0.5)

¹⁾ brown coal briquettes

Notes

- Data for solid fuels are from detailed fuel properties data sheets, used for power plants. Also from import data
- Values in parentheses are assumptions
- For peat and briquettes uniform data are used. Peat: $H_1 = 9$, S = 0.5; briquette : $H_1 = 15$, S = 0.5

²⁾ average of medium (1.35%) and heavy (2.5%)

³⁾ oil shale

since LA and LI use oil from the USSR, 2.5% is considered to be a best estimate

Table 7 Lower heat values of liquid and gaseous fuels

Fuel	MJ.kg ⁻¹	MJ.m ⁻³ o
Residual oil Distillate oil	41 42	
Gasolene, kersone	43	
LPG	45	
Natural gas		34
Coke oven gas		17
Blast furnace gas		3.5

Table 8 Volume factors for fuels $(m_o^3. GJ^{-1})$

Fuel	Power plants	Industrial sources district heating
Hard coal	350	450
Brown coal	450	400
Residual oil	300	
Distillate oil	300	
Natural gas	300	400
Coke oven gas		400
Blast furnate gas		450
Oil shale	900	

Sources: H7, V2, H3 (oil shale)

Table 9 Emission factors for stationary combustion sources (g.GJ⁻¹)

Fuel, firing mode			Large	units					Small unit	S	
		pow	NO _x er (MWth in	iput)		SOx 1)	NO _x	CO*2)	CH ₄ 3)	NMVOC 3)	cond. org*3)
	<50	50-100	100-300	>300	all values						
Hard coal and -briq, small units						19000 S/H	50	5000	200	200	80
Hard coal, wall and tan. firing	180	250	310	380		19000 S/H					
Hard coal, grate firing	150	150				19000 S/H					
Brown coal and - briq, small units						14000 S/H	100	5000	200	200	80
Brown coal, pulverised			260	260		14000 S/H					
Brown coal, grate firing	150	150	7" pt2			14000 S/H					
Peat, small units						14000 S/H	100	•	200	200	
Peat, pulverised	280	300	300	300		14000 S/H					
Peat, grate firing	230	230	230			14000 S/H					
Coke					150 *	550	100 *	2000	_	_	_
Oil shale					100 4)	4000 SH					
Wood	200	200				_	80	7000	400	600	400
Resid. oil, small units						490 S	180 *				
Resid. oil, wall or bottom firing	180	190	210	260		490 S					
Resid. oil, tan. firing	140	150	170	210		490 S					
Dist. oils, kerosene	80	100	100			470 S	50	60	_	- 1	_
Dist. oils, gas turbines					400 ⁵⁾	470 S					
LPG						_	50	30	_	_	_
Nat. gas	100	125	150	170			50	100	_		_
Nat. gas, gas turbines					400 ⁵⁾	_					
Coke oven gas, manufactured gas	90	110	130	150		500 S ⁶⁾					
Blast furnace gas	55	65	80	95		_					
Sulph. liquor					50 * ⁷⁾	2000 * 8)			× -		

¹⁾ Assumed fraction retained in ash: brown coal, peat: 30%; hard coal: 5%; oil shale: 80%

Sources:

CORINAIR [C18], except figures, marked with an asterisk. CO and VOC from large units are neglected; from small units, only coal, peat and wood are inventoried

²⁾ Averages of different reported figures

s.a. [V.6]

⁴⁾ Estimated from emission data [F2]

⁵⁾ Broad range of values reported, average is assumed

⁶⁾ for small units: 550

⁷⁾ [L10]

^{8) [}U4]

Table 10 Emisison factors for process emissions (kg.Mg-1 of product)

	NO _x	SO _x	CH ₄	NMVOC	CO
Petroleum refining 1)	0.35 (0.2-0.6)	2.5	0.06 (0.02-0.2) 2)	0.5 (0.2-2) ²⁾	
Ethylene	,		0.3-1	2-5	
LD polythene				1.5-10	
HD polythene				6	
Vinylchloride				2.5 (1-10)	
PVC, emulsion polymerization				3	
PVC, suspension polymerization				1.5	
Polystyrene				1	
Polypropene	_			8 (5-12)	
SBR rubber	X .			5 (1-10)	
SBR latex				10 (3-15)	
ABS				5 (1-10)	
Sulphuric acid, single absorption		14 (10-25)			
Sulphuric acid, dual absorption		3 (1-5)			
Nitric acid	7 (3-15)				
Ammonia	2-6		-		
Coke 1)	1.0	0.65	0.5 (0.2 - 2.5)	0.5 (0.2-2.5)	
Sinter	1.5		0.5	0.05	30
Blast furnace			0.9	0.05	10
Steel, BOF	0.05		"	0.01	10
Steel, EAF	0.2			0.1	10
Steel, OHF				0.05	
Hot rolling				0.02	
Cold rollng				0.15	
integrated iron and steel plant 3)	5 ¹⁾		1.5	0.15	60
Bread				3	
Wine, white			1 **-	0.35	
red			* * .	0.8	
Automobiles 4)				5-20	
hdv, buses 4)			6.5	10-30	

