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A B S T R A C T   

In this work, numerical optimization based on stochastic gradient methods is used to assist geothermal operators 
in finding improved field development strategies that are robust to accounted geological uncertainties. Well 
types, production rate targets and well locations are optimized to maximize the economics of low-enthalpy heat 
recovery in a real-life case with stacked reservoir formations. Significant improvements are obtained with respect 
to the strategy designed by engineers. Imposing fault stability constraints impacts significantly the optimal 
configurations, with coordinated well rates and placement playing a key role to boost efficiency of geothermal 
production while keeping stress change effects to acceptable limits.   

1. Introduction 

Low-enthalpy geothermal energy has gained attention worldwide 
due to its potential to contribute to sustainable and clean energy solu
tions (Fridleifsson et al., 2008; Younger, 2015; Anderson and Rezaie, 
2019; Soltani et al., 2019; De Giorgio et al., 2020). Low-enthalpy 
geothermal energy plays a crucial role in achieving the goals set by 
the Paris Agreement, as it offers a renewable and low-carbon alternative 
to traditional energy sources (Seo, 2017). By reducing reliance on fossil 
fuels and decreasing carbon emissions associated with heating, these 
systems contribute to the global effort to limit temperature rise and 
combat climate change. 

Countries around the world are increasingly recognizing the poten
tial of low-enthalpy geothermal energy and incorporating it into their 
energy portfolios (Birkle and Bundschuh, 2007; Andritsos et al., 2011; 
Arola et al., 2014; Dhansay et al., 2014; Rubio-Maya et al., 2015). 
Governments, businesses, and communities are encouraging the adop
tion of these technologies to not only meet climate targets but also to 
achieve energy security and promote sustainable development (Mar
tín-Gamboa et al., 2015; Amoatey et al., 2021). In line with the global 
trend towards sustainable energy, the Dutch government aims at 
phasing out the use of fossil energy sources and transitioning to a 

carbon-neutral energy system by 2050. To meet the targets of the global 
climate agreement, the heating sector must attain a decline of 20 
megatons (Mt) CO2-equivalent emissions by 2030, followed by an 
additional reduction of 36 Mt by 2050 (Schoof et al., 2018). With a high 
potential for large-scale sustainable heat generation, geothermal energy 
emerges as a promising solution. 

In this context, increasing the cost-effectiveness of recovering heat 
from subsurface reservoirs can play a crucial role in advancing the 
successful execution of the energy transition strategy. The efficiency of 
heat production from geothermal wells and the associated economics of 
geothermal projects can be maximized through model-based optimiza
tion to determine improved field development strategies to exploit the 
geothermal resources. The abovementioned upscaling of geothermal 
activities can considerably benefit from the incremental value to be 
unlocked by the adoption of optimized development concepts and the 
respective learnings derived from optimization for the specificities of 
geothermal reservoirs. The suboptimal character of the current practices 
in geothermal development planning has been highlighted in recent 
studies. Process-based models and surrogate models (Akın et al., 2010; 
Kim et al., 2010; Yapparova et al., 2014; Chen et al., 2015; Wacho
wicz-Pyzik et al., 2020; Blank et al., 2021) have been used to optimize 
the well placement in geothermal systems. Most of these models are 
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based on simple box-model with one well doublet. Mijnlìeff and Van 
Wees (2009) and Willems et al. (2016) illustrated the need for improved 
well placement strategies using relatively simple engineering analysis. It 
was shown that, (Willems and Nick, 2019) while the potential for heat 
recovery is very high, the often applied ‘first-come first served’ approach 
based on doublet configurations only is expected to considerably 
decrease the total heat recovery potential. Kahrobaei et al. (2019) 
demonstrated the scope to optimize well placement strategies on a 
regional-scale, by showing that, with a predetermined number of ver
tical wells, optimized well locations can lead to substantial improve
ments in heat recovery. 

In this study, we employ state-of-the-art model-based optimization 
techniques originally conceived in the context of oil and gas field 
development decisions and develop their application to the optimization 
of well type selection (producer or injector), production flow rates and 
well placement in geothermal reservoirs under geological uncertainty. 
The optimization framework used relies on modern stochastic gradient- 
based methods to enable robust optimization over an ensemble of model 
realizations in a computationally efficient manner (Fonseca et al., 2017). 
One of the key advantages of the stochastic gradient approach refers to 
the flexibility it confers to the workflow to be coupled with little effort to 
any type of model as a black-box. This allows the optimization frame
work to be easily employed in a variety of problems, ranging from the 
support of different types of field development decisions to assisting in 
the design of renewable energy systems (Barros et al., 2019, 2020a, 
2020b, 2022; Hanea et al., 2019; Swamy et al., 2020). 

We demonstrate the value of such a framework by applying it to a 
real-life geothermal reservoir in the Netherlands. The results obtained 
lead to useful insights from which the operators can potentially benefit 
to boost the efficiency of geothermal systems and to derive site-specific 
solutions with optimal development concepts tailored to the target 
geothermal reservoir which address robustness against the various un
certainties and ensure compliance to the constraints imposed. We note 
that, even though this study demonstrates the use of optimization as a 
means to assist practitioners in field development planning activities of a 
potential developing area, the results obtained, by no means, aim at 
providing guidelines or advice for any permit application. Throughout 
the study, practical limits regarding the stability of faults have been 
considered to showcase the capabilities of the optimization technology 
of imposing constraints within the optimization procedure and their 
impact on the optimized field development configurations. However, 
the obtained results with the assumed constraints are not meant to 
reflect a final general statement on the safety standards for geothermal 
operations. 

This work aims at describing a modern and viable best-practice 
approach to improve geothermal field development planning in a 
broad sense for efficient exploitation of a large variety of geothermal 
resources. The ideas are presented in the form of the practical use of 
numerical optimization in a real-life complex case study in the 
Netherlands in order to provide a convincing demonstration of the value 
of optimization technology in a realistic context with societal relevance 
and specific challenges. Even though the obtained results are strongly 
oriented to specificities of the current Dutch geothermal landscape (i.e., 
low-enthalpy thermal energy production for direct heat use), the 
described approaches are generically applicable to other settings 
worldwide. By showcasing results of a real-life application, the intention 
is to ensure geothermal practitioners that numerical optimization can be 
applied in practice despite the complexity of the models (with un
certainties and constraints) and decisions involved. While the use of 
optimization is more disseminated in the oil and gas sector, there are 
very few academic sensitivity analysis studies in geothermal applica
tions reported in the literature (e.g., Zaal et al. 2021). Therefore, to the 
best of our knowledge, this is first paper presenting the practical use of 
multi-disciplinary model-based optimization in a real-life geothermal 
field development case study. 

This paper is structured as follows. In Section 2 we recap the 

theoretical background on the framework for optimization under con
straints and uncertainty. In Section 3 we outline the methodology fol
lowed to perform the work and achieve the goals of this study. Next, in 
Section 4, we describe the model of the real-life geothermal reservoir 
used in this study including the uncertainties accounted for, along with 
the optimization setup including the optimization variables considered 
and the implemented objective and constraint functions. Section 5 
presents the results obtained from the optimization of field develop
ment. Finally, in Section 6 we conclude the paper and summarize the 
main findings. 

