ORIGINAL ARTICLE

Long-term preservation of lean mass and sustained loss of fat mass after completion of an intensive lifestyle intervention in older adults with obesity and type 2 diabetes

Robert G Memelink^{1,2,3} Aveline Hijlkema¹ Bas Valentin¹ Martinet T Streppel¹ Wilrike J Pasman⁴ | Suzan Wopereis⁴ | Johan de Vogel-van den Bosch⁵ | Michael Tieland⁶ Josje D Schoufour¹ Ivan Bautmans^{3,7,8,9} Peter JM Weiis^{1,2,10}

Correspondence

Robert Memelink, Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), 1067 SM, Amsterdam, The Netherlands.

Email: r.g.memelink@hva.nl

Funding information

Danone Nutricia Research; Tromp Medical BV, the Netherlands; Topsector Agri & Food, the Netherlands, Grant/Award Number: AF12174; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/Award Number: 023.009.065

Abstract

Introduction: Lifestyle interventions combining caloric restriction with resistance exercise have the potential to preserve lean mass during weight loss. Additional protein intake can further improve lean mass. However, it is unclear whether these effects are sustained after completion of the intervention. This study aimed to evaluate the long-term effect of a 3-month lifestyle intervention, with or without supplementation of a protein drink, to preserve lean mass in older adults with obesity and type 2 diabetes at 6 months post-intervention.

Methods: Adults (n = 123) aged ≥55 years with obesity and type 2 diabetes were enrolled in a 3-month intensive lifestyle intervention including a hypocaloric diet, resistance exercise and high-intensity interval training. Participants were randomized to either receive a leucine and vitamin D-enriched protein drink or an isocaloric control drink. The 3-month intervention was followed by a 6-month phase without intervention. At baseline, 3 and 9 months (follow-up) body composition, physical functioning, physical activity and quality of life were assessed. Statistical analyses were performed using linear mixed models.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Author(s). Lifestyle Medicine published by John Wiley & Sons Ltd.

¹Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences (AUAS), Amsterdam, The Netherlands

 $^{^2}$ Amsterdam Movement Sciences Research Institute, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

³Gerontology Department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium

⁴Research Group Microbiology & Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands

⁵Danone Nutricia Research, Utrecht, The Netherlands

⁶ Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia

⁷Frailty in Ageing Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium

⁸Department of Geriatrics, Universitair Ziekenhuis Brussel, Brussels, Belgium

⁹SOMT University of Physiotherapy, Amersfoort, The Netherlands

 $^{^{10}}$ Department of Nutrition and Dietetics, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands

Results: Body weight loss was largely sustained at follow-up (-2.1 kg compared to baseline, 95% CI [-2.8, -1.5]) and comprised a sustained loss of fat mass (-2.6 kg, 95%)CI[-3.2, -2.0]) with a simultaneous gain of lean mass (+0.7 kg, 95% CI [+0.2, +1.2]). Improvements in 400 m walk speed (+0.05 m/s, 95% CI[+0.03, +0.08]) and chair stand test time (-1.5 s, 95% CI [-1.9, -1.1]) were sustained at follow-up. There were no differences in these changes between the protein supplementation group and the control group at follow-up.

Conclusions: Older adults with obesity and type 2 diabetes preserved their lean mass, their loss of fat mass and their improvements in physical functioning at 6 months postintervention. Protein supplementation during intervention did not affect outcomes at follow-up.