¹⁾ Process emissions and combustion emissions

Note

Factors are presented in different ways:

- single factor: no data available for differentation.
- range: lower value for modern plants, higher value for old plants.
- factor plus range: factor is default value, range, differentiation between modern and old plants.

²⁾ USSR: CH₄;1; NMVOC = 11

³⁾ kg.Mg⁻¹ of crude steel; without coke and EAF; rough, average values

⁴⁾ kg.vehicle⁻¹

Table 11 Reported road transport emissions in EFTA countries (Gg)

Norway (1988)

	NO _x	VOC	co	SO _x
Road				
ldv gasoline	44.4	35.9	348.7	1.1
ldv diesel	2.4	1.7	3.4	0.6
hdv gasoline	4.2	2.8	27.2	0.1
hdv diesel	33.3	3.7	7.5	2.7
	84.3	44.1	386.8	4.5
Off-road				
gasoline	0.2	23.2	58.9	0.1
diesel	13.1	2.2	8.0	0.9
	13.3	25.4	66.9	1.0
Rail	0.5	0.1	0.2	0.1
Aerial	4.0	2.2	10.5	0.2
Navigation				
coastal	48.8	1.7	3.5	8.1
fishery	32.8	1.2	2.3	2.0
off-shore	6.2	0.2	0.4	0.4
	87.8	3.1	6.2	10.5
Total	"			7 7
1988	189.9	74.8	470.6	16.1
1989	186	70	428	14
1990	177	66	393	14

Source [K6]

Sweden, NO_x (1989)

	gasoline	diesel
Road		
automobiles	99	1.8
other Idv	9.6	1.0
hdv) 00	65
buses	} 0.3	12
	108.9	78.8

Source: [A20]

NB: fraction of automobiles with controlled exhaust per 31-12-'89 is

ca. 0.20

Austria (1988), traffic

	A PART THAT
NO _x	148
VOC	140
CO	532
SO _x	5

Source: [U6]

N.B. fraction of automobiles with controlled exhaust in 1988: 0.10, in 1990: 0.23 [S6]

Switzerland (1988) traffic

NO _x	136	
VOC	72.8	
SO _x	4.9	

Table 12 Emission factors for mobile sources (g.GJ-1)

A. Exhaust emissions

Vehicle/fuel type		NO _x			CH ₄		NMVOC			co			SOx
	urban	non- urban	overall	urban	non- urban	overall	urban	non- urban	overall	urban	non- urban	overall	
Light duty vehicles													
gasoline, 4-stroke 1)	450	1200	800	65	45	55	750	530	640	5800	4600	5200	24
gasoline, 2-stroke	100	350	220	70	40	50	4000	2500	3200	6500	4000	5000	24
diesel	290	330	310	3	8	6	60	190	150	420	460	440	240
Heavy duty vehicles, buses													
gasoline	470	1100	1000	60	40	45	670	450	500	7000	7000	7000	24
diesel	1300	1600	1550	12	5	6	300	120	150	650	320	350	240
Motorcycles, mopeds			80	*		150			9000	-		15000	24
Rail and waterway transport													
diesel			1550			6			150				240

¹⁾ at 20 °C ambient temperature; incl. cold start

Sources: calculated from COPERT data; 2-stroke ldv: [S7], 2/3 Trabant and 1/3 Wartburg assumed. [S9], SO_x factors are default values (0.5% S in diesel and 0.05% S in gasoline assumed)

B. Evaporative emissions

Vehicles: 45 g VOC.vehicle⁻¹.day⁻¹ at 20 °C ambient temperature (relation with temperature in fig. 2).

Gasoline distribution: 3.5 g VOC.kg⁻¹ of gasoline (80 g: GJ⁻¹).

