
International Journal of Fatigue 187 (2024) 108466

A
0

Contents lists available at ScienceDirect

International Journal of Fatigue

journal homepage: www.elsevier.com/locate/ijfatigue

Fatigue driving force of riveted shear joints in bridges — Replacing the net
section stress
Johan Maljaars a,b,∗, Sjoerd Hengeveld a,b, Jorrit Rodenburg a

a TNO, Molengraaffsingel 8, Delft, 2629 JD, The Netherlands
b Eindhoven University and Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands

A R T I C L E I N F O

Keywords:
Fatigue test database
Riveted joints
Double covered joints
Stress concentration factor
Hoop stress

A B S T R A C T

Many old steel bridges contain hot riveted double strap butt joints. The fatigue life of these joints is subject
of growing concern. We collected 629 fatigue tests, showing that the fatigue resistance expressed as the net
section stress range is extremely scattered. Based on the theory of mechanics and the finite element method,
we developed analytical equations to estimate the hoop stress range in the plate at the rivet hole. Using this
stress parameter, the scatter in fatigue resistance reduces significantly. The model also gives insight into how
the joint geometry influences the fatigue resistance.
1. Introduction

Hot riveting was the main joining method in steel bridges before
1950 and it has been applied until late in the years 1970. In hot
riveting, rivets composed of a shaft and a shop head are heated be-
fore being installed in the holes in plates or sections. The rivet field
head is subsequently created by hammering the edge of the inserted
shaft [1]. Contraction during cooling causes the rivets to clamp the
plates. Friction between the plates transfers part of the shear load if
the assembled joint is loaded in shear in service. Clamping thus has
a positive influence on the fatigue resistance of riveted joints. Many
bridges with riveted joints are still in service to-date, and they are
facing (rail or road) traffic volumes excessively higher than anticipated
in their design. With their age increasing, the fatigue resistance of the
riveted joints is subject of growing concern [2–7].

The fatigue resistance of riveted joints is often expressed in terms
of the net section stress range Δ𝜎𝑛𝑒𝑡, i.e., the average stress in the
cross-section reduced by the holes, see Fig. 1(a). Refs. [8–12] provide
a single net section stress range versus fatigue life curve (S–N curve)
for all riveted details. However, the actual force transfer and the stress
distribution in the joint are complex, the variations in geometry of
these joints are large, and the clamping force and friction coefficient
are subject to significant scatter. This causes a large scatter of predicted
versus tested fatigue lives. To reduce the scatter, Taras and Greiner [13]
proposed different S–N curves for different joint types. In the current
study, we consider double covered joints as displayed in Fig. 2. Even for
this single joint type, different studies [13–17] recommend significantly
different fatigue resistances based on tests.

∗ Corresponding author at: Eindhoven University and Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands.
E-mail address: johan.maljaars@tno.nl (J. Maljaars).

Significant differences between tests were observed already in the
years 1930. Wilson [18] showed a large influence of geometry on
the fatigue resistance of double lap joints. Graf [19–21] was the first
pointing to the influence of the ratios between bearing stress, rivet
shear stress and net section stress. In the years 1950, Baron and Lar-
son [22–24] conducted a systematic study into the influence of various
geometric parameters on the fatigue resistance. Parola et al. [25]
extended a preliminary study of Lewitt et al. [26] into the influence
of bearing, rivet clamping, and stress ratio on the fatigue resistance.
However, because of the large scatter in fatigue resistance, the limited
number of tests per series, and the complicated force distribution in
riveted joints, these studies have not resulted in a quantified recom-
mendation to account for bearing in the fatigue resistance of a given
geometry.

More recently, the use of the Finite Element (FE) method has
enabled the evaluation of the stress near the edge of the rivet hole [14,
27,28], allowing for the quantification of the geometric influence on
that stress. These studies are limited to applications to one or a few ge-
ometries. Based on similar FE models, we have developed an analytical
model consisting of closed-form equations to estimate the maximum
tangential normal stress in the plate at the hole edge in riveted double
covered joints – referred to as hoop stress 𝜎ℎ, see Fig. 1(b). We applied
this analytical model to a large database of double covered joints to
check its performance in predicting the fatigue resistance. Our hypoth-
esis is that the net section stress, as used to-date in the assessment of
these joints in bridges, is not representative of the fatigue driving force,
and it is not a good indicator of the fatigue resistance. We will show
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Nomenclature

Operators

Δ𝑋 Range of cycle 𝑋
E(𝑋) Expectation of variable 𝑋
S(𝑋) Standard deviation of variable 𝑋
V(𝑋) Coefficient of variation of variable 𝑋
𝑋 Mean of cycle 𝑋

Symbols

𝛽 Bearing ratio
𝜇 Friction coefficient
𝜈 Poisson ratio
𝜎 Stress
𝜎𝑢 Tensile strength
𝜎𝑐𝑙,0 Rivet clamping stress before load applica-

tion
𝜎𝑐𝑙 Rivet clamping stress
𝜎ℎ Hoop stress in ply at rivet hole
𝜎𝑛𝑒𝑡 Net section stress
𝜎𝑛𝑙 Stress correction during unloading
𝜎𝑝 Ply prestress caused by rivet clamping
𝑎 Hutchinson’s factor
𝑎1, 𝑎2 Constants in the equation for 𝐾𝑡,𝑝𝑖𝑛
𝑏 Parameter of the lognormal distribution
𝑏1, 𝑏2 Exponents in the equation for 𝐾𝑡,𝑝𝑖𝑛
𝐶 Location parameter of the Basquin equation
𝐶 ′ Location parameter of the 6PRFLM
𝐸 Young’s modulus
𝑒 End distance
𝐹 Applied force
𝑓 Force fraction
𝑓𝑅 Stress ratio correction for net stress
𝑓𝑅ℎ Stress ratio correction for hoop stress
𝐺 Shear modulus
ℎ Semi grip
𝑘 Spring stiffness
𝐾𝑡 Stress concentration factor
𝐾𝑡,𝑓𝑟𝑖𝑐 Stress concentration factor for frictional

load
𝐾𝑡,ℎ𝑜𝑙𝑒 Stress concentration factor at a hole
𝐾𝑡,𝑝𝑖𝑛 Stress concentration factor for pin loading
𝐾𝑡,𝑠 Stress concentration factor for a single rivet
𝑙′ Fatigue limit in the 6PRFLM
𝐿1, 𝐿2 Parameters of a lognormal distribution
𝑚 Inverse slope of the Basquin equation
𝑚′ Inverse slope parameter of the 6PRFLM
𝑁 Number of cycles

that the hoop stress estimated with the analytical model has greater
predictive capability for the fatigue resistance.

2. Description of the test data

We assume the fatigue performance of double lap joints to be
equal to that of double strap butt joints. We collected 629 fatigue test
results on double strap butt and double lap joints from 20 sources.
All data comprise carbon steel specimens; data from puddle iron [14,
15,29,30] and manganese, silicon, or nickel steels [18,31] are not
2

s

𝑛𝑝𝑟 Number of rivets per row
𝑛𝑟𝑜𝑤 Number of rivet rows
𝑛𝑡𝑒𝑠𝑡 Number of tests
𝑝 Pitch
𝑝′ Curvature parameter of the 6PRFLM
𝑅 Net section stress ratio
𝑟 Hole radius
𝑅ℎ Hoop stress ratio
𝑟𝑜 Cone outer radius
𝑅𝑠𝑞 Coefficient of determination
𝑡𝑝 Semi ply thickness
𝑡𝑠 Thickness of one strap or lap plate
𝑢 Deformation
𝑤 Semi plate width

Subscripts (multiple used)

𝜇 Accounting for friction
𝐶 Characteristic value
𝑖 Of rivet row 𝑖

𝑚𝑠 Of mill scale contact
𝑝 Of the ply
𝑟𝑙𝑝 Of red lead paint
𝑟 Of the rivet
𝑠𝑙𝑖𝑝 At which slip occurs
𝑠 Of the strap or lap plate
𝑧 In plate thickness direction

Superscripts (multiple used)
𝐹𝐸 According to the finite element method
𝑚𝑎𝑥 At maximum load of the cycle
𝑚𝑖𝑛 At minimum load of the cycle
𝑡 At tipping point, i.e. at load causing slip in

compression

considered. Tests with staggered rivet patterns [24,32] are also not
considered. Most data stem from specimens made for the purpose of
testing. Tested joints taken from actual bridges are selected only if they
are reported free from corrosion and without any theoretical fatigue
damage (e.g., because their location was close to the neutral axis of a
beam in bending). Table 1 provides the data, where geometric symbols
refer to Fig. 3, 𝜎𝑢 is the ply tensile strength and 𝑛𝑡𝑒𝑠𝑡 is the number of
ests (summation of failed specimens and run-outs). The radius 𝑟 refers
o the hole; the rivet has a smaller nominal radius, but it has almost the
ame radius as the hole after driving [18,21]. Rivet rows are counted
rom outside to inside, so the first row is the furthest away from the
plice.