2. Theoretical background 

2.1. Computer-assisted optimization 

Optimization is the process of seeking for the best possible solution of 
a particular problem. It involves identifying relevant degrees of freedom 
that can be varied to produce an effect on the performance of the system. 
In this work, the selected degrees of freedom or ‘controls’ to be opti
mized are the types of the wells to be drilled, their locations and the 
target rates assigned to the formations intercepted by the production 
wells. Optimization also implies the definition of the ‘objective function’ 
to be improved, here the discounted net present value to be maximized. 

An optimization problem can be solved either manually using 
domain expertise of the practitioners assigned to find better solutions or 
through the use of computer-assisted optimization workflows. While 
manual optimization is often a process which is time-consuming and 
prone to errors, computer-assisted optimization leads to faster results 
which are less subject to human bias. However, the results from auto
mated optimization workflows typically need to be analyzed and 
interpreted in order to be understood and accepted by practitioners and 
decision makers. 

In field development optimization, we often deal with many complex 
design variables to be optimized in combination (e.g., trajectories of tens 
of wells, drilling order, time-varying well controls). Most optimization 
methods perform best when dealing with optimization variables that are 
continuous, and as few variables as possible. Many times, increased 
complexity implies a larger number of required variables. Therefore, the 
parametrization chosen (i.e., formulating the optimization problem with 
effective mathematical variables) is crucial. The parametrization 
choices followed in this study are discussed when introducing the 
optimization experiments in Section 5. 

There are numerous methods for computer-assisted model-based 
optimization. These methods can be classified into two general classes, 
derivative-based and derivative-free techniques. Derivative- or gradient- 
based methods have been shown to be computationally more efficient 
than derivative-free methods. In particular, recent research efforts have 
led to the development of the Stochastic Simplex Approximate Gradient 
method (StoSAG) (Fonseca et al., 2017), which combines the efficiency 
of gradient-based approaches with the flexibility and ease of use of 
black-box derivative-free optimization. StoSAG has shown very good 
performance on a variety of optimization problems. In the following 
section we provide a brief description of this method. 

2.1.1. Optimization under uncertainty 
Disregarding uncertainty within model-based optimization work

flows used to support design and planning activities may lead to unre
liable conclusions, and therefore to poor decisions. Optimization 
procedure that includes uncertainty quantification throughout the iter
ations is usually referred to as robust optimization. In order to take 
subsurface uncertainty into account when making field development 
and operational decisions, there is a need to work with multiple 
geological model realizations (i.e., an ensemble of models). Each model 
realization is characterized by a set of model parameters (or parameter 
vector m) describing the geological and flow properties of the reservoir 
(e.g., permeabilities, porosities, initial pressure and temperature 
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conditions). By constructing a set of Nr geological model realizations M 
= { m1, m2, …, mNr}, a broad range of plausible reservoir behavior 
scenarios can be simulated to reflect the limited available knowledge of 
the subsurface. As a means to find a single optimal operational strategy 
that performs the best for all model realizations simultaneously and 
therefore most robustly against the uncertainties accounted for, one can 
optimize the average (over all models, typically assumed to be equi
probable) of the objective function, computed as: 

J(u) =
1
Nr

∑Nr

k=1
Jk(u,mk), (1)  

where J(u) is the mean of the objective function value being optimized 
for a single strategy u based on each Jk(u,mk) which is the objective 
function evaluated for each kth geological realization mk, and Nr is the 
number of geological realizations considered. The optimization method 
handles any objective function J(u) the same way, therefore the math
ematical notation adopted here is rather abstract. In Section 4.5.1, we 
will introduce the specific objective function considered in this opti
mization study. 

As the number of model realizations increases for a more complete 
representation of complex uncertainties, the number of simulations 
required to perform the optimization tends to increase considerably. On 
this basis, the computational efficiency of the optimization method be
comes important to render tractable optimization problems involving 
large-scale real-life models with time-consuming simulations. Particu
larly in this context, the StoSAG described next provides an attractive 
solution. 

2.1.1.1. Stochastic gradient. The StoSAG method has shown to be 
powerful for optimization problems which need to consider uncertainty 
and need flexibility in terms of coupling with different simulators. To 
approximate the gradient of the objective function with respect to 
control variables (i.e., degrees of freedom subject to optimization). 
Around each solution, the algorithm varies all the control variables 
simultaneously by sampling of normally distributed deviations from the 
original control value to generate a set of perturbed control points. The 
objective function values for each of these new points are then evaluated 
(e.g., by performing the required techno-economic calculations). An 
approximate gradient is thereby computed through a linear regression of 
this set of perturbed controls and their respective objective function 
values. From this point on, a standard gradient descent optimizer can be 
employed in an iterative loop for the optimization – the calculated 
approximate gradient provides the direction to update the control var
iables in the next iteration. For robust optimization, when multiple 
model realizations are used to represent uncertainty, Fonseca et al. 
(2017) proposed the StoSAG formulation where each model realization 
is paired with a single control perturbation inspired by the approach 
followed by Chen et al. (2009), making the gradient estimation and 
optimization procedure computationally attractive in large-scale opti
mization problems with expensive simulation models. In this work we 
only leverage the StoSAG method in the optimization exercises to be 
presented next, therefore the description of method is not further 
detailed. For a more comprehensive explanation of the StoSAG method, 
we refer to Fonseca et al. (2017). 

2.1.2. Constrained optimization 
Solutions to real-life problems must often adhere to pre-defined re

strictions. For instance, design configurations or operational strategies 
might only be accepted as valid or feasible if the characteristics of the 
system comply to the defined limits. These considerations also hold in 
the context of optimization, in which case the optimization procedure is 
expected to determine optimal solutions that honor all the imposed 
constraints. Generally, an optimization problem with non-linear con
straints can be mathematically formulated as: 

max
u

J(u), subject to g(u) ≤ 0 and h(u) = 0, (2)  

where J(u) is the objective function value to be maximized, g(u) rep
resents the set of inequality non-linear constraints and h(u) the set of 
equality constraints. Note that both the objective and the constraints are 
function of the same strategy u being optimized, which means that there 
may be cases where there is a trade-off between maximizing the objec
tive function against complying with the constraints. 

In particular, seeking optimal solutions that are feasible in terms of 
non-linear constraints requires dedicated approaches, which belong in 
the realm of constrained optimization. A common approach to tackle 
constrained optimization problems is the Lagrangian approach, which 
consists of constructing the so-called Lagrangian function formed as: 

L (u) = J(u) + μTg(u) + λT h(u), (3)  

where μ and λ are the sets of Lagrange multipliers. The Lagrangian 
function L (u) can then be used to derive a corresponding unconstrained 
optimization problem as a function of the original optimization vari
ables and the Lagrange multipliers. In this context the solution of this 
kind of optimization problem with a gradient-based approach involves 
the calculation of the gradient of both the objective and constraint 
functions with respect to the control strategy u, which can be computed 
using the StoSAG method. Like for the objective function, the optimi
zation method handles any constraint functions g(u) and h(u) the same 
way, therefore the generic notation. In Section 4.5.3, we will introduce 
the specific constraint functions considered in this optimization study. 