Table 13 Estimated solvent losses in East European countries (kg.cap.⁻¹.y⁻¹)

Country				Printing	aan aaaaaaaaaaaaaa o	Chem.	Consumer	Total		
	non- industr.	industr.	degreasing		indddi y		products	industr.	non- industr.	
BG	2	1.5	1	0.5	2	0.2	0.5	5	2.7	
CS	2.5	2	1.5	0.5	2	0.3	0.5	6	3.3	
Н	2	1	0.5	0.5	1	0.2	0.5	3	2.7	
PL	2	1	0.8	0.5	1	0.2	0.5	3.3	2.7	
R	1.5	1.5	1.5	0.3	2	0.2	0.3	5.3	2.0	
SU 1)	2.5	2	1.5	0.5	1.5	0.2	0.5	5.5	3.2	
YU	1.5	1	0.5	0.5	0.5	0.2	0.5	2.5	2.2	

¹⁾ For the Baltic States, totals are assumed to be 3 both for industrial and non-industrial losses.

Table 14 Reported solvent losses in West European countries

)-MAP (80)		INAIR 985)	1985	men	[Z3] % member no state indus	
	Gg	kg.cap ⁻¹	Gg	kg.cap ⁻¹	1980	estim	industrial [Z3]	
AT	130 ¹⁾	17.2						1000
BE	128	13.0	82.4	8.36	0.64	82.4	('85)	59
CH	165 ²⁾	25.8						
DE	915	14.9	1119.7	18.4	1.23	1050	('90)	31
DK	53.7	10.5	58.5	11.5	1.10	58	('89)	52
ES	536	14.3	327.1	8.45	0.59	327	('85)	64
FI	67.9	14.2						
FR	464.5	8.62	437.6	7.93	0.92	438	('90)	49
GB	630	11.2	668	11.8	1.05	662	('89)	47
GR	37.1	3.85	27.9	2.80	0.73	27.9	('85)	62
IE	34.1	10.0	21.2	5.87	0.59	25	('90)	68
IT	640	11.3	396.6	6.95	0.62	519	('89)	39
LU	3.50	9.62	2.64	7.21	0.75	2.6	('85)	67
NL	145.4	10.3	163.7	11.3	1.10	164	('85)	58
NO	50 ¹⁾	12.2						
PT	75	7.68	52.1	5.13	0.67	66.5	('90)	53
SE	110.5 ³⁾	13.3						

¹⁾ reported data for 1988 are the same 2) reported for 1988: 184.5 (27.7) 3) reported for 1990?: 95

Table 15 Emission factors for biogenic VOC emissions from vegetation

Vegetation		Leaf biomass factor 1)		ssion t 30 °C ²⁾	Composition ^{2) 3)}			
category	representative	(Mg.km ⁻²)	(μg.g-1.h-1)	(µg.m ⁻² .h ⁻¹)	ı	т	U	
High isoprene	all oak species	320	day: 14.3 night: 3.5		75		25 100	
Non-isoprene	all other broad-leaved deciduous ssp.	300	2			5	95	
Coniferous	All conifer species	500-1600 ⁴⁾	3.8			65	35	
Crops	all crops	n.a.		40	20	50	30	
Grassland	pastures, grassland range lands, stepps etc.	n.a.		100		20 5)	80 ⁵⁾	

from [V8] from [P6] I = Isoprene, T = terpenes, U = unidentified

	>60° lat.	55°-60° lat.	<55° lat.
Pinus sylvestris	500	700	700
Picea abies	800	1400	1600
Other conifers	1400	1400	1400

⁵⁾ different from [P6], use was made also of [S12]

Influence of ambient temperature:

 $E_t = E_{30} \exp [a (t-30)]$

	а
Isoprene	0.24
Terpenes	0.10
Unidentified	0.072

Table 16 INO₂ and SO₄" fractions in NO_x and SO_x emissions (% ww)

	Solid fuels		Resid	lual oil		liquid els	Gaseous fuels	
y a la company	NO ₂	SO4"	NO ₂	SO ₄ "	NO ₂	NO ₂	SO ₄ "	SO4"
Stationary combustion sources								
point sources, boilers	4	1	2	3	n.a.	3	1.5	_
point sources, gas turbines		_	_	_	15	_	15	_
area sources, industrial	2	2	1.5	5	4	3.5	3	_
area sources, non-industrial	2	2	1	4	5	3.5	5	-
Processes								
Sulphuric acid, single contact		3						
Sulphuric acid, double contact		6						
Nitric acid	40						11	
Ammonia	40		74					
Mobile sources					-			
Gasoline, highways					1	1		
Gasoline, other modes					3	1		
Gasoline, overall					2.5	1		
Diesel fuel					8	2		