The surface finish influences the friction coefficient. A number of
pecimens has Red Lead Paint (RLP) or a similar coating applied on
he plate faces; all other specimens have direct contact between the mill
cales. The clamping force of some of these is reduced to almost zero
efore conducting the tests, by machining away most of the rivet head
r by pressing the rivet head to detrude the shank [25] or by using
ins instead of rivets [33]. We conducted three additional tests, also
iven in Table 1. The database is available through the supplementary
aterial, see Appendix A.

The summed strap thickness is always equal to or larger than the ply
hickness in bridge joints. Out of the 30 tests conducted with 2𝑡𝑠 = 2𝑡𝑝,
nly two failed in the lap plate, a few were run-outs, and all others
ailed in the ply. Therefore, this study considers ply failure only. Ply
ailure occurred in the first rivet row – the row furthest away from the

plice (Fig. 3) – in all joints.
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Fig. 1. Definition of stress used in fatigue assessment: (a) Side view; (b) Net section stress, 𝜎𝑛𝑒𝑡; (c) Hoop stress, 𝜎ℎ.
Table 1
Rivet double lap and double strap joint fatigue test database.

L;Sa 𝑛𝑟𝑜𝑤 𝑛𝑝𝑟 𝑟 𝑤 𝑡𝑝 𝑡𝑠 𝑝; 𝑒b RLPc 𝜎𝑢 𝑛𝑡𝑒𝑠𝑡 𝑅 Source
[mm] [mm] [mm] [mm] [mm] [MPa]

S 2 1 8.5 35 6 8 70 No 410–590 74 0.09–0.38 [31]
S 2 1 8.5 35 6 8 70 Yes 590 10 0.08–0.17 [31]
S 2 1 8.5 35 6 8 70 Yes 590 4d 0.13–0.15 [20]
S 2 1 10 40–61 5–13 9–13 70 No 537–572 37 0.03–0.81 [20]
S 2 2 10 48 6.5 10 70 No 561 6 −1–0.03 [20]
S 3 2 10 66 6.5 10 70 No 567 4 −1–0.03 [20]
S 1 1 10 35 6–8 10 50 No 386 24 0–0.67 [19]
S 2 2 10 39–59 5–8.5 6.5–13 70 No 514–562 25 −1–0.03 [21]
S 2 1 11.5 58 7.5 10 80 Yese f 31 0 [34]
S 3 1 10 40 6 10 100 Yes 365 3 0 [34]
L 1 2 14.3 76 9.5 9.5–13 45–64 No 423–431 12 0 [18]g

L 2 1 14.3 52–74 4.7–9.5 9.5–32 102 No 434–442 9 0 [18]
L 2 2 14.3 45–52 6.4–9.5 9.5–51 102–152 No 439–447 13 −1–0.5 [18]
L 3 1 14.3 64–74 6.4–9.5 9.5–29 102 No 426–437 6 0 [18]
L 3 2 14.3 43–46 9.5 9.5 76 No 439 4 −1–0 [18]
L 4 1 14.3 64–89 6.4–13 9.5–25 76–102 No 429–438 9 0 [18]
S 1 3 10 38 6.4–13 9.5–16 76 No 446 6 0 [35]
S 2 1 6.5 35 5 6 39 No f 3 0.2 [36]
S 2 1 8.5 50 6 8 51 No f 3 0.2 [36]
S 2 2 8.5 25 7 10 48 No f 5 0.1 [37]
S 4 1 8.5 50 7 10 48 No f 4 0.1 [37]
L 2 1 10.3 40 7.1 9.5 89 No 484 5 0 [38]
L 2 2 10.3 40 7.1 9.5 89 No 397–419 17 0 [38]
L 2 2 10.3 45 7.1 10–44 76 No 434–443 6 0 [23]
S 2 3 10.3 41 7.1 8–32 76 No 454 37 0 [22]
L 2 2 11.9 45 8.7 14 89 No 438 6 0 [24]
L 2 2 13.5 50 10 13–38 89 No 434 12 0 [24]
L 2 3 10.3 40 7.1 16 89 No 411–442 12 0 [24]
L 2 3 11.9 43 8.7 14 89 No 438 6 0 [24]
L 2 3 13.5 47–54 10 13 89 No 434 11 0 [24]
L 3 2 10.3 55 7.1 16 89 No 442 12 0 [24]
L 3 2 13.5 69 10 13–38 89 No 434 12 0 [24]
L 3 3 10.3 51–61 7.1 16 89 No 442 12 0 [24]
L 3 4 10.3 48 8.7 13 57–152 No 447–476 18 0 [24]
L 4 3 10.3 62 7.1 16 89 No 411 6 0 [24]
L 3 3 10.3 36 9.5 9.5 76 No 432 6 −1 [39]
S 2 2 10 50 6 13 100 Yes 365 3 0.25 [40]
L 2 2 11.9 43–73 4.8–9.6 6.4–12 85–146 No 438–475 81 −1–0.5 [25]
Lh 2 2 11.9 43–73 4.8–9.6 6.4–12 85–146 No 438–475 36 −1–0.5 [25]
S 2 2 7.5 25 5 6 45 Yes f 10 0 [41]
S 2 1 10 30 7.5 10 60 Yes f 12 0 [41]
S 2 1 9.5 25 4 8 56 No f 10 0.01 [32]
Sh 1 1 11.5 30 4 8 35 No f 6 0.1 [33]
S 1 1 13 40 10 10 81 Yes 518 1 0 i

S 1 1 13 40 10 10 81 No 518 2 0 i

a L = double lap joint; S = double strap butt joint.
b Column gives 𝑒 if 𝑛𝑟𝑜𝑤 = 1 or 𝑝 if 𝑛𝑟𝑜𝑤 > 1.
c RLP = Red Lead Paint or similar coating.
d Six tests included in [20], but two duplicate with [31].
e Erroneously reported as without RLL in [34].
f Measured tensile strength not reported. Steel grade S355 for [41] and St37 or similar for other sources.
g Some tests in [18] are with drilled-out rivets. Tests where an entire row of rivets is drilled out are considered where 𝑛𝑟𝑜𝑤 refers to the remaining rows. Tests where individual
rivets in a row are drilled out are abandoned.
h Tests with reduced clamping force.
i Tests part of current study; not reported elsewhere.
Fig. 4(a) provides the number of cycles to failure or to the end of
test, 𝑁 , as a function of the net section stress range, Δ𝜎𝑛𝑒𝑡, of all tests:

Δ𝜎𝑛𝑒𝑡 =
Δ𝐹

𝑛𝑝𝑟2𝑡𝑝(2𝑤 − 2𝑟)
(1)
3

An exceptionally large scatter results, even though all data are from
one type of joint (double lap or double strap butt joint). This is partially
due to different mean stress levels applied in the test. Taras and
Greiner [13] propose the following correction for mean stress of riveted
joints based on a curve fit of a relationship in the recommendation [42].
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Fig. 2. Double covered joints: (a) Double strap butt joint; (b) Double lap joint. We
treat these as one group.

Fig. 3. Definition of joint geometry: (a) Joint with 𝑛𝑟𝑜𝑤 = 1 and 𝑛𝑝𝑟 = 2; (b) Joint with
𝑛𝑟𝑜𝑤 = 2 and 𝑛𝑝𝑟 = 1. The hatched area indicates the part modelled with the FE method.

This correction is also used elsewhere [16,33]:

𝑓𝑅 =

⎧

⎪

⎨

⎪

⎩

1−𝑅
1−0.6𝑅 if 0 ≤ 𝑅 < 1
1−𝑅

1−0.4𝑅 if 𝑅 < 0
(2)

where stress ratio 𝑅 is the ratio between minimum and maximum stress
of the cycle, 𝜎𝑚𝑖𝑛𝑛𝑒𝑡 and 𝜎𝑚𝑎𝑥𝑛𝑒𝑡 , respectively:

𝑅 =
𝜎𝑚𝑖𝑛𝑛𝑒𝑡
𝜎𝑚𝑎𝑥𝑛𝑒𝑡

(3)

Fig. 4(b) provides the data corrected for the stress ratio. The scatter
reduces compared to subfigure (a), however, it is still excessively large.
Fitting the failed data with a Basquin relation:

log10(𝑁) = 𝐶 + 𝑚 log10(Δ𝜎𝑛𝑒𝑡) (4)

and assuming a slope parameter 𝑚 = −5, the standard deviation of the
log-life parameter 𝐶 is S(𝐶) = 0.44.