Constrained optimization via the Lagrangian approach can be ach
ieved through different optimization algorithms. Our optimization 
framework used in this study currently supports two classes of algo
rithms, namely: (i) a quasi-Newton interior point based optimizer 
(OPT++ library by Meza et al. 2007) which employs a merit function 
penalizing constraint violations to guide the optimization, and (ii) a 
optimizer based on the method of feasible directions from the CONMIN 
library (Zoutendijk, 1960; Vanderplaats, 1984) which solves a 
sub-problem to find the descending feasible direction once constraint 
surfaces are reached during the optimization. Other methods for con
strained optimization exist; for more information and some examples, 
we refer to (Zoutendijk, 1960; Vanderplaats, 1984; Meza et al., 2007). 

For the case of robust optimization in this work, just like for the 
objective function when accounting for an ensemble of model re
alizations, the constraint functions are also computed and imposed as an 
average over the ensemble. 

2.2. Optimization workflow 

The EVEReST optimization framework (https://github.com/equi
nor/everest) used in this work leverages the strengths of the StoSAG 
method described above as a black-box gradient-based optimization 
approach to facilitate the setup of modular workflows and provide 
flexibility for users to tailor the framework to their specific applications. 
This allows users to focus on the use of domain knowledge to define the 
problem and interpret their model results, instead of spending effort on 
repetitive and time-consuming tasks such as manually setting up and 
running simulations to search for improved solutions. Once a first 
computational workflow with a series of required calculations is set, it is 
simple to adjust it to include additional optimization variables or to test 
different optimization approaches. Fig. 1 depicts schematically the steps 
taken in a typical optimization experiment with EVEReST. 

The field development decisions are based on the subsurface models. 
Therefore, any workflow used to support decision making involves 
adjusting well-related boundary conditions in the subsurface simulation 
models. At each iteration, the control variables are translated into 
required inputs the reservoir flow simulator and the simulation runs for 
all the models are launched. Constraints and objectives can then be 
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computed from the simulation output and the direction to update the 
control variables (StoSAG gradient) is calculated. The calculation steps 
are repeated in the next iteration using the updated control variables, 
and the optimization continues through subsequent iterations until 
reaching convergence. 

3. Methodology 

The primary goal of this work is to deliver a recommended best field 
development strategy for our target real-life case study through the use 
of numerical optimization. A second goal is to gain understanding of the 
impact of adhering to imposed safety limits (i.e., fault stability) on the 
optimal field development strategy and expected techno-economic 
performance, by performing optimization with different settings (i.e., 
different optimization variables and constraint considerations). To 
achieve these goals, the work done consisted of the following steps:  

(1) Gather available information about local geology and field 
development base case (i.e., initial field development strategy 
provided by operator with well placement and well types defined 
based on engineering guess) of the area of interest  

(2) Construct an ensemble of model realizations of the real-life 
geothermal site to capture the underlying geological 
uncertainties  
(a) Build geological model and account for uncertain static 

properties 
(b) Prepare ensemble of dynamic models with realistic opera

tional constraints  
(3) Formulate the optimization problem:  

(a) Define economic assumptions to determine objective 
function  

(b) Define fault stability calculation assumptions to determine 
constraint function  

(4) Perform optimization experiments for different optimization 
variables and with gradually increasing complexity:  
(a) Unconstrained optimization (i.e., without fault stability 

considerations):  
(i) Optimize well types (producers or injectors) for pre- 

defined well locations from the base case and fixed well 
production / injection rate targets  

(ii) Optimize well production / injection rate targets for 
optimized well type configuration in (i) 

(b) Constrained optimization (i.e., with stress-based fault sta
bility considerations):  
(i) Optimize well production / injection rate targets for 

optimized well type configuration  
(ii) Optimize location of injectors starting from 4-well 

modification of optimized well type configuration 
(5) Analyze and compare results of optimization experiments per

formed in (4) to understand most influential variables, verify 
compliance to imposed constraints and derive case-specific 
insights 

4. Case study 

4.1. Geological setting 

The area of interest is located in the Netherlands. The name and 
location of the formations and wells are anonymized in this study. 

The target reservoirs for this study area are an Upper formation 
Member and a Lower formation Member (Van Adrichem Boogaert and 
Kouwe, 1993; Donselaar et al., 2015). The Lower formation Member 
consists mainly of channels, and fluvial plain deposits, where the sand is 
mostly concentrated in the channels and crevasse splays (Van Adrichem 
Boogaert and Kouwe, 1993; Donselaar et al., 2015). The Upper forma
tion Member is separated from the Lower formation Member by a shale 

Fig. 1. Iterative optimization procedure followed by EVEReST (left) and steps of computational workflow tailored to the optimization of geothermal field devel
opment strategies (right). 
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interval that represents a sequence boundary, which was caused by a 
marine transgression (sea level rise) between the Lower and Upper 
formation Member (Den Hartog Jager, 1996). Like the Lower Member, 
the Upper formation Member also consists of fluvial deposits. The Upper 
formation Member was deposited during the late part of the Valanginian 
stage (Den Hartog Jager, 1996) and, like the Lower formation Member, 
the Upper formation Member also consists of fluvial deposits. These 
deposits consist of fine-to-coarse grained and gravelly sands which 
represent stacked distributary channel-systems deposited in a lower 
coastal-plain setting (Van Adrichem Boogaert and Kouwe, 1993). Given 
the fact that the Upper formation Member generally consists of coarser 
sand and less clay than the Lower formation Member, the depositional 
environment was likely more energetic (fluvial sediments deposited 
with higher velocities) than the one forming the Lower formation 
Member. 

4.2. Geological models 

The static geological model serves as input for the reservoir opti
mization modelling. It consists of 325,500 grid cells with an average 
increment of approximately 51 m in the horizontal J-direction, 43 m in 
the horizontal I-direction and 23 m in the vertical K-direction. Two 
target aquifer formations are located within the model separated by a 
clay interval (i.e., inactive layers in the reservoir simulation model). 

The reservoir geometries and fault distributions of the static 
geological model were based on the interpretation of seismic data. 
Seismic-to-well ties were made for two existing wells in the area where 
check-shot was available. The well trajectories from existing wells in the 
area were obtained from the operators via the national data repository 
(NLOG, https://www.nlog.nl/). The regional velocity model VELMOD 
3.1 was used to convert the time-based seismic horizons to depth 
(Pluymaekers et al., 2017). Based on seismic interpretation, two main 
faults were identified which are oriented roughly NW-SE (Figs. 2 and 3). 
The depth of both the Lower and Upper formation Member generally 
increases towards the west and southwest (Fig. 3). Note also that the 
thickness of the Lower formation Member increases towards the 
southwest (Fig. 3). 