KEYWORDS

combined lifestyle intervention, muscle mass, weight loss

1 | INTRODUCTION

Individuals with type 2 diabetes who are more physically active, less sedentary or consume a healthier diet, have a reduced risk of adverse health outcomes compared to individuals with a less healthy lifestyle. These outcomes include a lower incidence of cardiovascular diseases and extended survival, as shown by a recent systematic review and meta-analysis of prospective cohort studies among individuals with type 2 diabetes. Combined lifestyle interventions are recommended for the treatment of obesity and the prevention and treatment of type 2 diabetes. These interventions consist of advice and guidance on healthy nutrition, eating habits and physical activity² and aim to sustainably improve lifestyle behaviour, especially dietary consumption and physical activity.³ However, implemented lifestyle interventions in health care did not lead to a reduction in cardiovascular or allcause mortality compared to no advice on lifestyle, standard advice on lifestyle or usual diabetes care, as shown in a recent systematic review of randomized clinical trials in individuals with pre-diabetes and type 2 diabetes. 4 On health markers such as body mass index (BMI) and haemoglobin A1c (HbA1c), combined lifestyle interventions showed mixed results in individuals with type 2 diabetes.⁵ In the majority of studies, lifestyle interventions resulted in limited reductions in body weight (< 5%) at the end of intervention, without major effects on metabolic health markers such as HbA1c.

Diet-induced weight loss is accompanied by a decline in lean mass, which is estimated at approximately 25% of the body mass lost.6 This loss of lean mass during dietary intervention is associated with weight regain,⁷ and individuals often experience weight fluctuations or weight loss cycling, which increases the risk for muscle wasting and weakness.⁸ Loss of muscle mass during weight loss can also increase mortality risk and risk of disability. 9,10 As skeletal muscle mass is the predominant component of lean mass, preservation of lean mass is important for older adults who engage in weight loss or lifestyle programmes. This is especially relevant for individuals with type 2

diabetes because type 2 diabetes accelerates the age-related loss of muscle mass¹¹ and skeletal muscle is the major organ of postprandial glucose uptake. 12 However, many lifestyle interventions do not focus on the preservation of lean mass during weight loss, 13 which might have contributed to the limited effects of lifestyle interventions in type 2 diabetes reported so far. Only two intervention studies in older adults with type 2 diabetes showed preservation of muscle mass during weight loss. Dunstan et al. achieved this by the addition of resistance exercise during modest weight loss (2.5 kg in 6 months).¹⁴ However, protein intake was not reported in their study. In addition, we performed a study that combined resistance exercise with protein supplementation during moderate caloric restriction. 15 Both resistance exercise and protein intake play a crucial role in regulating muscle metabolism and muscle mass, 10,16 and this combination has demonstrated efficacy in preserving lean mass during weight loss in older adults with obesity.¹⁷ In our 3-month intensive lifestyle intervention in older adults with type 2 diabetes, lean mass was preserved by ingestion of a leucine and vitamin D-enriched protein drink.¹⁵ The moderate weight loss observed in this study (approximately 2.6 kg) was primarily due to loss of fat mass and was accompanied by a reduction in circulating HbA1c of 5.0 mmol/mol (95% CI [3.5, 6.6], p < 0.001). However, the long-term effects of interventions that succeed in preserving lean mass during weight loss are not known, while in general, people tend to relapse into former habits after intervention.¹⁸

In the present work, we therefore report on the follow-up results of our study. We aim to evaluate whether the preservation of lean mass and changes in fat mass, physical functioning and quality of life are sustained 6 months post-intervention and whether the use of a protein drink in the intervention period modifies these long-term outcomes. In addition, we aim to evaluate to what extent adherence to the intensive lifestyle intervention relates to the changes sustained. We hypothesized that the intensive lifestyle intervention leads to sustained changes 6 months post-intervention and that the effect of the

protein drink observed during the intervention may last 6 months post-intervention.

2 | MATERIALS AND METHODS

2.1 | Study participants and randomization

We recruited older adults (\geq 55 years) with obesity and type 2 (pre)diabetes from the Amsterdam area, in the Netherlands. Participants (n=123) were randomly allocated to a 3-month intensive lifestyle intervention with either a test drink or an isocaloric control drink, as described elsewhere. The 3-month intervention phase was followed by a 6-month follow-up phase. After these 6 months, a follow-up visit was scheduled to re-assess the outcome measurements. Detailed information on the 'Protein and lifestyle intervention to preserve muscle mass in obese older type 2 diabetes patients' (PROBE) study is available in the WHO International Clinical Trials Registry Platform (https://trialsearch.who.int), where the study was prospectively registered under ID NTR4497.