The left-hand graphs of Fig. 5 show the data of the failed specimens
distinguishing different geometric and material parameters (right-hand
graphs will be introduced later). The lines in the graphs indicate the
mean Basquin relation of the subsets, in all cases ignoring run-outs.
Fig. 5(a) demonstrates that the clamping stress (normal or low) and
the surface condition (mill scale or RLP) has important influence on the
fatigue resistance. The number of rivet rows 𝑛𝑟𝑜𝑤 and the plate width
relative to the hole radius also noteworthy influence the resistance,
Fig. 5(b) and (c), respectively. Smaller but non-negligible influence
stems from the semi grip relative to the hole radius, Fig. 5(d). The
4

data also suggest an influence of the ply tensile strength, Fig. 5(e). We
conclude that the net section stress does not well capture the influence
of specimen geometry. Our hypothesis is that the hoop stress at the hole
edge in the plate correlates better with the fatigue resistance. To esti-
mate the hoop stress, we developed analytical closed-form equations.
These equations are based on the theory of applied mechanics and on
results of FE simulations. Sections 3 and 4 describe the FE model and
the analytical model, respectively.

3. FE model

Imam et al. [27,43] have developed a FE modelling method of hot
riveted joints aimed at determining the stress distribution in the plates.
Jesus et al. [14,44] refined their method. Since then, others [45–47]
have applied similar models, and it is also applied here. This section
gives a brief description. The joints are modelled in the FE software
Abaqus 2020 HF2. The geometry of the plates and the rivets is modelled
with type C3D20R solid elements, having quadratic shape function
and reduced integration scheme. Making use of symmetry, only one
eight of the geometry is modelled according to the hashed area in
Fig. 3 and symmetry boundary conditions are applied at the symmetry
planes. The rivet head geometry is taken from [48]. The rivets are
placed centrally in the holes and the rivet shaft radius is taken equal
to the hole diameter. Ten elements are applied around a quarter of
the circumference of the hole, and five elements are applied in the
thickness direction of the ply. Fig. 6 gives an impression of the mesh
size. Various models are made with different geometric parameters
𝑛𝑟𝑜𝑤, 𝑛𝑝𝑟, 𝑟∕𝑤, ℎ∕𝑟 and 𝑡𝑝∕𝑡𝑠.

Linear elastic material with Young’s modulus 𝐸 = 210 000 MPa
and Poisson ratio 𝜈 = 0.3 is applied for the solid elements. Contact
interactions are applied between all plates and between plates and
rivets, with a penalty model applied in normal direction and a Coulomb
friction model applied in tangential direction. The friction coefficient
is taken as 𝜇𝑚𝑠 = 0.3 for the simulations with plate-to-plate contact,
which is representative of mill scale contact according to measurements
in [49]. Based on measurements with red lead painted plates [49], a
friction coefficient of 𝜇𝑟𝑙𝑝 = 0.05 is applied between the plate faces in
the RLP simulations, but the coefficient is taken as 𝜇𝑚𝑠 between the
rivet and the plates because RLP appears absent at these contacts, see
Fig. 7. Additional simulations are conducted with a friction coefficient
of 0.06 or (almost) 0 at all interactions to study the effect on friction.

The FE simulations consist of three steps:

1. The initial clamping stress in the rivets, 𝜎𝑐𝑙,0, is applied by
assigning a coefficient of linear thermal expansion to the rivet
shaft and applying an imposed temperature to it. The resulting
contraction causes rivet clamping and it causes a small clearance
between the rivet and the hole. The temperature is determined
by trial to arrive at the desired clamping stress.

2. The maximum external load is stepwise applied. The node giving
the highest principal stress in the ply is selected and the hoop
stress of that node is recorded.

3. The minimum external load is stepwise applied. The hoop stress
of the node selected in Step 2 is recorded.

The stress range is determined by subtracting the hoop stress of Step
3 from that of Step 2. The unloading step (Step 3) is necessary be-
cause friction causes non-linear behaviour and consequently, unloading
causes another stress distribution in the plates than loading. Simu-
lations with Steps 2 and 3 repeated multiple times showed that the
maximum stress range does not change after the first cycle. We verified
in a number of simulations that the node selected in Step 2 based on
the maximum principal stress is indeed the node with the largest hoop
stress range. This node is always located at the hole edge of the first
rivet row, close to the net section location.

The solid curves in Fig. 8 give the hoop stress as a function of the
applied net section stress resulting from a selection of the simulations
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Fig. 4. Fatigue test data evaluated with the net section stress range: (a) As published; (b) After correction for mean stress.

Fig. 5. Subsets of fatigue test data corrected for mean stress, with net section stress range (Eq. (1)) on the left and hoop stress range on the right (Eqs. (5)–(37), with 𝜎𝑐𝑙,0
according to Eq. (38) or 𝜎𝑐𝑙,0 = 0 in case of reduced clamping, 𝜇𝑚𝑠 = 0.33, and 𝜇𝑟𝑙𝑝 = 0.06): (a) Clamping; (b) Number of rivet rows; (c) Rivet diameter over plate width; (d) Ply
thickness over rivet diameter; (e) Ply tensile strength. The difference between the geometrical subsets reduces when using the hoop stress range.
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Fig. 6. Example of a FE model with 𝑛𝑟𝑜𝑤 = 2 and 𝑛𝑝𝑟 = 1, with the top picture showing
the mesh, the centre picture showing the stress distribution in the ply (red = high
stress, blue = low stress) and the bottom figure showing the hoop stress around the
hole of the first (decisive) rivet row.

Fig. 7. Disassembled RLP joint taken from a bridge in The Netherlands, showing no
RLP remnants on the rivet shaft and under the rivet head.

(dashed curves will be introduced later). Subfigure (a) gives the results
of simulations with the same geometry but with different friction co-
efficients. A larger friction coefficient between the rivet and the plates
increases the hoop stress at maximum load. A larger friction coefficient
between the plates increases the hoop stress at minimum load, thereby
reducing the stress range. The insertion shows the hole deformation in
lateral direction at high load. Subfigure (b) gives the results of three
simulations of different geometries with mill scale friction (𝜇𝑚𝑠 = 0.3),
all loaded with 𝑅 = −1 and a gross section stress range of 300 MPa.
The subfigure shows a significant difference between the hoop stress
and the net section stress for the three cases. This relation appears
non-linear, with the behaviour under compression being different from
tension. This also implies that the hoop stress ratio 𝑅ℎ differs from the
net section stress ratio 𝑅.

4. Analytical model

4.1. Lay-out of the model

The FE method enables to determine the linear elastic hoop stress,
but it requires detailed modelling, can be subject to user interpretation,
is computationally expensive, and therefore not suited for practical
assessment of bridges. For this reason, we developed an analytical
model to estimate the hoop stress, consisting of six steps visualised in
Fig. 9:

1. Estimate the load transfer by each rivet using a spring system.
2. Estimate the rivet clamping stress and the associated stress in

the ply.
3. Estimate the part of the load transferred by friction.
4. Determine the stress concentration factor (SCF) for the hoop

stress of a plate with a hole and of a plate loaded by a pin.
5. Estimate the hoop stress at maximum load from Steps 1–4.
6

6. Estimate the hoop stress at minimum load from Steps 1–4.

Stress range and mean stress follow from Steps 5 and 6. We have
developed predecessors of this model for rivets with 𝑛𝑟𝑜𝑤 = 2 [34] and
snug-tight bolted joints [50]; the model is extended here to cover a
wide range of geometries and load conditions. The steps are elaborated
hereafter for the cases with and without friction. For convenience, we
have developed a Microsoft Excel sheet with Visual Basic application as
well as a Python script incorporating the model and made it available
as supplementary material, see Appendix A.

4.2. Model without friction

The elaboration of the steps for the special case without friction
between the plates and between the plates and rivets is as follows.