The created static models were populated with reservoir properties 
(i.e., fluvial facies, Net-to-Gross, porosity and permeability in the I, J and 
K directions) that were petrophysically derived from well-log, and well 
test data from existing nearby wells. The effective porosity logs were 
calculated by using the density, method and correcting for the shale 
volume in the rock (Alberty, 1992; Morton-Thompson and Woods, 
1992). The permeability logs were derived by applying an established 
poro-perm relation valid for the reservoirs of interest in the case study 
region. Density logs and consequently porosity logs only existed for two 
wells within the case study region. Gamma-ray logs on the other hand 
were available for several more wells within the case study region. 

Because a strong correlation exists between rock properties (e.g., 
porosity, permeability) and lithology, the gamma-ray logs were used to 
compute the rock’s fluvial facies. This was done by applying a 
gamma-ray cut-off of 65 gAPI. An interval with a gamma-ray lower than 
65 was classified as sandy channel deposits. An interval with a 
gamma-ray exceeding 65 gAPI was classified clay-rich floodplain de
posits. Based on the gamma-ray cuts-off, net-to-gross logs were calcu
lated, which were used to estimate the amount of sand in the Lower 
formation Member. 

After the reservoir properties were calculated at the location of the 
existing wells, the properties were arithmetically upscaled. Based on the 
upscaled net-to-gross log, the model was stochastically populated with 
channel sands that followed the main paleo current direction from SE to 
NW. The Lower formation Member contains 79 % of channel sands with 
a mean width of 300 m (±150 m). The Upper formation Member was 
modelled as one sandy package of 13.5 m thick. The remaining reservoir 
properties (i.e. porosity and permeability) were modelled away from the 
wells by applying Gaussian random function modelling and by taking 
into account a correlation with the presence of the fluvial facies (i.e. 
channel sand bodies vs. clay-rich floodplain deposits). A spherical var
iogram with a total sill of 1.0 and a nugget of 0.01 was considered. 
Overall, 50 model realizations were created for all the reservoir prop
erties to model the reservoir properties away from the wells. The 
modelled porosity in the channel sands of the Upper formation Member 
varies between 14 and 19 %. The porosity in the channel sands of the 
Lower formation Member ranges between 12 and 21 %. The porosity for 
the clay-rich floodplain deposits was set at a constant 0.01. The hori
zontal permeability in the J direction that was used in the model ranges 
between 500 and 1500 mD for the channel sands in the Upper formation 
Member and between 50 and 300 mD for the channel sands in the Lower 
formation Member. The horizontal permeability for the clay-rich 
floodplain deposits was set at a constant 0. To account for vertical 
anisotropy, a value of kh,J/kv = 3.8 was derived. 

The model realizations include the uncertainties regarding trans
missibility of the faults which refer to what extent the faults are able to 
transmit fluids. The uncertainties regarding fault transmissibility were 
addressed by calculating the shale gouge ratio (Yielding, 2002), which is 
based on the assumption that the composition of the fault gouge (i.e. the 
fractured material that forms the fault plane) follows directly from the 
bulk composition of the host rocks that has slipped as a particular point 
on the fault plane (Yielding, 2002). 

4.3. Reservoir simulation models 

Based on the static model, a dynamic model was built containing 
325,000 grid cells from which 150,000 are active. The reservoir di
mensions are approximately 4 × 4 km with 124 × 105 × 25 grid cells in 
the x, y and z directions. The top and bottom formations, representing 

Fig. 2. The location of faults on the left (top view) and selected realizations with different geological properties on the right: permeability, porosity and net-to-gross.  
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Upper and Lower formations respectively, are separated by a vertical 
flow barrier. The Lower formation is significantly thicker than the Upper 
Sandstone. The faults split the reservoir formations into three lateral 
sections. There are three planned doublets in the model, including three 
deviated injection wells and three deviated producers (see Fig. 3). A 
preliminary well placement (with selected locations for the three pro
ducers and the three injectors) has been defined based on engineering 
guess by the operator to develop the geothermal site. This initial 
placement is the starting point for our optimization experiments. 

Since no wells have been previously drilled in the area of interest, 
there is significant uncertainty on the geological characteristics of sub
surface. This uncertainty is represented by Nr = 40 realizations of the 
numerical model with different flow properties such as permeability, 
porosity, net-to-gross and fault transmissibility. The faults have been 
initially defined as ranging from half-sealing to fully-open. However, 
due to clay smearing of the fault in the Lower formation, fault trans
missibility multipliers have been reduced in Lower formation faults to a 
distribution with a lower mean and higher standard deviation. Note that 
this means that each model realization will have different fault trans
missibility and each of the faults in the same model will have different 
transmissibility. Fig. 2 displays the model with the fault locations and 
some of the generated model realizations. 

4.4. Model constraints 

The dynamic simulation model was built within the open-source 
reservoir simulator OPM-Flow (Rasmussen et al., 2021). While con
structing the model, three important modelling requirements and con
straints were defined:  

• Production targets from Upper and Lower formations should be 
controlled separately as additional degree of freedoms for the opti
mization exercise (e.g., assuming the availability of intelligent 
completions).  

• Bottom-hole pressure (BHP) must comply with practical operational 
conditions (i.e., physically consistent pressure profile along the 
wellbore).  

• Produced volumes must equal injected volumes in each of the two 
formations (i.e., complete voidage replacement in both formations 
by imposing full reinjection of produced volumes). 

In order to control production rate targets to be assigned to the two 
formations, 12 simulation wells have been defined to represent the 6 
wells in reality. Each well was split into two: a lower and an upper 
formation well. In order to ensure depth-consistent well pressure, the 
current BHP for each well in one of the formation was extracted to set 
the limits on the BHP for the corresponding well in the other formation. 
The minimum allowed difference in prescribed bottom-hole pressure 

between the upper and lower well was imposed according to the dif
ference in depth between the two formations of approximately 100 m 
(which corresponds to a hydrostatic difference in pressure of approxi
mately 10 bar). In addition, realistic BHP limits were prescribed to the 
wells in the lower and upper formations individually. For the verifica
tion of consistent BHP behavior across the 40 model realizations, we 
refer to Fig. 4 which depicts the statistics of the difference in well BHP 
between bottom and top formation across all the 40 model realizations 
in the form of box-plots. Note that for all model realizations the differ
ence in pressure is indeed never below 10 bar. 

In order to ensure equal production and injection rates, the simulator 
uses the total production rate from each formation to set dynamically 
the target for total injection rate in the same formation. In addition, each 
well has its own maximum rate limit to prevent exceeding flow capacity. 

4.5. Optimization setup 

The objective function and the control variables are the key user- 
defined features of any optimization process. The control variables are 
changed by the optimizer to explore directions toward improved 
objective function values leading to the optimized solution. 

In this paper, the well types (i.e., injector or producer) and well 
production rates are optimized to maximize the economics of the 
geothermal heat development project. For this purpose, the net present 
value (NPV) is a suitable objective function because it considers both 
project costs and revenues in a balanced way. Nevertheless, the opti
mization framework used in this project is suitable for any objective 
function and any types of controls. 