2.2 | Lifestyle intervention and study treatment

The 3-month (13 weeks) intensive lifestyle intervention consisted of bi-weekly individual dietary counselling with a dietitian and alternate bi-weekly educational group sessions on healthy diet and lifestyle under the supervision of a dietitian, in combination with progressive resistance exercise and high-intensity interval training (HIIT). The dietary programme aimed for a hypocaloric diet of 600 kcal below the estimated energy needs according to the Dutch guideline for the treatment of obesity. ¹⁹ The exercise programme included 1 h group sessions three times per week, under the supervision of a personal trainer. The lifestyle intervention involved the use of motivational interviewing techniques by the dietitians to promote behaviour change. Following the behaviour change taxonomy of Michie et al.²⁰ several techniques were employed, including goal setting (1.3), action planning (1.4), selfmonitoring of behaviour (2.2), biofeedback (2.6), graded tasks (8.7) and body changes (12.6). More details on the diet and exercise programme can be found in Memelink et al.¹⁵

During the 3-month intensive lifestyle intervention, participants either received a test drink or a control drink to be consumed during breakfast and after training on training days. Per serving, the test drink contained 21 g of protein, of which 1 g of free leucine, and a mixture of carbohydrates and fat providing 150 kcal per serving, 800 IU vitamin D and a mixture of fibres, minerals and vitamins. The isocaloric control drink contained no protein or micronutrients.¹⁵

2.3 | Follow-up phase

The 3-month intervention phase was followed by a follow-up phase of 6 months (24 weeks) without active intervention, that is, without dietary

counselling, educational group sessions, exercise programme or study drink. Participants returned to their normal lives, receiving standard care (Figure 1).

2.4 Outcome measurements

Participant characteristics such as age, sex, BMI, duration of type 2 diabetes and diabetes medication were recorded at the baseline visit. At baseline, 3 months, and at the end of the follow-up phase (9 months), participants underwent assessment of body weight, body composition, physical functioning (400 m walk speed, five times chair stand), physical activity level (PAL), quality of life (RAND-36, physical and mental component scores)^{21,22} and dietary intake as described previously.¹⁵ Briefly, lean mass, fat mass and visceral adipose tissue were measured using dual-energy x-ray absorptiometry (DXA; Hologic Discovery A, Bedford, USA). PAL was assessed using a 3-day activity diary and by accelerometry (PAM BV, Oosterbeek, the Netherlands), and dietary intake was assessed using a 3-day food record, to be completed for 2 weekdays and 1 weekend day. Total energy and macronutrient intakes were calculated using the Dutch Food Composition Database, version 2013/4.0.²³ Diabetes medication was registered at all study visits. Participants were instructed to bring to the study visits either their diabetes medication or a prescription list from the pharmacy. Two weeks after completion of the intervention, a follow-up phone call was performed to ask for any changes in diabetes medication since the study visit at 3 months.

2.5 | Adherence to the intensive lifestyle intervention

Adherence to the intensive lifestyle intervention during the 3-month intervention phase was calculated for the lifestyle intervention components separately. First, adherence to the exercise programme was expressed in three different ways: (1) exercise programme attendance, expressed as the percentage of training sessions attended; (2) relative strength training volume, expressed as cumulative leg press load adjusted for baseline 10-repetition maximum (10RM); (3) relative HIIT training load, based on maximum power assessed during a steep ramp test on a cycle ergometer. Second, adherence to the hypocaloric diet was assessed by calculating the caloric deficit at the end of the intervention, using energy intake assessed by diet diary, resting energy expenditure by indirect calorimetry and PAL by accelerometry. Third, study product compliance was calculated from a study product calendar that the participants completed.

2.6 | Statistical analyses

Participant characteristics, parameters of adherence to the intensive lifestyle intervention and change in diabetes medication will be presented using descriptive statistics (observed mean \pm standard

FIGURE 1 Study design of the PROBE study: 3-month intervention phase, followed by a 6-month follow-up phase without intervention. Assessments took place during participant visits to the Amsterdam Nutritional Assessment Center at 0 (baseline), 3 and 9 months.

deviation (SD) or percentage). Differences between participants who completed the follow-up visit (follow-up group) and participants who dropped out during the follow-up phase were evaluated using the independent samples t-test, Fisher's exact test or Pearson χ^2 where appropriate.