Step 1. A quarter of the geometry is considered (one joint side, semi
thickness, full width). Each rivet and each plate in between the rivets
is modelled as a spring:

𝑭 = 𝒌𝒖 (5)

where 𝑭 is the force vector, 𝒖 is the displacement vector in load
direction and 𝒌 is the spring stiffness matrix. Fig. 9(a) shows the spring
system for 𝑛𝑟𝑜𝑤 = 2 and 𝑛𝑝𝑟 = 1:

⎡

⎢

⎢

⎢

⎢

⎣

𝐹∕2
0
0

−𝐹∕2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝑝 + 𝑘𝑟 −𝑘𝑝 −𝑘𝑟 0
−𝑘𝑝 𝑘𝑝 + 𝑘𝑟 0 −𝑘𝑟
−𝑘𝑟 0 𝑘𝑠 + 𝑘𝑟 −𝑘𝑠
0 −𝑘𝑟 −𝑘𝑠 𝑘𝑠 + 𝑘𝑟

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑢1,𝑝
𝑢2,𝑝
𝑢1,𝑠
0

⎤

⎥

⎥

⎥

⎥

⎦

(6)

The system can easily be extended to other values of 𝑛𝑟𝑜𝑤 and 𝑛𝑝𝑟.
For convenience, we characterise each spring by its compliance 1∕𝑘.
FE simulations of joints with a single rivet are employed to obtain
the compliances. Analytical descriptions in [51–54] are compared to
these compliances and modifications are applied to some descriptions
to better resemble the stiffness values following from the FE models.
We decompose the ply and strap compliances in two parts, namely, in
between rivet holes with length 𝑝−2𝑟 and at the rivet hole with length
2𝑟:
1
𝑘𝑝

=
𝑝 − 2𝑟
2𝑤𝑡𝑝𝐸

+ 2𝑟
2(𝑤 − 𝑟)𝑡𝑝𝐸

(7)

1
𝑘𝑠

=
𝑝 − 2𝑟
2𝑤𝑡𝑠𝐸

+ 2𝑟
2(𝑤 − 𝑟)𝑡𝑠𝐸

(8)

Using the derivation in [54] but modifying it for double covered
joints, we derived equations for rivet bending and rivet shear defor-
mations between the ply and strap midplanes. We took the equations
for bearing deformation at the hole in the ply from [51]. The bearing
deformation of the rivet appeared half of the latter value. The rivet
stiffness then follows from:

1
𝑘𝑟

=
9𝑡3𝑠 + 48𝑡2𝑠 𝑡𝑝 + 64𝑡𝑠𝑡2𝑝 + 16𝑡3𝑝

96𝐸𝜋𝑟4
+

4𝑡𝑝 + 3𝑡𝑠
8𝑎𝐺𝜋𝑟2

+ 1
𝑡𝑝𝐸

+ 1
𝑡𝑠𝐸

+ 1
2𝑡𝑝𝐸

(9)

𝑎 =
6(𝜈 + 1)2

4𝜈2 + 12𝜈 + 7
where 𝐺 = 𝐸∕(2[1 + 𝜈]) is the shear modulus, 𝑎 accounts for the non-
uniform strain over the cross section [55], and the subsequent terms
in Eq. (9) refer to rivet bending, rivet shear, ply bearing, strap bearing
and rivet bearing. The force fraction taken by rivet row 𝑖 follows from:

𝑓𝑖 = 2𝑘𝑟(𝑢𝑖,𝑝 − 𝑢𝑖,𝑠)𝑛𝑝𝑟∕𝐹 (10)

The force fractions per rivet row reduce as the number of rows
increases. This is the main cause of the increased fatigue resistance with
increasing number of rivet rows in the left-hand graph of Fig. 5(b).

Step 2. The rivet clamping stress causes a compressive stress in
thickness direction of the ply. We approximate the clamping stress as
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Fig. 8. Hoop stress for example cases with the FE model (solid) and the analytical model (dashed): (a) Effect of 𝜇 (same geometry, 𝑅 = 0) (b) Effect of geometry (𝜇 = 0.3,
𝑅 = −1). The hoop stress over net stress ratio depends on 𝜇 and on the geometry. This ratio is different in tension as in compression. The figure shows good agreement between
the analytical model and the FE model.
Fig. 9. Steps 1–6 (subfigures a–f) with associated equations comprising the analytical
model.

being transferred in the ply through a cone with inner radius 𝑟 and
outer radius 𝑟𝑜, see 9(b):

𝑟𝑜 = 1.1𝑟 + ℎ∕3 (11)

where the factor of 3 is a load spread factor [56] and 1.1𝑟 is an estimate
of the load carrying radius of the rivet head.

Upon loading the joint, the Poisson effect of the ply (and straps)
influences the clamping stress 𝜎𝑐𝑙, which hence differs from the initial
clamping stress 𝜎𝑐𝑙,0. The average stress in the ply just before the first
rivet row is equal to 𝜎 , causing a contraction in thickness direction
7

𝑛𝑒𝑡
of:

Δ𝑢𝑧 = 𝑡𝑝𝜈𝜎𝑛𝑒𝑡∕𝐸 (12)

The stress in the straps is close to zero at that location. The ply
contraction reduces the clamping stress to the ratio of the rivet stiffness
and the ply stiffness in thickness direction. The rivet and ply can be
modelled as springs in thickness direction, with the following respective
stiffness values:

𝑘𝑟,𝑧 =
2𝜋𝐸
ℎ

𝑟2 (13)

𝑘𝑝,𝑧 =
2𝜋𝐸
ℎ

(𝑟2𝑜 − 𝑟2) (14)

The resulting deformation of the rivet is:

Δ𝑢𝑟,𝑧 = Δ𝑢𝑧
𝑘𝑝,𝑧

𝑘𝑟,𝑧 + 𝑘𝑝,𝑧
(15)

Hence the rivet clamping stress is:

𝜎𝑐𝑙 = max

(

0, 𝜎𝑐𝑙,0 − 𝜈𝜎𝑛𝑒𝑡
𝑡𝑝
ℎ
𝑟2𝑜 − 𝑟2

𝑟2𝑜

)

(16)

The ply stress in thickness direction near the hole caused by clamp-
ing is equal to 𝜎𝑐𝑙𝑟2∕(𝑟2𝑜 − 𝑟2). Assuming expansion can freely occur in
the hole radial direction but is fully restrained in tangential direction,
a hoop stress (preload stress) 𝜎𝑝 results because of clamping:

𝜎𝑝 = −𝜎𝑐𝑙
𝑟2

𝑟2𝑜 − 𝑟2
𝜈(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
(17)

Step 3. The consideration of the frictional force distribution is
obsolete for the special case without friction.

Step 4. In joints with 𝑛𝑟𝑜𝑤 > 1, the first rivet row transfers a certain
fraction of the load through pin action and another fraction bypasses
the hole and is transferred at subsequent rivet rows. The two types
of loading cause different stress concentrations. Each SCF given below
refers to the net section:

𝐾𝑡 = 𝜎ℎ∕𝜎𝑛𝑒𝑡 (18)

The SCF of a plate with a hole is taken as the plane stress solution
of [57]:

𝐾𝑡,ℎ𝑜𝑙𝑒 = 2 +
(

1 − 𝑟
𝑤

)3
(19)

The maximum stress at the hole in a plate with finite thickness is
slightly higher than the plane stress solution, whereas the stress at the
plate surface is lower [58]. The plane stress solution is a reasonable
approximation for the location at which the (hole and pin) combined
SCF is maximum.

The SCF for pin loading depends on the degree of hole filling, the
flexibility of the rivet and the ligament in front of the rivet (𝑝 for 𝑛 ≥
𝑟𝑜𝑤
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1 and 𝑒 or > 𝑒 for 𝑛𝑟𝑜𝑤 = 1 in tension or compression, respectively).
e obtained the SCF for pin loading by fitting of the results of the

E model of Section 3, using one rivet without clamping and without
riction. If loaded in tension, the load first bypasses the hole before
t is transferred to the rivet, see the centre picture in Fig. 9(d). In
ase of compressive loading, the rivet is squeezed between the ply and
he straps. Consequently, it expands in the joint width direction and
hereby it presses against the hole edge, causing a tensile hoop stress
nd thereby a negative SCF. This effect is responsible for the lower
oop stress in compression as compared to tension in Fig. 8(b) and
t causes the large required stress ratio correction for negative stress
atios in Eq. (3). Further, the stress does not bypass the hole if loaded
n compression, see the bottom picture in Fig. 9(d). A conservative
stimate for the SCF is obtained as the SCF for the hole minus the SCF
or pin loading in tension:

𝑡,𝑝𝑖𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎1
(

𝑟
𝑤

)𝑏1
if 𝜎𝑛𝑒𝑡 ≥ 0 ∧ 𝑛𝑟𝑜𝑤 = 1

𝑎2
(

𝑟
𝑤

)𝑏2
if 𝜎𝑛𝑒𝑡 ≥ 0 ∧ 𝑛𝑟𝑜𝑤 > 1

𝐾𝑡,ℎ𝑜𝑙𝑒 − 𝑎2
(

𝑟
𝑤

)𝑏2
if 𝜎𝑛𝑒𝑡 < 0

(20)

𝑎1 = 1.517 − 0.307
( 𝑡𝑝

𝑟

)

+ 0.266
( 𝑡𝑝

𝑟

)2

1 = −0.820 + 0.039
( 𝑡𝑝

𝑟

)

− 0.042
( 𝑡𝑝

𝑟

)2

𝑎2 = 1.171 − 0.170
( 𝑡𝑝

𝑟

)

+ 0.147
( 𝑡𝑝

𝑟

)2

2 = −0.944 + 0.070
( 𝑡𝑝

𝑟

)

− 0.064
( 𝑡𝑝

𝑟

)2

The equation is valid for the range 0.1 ≤ 𝑟∕𝑤 ≤ 0.5 and 0.25
≤ 𝑡𝑝∕𝑟 ≤ 2.0. The difference between the solutions for one and for
multiple rows in tension is the distance between the rivet and the end
of the ply. The equation for 𝑛𝑟𝑜𝑤 = 1 is an approximation, because it
is based on a fit of FE data with 𝑒∕𝑤 = 1.0 whereas 0.6 < 𝑒∕𝑤 < 2
for the tested joints with 𝑛𝑟𝑜𝑤 = 1. The equation for multiple rows
and/or compression is also determined from simulations with one row,
but with 𝑒∕𝑟 = 5, representing a large distance between the first rivet
row and the ply end. The end effect is negligible in this case. We have
verified with the FE method that the SCF for pin loading is also valid
for 𝑛𝑝𝑟 > 1.