4.5.1. Objective function 
This study is aimed at maximizing the economics of heat production 

of the geothermal development over a production life-cycle of 30 years. 
A standard NPV formulation for doublet geothermal systems has been 

Fig. 3. One realization of the numerical model and the location of faults, planned wells (producers in green and injectors in blue) and top (Upper formation Member) 
and bottom (Lower formation Member) formations. Top view on the left and side view on the right. 

Fig. 4. Box-plots showing statistics of the differences in well BHP between 
bottom and top formation across 40 model realizations. The orange lines 
represent the averages, boxes represent the 25th and 75th quantiles and 
whiskers mark the maximum and minimum values. 
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used (van Wees et al., 2012, 2020; Vrijlandt et al., 2019). To account for 
the time-value of heat production and the associated costs, the dis
counted NPV is computed as 

JNPV(u)=
∑Nt

k=1

(
rh⋅eprod, k(u)⋅Δtk − rp⋅

(
eprod

pump,k(u)+einj
pump,k(u)

)
⋅Δtk − ck(u)

)

(1+b)tk/τ
,

(4)  

where u is the control vector, eprod,k is the heat production [J/s] during 
the kth simulation time interval, epump,k is the power consumed to 
operate the required pumps [J/s], Δtk is the size of the kth simulation 
time interval [s], ck are the costs (CAPEX and OPEX), rh is the heat price 
[€/GJ] (including subsidy scheme guaranteeing a certain minimum 
price over a 15-year period), rp is the electricity cost [€/GJ] for the 
operations, b is the (yearly) discounting factor, tk is the time at the kth 

simulation time interval, τ is the reference time for discounting cashflow 
and Nt is the total number of simulation time intervals. 

The produced power at each time interval eprod,k [J/s] is calculated 
as: 

eprod,k = qkρwcwΔTk, (5)  

where qk [m3/s] is the volumetric production rate and ΔTk [K] is the 
difference between injection and production temperature at each 
simulation time-step k, ρw [kg/m3] is the water density and cw [J/kg⋅K] 
is the water specific heat capacity. 

The pumping costs are calculated for both injection and production 
wells, which is a function of the pumping power required, eprod.

pump,k [J/s]. 
For producers, this depends on the efficiency of the pump (ε), the pro
duction rates qk [m3/s] and the pressure difference ΔPprod,k [bar] applied 
by the electrical submersible pumps (ESP) to lift the produced fluids to 
the surface facilities: 

eprod
pump,k =

qkΔPprod,k

ε . (6) 

For the injectors, we assume that a booster pump is used at the 
surface (downstream of the heat exchanger) to inject the cold water into 
the wells. The power associated with the operation of the booster pump 
is calculated as: 

einj
pump,k =

qkΔPinj,k

ε . (7) 

The CAPEX costs include all surface facility costs including heat 
exchanger, booster pumps, separators (if necessary), etc., which are 
assumed to be invested in the first year of project development. In this 
work, the costs for drilling are based on the drilled length of each well. 
ESPs have their own associated costs since they are replaced at regular 
intervals of the production wells. The OPEX costs for the producers and 
injectors are calculated individually. The values of the economic pa
rameters used for the NPV calculation are indicated in Table 1. 

4.5.2. Control variables 
In field development optimization, we often deal with many complex 

design variables to be optimized in combination, e.g., trajectories of 
many wells, drilling order, time-varying well controls. In this work three 
types of decisions and therefore three types of control variables were 
considered in optimization:  

1. Well types (producers or injectors): any configuration of 3 producers 
and 3 injectors  

2. Well rate targets: allowed to vary in the [0, 350] m3/h range  
3. Well locations: allowing the placement of vertical wells to vary 

across the entire extent of the reservoir 

4.5.3. Constraints 
In addition to the model constraints described in Section 4.4, there 

was also a need to define optimization constraints. We considered two 
types of constraints, i.e., the so-called input constraints and output 
constraints. The combined rates for Upper and Lower formations were 
limited by optimization input constraints to not exceed the maximum 
rate of 350 m3/h for each well. Optimization output constraints were 
defined to limit the risk associated with the near-fault stress behavior 
caused by the development of the field, by considering stress change 
across the faults in different optimization experiments (Fig. 5). 

In order to consider not only pressure but also the temperature effect 
on fault stability, the Coulomb stress change is calculated and consid
ered as constraint in optimization experiments. Simulated pressure and 
temperature changes in the reservoir are used to calculate strain and 
stress changes at the fault locations. In case of spatially gradual and/or 
vertically layered, changes in temperature and pressure, the associated 
elastic strain and stress can be approximated with a model of uniaxial 
(vertical) strain and using the boundary condition that vertical total 
stress remains unchanged, in accordance with the weight of the over
burden and horizontal strain is zero. The stress tensor can be used to 
calculate the Coulomb stress change or Shear Capacity Utilization (SCU) 
(Buijze et al., 2017). When the SCU is < 1 the failure strength of the fault 
element has not yet been reached and the element is responding elas
tically. Please note that the uniaxial approach for estimating stress 
changes and underlying parameters are tentative values and the pri
marily serve to showcase the capability to include fault stability con
siderations in the optimization procedure. 

While pressure difference can be derived directly from the pressures 
calculated by the reservoir simulator, strain and stress changes are a 
function of both pressure and temperature changes determined by the 
flow simulator. In case of spatially gradual and/or vertically layered 
changes in temperature and pressure, the associated elastic strain and 
stress can be approximated with a model of uniaxial (vertical) strain and 
using the boundary condition that vertical total stress remains un
changed, in accordance with the weight of the overburden and the 
assumption of horizontal strain to be zero (Fjaer et al., 2008; Van Wees 
et al., 2014). 

The effect of temperature and stress change (ΔT and ΔP) on vertical 
strain ezz under uniaxial conditions is equal to (Fjaer et al., 2008) (Eqs. 
(1.123) and (12.10)): 

ezz (t) = ΔT(t)αT
(1 + v)
(1 − v)

+ ΔP(t)
(1 − v − 2v2)

(1 − v)E
, (8)  

where ΔT(t) is the temperature change [K], αT is the linear thermal 
expansion coefficient [1/K], v is the Poisson’s ratio, ΔP(t) is pressure 
change [Pa] and E is the Young’s modulus [Pa]. Consequently, the 
changes in horizontal and vertical effective stress are given by Hooke’s 
law, poro-elasticity and adopting Biot’s constant equal to 1 (e.g., Fjaer 
et al. 2008, Zoback 2010): 

Δσʹ
hH(t) = ezz (t)

E
(1 + v)

− ΔP(t) (9) 

Table 1 
Economic parameters used in NPV.  

Variable value unit 

Pump efficiency, ε 65 % 
Heat price, rh (incl. subsidy) 5.0 for first 15 years 

2.5 for remaining 15 years 
€/GJ 

Electricity cost, rp 13.3 €/GJ 
Drilling cost 2.0 × 106 €/km 
Pump cost 1.0 × 106 (producers) 

0.5 × 106 (injectors) 
€/3 years 
€ 

CAPEX 30 × 106 € 
OPEX 1.95 × 106 €/year 
Discount factor, b 9 %/year  
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Δσʹ
zz(t) = − ΔP(t) (10) 

These stress changes are added to the in-situ stress to determine time 
dependent variation in the stress and the resulting stress tensor can be 
used to calculate the Coulomb stress change (van Wees et al., 2019) or 
Shear Capacity Utilization (Buijze et al., 2017), which for a fault plane is 
defined as: 

SCU =
σs

C + μσʹ
n
, (11)  

where σs is the shear stress, σʹ
n is the effective normal stress, C is 

cohesion and μ is the friction coefficient (corresponding to the tangent of 
the friction angle j). 