For the main analysis, we first evaluated the outcome measurements at 9 months compared to baseline (0 months) and end of the intervention (3 months), to evaluate the change at the end of the follow-up phase and during the follow-up phase, respectively. A linear mixed model was applied including the baseline value of the outcome in the outcome vector and adjusting for stratification factors (sex and sulfonylurea [SU] derivatives) and time (0, 3, 9 months) as fixed factors. A random intercept for each participant was included, and the 'unstructured' variance-covariance structure was used. Outcome measurements are presented as estimated marginal mean (EMM) ± standard error (SE).

Second, we evaluated the effect of the test drink consumed during the intensive lifestyle intervention on the change in outcome measurements at 9 months, compared to the control drink. Treatment (test, control) and time by treatment were added to the linear mixed model as fixed factors. The significance of the two-way interaction including time and treatment was checked for evaluation of the treatment effect at 9 months, compared to 0 and 3 months.

Third, associations between adherence to the lifestyle intervention components and changes in lean mass, fat mass, visceral fat, physical functioning, physical activity and quality of life at the end of follow-up were evaluated using the Pearson correlation. In the next step, visual outliers were excluded and linear regression analysis was performed for those pairs of independent and dependent variables that had a pvalue < 0.10 for the correlation coefficient. Regression coefficients β are reported including a 95% confidence interval (CI). Potential confounders sex, age, duration of type 2 diabetes, vitamin D intake, plasma calcidiol and independent adherence parameters were step-by-step included in the regression model and were considered as a confounder when the regression coefficient β changed > 10%. β values close to zero were considered irrelevant. The association between adherence to the lifestyle intervention components and changes in diabetes medication was evaluated using the analysis of variance.

Last, sensitivity analyses were performed to evaluate the change in total lean mass using two different assumptions during the follow-up phase for participants that had dropped out during this phase: (1) no change in lean mass (last observation carried forward) and (2) loss of

0.5 kg of lean mass (using a yearly loss of lean mass in older adults of ca. 1%²⁴ and rounding it to 0.5 kg for a worst-case scenario).

Statistical analyses were performed in IBM SPSS Statistics for Windows v28.0.1.0 (IBM Corp, Armonk, NY, USA). Statistical tests were conducted two-sided with a significance level of 5%. All CIs will be presented with a confidence level of 95%.

RESULTS

Study participants

In total, 77 out of 105 participants who had completed the intervention phase completed the 6-month follow-up phase (Figure 2). Two participants withdrew informed consent during the follow-up phase, without specifying a reason. Characteristics of the n = 77 participants who completed the follow-up phase (follow-up group) and of the n = 28 who dropped out during the follow-up phase are shown in Table 1. Both groups were comparable at baseline. However, the follow-up group had higher adherence to the exercise programme during the 3-month intervention phase, as shown by higher relative training loads for both HIIT and resistance exercise (Table 1). Change in RAND-36 physical component score at 3 months was higher in the follow-up group compared to the drop-outs at follow-up (3.9, 95% CI [1.1, 6.6], p = 0.007). None of the other outcome measurements at the end of the 3-month intervention phase differed significantly between the follow-up group and the dropouts at follow-up (Supplementary Table S1). Furthermore, there were no clinically relevant differences in baseline characteristics of the follow-up group between the test and control group (Supplementary Table S2).

3.2 **Outcome measurements**

Body weight loss was sustained at 9 months (-2.1 kg, 95% CI [-2.8, -1.5]). The body weight loss was composed of a sustained loss of fat mass (-2.6 kg, 95% CI [-3.2, -2.0]) compared to baseline, with a simultaneous gain in lean mass (+0.7 kg, 95% CI [+0.2, +1.2]) that predominantly occurred during the follow-up phase (Figure 3, Table 2). Loss of visceral adipose tissue was sustained at 9 months (-15.3 cm², 95% CI [-22.1, -8.4]) and appendicular lean mass increased (+0.4 kg, 95% CI [+0.2, +0.6]) (Figure 4, Table 2).