Updating and upgrading the PHOXA emission data base to 1990

52 0.5 3.5 3.5 1.5 1.5 6.5 6.5 0.5 unsaltaldC3 2 0 0 4.3 0.7 1.8 3.9 3.9 9.4 9.4 9.5 0.2 0.2 1.8 0.55 0.6 0.6 0.55 0.35 0.32 0.32 0.33 1.0 3.3 2.5 Transport controlled Gasoline, 4-stroke unidentified oX bX mX EB 124TMB 135TMB oth.ar C9 123TMB 2.3 C6 = C7+ = uncontrolled mpX EB ST 124 TMB 135 TMB oth.oxyg. oth.ar C9 arC10+ 1.3 C4 = 105 = 205 = 106 2.3C6 = 104 = 204 = acald form et alc 7 ipa 5 cellosolves 7 Solvents acetone MEK MIBK me alc esters 5 5 5 2 32 95 3 23 8 4 C2 = 100
HDPE:
G3 85
C2 = 15
VC:
C2 = 20
dce 45
VC
CIHC 15
PVC:
VC
NC
ST
100
PP:
ST
SBR rubber: process ST SBR latex: Chem. 1.3 C4 === ST ovens Coke Gasoline Vapour Refineries 10 1.5 0.4 0.1 0.5 0.5 0.5 1.5 1.5 0.5 satald C4 3 unsatald C4 2 ket 1.5 furans 4 Non-industr. comb. Wood 30 2 2 2 2 1 1 2 Solid C2 C3 C4+ C2 = C2 C3 = C3 = T X X

Table 17. NMVOC profiles (% ww, substances)

Table 18 NMVOC profiles, ADOM chemical mechnism (% ww)

7, 1		Non-industrial R combustion		Refineries Gasoline vapour		Solvents	Transport			
	Solid						Gasoline		Diesel	
	fuels						Uncontr.	Contr.		
non reactive	25	40 1)	7	1	32	21	11.8	6.5	9	
propane	10	1.5	20	1	1	-	0.2	0		
C4+ alkanes	5	3.5	65	85	-	27	36.5	40	52	
ethene	30	30	1	-	60	-	7	9.4	12	
higher alkenes	10	9	1.5	11	6	-	10.5	9.0	7.5	
mono-alkylbenzenes	1	5.5	3.5	1.5	1	6	12.8	7.4) 05	
di- and trialkylbenzenes	1	2	2	0.5		10	19.2	25	8.5	
formaldehyde		2	-	-		-	1	1.6	6.5	
higher aldehydes	18	6	-	-		-)	1	4.5	
higher ketones)	0.5		-		36 ²⁾	} 1	} 1.1	-	
% CH ₄ in VOC	50	40	11	0	50	0	8	11	4	

incl. furans
 incl. alcohols, esters and ethers

Table 19 Fuel wood consumption (small units)

	[O6] (OECD)	[H	[6]	Misc	ellaneous	This w	ork ¹⁾
	1989 Vegetal fuels (PJ)	FAO, 1988 Fuelwood (PJ)	Various '88 ('89?) Biomass (PJ)			PJ	GJ.cap ⁻¹
AL	15.7	17				17	5.2
AT		15		65	2)	65	8.6
BE		6				6	0.6
BG	16.5	19	17		4	17	1.9
CH		9	t ty	12.1	3)	12	1.8
CS	44.8	16	20			(30)	(1.9)
DD	37.0)) 101			40	2.4
DE		} 47	} 101	42	4)	40	0.65
DK		4	88	17	5)6)	4	0.8
ES		36	38			38	1.0
ET				7	7)	7	4.5
FI		32	150	158	⁵⁾ (30)	30	6.1
FR		112	336			112	2.0
GB		2	50			50	0.9
GR		22	42			42	4.1
HU	16.2	32	34	15	8)	15	1.4
ΙE		0	46	0	9)	0	0
IT		48	162	60	10)	(60)	1.0
IS		0		0	5)	0	0
LA				38	11)	35	13
LI				15	12)	15	4.1
LU						0.2 13)	0.6
NL		1		17	14)	17	1.1
NO		10	32	34	⁵⁾ (18.6)	19	4.4
PL	66.5	40	82			(70)	(1.8)
PT		6	34			34	3.3
RO	46.0	49	45			46	2.0
SE		48	234	235	⁵⁾¹⁵⁾ (35)	35	4.1
SU	1037	930	1617		16)	1000	3.4
YU		48	30			160	7 17