The shear stress and effective normal stress on the fault plane are 
calculated from the normal of the fault plane n and the effective stress 
tensor σʹ with a few simplified assumptions on the orientation of the 
stress components (Worum et al., 2004). For in-situ stress conditions and 
fault frictional parameters, we adopted parameters in agreement with 
previous geomechanical reservoir studies in the Netherlands (Van Wees 
et al., 2014; Buijze et al., 2017, 2021):  

• The lithostatic stress gradient gL (vertical total stress gradient) is 
assumed to be 24 MPa/km and hydrostatic pressure gradient (based 
on brine) to be 10.6 MPa/km to derive the initial vertical stress: 
σʹ

zz(t = 0) = (gL) z − P  
• The minimum and maximum effective horizontal stresses (σʹ

h and 
σʹ

H) are determined by the horizontal to vertical effective stress ratios 
k0 (chosen 0.6) and k1 (chosen 0.9) with σʹ

h(t= 0) = k0 σʹ
zz and 

σʹ
H(t = 0) = k1 σʹ

zz  
• The orientation of σʹ

h is assumed to be perpendicular to the average 
map trends of the faults  

• For the faults, the cohesion has been set to 2 MPa, and friction angle 
to 30◦

We note that the uniaxial approach for estimating stress changes and 
adopting uniform elastic study is a strongly simplified approach. A more 
sophisticated geomechanics simulator would be needed to assess more 
complex stress interactions such as stress arching and the effect of local 
variations in mechanical properties. On the other hand, for matrix 
permeability dominated geothermal reservoirs, stress arching effects 
appear to be limited (Buijze et al., 2019) and uniaxial stress assumptions 
are capable to capture well first-order stress effects (Kivi et al., 2022; 
Marelis et al., 2023). Nevertheless, it should be noted that, in this study, 
the adopted uniaxial approximation serves primarily to showcase the 
relevance and capability of including fault stability considerations in the 
optimization procedure. 

In this case, the output constraint function can be expressed math
ematically as: 

gSCU(u) = max
1≤x≤Nb

SCUx
Nt
(u) ≤ 1, (12)  

where SCUx
Nt 

is the Shear-Capacity Utilization indicator computed as in 
eq. ,SCU = σs

C+ μσʹn 
(11 at the x grid cell adjacent to the fault at the last 

simulation time-step, Nb is the number of grid cells adjacent to the fault. 
Once again, this is repeated for each of the two faults separately in Upper 
and Lower formations, resulting in a total of 4 output constraint 
functions. 

5. Optimization experiments 

5.1. Unconstrained optimization 

In this set of experiments, both well type and production rate opti
mization experiments are performed and compared to the base case 
corresponding to the initial well type configuration depicted in Fig. 6 
(left), which serves as the starting point for the first optimization 
experiment, i.e. well type optimization. In the initial strategy the target 
well production was split evenly between the Upper and Lower 
formations. 

5.1.1. Well type optimization 
In the first experiment (Experiment 1) types of the wells were opti

mized. Each well can be either an injector or a producer while the lo
cations and the trajectories of the wells are fixed. As previously 
mentioned in Section 4.4, the field water injection rate has been 
assigned dynamically to ensure reinjection of the produced volumes 
with a combination of group control keywords by the reservoir flow 
simulator. The individual well production and injection rate targets for 
each formation were also controlled. 

An optimized well type configuration was obtained by running 
EVEReST with the ensemble of 40 model realizations. In the obtained 
optimal strategy two of the wells switched types compared to initial 
guess. Producer WELL1 became an injector while its neighbor (injector 
WELL3) became a producer. This resulted in a non-trivial well type 
configuration, depicted in Fig. 6. By switching the types of those two 
wells, the average NPV of the ensemble of models was increased by 8 
million €. A significant inflection of the cashflow curve is observed after 
a period of 15 years, which corresponds to the end of the period subject 
to subsidized heat price, see Fig. 7. 

The temperature profiles in the wells that remained of the same type 
(i.e., WELL4 and WELL5) did not change much. The highest impact on 
NPV is associated with setting WELL3 as producer instead of WELL1. The 
new producer has a more favorable temperature profile in time: it 

Fig. 5. Marked cross sections of the grid on both sides of each fault. Upper formation layer on the left and Lower formation layer on the right. The maximum stress 
change among each cell in red and black line region is calculated. 
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maintains higher production temperatures over a longer period of time 
(Fig. 8). We also noticed that the production temperature at the start is 
higher in the new producer, which can be attributed to the placement of 
this well in a deeper area of the reservoir accessing higher temperatures. 
As a matter of fact, we observe that the three deepest wells are set as 

producers in the optimal well type configuration (Fig. 9). 
In Experiment 2, well types were optimized by allowing production 

from Upper and Lower formations individually. The target flow rates for 
producers were split evenly between the formations. The flow rate in 
each well for Upper and Lower formations was determined by the flow 
simulator. This type of modelling provided us insight into the behavior 
of the system for particular formations. 

The optimal solution found was the same as in the first experiment: 
WELL1 became a producer, and WELL3 turned into an injector. The 
average NPV improved by 6.6 million € (Fig. 10). A more detailed 
analysis of the results shows that the cold-water breakthrough in the 
Upper formation occurs much earlier than in Lower formation as a result 
of the geological properties of formations (i.e., higher permeability in 
Upper formation) and the shorter distance between the wells in top 
formation due to the well drilling trajectory (Fig. 11). These temperature 
profiles indicate that optimizing well rates separately per formation 
could benefit from the possibility of increasing the production rate tar
gets of the Lower formation. This also leads to questions about the 
possibility of reaching the techno-economic target for the studied field 
with heat production from Lower formation only. These two points are 
addressed in the optimization experiments to be presented next. 

Fig. 6. Initial well types on the left and optimal well types on the right; blue color indicates injector and green indicates producer.  

Fig. 7. Comparison of cashflow over time for initial and optimal strategy and 
for all realizations in Experiment 1. The solid lines indicate mean values while 
the filled area corresponds to minimum and maximum. 

Fig. 8. The temperature profile over time for producers across all realizations. The solid lines indicate mean values while the filled area corresponds to minimum 
and maximum. 
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5.1.2. Well rate optimization 
As a next step (Experiment 3), we fix the optimal well types (from 

Experiment 2) and focus on the optimization of well production rates. 
Rates are no longer evenly split between the top and bottom formations, 
but instead we seek their values through optimization. The total well 
rate targets (from Upper and Lower formations rates combined together) 
remain at 350 m3/h. All rates are kept constant in time. 