FIGURE 2 Flow chart of the PROBE study participants for the 3-month intervention phase and 6-month follow-up phase. * Reasons for early withdrawal during the 3-month intervention phase can be found in Memelink et al. 15

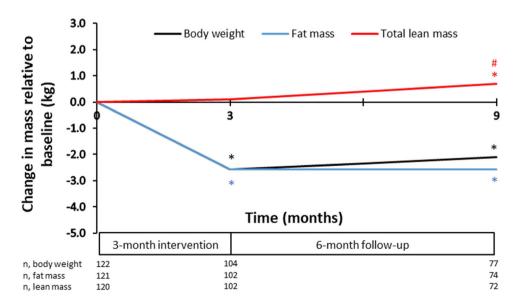
Walking speed increased (+0.05 m/s, 95% CI [+0.03, +0.08]) and chair stand test time decreased (-1.5 s, 95% CI [-1.9, -1.1]) at 9 months compared to baseline, and both did not change during the follow-up phase (Figure 4, Table 2). Physical activity level and quality of life at 9 months were similar to baseline level. Energy intake calculated from the diet diary significantly decreased at 9 months compared to baseline and 3 months. Protein intake in g/kg fat-free mass (FFM)/day at 9 months significantly decreased compared to baseline, while relative protein intake (expressed as energy percentage) at 9 months showed no change from baseline (Table 2).

In the follow-up group, 71 out of 77 participants used diabetes medication at the start of the intervention. At 9 months, 28 participants (39.4%) had a reduction in diabetes medication and 4 (5.6%) had an increase.

Evaluation of the effect of the test drink versus the control drink consumed during the 3-month intervention phase showed no statistically significant differences in change from baseline to 9 months in any of the outcome measurements (Supplementary Table S3). During the follow-up phase (from 3 to 9 months), walking speed decreased in the test group compared to the control group and, as was expected per

protocol, protein intake decreased in the test group (Supplemental Table S3).

3.3 | Influence of adherence to the intensive lifestyle intervention


A 20% higher exercise programme attendance during the intervention phase was associated with 1.2 s greater improvement in chair stand test time at 9 months ($\beta = -0.06$ s/%, 95% CI [-0.11, -0.01]) and with 0.1 points higher improvement in PAL score evaluated by questionnaire ($\beta = 0.005$ /%, 95% CI [0.000, 0.009]). A 20% higher relative HIIT training load was associated with 0.24 kg lower increase in lean mass (β for appendicular lean mass = -0.012 kg/%, 95% CI [-0.015, -0.003]) (Supplementary Table S4). Change in diabetes medication at 9 months was associated with caloric deficit. More specifically, participants with reduced diabetes medication had a moderate caloric deficit, while participants without a change in diabetes medication seemed to have a smaller caloric deficit, and participants with an increase in diabetes medication were in a caloric surplus (Supplementary Table S5).

Baseline characteristics and adherence to the lifestyle intervention components for the follow-up group and dropouts at follow-up.