Figures in parenthesis: estimated (generally by comparison)

[02], [011]

13) Assumed to be proportional to BE

[O10] 980 Gg

Ca. 1400 wood and 110 peat [T5]

^{1990 (20%} industr. ?) [S10] 2.8 Tg in 1986 [A14]

Wood, peat, sulphate and sulphite lyes, garbage [Y1, S11]

⁶⁾ Incl. straw

^{7) 1988 [}F2] 8) 2.4×10⁶ m³ (1986) [K4]; 0.98 Tg (resid.); 0.13 Tg (agric., foresty) 0.06 Tg (ind.) [H9]

Peat only (CORINAIR)

¹⁰⁾ Source unknown

^{11) 1985: 46; 1989: 35 (}estimation) [F2]

^{12) 6} PJ Wood, 9 PJ other (agr. waste?) [F2]

Energy conversion: 46; Industry: 154 [S11] For heat from < 20 MW_{th} inst.: 440 [S13].

[[]S16] Slovenia (1983): 21.6 GJ per household → 6.8 GJ.cap⁻¹ (Slovenia: 8.4% of inh.); Urban = 0.45 of rural

87 46 35 84 20 69 47 3.5 42 56 120 217 77 Total diesel 4.2 9 0.8 21 15 15 13 13 74 6.5 rail & water Other, diesel 17 25 1.5 3 4 420 3 water 1.5 7 1.2 21 71 7.1 2.5 580 3 GG. 83 37 34 63 64 34 2.5 18 70 70 450 total Road, diesel hdv 35 9 24 90 320 က 10 S N 8 30 è 110 40 150 71 20 83 3 3 15 76 110 88 185 2050 total mc, mp 75 Road, gasoline - 27 1350 hdv 2-stroke 13 8 4-stroke 625 10 32 83 22 Country AT BG CH (89) CS ET (88) FI (89) HU LA (89) LI NO (89) PL RO SE SU

Table 20 Transport, fuel consumption (PJ)

Table 21 Production data of non-CEC countries (Gg; vehicles: $\times 10^3$)