The results obtained in this optimization experiment show that the 
impact of varying the rate targets across formations is much larger than 
changing well types in the studied case. The average NPV increased by 
17 million €, see Fig. 12. Despite the increased uncertainty in NPV (i.e., 
large blue area in Fig. 12), the vast majority of the models improved 
with respect to the initial case (red area in Fig. 12). 

In the optimal case, the NPV is improved due to a significant increase 
of production rate targets in the Lower formation accompanied by a 
reduction of production in the Upper formation (Fig. 13). More heat can 
then be extracted from the Lower formation. In addition, decreasing 
flow rates in the wells in top formation delays the cold-water break
through in that formation, as it can be seen in Fig. 14. The results show 
that, despite benefiting from the increased rates in the Lower formation, 
the production from the Upper formation still contributes positively to 
improve the field development project economics. This is due to the fact 
that the total target rate for any of the wells could not be reached with 
the influx from the Lower formation alone, see Fig. 13. In fact, we 
verified that, when shutting down the production from the Upper for
mation, the NPV is expected to decrease by 8 million €. 

5.2. Constrained optimization 

5.2.1. Well rate optimization 
In this section, we consider optimization with constraints on stress 

changes in time at the fault locations. The stress change is computed as 
Shear Capacity Utilization (see Section 4.5.3). The SCU indicator in
corporates both pressure and temperature effects on the stress change. In 
the studied case, SCU is mostly correlated to the temperature changes 
taking place in the reservoir. Because in these experiments concern fault 
stability aspects, a refined analysis of the expected fault transmissibility 
was performed, and the fault transmissibility in the Lower formation has 
been reduced to values between 0 and 30 % with average of 20 % due to 
clay smearing. The fault transmissibility in Upper formation remained 
the same as previously, i.e., between 50 % and 100 %. 

Prior to this analysis based on the SCU indicator, we have considered 
constraints related to the pressure difference across faults, which indi
cated that a line drive configuration with one doublet per reservoir 
compartment aligned parallel to fault orientation (Fig. 15) would the 
most favorable to preserve the stability of faults (in terms of pressure 
differences). For the sake of brevity, those results are not reported in this 
paper. 

We repeat the well rate optimization experiment with SCU con
straints for the identified line drive well type configuration (Experiment 
4). The constraint target is for the SCU indicator to remain below 1.0. 

As shown in Figs. 16 and 17, the SCU constraint is not satisfied for the 
majority of the models in the case with initial rates. It is particularly 
recognizable for the faults in Upper formation, where the SCU is higher 
than 1 for all the models. In the optimal strategy the SCU constraints are 
significantly lower. The consequence of keeping the SCU constraint at 
reduced levels is to significantly lower the injection/production rates 
(see Fig. 18), which significantly impacts the economics of the project, 
pointing to the need of reconsidering well drilling locations. 

5.2.2. Well location optimization 
The previous experiment has pointed to the importance of the 

location of the injection wells for fault stability purposes. Therefore, we 
optimized well rate targets in combination with the locations (i.e., x and 
y spatial coordinates) of 2 injectors in a scenario with 4 wells only 
(Experiment 5), once again including SCU constraints. The two wells in 
the middle compartment between the two faults have been removed 
since there was no viable injection strategy due to proximity to the faults 
(i.e., even with low injection rates, the cold water front originating from 
the injector in the middle compartment would reach the faults, causing 
the SCU constraints to be violated). Note that the costs associated with 
the drilling of those wells have been removed as well. The 2 remaining 
producers were kept fixed at their initial locations. We started this 

Fig. 9. Well trajectories and grid cell depth for all wells are shown on the left, vertical scale 5:1. Bottom depth (negative) for each well is shown on the right. Green 
color corresponds to producers and blue to injectors. 

Fig. 10. Comparison of cashflow over time for initial and optimal strategy and 
for all realizations in Experiment 2. The solid blue lines indicate mean values 
while the filled area corresponds to minimum and maximum. 
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optimization with the initial well locations for the two concerned in
jectors. For simplicity, the well trajectories were assumed vertical, 
following a particular case of the more general computational workflow 
proposed by Barros et al. (2020) for optimization of more complex well 
trajectories. Every time the wells are relocated during the optimization 
process, the appropriate well connection transmissibility factors are 
recomputed and provided to the reservoir simulation. 

In the optimal strategy, the injectors were placed far away from the 
faults (Fig. 19). Injector WELL6 was moved further than injector WELL2. 
Moving injector WELL2 any further would result in the well positioning 
outside of the reservoir, particularly missing the Lower formation. 
Losing an injector would lower project revenues because lower injection 
leads to lower production rates in a closed system. The results highlight 
the importance of optimizing well trajectories in combination with well 
locations when fault stability is of concern. 

Once the injectors are further away from the faults, higher injection 
rates can be achieved (Fig. 20) without breaking the SCU constraints 
(Fig. 22). Optimizing well rate targets and locations of two injectors in a 

Fig. 11. The temperature profile over time for producers across all realizations. The solid lines indicate mean values while the filled area corresponds to minimum 
and maximum for all realizations. Top 4 figures represent temperature in the well in Upper formation Member and bottom 4 figures show well temperature in Lower 
formation Member. 

Fig. 12. Comparison of cashflow over time for initial and optimal strategy and 
for all realizations in Experiment 3. The solid blue lines indicate mean values 
while the filled area corresponds to minimum and maximum. 
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4-well scenario resulted in the NPV comparable to initial strategy with 6 
wells (see cashflow for current experiment in Fig. 21). The CAPEX is 
reduced due to lower drilling cost associated with fewer wells. Even 
though optimization of well types and well rates for the 6-well scenario 
without constraints resulted in increase of 17 million € (see Experiment 
3), this optimal strategy was obtained without considering risk associ
ated with fault stability. In fact, for the initial well placement, the 
optimal well rates in the constrained scenario were reduced 

significantly, making project economically unattractive. This shows that 
well placement is a very important aspect when considering fault sta
bility risk and that optimization can help find the optimal combination 
of well rate and well locations. 

5.3. Computational costs 

Implementing a manual optimization methodology becomes 
impractical when dealing with a large number of decision variables. In 
this work, we considered the selection of various well production rate 
values and configurations for six wells, assessed across 40 model re
alizations while respecting fault stability constraints, which renders the 
optimization problem even more complex and inviable to be solved with 
a manual approach. The most time-intensive step in the computer- 
assisted workflow was the numerical flow simulation of the subsurface 
model. The optimization experiments in this study converged between 
12 and 31 iterations, where each iteration involved 40 model simula
tions to assess the current best strategy for each geological model, with 
an additional 40 to construct the gradient. All simulations are inde
pendent, and the computational cost of assembling the gradient is 
negligible compared to numerical simulations. Consequently, with ac
cess to a high-performance computing (HPC) cluster with capacity to 
accommodate the entire batch of 80 (40 + 40) simulations in each 
iteration, the time cost of the longest experiment was approximately the 
time equivalent to 31 numerical model simulations run serially. All 
numerical model simulations were performed on a HPC cluster, with a 

Fig. 13. Comparison of well production rate targets in producers between initial and optimal strategies. The top of the bar corresponds to the average and the 
whiskers correspond to the minimum and maximum across the realizations. 