Step 5. In joints with multiple rows, the hoop stress in the ply is
highest at the first rivet row, because the load fraction transferred by
that row and the load fraction bypassing it is higher than at subsequent
rows, Fig. 9(e). This observation from the analytical model is consistent
with the location of fatigue failure in the tests. The SCF of rivets in the
first row can be estimated with:

𝐾𝑡,1 = 𝑓1𝐾𝑡,𝑝𝑖𝑛 + (1 − 𝑓1)𝐾𝑡,ℎ𝑜𝑙𝑒 (21)

where 𝑓1 follows from Eq. (10). Whereas 𝐾𝑡,ℎ𝑜𝑙𝑒 decreases with de-
creasing 𝑟∕𝑤, 𝐾𝑡,𝑝𝑖𝑛 increases with decreasing 𝑟∕𝑤. The interaction
determines the influence of 𝑟∕𝑤 on the fatigue resistance, where 𝐾𝑡,𝑝𝑖𝑛
dominates in joints with a small number of rows and causes the
relatively low fatigue resistance of joints with low 𝑟∕𝑤 in Fig. 5(c). The
hoop stress at maximum load is:

𝜎𝑚𝑎𝑥ℎ = 𝐾𝑚𝑎𝑥
𝑡,1 𝜎𝑚𝑎𝑥𝑛𝑒𝑡 + 𝜎𝑚𝑎𝑥𝑝 (22)

where 𝜎𝑚𝑎𝑥𝑝 and 𝐾𝑚𝑎𝑥
𝑡,1 follow from Eqs. (17) and (21) at maximum load.

Step 6. In the special case without friction, the hoop stress during
unloading follows the same path as during loading (and can hence be
determined in a similar way as Eq. (22)). In case of compression, 𝐾𝑚𝑖𝑛

𝑡,1
at minimum load may be negative. The minimum stress of the range
then occurs at the tipping point, where 𝐾𝑚𝑖𝑛

𝑡,1 = 0, see Fig. 10:

𝜎𝑚𝑖𝑛ℎ =

{

𝜎𝑡𝑝 if 𝐾𝑚𝑖𝑛
𝑡,1 < 0

𝑚𝑖𝑛 𝑚𝑖𝑛 𝑚𝑖𝑛 𝑚𝑖𝑛 (23)
8

𝐾𝑡,1 𝜎𝑛𝑒𝑡 + 𝜎𝑝 if 𝐾𝑡,1 ≥ 0 h
where 𝜎𝑡𝑝 follows from Eq. (17) at the tipping point, in the case without
friction occurring at an applied stress 𝜎𝑛𝑒𝑡 = 0.

4.3. Model with friction

The general case with friction requires modifications of the model.
It involves a larger number of fits of the FE data. The equations in this
section reduce to those of Section 4.2 if the friction coefficient 𝜇 = 0.

Step 1. Friction changes the load distribution between rivet rows
at low load levels. It is possible but complex to consider this in the
analytical model, see Step 3. Simulations with the FE method show
that the effect of friction on 𝑓1 is smaller than 10% if the applied load is
larger than 1.6 times the total slip force: 𝐹𝑚𝑎𝑥 > 1.6𝑛𝑟𝑜𝑤𝑛𝑝𝑟𝐹𝑠𝑙𝑖𝑝, where:

𝐹𝑠𝑙𝑖𝑝 = 2𝜇𝜎𝑐𝑙𝜋𝑟2 (24)

where 𝜇 is either 𝜇𝑚𝑠 or 𝜇𝑟𝑙𝑝 depending on the plate contact in the speci-
en. All collected tests satisfy this criterion. Eqs. (5)–(10) are therefore

lso applied for the case with friction as a reasonable approximation.
Step 2. This step is equal to that of the model without friction.
Step 3. We define a bearing ratio ranging between 0 and 1 for the

ntire load being transferred through friction or bearing, respectively:

𝑖 = max
(

0,
|𝐹𝑖| − 𝐹𝑠𝑙𝑖𝑝

|𝐹𝑖|

)

(25)

here 𝐹𝑖 is the load at rivet row 𝑖. For a rivet in the first rivet row,
q. (25) can be written as:

1 = max
(

0,
|𝑓1𝜎𝑛𝑒𝑡| − 𝜎𝑠𝑙𝑖𝑝

|𝑓1𝜎𝑛𝑒𝑡|

)

(26)

here:

𝑠𝑙𝑖𝑝 =
𝜇𝜎𝑐𝑙𝜋𝑟2

𝑡𝑝(2𝑤 − 2𝑟)
(27)

with 𝜎𝑐𝑙 according to Eq. (16). The bearing ratio 𝛽1 needs to be
etermined at maximum and at minimum load.

Note that the rivet spring stiffness in Step 1 also changes due to
riction, giving a rivet spring stiffness of 𝑘𝑟∕𝛽𝑖 with 𝑘𝑟 according to
q. (9). However, this would imply a complex set of equations because
𝑟∕𝛽𝑖 determines 𝑓𝑖 which in turn determines 𝛽𝑖. As explained above,
gnoring the effect of friction in the spring model gives a reasonably
ccurate load fraction estimate.
Step 4. The SCF of a single rivet follows from:

𝑡,𝑠 = 𝛽1𝐾𝑡,𝑝𝑖𝑛,𝜇 + (1 − 𝛽1)𝐾𝑡,𝑓𝑟𝑖𝑐 (28)

here 𝐾𝑡,𝑓𝑟𝑖𝑐 is the SCF for friction and 𝐾𝑡,𝑝𝑖𝑛,𝜇 is a modified SCF for
in loading, as follows. Contact between the rivet shank and the hole
dge occurs around half of the rivet perimeter at high load levels, see
he insertion in Fig. 8(a). Friction at that contact location increases the
oop stress, which depends on the friction coefficient, contact area, and
earing ratio. We incorporate this effect in the SCF for pin loading:

𝑡,𝑝𝑖𝑛,𝜇 =

{

𝐾𝑡,𝑝𝑖𝑛 + 2𝜇𝑚𝑠 if 𝜎𝑛𝑒𝑡 ≥ 0
𝐾𝑡,𝑝𝑖𝑛 − 2𝜇𝑚𝑠 if 𝜎𝑛𝑒𝑡 < 0

(29)

here the factor 2 follows from a fit of the FE results and 𝐾𝑡,𝑝𝑖𝑛 follows
rom Eq. (20).

Next, the SCF for friction needs to be determined. The rivet main-
ains its shape at low bearing ratios (𝛽 ≈ 0). Approximately half of
he friction force is then transferred before the hole and the other half
ypasses the hole, resulting in a SCF of 𝐾𝑡,ℎ𝑜𝑙𝑒∕2. The rivet bends at high
earing ratios, see the right graphic of Fig. 9(c). If loaded in tension,
rying of the bended rivet causes rivet head to plate contact to be
stablished behind the rivet hole, resulting in the SCF for pin loading. In
ase of compression, prying causes frictional force transfer before the

ole and hence no stress at the hole. A quadratic transition between
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the two cases with respect to 𝛽 gives a reasonable match with the FE
method:

𝐾𝑡,𝑓𝑟𝑖𝑐 =

{

(1 − 𝛽12)𝐾𝑡,ℎ𝑜𝑙𝑒∕2 + 𝛽12𝐾𝑡,𝑝𝑖𝑛,𝜇 if 𝜎𝑛𝑒𝑡 ≥ 0
(1 − 𝛽12)𝐾𝑡,ℎ𝑜𝑙𝑒∕2 if 𝜎𝑛𝑒𝑡 < 0

(30)

Step 5. Equivalent to Eq. (18) and making use of Eq. (28)–(30), the
SCF in the loading stage is:

𝐾𝑡,1,𝜇 = 𝑓1𝐾𝑡,𝑠 + (1 − 𝑓1)𝐾𝑡,ℎ𝑜𝑙𝑒 (31)

The maximum hoop stress is:

𝜎𝑚𝑎𝑥ℎ = 𝐾𝑚𝑎𝑥
𝑡,1,𝜇𝜎

𝑚𝑎𝑥
𝑛𝑒𝑡 + 𝜎𝑚𝑎𝑥𝑝 (32)

with 𝜎𝑚𝑎𝑥𝑝 according to Eq. (17).
Step 6. FE simulations with a single rivet indicate that the hoop

stress at unloading is equal to 0 if the net section stress is equal to
−3/4 times the slip stress. The hoop stress follows a slightly non-linear
unloading path between maximum stress (Eq. (32)) and the slip stress
in compression. For a joint with a single rivet:

𝜎𝑚𝑖𝑛ℎ,𝑠 = 𝜎𝑚𝑖𝑛𝑝 − 𝜎𝑛𝑙 +
(

𝐾𝑚𝑎𝑥
𝑡,1,𝜇𝜎

𝑚𝑎𝑥
𝑛𝑒𝑡 + 𝜎𝑛𝑙

) 𝜎𝑚𝑖𝑛𝑛𝑒𝑡 + 3∕4𝜎𝑚𝑖𝑛𝑠𝑙𝑖𝑝

𝜎𝑚𝑎𝑥𝑛𝑒𝑡 + 3∕4𝜎𝑚𝑖𝑛𝑠𝑙𝑖𝑝

if 𝜎𝑚𝑖𝑛𝑛𝑒𝑡 ≥ −𝜎𝑚𝑖𝑛𝑠𝑙𝑖𝑝

(33)

where 𝜎𝑛𝑙 is a fit accounting for the non-linearity of the unloading path,
ee Fig. 10:

𝑛𝑙 = 𝜇𝛽𝑚𝑖𝑛1 𝐾𝑚𝑖𝑛
𝑡,1,𝜇𝜎

𝑚𝑖𝑛
𝑛𝑒𝑡 (34)

If loaded in compression, the part of the net section stress beyond
he slip stress is multiplied with 𝐾𝑚𝑖𝑛

𝑡,1,𝜇 . Combining this with Eq. (33)
nd extending it to multiple rivet rows gives:

𝑚𝑖𝑛
ℎ =

⎧

⎪

⎨

⎪

⎩

Case 1 if 𝜎𝑚𝑖𝑛𝑛𝑒𝑡 ≥ 𝜎𝑡𝑛𝑒𝑡
Case 2 if 𝜎𝑚𝑖𝑛𝑛𝑒𝑡 < 𝜎𝑡𝑛𝑒𝑡 ∧𝐾𝑚𝑖𝑛

𝑡,1,𝜇 ≥ 0

Case 3 if 𝜎𝑚𝑖𝑛𝑛𝑒𝑡 < 𝜎𝑡𝑛𝑒𝑡 ∧𝐾𝑚𝑖𝑛
𝑡,1,𝜇 < 0

(35)

ase 1 = 𝜎𝑚𝑖𝑛𝑝 + 𝜎𝑡ℎ − 𝜎𝑛𝑙 +
(

𝐾𝑚𝑎𝑥
𝑡,1,𝜇𝜎

𝑚𝑎𝑥
𝑛𝑒𝑡 − 𝜎𝑡ℎ + 𝜎𝑛𝑙

) 𝜎𝑚𝑖𝑛𝑛𝑒𝑡 − 𝜎𝑡𝑛𝑒𝑡
𝜎𝑚𝑎𝑥𝑛𝑒𝑡 − 𝜎𝑡𝑛𝑒𝑡

Case 2 = 𝜎𝑚𝑖𝑛𝑝 + 𝜎𝑡ℎ +𝐾𝑚𝑖𝑛
𝑡,1,𝜇

(

𝜎𝑚𝑖𝑛𝑛𝑒𝑡 − 𝜎𝑡𝑛𝑒𝑡
)

ase 3 = 𝜎𝑡𝑝 + 𝜎𝑡ℎ
here 𝜎𝑡𝑛𝑒𝑡 and 𝜎𝑡ℎ are the net section stress and the hoop stress,

espectively, at the tipping point, see Fig. 10. The tipping point can be
ound by incrementally lowering the applied stress and determining the
orresponding slip stress, until these two values equate. However, the
lip stress at minimum load forms a good approximation and is easier
o obtain:
𝑡 ≈ −𝜎𝑚𝑖𝑛∕𝑓 (36)
9

𝑛𝑒𝑡 𝑠𝑙𝑖𝑝 1
Fig. 11. Load fraction transferred at the first rivet row 𝑓1 for example joints with
different row numbers. The analytical model of Eq. (5)–(10) agrees well with the FE
models. The load fraction 𝑓1 is larger than an equal fraction per rivet (=1∕𝑛𝑟𝑜𝑤).

Similarly, the prestress at the tipping point can be approximated at
minimum stress: 𝜎𝑡𝑝 ≈ 𝜎𝑚𝑖𝑛𝑝 . The tipping point hoop stress follows from:

𝜎𝑡ℎ = (1 − 𝑓1)𝐾𝑡,ℎ𝑜𝑙𝑒𝜎
𝑡
𝑛𝑒𝑡 +

[

𝐾𝑚𝑎𝑥
𝑡,1,𝜇 − (1 − 𝑓1)𝐾𝑡,ℎ𝑜𝑙𝑒

] 𝜎𝑚𝑎𝑥𝑛𝑒𝑡 𝜎𝑡𝑛𝑒𝑡
4𝜎𝑚𝑎𝑥𝑛𝑒𝑡 − 3𝜎𝑡𝑛𝑒𝑡

(37)

The basic inputs of the analytical model are hence 𝑓1, 𝜎𝑐𝑙, 𝜎𝑝, 𝐾𝑡,ℎ𝑜𝑙𝑒,
𝑡,𝑝𝑖𝑛,𝜇 and 𝜎𝑛𝑙.

.4. Model performance

As a representative example of the performance of the spring model,
ig. 11 gives the load fraction transferred at the first rivet row ac-
ording to the spring model and the FE simulations of joints with
wo up to six rivet rows. The fraction resulting from the spring model
grees reasonable with that according to the FE simulations. The figure
lso provides the fraction if assuming an equal share per rivet row,
emonstrating that the first row takes a larger share than average.

The dashed curves in Fig. 8 present the analytical model prediction
or the example cases. The figure shows a good agreement with the
E models. A total of 500 FE simulations are conducted with different
eometries and loads, ranging between 1 ≤ 𝑛𝑟𝑜𝑤 ≤ 6, 1 ≤ 𝑛𝑝𝑟 ≤ 3,
≤ 𝜇 ≤ 0.3, 0.16 ≤ 𝑟∕𝑤 ≤ 0.31, 0.47 ≤ 𝑡𝑝∕𝑟 ≤ 0.8, 1 ≤ 𝑡𝑠∕𝑡𝑝 ≤ 1.7, 80
Pa ≤ 𝜎𝑐𝑙 ≤ 130 MPa, 50 MPa ≤ 𝜎𝑚𝑎𝑥𝑛𝑒𝑡 ≤ 200 MPa and −1 ≤ 𝑅 ≤ 0.75.

ig. 12 compares the hoop stress range Δ𝜎ℎ = 𝜎𝑚𝑎𝑥ℎ − 𝜎𝑚𝑖𝑛ℎ and the
ean stress 𝜎ℎ = (𝜎𝑚𝑎𝑥ℎ + 𝜎𝑚𝑖𝑛ℎ )∕2 of the analytical model with that

of the FE models for all simulations, where superscript 𝐹𝐸 refers to
the FE models. The figure shows a good agreement. The coefficient of
determination is 𝑅𝑠𝑞 = 0.99 for both parameters. The mean of the ratios
Δ𝜎ℎ∕Δ𝜎𝐹𝐸

ℎ is 0.99 and the standard deviation is 0.06. The mean of the
ratios 𝜎 ∕𝜎𝐹𝐸 is 1.01 and the standard deviation is 0.06. We consider
ℎ ℎ



International Journal of Fatigue 187 (2024) 108466J. Maljaars et al.

c

t
t

5

t
c
o
c
a
s
s
T
i
d
t

𝜎

W
r
e
s
i

o

Fig. 12. Prediction accuracy of the analytical model compared to the FE models: (a) Hoop stress range; (b) Mean hoop stress. The two models agree well, with a coefficient of
determination of 𝑅𝑠𝑞 = 0.99 for both parameters.
Fig. 13. Initial clamping stress versus semi grip, data from [18,21,22,24,59–63]. The larger the grip, the larger is the mean clamping stress and the smaller is the scatter in
lamping stress.
s
r

𝑓

he analytical model suited for estimating the hoop stress of the fatigue
ests.