	AT	BG	CH	CS	FI	HU	NO	PL	RO	SE	YU	SU	ET	LA	LI	МО	BR
Refinery throughput	8800 ¹⁾	11086	3054	15100	9240 ¹⁾	7938	10000 ¹⁾	13304	23948	16000 ¹⁾	15769	466600	-	-	12000		32000
Coke	1771 ¹⁾	1375	_	9743	-	1027	-	13720	4080	1174 ²⁾	2350	77200		-	- 1	-	-
Pig iron	3823 ¹⁾	1442 ²⁾	-	9670	2284	1697	240 ¹⁾	8500	(8280)	2638 ¹⁾	2460	110000	-	-	- 1	-	
Crude steel, BOF	4334 1)	(1600)	-	(6900)	(2380)	1424	(130)	6000	(4650)	(2450)	(1450)	(51000)		-	- 1	_	3)
Crude steel, EAF	384 ¹⁾	(1000)	1050 ¹⁾	(2500)	(470)	358	(246)	2200	(2300)	(1950)	(1150)	(22000)	-	3)		600	3)
Crude steel, OHF	-	(300)		(5500)	-	1180		5400	(2750)	-	(1100)	(81000)		3)	-	-	3)
Crude steel, total	4291	2900 ¹⁾	1050 ¹⁾	14900	2850	2963	376	13600	9690	4400	3690	154000	-	(600)	-	(600)	1100 ¹⁾
Rolled products	3)	3)		3)		2176	1	9850	10600	3)	3)	112000	-	(800)	-	(450)	(700)
H ₂ SO ₄	3)	846 ¹⁾	-	1242 ¹⁾	1179 ²⁾	244	796 ²⁾	3160 ²⁾	1825 ²⁾	1000 ²⁾	1384	27300	(500)	-			3)
HNO ₃	3)	3)	-	3)	544 ²⁾	(630)	3)	2187 ²⁾	3)	3)	858 ²⁾		(100)	-			3)
NH ₃	3)	1326 ¹⁾	3)	969 ¹⁾	3 2)	540	3)	2338 ²⁾	3385 ⁴⁾	3)	858 ²⁾	22460	(200)	-			3)
Ethylene	3)	217 ¹⁾	3)	641 ¹⁾	3)	234	3)	166 ²⁾	319 ⁴⁾	304 ¹⁾	242 ²⁾	3175 ²⁾	-	-	-	-	3)
Vinylchloride	-	3)	-	3)	3)	3)	3)	3)	3)	3)	3)		-	-	-	1	-
PVC	(30)	31 ¹⁾	3)	213 ¹⁾	3)	185	3)	208	208 4)	3)	182 ²⁾	(800)	-	-	-	-	-
LDPE	(130)	(80)	-	(100)	3)	221	3)	166 ²⁾	(65)	(160)	(130)	-		-	-	-	3)
HDPE	(80)	(30)	-	(70)		-	3)	-	(85)	(67)	(100)		-	-	-	-	-
PE	(210)	111 1)		172 ¹⁾	3)	221	3)	166 ²⁾	150 ⁴⁾	227 1)	234 2)	(1500)	-	-	-	-	-
PP	(200)	59 ¹⁾	-	192 ¹⁾	-	156	3)	81 ²⁾	-	3)	29 ²⁾		-	-	-	-	-
PS	-	29 1)	-	77 1)	3)	-	-	23 ²⁾	33 ⁴⁾	3)	43 ²⁾	(600)	-	-	-	-	-
SBR	-	25 ¹⁾		76 ¹⁾	3)	-	-	127 ²⁾	3)	3)	3)	3)	-	-	-	-	-
Cement	4903	4680	4944 ¹⁾	10970 ²⁾	1667	3933	1261	12564	13260 ¹⁾	2400	8100	137000	(1100)	(830)	3500 ¹⁾	(2200)	(2200)
Pulp	3)	173 ¹⁾	3)	3)	3)	61	1940 ²⁾	678 ²⁾	3)	2374 1)	656	(10800)	(150)	(240)	(200)	-	(340)
Bread	71	(650)	(60)	(1000)	177 ²⁾	673	(130)	(2700)	(1500)	225 ¹⁾	1225 ²⁾	32500	(230)	(400)	(550)	(400)	1503 ²⁾
Automobiles, Idv	6.64 ¹⁾	14.2 1)	-	189 ¹⁾	36 ¹⁾	-	-	286 ¹⁾	144 1)	235 1)	285	1300					
hdv, buses	4.98 ¹⁾	10 ¹⁾	-	50.5 ²⁾	0.8 1)	8.0	-	5.3 ¹⁾	3.9 1)	30 ¹⁾	29 1)	1068 ²⁾					

¹⁹⁸⁹ 1988

data in parenthesis: estimate

data absent

¹⁹⁸⁷

Table 22 Update factors for road transport emissions in CEC countries 1990/1985

		BE	DE	DK	FR	GB	IE	IT	LU	NL
6010+6050+6070	NO_x	1.02	0.96	1.22	1.08	1.11	1.15	1.12	1.11	1.12
	CO	0.77	0.67	0.85	0.87	0.86	0.85	0.90	0.85	0.75
	VOC	0.96	0.81	1.08	1.03	1.06	1.08	1.05	1.03	0.90
6020+6060	NO _x , CO, VOC	1.10	1.10	1.04	1.13	1.05	1.16	1.28	1.04	1.10
	SO _x	0.72	0.67	0.42	1.13	1.02	0.98	0.87	0.67	0.73
6030+6040		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
6080+6090	VOC	1.09	1.17	1.06	1.03	1.19	1.03	1.29	1.35	1.02

Source: [S18]

Table 23 SO_x abatement installations at power plants in CEC countries

Country/plant name	Unit	Capacity (MW _e)	Year	%SO _x removal	
Denmark				Arron November	
Amagervaerket KK	3	250	89	90	
Avedoereverket 1)	1	250	90	90	
Studstrupverket	3	350	89	92	
France					
Gardanne	5	600	85	60	
Italy					
Brindisi Sud	1	660	90		
Brindisi Sud	2	660	90	127,3-76	
Brindisi Sud	3	660	90		
Brindisi Sud	4	660	90		
Brindisi Nord	1	320	90		
Brindisi Nord	2	320	90		
Netherlands					
Amer	8	645	88	88	
Borssele	11	200	87	93	
Borssele	12	200	87	93	
Nijmegen	13.1	325	85	90	
Nijmgen	13.2	300	89	90	
Maasvlakte (R'dam)	1	540	87	88	
Maasvlakte (R'dam)	2	540	88	88	

¹⁾ New power plant; also NO_x control

Source: [V1] Installations in use ≤ 1990 only.