		·			· · · · · · · · · · · · · · · · · · ·		
		Follow-up group		Dropouts at follow-up	Dropouts at follow-up		
	n	Mean <u>+</u> SD	n	Mean ± SD	p-value		
Sex (% male)	77	65	28	64	1.00		
Age (years)	77	66.3 ± 6.2	28	67.3 ± 5.9	0.454		
Body weight (kg)	77	98.9 ± 14.8	28	100.4 ± 16.8	0.665		
BMI (kg/m²)	77	33.2 ± 4.3	28	33.5 ± 5.1	0.744		
Waist circumference (cm)	76	115.2 ± 10.1	27	115.4 ± 11.1	0.956		
Duration of diabetes (months)	71	85 ± 79	26	95 ± 54	0.531		
Use of diabetes medication (%)	83ª	86	22	91	0.729		
- Use of metformin (%)		82		82	1.000		
- Use of SU derivatives (%)		29		50	0.077		
Fasting glucose (mmol/L)	72	8.08 ± 1.85	27	8.36 ± 1.65	0.490		
HbA1c (mmol/mol)	75	50.7 ± 9.0	26	53.5 ± 11.7	0.203		
Serum calcidiol (nmol/L)	72	57.3 ± 22.8	27	66.5 ± 23.0	0.078		
Handgrip strength (kg)	75	36.6 ± 10.4	27	36.0 ± 10.1	0.791		
Usual gait speed (m/s)	77	1.16 ± 0.23	27	1.14 ± 0.19	0.596		
Current smoker (%)	77	8	28	11	0.698		
Alcohol user (%)	77	68	28	68	1.00		
Study product compliance (%)	76	95.0 ± 4.7	27	92.3 ± 10.1	0.069		
Caloric deficit (kcal/day)	63	-396 ± 518	24	-409 ± 644	0.925		
Exercise programme attendance (%)	76	81.9 ± 10.0	28	76.9 ± 14.6	0.050		
Cumulative leg press training load adjusted for baseline 10RM	75	716 ± 341	24	462 ± 194	<0.001		
Relative HIIT training load (%)	77	103 ± 30	28	87 ± 34	0.020		

Note: Data are presented as mean \pm SD or as the percentage. p-value represents the outcome of Fisher's exact test or Independent samples t-test. Abbreviations: BMI, body mass index; HbA1c, haemoglobin A1c; PAL, physical activity level; SU, sulfonylurea.

a Including six participants who had a phone call for an evaluation of diabetes medication use instead of a full follow-up visit in the lab.

Sustained loss of body weight and fat mass and increased lean mass at 9 months (end of follow-up phase) for the whole study population, that is, test and control groups together. Change in mass is presented relative to baseline (0 months). * Significantly different from baseline. # Significantly different from the end of intervention (3 months).

TABLE 2 Outcome measurements at 0 months (baseline), 3 months (end of intervention phase) and 9 months (end of follow-up phase) with estimation of change during the follow-up phase (9 months vs. 3 months) and estimation of change from baseline at end of the follow-up phase (9 months vs. 0 months).