. Results

This section describes the evaluation of the test database with
he hoop stress according to the analytical model. The mean friction
oefficient of 𝜇𝑚𝑠 = 0.33 according to [49] is applied in the analyses
f specimens without RLP. Based on the same source, the friction
oefficient is taken as 𝜇𝑟𝑙𝑝 = 0.06 for plate–plate contact (Eq. (27))
nd 𝜇𝑚𝑠 = 0.33 (Eq. (29)) for rivet–plate contact in the analyses of
pecimens with RLP. Various authors measured the initial clamping
tress in rivets [18,21,22,24,59–63]. Fig. 13 shows the collected data.
he initial clamping stress increases with increasing grip, but the scatter

s significant. We fitted an exponential function through the collected
ata and used the average value of 𝜎𝑐𝑙,0 in the analyses of the fatigue
ests with normal clamping:

𝑐𝑙,0 =
265 MPa

exp
(

12 mm
ℎ

) (38)

e took the clamping stress as 𝜎𝑐𝑙,0 = 0 in the analyses of tests with
educed clamping. To enable a comparison of the fatigue test data
valuated with the linear elastic hoop stress and with the net section
tress, the hoop stress range is multiplied with 0.32, which is the
nverse mean of the SCF of all tests.

Fig. 14(a) gives the fatigue lives of the test database as a function
10

f the hoop stress range on the right ordinate, and 0.32 times the hoop
tress range on the left ordinate. Similar to the net section stress, a stress
atio correction factor is applied that is calibrated with the data:

𝑅ℎ =
1 − 𝑅ℎ

1 − 0.9𝑅ℎ
(39)

𝑅ℎ = 𝜎𝑚𝑖𝑛ℎ ∕𝜎𝑚𝑎𝑥ℎ (40)

A differentiation between 𝑅 < 0 and 𝑅 ≥ 0 as for the net section
stress in Eq. (2) is not necessary. Note that many other stress ratio
corrections are available. We chose Eq. (39) for its simplicity, not
because it gives the best fit to the data. Figs. 14(b) gives the fatigue
lives as a function of the stress ratio corrected hoop stress (blue arrows
will be introduced later). Comparing Figs. 4 and 14, the scatter in
the fatigue life reduces significantly if evaluated with the hoop stress
instead of the net section stress.

The analytical model of Section 4 does not allow predicting the fa-
tigue resistance using general material properties and a local approach
such as the theory of critical distances [64]. Such methods can be ap-
plied to riveted joints [65], but they require the stress gradient, which
is not part of the analytical model. Therefore, the fatigue resistance
is determined through regression of the test data. Assuming a Basquin
equation with an inverse slope parameter 𝑚 = −5 and ignoring run-
outs, the standard deviation of 𝐶 is S(𝐶) = 0.33 and it is S(𝐶) = 0.31 for
a best fitting inverse slope of 𝑚 = −4. This is substantially lower than
the standard deviation evaluated with the net section stress range, see
Table 2.

The right-hand graphs of Fig. 5 provide the data of distinguished

subsets. Compared to the net section stress range, the difference in
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Fig. 14. Fatigue test data evaluated with the hoop stress range: (a) As published; (b) After correction for mean stress.
Table 2
Standard deviation of parameter 𝐶 of the Basquin equation with an inverse slope
𝑚 = −5, after stress ratio correction: S(𝐶).

Subset Net section stress Hoop stress

All data 0.44 0.33
RLP 0.25 0.25
Mill scale, reduced clamping 0.28 0.25
Mill scale, normal clamping 0.43 0.34

fatigue resistance between the geometrical subsets reduces significantly
when using the hoop stress. This demonstrates that the hoop stress
better captures the fatigue-relevant effects of the geometric variability
in riveted joints. The data suggest a positive correlation between the
ply tensile strength and the fatigue life, but the number of data outside
of the range 400 MPa < 𝜎𝑢 ≤ 600 MPa is too small for a definite
conclusion.

6. Discussion

6.1. Uncertainty of friction and clamping force

The scatter of the fatigue life is significantly smaller for the subset
with RLP as compared to the subset of mill scale contact and normal
clamping, see Table 2. The standard deviation of the RLP subset is
similar to that of other notched components of similar steel grades and
surface finish [50,66] and it can be considered as a typical value for
the aleatory uncertainty in the fatigue life. Friction and clamping have
a negligible influence on the hoop stress range of RLP specimens. The
larger standard deviation of the mill scale contact subset is attributed
to the aleatory uncertainties in clamping force and friction coefficient.
To quantify the scatter in the S–N curve due to uncertainties in friction
and clamping, we estimate their combined effect on the stress range
of the specimens with mill scale contact and normal clamping. Based
on [49,62], the standard deviations of 𝜎𝑐𝑙,0 and 𝜇𝑚𝑠 are S(𝜎𝑐𝑙,0) = 35 MPa
and S(𝜇𝑚𝑠) = 0.06, respectively. Expectations E(𝜎𝑐𝑙,0) and E(𝜇𝑚𝑠) are
taken as in Section 5, i.e. given with Eq. (38) and equal to 0.33, re-
spectively. Lognormal distributions are assumed for both variables. The
two variables influence the slip stress 𝜎𝑠𝑙𝑖𝑝 through multiplication. Their
combined effect can be approximated with a lognormal distribution
having the following parameters:

𝐿1 = ln

(

E(𝜎𝑐𝑙,0)E(𝜇𝑚𝑠)
√

𝑏

)

(41)

𝑏 = 1 +
[

V(𝜎𝑐𝑙,0)
]2 +

[

V(𝜇𝑚𝑠)
]2 +

[

V(𝜎𝑐𝑙,0)V(𝜇𝑚𝑠)
]2

𝐿 =
√

ln 𝑏 (42)
11

2 ( )
Fig. 15. Estimate of the standard deviation of the 10-th base logarithm of number of
cycles, S(𝐶), of the tests with mill scale contact, based on the uncertainty in slip force
and the uncertainty in S–N curve of RLP data. The average of the estimated S(𝐶) is
0.35, which agrees with the tests.

where V is the coefficient of variation. Using this distribution, we
estimate the variation of slip force and subsequently the variation in
the hoop stress range for each test using the model in Section 4. The
standard deviation of the variation in hoop stress range averaged over
all tests is 35 MPa. Assuming a Basquin equation with an inverse slope
𝑚 = −5, the effect of the variation in hoop stress range can be translated
to a variation in fatigue life. The grey circles in Fig. 15 provide the
standard deviation of this variation, S(𝐶𝑠𝑙𝑖𝑝) for each test with mill scale
contact and normal clamping condition as a function of the expectation
of the hoop stress E

(

0.32Δ𝜎ℎ
)

. The standard deviation of the total
scatter of the fatigue life of these specimens can be estimated from
S(𝐶𝑠𝑙𝑖𝑝) and the standard deviation of the tests with RLP S(𝐶𝑟𝑙𝑝) (equal
to 0.25 according to Table 2), as:

S(𝐶𝑚𝑠) =
√

(

S(𝐶𝑠𝑙𝑖𝑝)
)2 +

(

S(𝐶𝑟𝑙𝑝)
)2 (43)

The black crosses in Fig. 15 provide the resulting estimate of the
standard deviation of the total scatter in the fatigue life per test. The
mean of this standard deviation over all tests is 0.36. This is almost
equal to the actual scatter of the fatigue life of the specimens with mill
scale contact: S(𝐶) = 0.34. The estimated standard deviation generally
decreases for increasing stress range. This also agrees with the actual
scatter, Fig. 14(b). The implication is that aleatory uncertainties are
largely responsible for the scatter in fatigue life of the specimens with
mill scale contact, and further optimization of the analytical model of
Section 4 is not expected to cause a further major reduction in the
scatter of the fatigue life prediction.
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Fig. 16. Fatigue test data of red lead paint (RLP), average and 90% confidence interval
(90% CI – 5% and 95% confidence bounds) of the Six Parameter Random Fatigue Limit
Model (6PRFLM) and average and 95% prediction bound (PB) of the Basquin equation.

6.2. Proposed fatigue resistance for practice

The data in Fig. 14 show a gradual transition between the finite
life and near-infinite life regions. Some models enable to describe this
transition, amongst which is the Six Parameter Random Fatigue Limit
Model (6PRFLM) [67]:

log10(𝑁) = 𝐶 ′ + 𝑚′ log10(0.32Δ𝜎ℎ) − 𝑝′ log10

(

1 − 𝑙′

0.32Δ𝜎ℎ

)

(44)

We used the maximum likelihood to fit parameters 𝐶 ′, 𝑚′, 𝑝′ and
𝑙′ to the test data, in this case including run-outs as right-censored
data. Fig. 16 gives the expectation and the 90% confidence interval
(CI, having 5% and 95% one-sided confidence bounds) of the model
for RLP specimens. The dotted line provides the Basquin equation fitted
through the data with an inverse slope 𝑚 = −5 (ignoring run-outs). This
line is in good agreement with the 6PRFLM for the important long-life
region (𝑁 > 5 ⋅105) and it is conservative for the less relevant region of
shorter life. We therefore base the fatigue resistance for practical use
on a Basquin equation with slope 𝑚 = −5. Note that the number of tests
with very-long-life (𝑁 > 5 ⋅ 106) is limited. The estimation of the slope
of the S–N curve can benefit from additional very-long-life tests.