Fig. 14. The temperature profile over time for producers across all realizations. The solid lines indicate mean values. The filled area corresponds to minimum 
and maximum. 

Fig. 15. Line drive well type configuration parallel to fault orientation.  
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single model simulation taking between 1h and 4h. As an indication, the 
longest experiment out of the 7 performed took approximately 6 days of 
total simulation time. A similar effort based on a laborious manual 
approach would likely have taken significantly more time and attention 
of engineers, whereas, with the computer-assisted approach, the engi
neer has time to dedicate to other activities while the simulations are run 
in an automated manner. 

6. Conclusions 

The goal of this study was to demonstrate the use of optimization to 
support geothermal practitioners in the search for improved field 
development concepts applicable to a real-life case study, representative 
of typical reservoir formations for geothermal plays in the Netherlands. 
An ensemble of dynamic numerical models was created to represent the 
subsurface uncertainty and is suitable for optimization under geological 
uncertainty. We have made realistic albeit generic assumptions on the 
economics of the project. State-of-the-art optimization technology based 

Fig. 16. SCU constraint for both sides of both Upper formation faults for all models. Results for initial well rates (on the left) and optimal rates (on the right). The box 
plots represent statistics for all the cells connecting the fault. The solid line represents the average, the box represents the 25th and 75th quantile and the whiskers 
represent minimum and maximum values. 

Fig. 17. SCU constraint for both sides of both Lower formation faults for all models. Results for initial well rates (on the left) and optimal rates (on the right). The box 
plots represent statistics for all the cells connecting the fault. The solid line represents the average, the box represents the 25th and 75th quantile and the whiskers 
represent minimum and maximum values. 
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on modern stochastic gradient-based methods was employed to enable 
robust optimization over an ensemble of model realizations in a 
computationally efficient manner. Well type selection, production flow 
rates and well locations were optimized for a case study with stacked 
reservoir layers. Significant improvements in terms of the project cu
mulative discounted cashflow (+17 million €) were achieved using 
optimization. In addition, the effect of field development on nearby fault 
stability has been studied, including the impact of imposing fault sta
bility constraints in the optimization procedure. 

In terms of scientific contributions, this work highlights the inte
gration of advanced multi-physics computational workflows, demon
strating their potential to refine the conventional best-practices in field 
development planning within the geothermal sector, namely: 

• Robust computer-assisted optimization based on a set of model re
alizations to capture the inherent geological uncertainties 
throughout the optimization process, as opposed to relying on a 

single base case model in conventional engineering-based 
optimization.  

• Optimization of different field development decisions, i.e. well types 
/ locations and production rate targets.  

• Integrating numerical flow simulation with a simplified parametric 
geomechanical model to incorporate fault stability limits throughout 
the field development optimization exercise.  

• Systematic design of a series of unconstrained and constrained 
optimization experiments to gain quantitative understanding of the 
impact of the various optimization variables and constraints.  

• Quantification of uncertainties with respect to objective function and 
output constraint functions simultaneously to guide the robust 
optimization process. 

Regarding current limitations of the presented approaches, we can 
identify the following points for potential future improvements: 

Fig. 18. Initial and optimal rates for optimization with SCU constraints for the 6-well scenario. The top of the bar corresponds to the average and the whiskers 
correspond to the minimum and maximum across the realizations. 

Fig. 19. Initial and optimal well locations in Experiment 5.  

Fig. 20. Initial and optimal rates for optimization with SCU constraints for a 4-wells-scenario. The top of the bar corresponds to the average and the whiskers 
correspond to the minimum and maximum across the realizations. 
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• The fault stability aspect is limited to the SCU indicator based on 
simplified uniaxial stress assumptions. More sophisticated calcula
tion approaches can be adopted by considering the entire stress 
tensor. Moreover, it is possible to extend the workflow and derive 
induced seismicity effects resulting from fault activation events, 
which could be used as additional constraints for the optimization 
process to ensure safe field development strategies.  

• While several geological uncertainties have been accounted for, the 
location of the faults was assumed to be known in this study. Because 
the constraints imposed are strongly related to the reservoir state at 
the fault locations, considering different fault position scenarios 
could impact the results.  

• Throughout all performed experiments, the surface drilling location 
was assumed to be fixed. Since we consider an economic objective 
function with strong dependence on well costs and their length, 
optimizing the drilling location could help further improve the 
economics of the project.  

• Fault stability constraints have been imposed to be honored on 
average across the ensemble of 40 model realizations. A more con
servative approach would be to impose constraints to worst-case 
scenario, to guarantee that all the 40 model realizations do not 
violate the fault stability limits. 

Analysis of results from the several performed optimization 

experiments have led to a series of key findings applicable beyond the 
case study considered:  

• Optimization can help find case-specific optimal production strategy 
while taking into consideration the geological uncertainty and risk 
constraints.  

• The first choice of field development configurations conceived by 
practitioners based on previous experiences might not always lead to 
the best performance.  

• Some learnings from optimization confirm operational experience, e. 
g., placing injectors further away from the faults, placing producers 
deeper. 

• Different behavior for individual model realizations (e.g., perfor
mance, adherence to constraints) underlines importance of ac
counting for uncertainty within optimization. Working with a single 
model may lead to accepting field development concepts that should 
actually be discarded.  

• Computer-assisted optimization allows practitioners to vary many 
parameters simultaneously to obtain optimal outcome. A broad 
range of alternatives can be evaluated, which would otherwise never 
be considered.  

• Computer-assisted optimization can reduce time and effort required 
(both manual and computational) by practitioners to find optimal 
strategies. This frees time for domain expertise to be used to un
derstand the behavior of the reservoir and why optimized strategies 
improve performance.  

• Analysis of optimization results in different contexts (considering 
different control types, constraints, geological settings, etc.) helps 
understanding which parameters significantly impact the system 
performance in terms of economics, safety, and sustainability. 

Reflecting on the learnings more specific to the target case study, we 
can highlight the following:  

• The combination of well depth and flow interaction affects the 
optimal well type configuration. 

• For stacked reservoirs producing from individual geological forma
tions at different rates can increase performance. In such cases, the 
best strategy depends on the flow properties of the formations.  

• Fault stability risk related across the faults can be mitigated by 
choosing a line-drive strategy parallel to fault orientation and 
reducing production rates, leading however to significantly lower 
NPV. 

Fig. 21. Cashflow over time for optimal strategy and for all realizations in 
Experiment 5. The solid blue lines indicate mean values. The filled area cor
responds to minimum and maximum. 

Fig. 22. SCU constraint for both sides of all the faults for all models. Results for optimal rates. The box plots represent statistics for all the cells connecting the fault. 
The solid line represents the average, the box represents the 25th and 75th quantile and the whiskers represent minimum and maximum values. 
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• The cold temperature front is important for stress changes at faults, 
which control their stability. Therefore, drilling the injection wells 
further away from the faults may help achieve higher production 
flow rates while keeping stress changes to acceptable levels. 
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