Outcome measurement	Time	EMM ± SE ^a	n	Effect size (95% CI) ^b for change during follow-up [9 vs. 3 months]	<i>p</i> -value	Effect size (95% CI) ^b for change from baseline [9 vs. 0 months]	p-valu
Body weight (kg)	0 months	97.6 ± 1.4	122	0.5 [-0.2, 1.1]	0.156	-2.1 [-2.8, -1.5]	<0.001
	3 months	95.0 ± 1.4	104				
	9 months	95.5 ± 1.5	77				
BMI (kg/m²)	0 months	33.3 ± 0.4	122	0.2 [-0.1, 0.4]	0.138	-0.7 [-0.9, -0.5]	<0.00
	3 months	32.5 ± 0.4	104				
	9 months	32.6 ± 0.4	77				
Leg lean mass (kg)	0 months	19.0 ± 0.3	121	0.2 [0.0, 0.3]	0.042	0.3 [0.1, 0.4]	0.00
	3 months	19.1 ± 0.3	104				
	9 months	19.2 ± 0.3	76				
Appendicular lean mass	0 months	25.6 ± 0.4	119	0.2 [-0.1, 0.4]	0.133	0.4 [0.2, 0.6]	<0.00
(kg)	3 months	25.8 ± 0.4	101				
	9 months	26.0 ± 0.4	73				
Total lean mass (kg)	0 months	61.3 ± 0.8	120	0.6 [0.1, 1.0]	0.012	0.7 [0.2, 1.2]	0.00
	3 months	61.4 ± 0.8	102				
	9 months	62.0 ± 0.8	74				
Skeletal muscle mass index (kg/m²)	0 months	8.66 ± 0.09	119	0.05 [-0.18, 0.12]	0.142	0.13 [0.06, 0.19]	<0.00
	3 months	8.74 ± 0.09	101				
	9 months	8.79 ± 0.10	73				
Fat mass (kg)	0 months	34.8 ± 0.9	121	0.0 [-0.6, 0.6]	0.976	-2.6 [-3.2, -2.0]	<0.00
	3 months	32.2 ± 0.9	102				
	9 months	32.2 ± 0.9	72				
Fat percentage (%)	0 months	35.5 ± 0.4	121	-0.2 [-0.7, 0.2]	0.355	-1.9 [-2.4, -1.5]	<0.00
	3 months	33.8 ± 0.4	102				
	9 months	33.6 ± 0.5	72				
VAT (cm ²)	0 months	179.2 ± 5.0	122	2.7 [-4.3, 9.6]	0.450	-15.3 [-22.1, -8.4]	<0.00
	3 months	161.3 ± 5.1	104				
	9 months	164.0 ± 5.4	76				
400 m walk speed (m/s)	0 months	1.41 ± 0.03	119	0.00 [-0.03, 0.03]	0.962	0.05 [0.03, 0.08]	<0.00
	3 months	1.47 ± 0.03	99				
	9 months	1.47 ± 0.03	73				
Five times chair stand (s)	0 months	12.0 ± 0.2	120	-0.2 [-0.6, 0.2]	0.314	-1.5 [-1.9, -1.1]	<0.00
	3 months	10.6 ± 0.3	102				
	9 months	10.4 ± 0.3	76				
PAL, by questionnaire (-)	0 months	1.37 ± 0.01	121	-0.02 [-0.06, 0.02]	0.248	0.03 [-0.01, 0.06]	0.18
	3 months	1.41 ± 0.02	98				
	9 months	1.39 ± 0.02	70				
PAL, by accelerometry (-)	0 months	1.19 ± 0.01	109	-0.02 [-0.04, 0.00]	0.074	-0.01 [-0.03, 0.01]	0.26
	3 months	1.19 ± 0.01	88				
	9 months	1.18 ± 0.01	64				
RAND-36 physical component score	0 months	46.6 ± 0.9	123	-0.6 [-2.1, 1.0]	0.458	1.2 [-0.3, 2.7]	0.12
	3 months	48.4 ± 0.9	102				
	9 months	47.8 ± 1.0	76				

TABLE 2 (Continued)

Outcome measurement	Time	EMM ± SE ^a	n	Effect size (95% CI) ^b for change during follow-up [9 vs. 3 months]	p-value	Effect size (95% CI) ^b for change from baseline [9 vs. 0 months]	p-value
RAND-36 mental component score	0 months	50.9 ± 0.9	123	-0.3 [-1.9, 1.3]	0.748	-0.2[-1.8, 1.4]	0.822
	3 months	51.0 ± 0.9	102				
	9 months	50.7 ± 1.0	76				
Energy intake (kcal/day)	0 months	1807 ± 43	121	-199 [-324, -74]	0.002	-253 [-375, -132]	<0.001
	3 months	1752 ± 47	98				
	9 months	1553 ± 57	61				
Protein intake (g/kg BW/day)	0 months	0.87 ± 0.03	120	N/A		-0.08 [-0.15, 0.00]	0.057
	3 months ^c	0.99 ± 0.03	97				
	9 months	0.79 ± 0.04	61				
Protein intake (g/kg FFM/day)	0 months	1.35 ± 0.04	119	N/A		-0.15 [-0.27, -0.03]	0.017
	3 months ^c	1.51 ± 0.05	95				
	9 months	1.20 ± 0.06	57				
Protein intake (energy %)	0 months	18.6 ± 0.4	121	N/A		1.0 [-0.2, 2.3]	0.109
	3 months ^c	21.2 ± 0.5	98				
	9 months	19.6 ± 0.6	61				

Abbreviations; BMI, body mass index; BW, body weight; CI, confidence interval; EMM, estimated marginal mean; FFM, fat-free mass; PAL, physical activity level; RAND-36, the RAND-36 item health survey; VAT, visceral adipose tissue;.