The fatigue resistance is often expressed as the stress range at which
the 95% prediction bound coincides with a life of two million cycles.
This resistance is Δ𝜎𝐶 = 111 MPa / 0.32 = 349 MPa according to
the Basquin equation, with the corresponding S–N curve given as a
dashed line in Fig. 16. Using the same slope for specimens with mill
scale, the resistance is Δ𝜎𝐶 = 105 MPa / 0.32 = 330 MPa, using the
expectations 𝜇𝑚𝑠 = 0.33 and 𝜎𝑐𝑙,0 according to Eq. (38) in the model
for the hoop stress. The difference between these curves is small. We
propose a Basquin curve with slope 𝑚 = −5 and Δ𝜎𝐶 = 330 MPa in the
fatigue assessment of riveted double covered joints in existing bridges.

6.3. Stress ratio effect

The stress ratio correction using the net section stress as fatigue
driving force is much larger compared to the linear elastic hoop stress,
compare Eqs. (2) and (39). Obviously, plasticity takes place at the notch
unless the load remains small. Schijve [68] explains that plasticity
at the notch significantly influences the local stress ratio for medium
load levels, see Fig. 17, whereas the elastoplastic stress range at the
notch remains closer to its linear elastic equivalent. Because of this, the
correction for stress ratio using linear elastic stress should be smaller
for notched components compared to unnotched ones.

Refs. [69–73] give stress ratio corrections or mean stress corrections
derived from tests on unnotched specimens of similar steel grades as
12
Fig. 17. Effect of plasticity near a notch on the stress range and the stress ratio.
Source: Figure based on Schijve [68].

Fig. 18. Fatigue tests of [25] at 𝑅 = 0, normal clamping. Except for the two marked
data, all data are in good agreement with the Basquin curve of the entire database.
The two marked data are therefore likely outliers.

used for the hot riveted joints. Compared to these data, the stress ratio
correction required for riveted joints using the hoop stress is indeed
smaller than that of unnotched specimens. On the contrary, the stress
ratio correction required for the net section stress is larger than that of
unnotched specimens. This further suggests that the net section stress
might not be a good indicator of the fatigue driving force of riveted
double covered joints. This is relevant because the only negative stress
ratio tested is 𝑅 = −1. The validity of Eq. (3) for other negative stress
ratios is hence unknown.

6.4. Test outliers

Fig. 14(b) shows a few data that significantly deviate from the
other data, having a longer or shorter life than the others. To evaluate
whether these deviations are due to experimental outliers or caused
by a wrong choice of the hoop stress as the fatigue driving force, two
of these deviating data – indicated with arrows in Fig. 14(b) – are
evaluated hereafter. Fig. 18 provides these data together with the other
data of the series to which they belong: source [25], 𝑅 = 0, specimens
with normal clamping. The highlighted tests are part of a series of
eleven tests of the same geometry (out of which seven failures), with
two of these tested at the same stress range as the highlighted tests.
All other data of that series are close to the mean Basquin curve of
the full test database. It is therefore likely that the two highlighted
tests are experimental outliers. Parola et al. [25] report that the plate
surfaces of their specimens were slightly rougher than the mill-scale
surfaces in other studies and that the riveting pressure was maintained
for a slightly longer time than usual. This may have contributed to the
relatively high fatigue resistance of the two tests.
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6.5. Relevancy for practice

We will now try to explain the large variation in fatigue resistance
based on the net section stress proposed by others. In all cases, the
fatigue resistance is defined as the stress range at two million cycles
with a 95% survival probability. Taras and Greiner [13] propose a dual-
slope Basquin equation (𝑚 = −3 for high stress ranges and 𝑚 = −5
for low stress ranges) with a fatigue resistance of 80 MPa or 90 MPa,
depending on the rivet steel grade, the bearing ratio, and the applica-
tion of RLP. Their background document [74] shows that their database
comprises three sources [20,21,31], almost entirely consisting of joints
with 𝑛𝑟𝑜𝑤 = 2. Despite this uniformity, the fatigue test data plotted in S–
N curve format show relatively large scatter. They therefore considered
subsets of specimens with mill scale and low bearing ratio, high bearing
ratio, and RLP. The proposed fatigue resistance of Δ𝜎𝐶 = 90 MPa is a
conservative value compared to the 95% survival probability of the first
subset, whereas the resistance of Δ𝜎𝐶 = 80 MPa follows for the latter
two subsets.

Pedrosa et al. [16] propose a fatigue resistance of Δ𝜎𝐶 = 61 MPa
and an inverse slope of 𝑚 = −4. Their fatigue resistance is lower than
that proposed by the other studies, caused by the large scatter of their
collected data. On the contrary, the same author group [15] recom-
mends a relatively high fatigue resistance of 107 MPa and a ‘flat’ S–N
curve with an inverse slope of 𝑚 = −10. This latter recommendation
is based on two tested geometries, namely one with 𝑛𝑟𝑜𝑤 = 1 and one
with 𝑛𝑟𝑜𝑤 = 2. The two geometries gave a significantly different fatigue
resistance, attributed in [15] to different crack growth properties of
the materials involved. Using the analytical model for the hoop stress,
however, the difference in geometry forms an additional explanation:
the tests with 𝑛𝑟𝑜𝑤 = 1 give a lower fatigue resistance. The large ratio
𝑟∕𝑤 = 0.53 of this geometry causes the relatively high fatigue resistance
despite of the single rivet row.

Individual test series in [32] result in an extremely high fatigue
resistance of up to 227 MPa with an inverse slope of 𝑚 = −7.7. This
value is based on tests with a fortunate geometry, with 𝑛𝑟𝑜𝑤 = 2 and
∕𝑤 = 0.38.

The difference in fatigue resistance of these subsets reduces sig-
ificantly if based on the hoop stress range. The variation in fatigue
esistance between 61 MPa and 227 MPa (factor 3.7) proposed by these
eferences based on the net section stress reduces to between 94/0.32
Pa and 110/0.32 MPa (factor 1.2) based on the hoop stress and a

lope parameter 𝑚 = −5. (This comparison excludes one series in [15]
ecause of lacking data on the specimen geometry.)

The predicted fatigue resistance using the hoop stress range differs
ignificantly from that based on the net section stress range. Note that
he test database does not cover the full range of geometries applied
n joints in bridges. As an example, consider a long joint with one or
wo rivets in Row 1 and an increasing number of rivets in subsequent
ows. Such a joint may have a ratio 𝑟∕𝑤 < 0.15 and 𝑛𝑟𝑜𝑤 > 4, the
alues being the extreme bounds of the test data. Assessment of such
oints requires a sound, mechanics-based evaluation method. The net
ection stress range is not fulfilling this requirement. For these reasons,
e advice against evaluating the fatigue resistance of riveted double

overed joints with the net section stress range and we advocate the
se of the hoop stress range instead.

. Conclusions

This study evaluates the fatigue driving force of hot riveted double
overed joints failing in the ply. Considered candidates for the fatigue
riving force are the net section stress and the hoop stress in the plate.
hereas others have employed the FE method to estimate the hoop

tress range, this study provides an analytical model for the estimation.
uch a model enables efficient evaluation of the hoop stress range for
13

wide range of geometries and load cases. It also gives insight into
ow the joint geometry influences the fatigue resistance. We applied
he model to a large database of fatigue test results.

The main finding is that the net section stress range is an inaccurate
redictor of the fatigue resistance. Using a Basquin equation with an
nverse slope of 𝑚 = −5, the standard deviation of the 10-th base
ogarithm of the number of cycles to failure is large: S(𝐶) = 0.44. The
atigue resistance evaluated with the net section stress range heavily
epends on the joint geometry. The hoop stress range is a much more
ccurate predictor of the fatigue resistance. The fatigue resistance is
hen largely independent of geometry and the standard deviation is
𝐶 = 0.34 or 0.25 for the subsets with mill scale contact and with
LP, respectively. A quantitative probabilistic analysis reveals that the
leatory uncertainties in friction coefficient and clamping force cause
he difference between these two subsets.

Based on these findings, the net section stress should be used with
reat caution in the assessment of riveted double covered joints. This
s especially important for larger joints, which often have dimensions
utside the range of test data.

Using the analytical model for the hoop stress, with friction coef-
icients of 0.33 for mill scale contact or 0.06 for red lead paint, and
q. (38) for the clamping stress, we recommend a Basquin equation for
ractical assessments with an inverse slope 𝑚 = −5 and a (linear elastic)
oop stress range of Δ𝜎ℎ = 330 MPa at 2 million cycles, which provides

the 95% lower prediction bound.
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