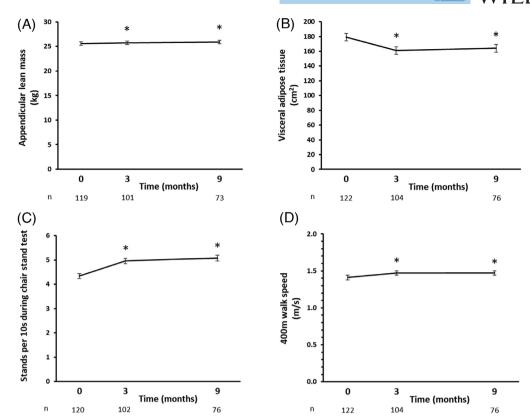
3.4 | Sensitivity analysis

Sensitivity analysis assuming no change in total lean mass during the follow-up phase for the dropouts did not significantly alter the results for change in total lean mass at 9 months, neither compared to baseline nor compared to 3 months (+0.7 kg, 95% CI [+0.3, +1.1] and +0.6 kg, 95% CI [+0.2, +1.0], respectively). Similarly, sensitivity analysis assuming 0.5 kg loss of total lean mass during the follow-up phase for the dropouts did not significantly alter the results for change in total lean mass at 9 months, neither compared to baseline nor compared to 3 months (+0.7 kg, 95% CI [+0.2, +1.1] and +0.6 kg, 95% CI [+0.1, +1.0]).

4 | DISCUSSION

Our study demonstrated a preservation of fat mass loss, together with increased lean mass in older adults with obesity and type 2 diabetes, 6 months after an intensive exercise and caloric restriction intervention. This was accompanied by sustained improvements in walking speed and chair stand performance. Higher exercise programme attendance during the intervention period was associated with improved chair stand performance and PAL 6 months after completion of the intervention, while higher HIIT training load was associated with a lower

increase in lean mass. The addition of a protein drink during the intensive lifestyle intervention did not influence outcomes 6 months after completion of the intervention.


On average, our study participants lost a moderate amount of body weight upon intensive lifestyle intervention, comparable to other interventions involving diet-based approaches using moderate energy restriction in individuals with type 2 diabetes.^{5,15} We observed that most of this weight loss was sustained up to 6 months after completion of the intervention, whereas, in general, weight regain is common after lifestyle intervention or weight loss programmes for adults with obesity and type 2 diabetes. 25,26 More specifically, we observed a sustained loss of fat mass, which has, for example, been observed in the DiOGenes trial in adults with overweight or obesity 6 months after an 8-week low-calorie diet. However, the loss of fat-free mass in that study was about 20% of the body weight lost.²⁷ To our knowledge, sustained fat mass loss with maintained or improved lean mass has not been reported before in older adults with obesity and type 2 diabetes. Some studies reported on successfully sustained weight loss in adults with type 2 diabetes or at high risk of diabetes upon combined lifestyle or weight-management interventions with a duration of up to 2 years in primary care settings, but these studies lack information on changes in body composition.²⁸⁻³⁰ In contrast, our intervention was specifically targeted at preserving lean mass during weight loss, using an

^aData are presented as estimated marginal mean (EMM) with SE.

^bEstimate of change (effect size) using a linear mixed model including the baseline value in the outcome vector and adjusting for stratification factors (sex and SU-derivate use).

^cBy protocol, protein intake at 3 months differed between treatment groups test and control. Therefore, no effect size for change during the follow-up phase (9 vs. 3 months) is reported. The effect size is specified for the test and control groups separately in Supplementary Table S3.

FIGURE 4 Appendicular lean mass (A), visceral adipose tissue (B), chair stand test performance expressed as the number of stands per 10 s (C) and 400 m walk speed (D) at 0 (baseline), 3 (end of intervention phase) and 9 months (end of follow-up phase). Lines represent the whole study population, that is, test and control groups together. * Significantly different from baseline (0 months).

intensive exercise programme. 15 The increase in lean mass that we observed together with a fully sustained fat mass loss 6 months after completion of the intensive lifestyle intervention can be clinically important because loss of lean mass during dietary intervention is associated with weight regain 7 which can be explained by lower basal energy expenditure. 31

A possible explanation for the observed increase in lean mass after weight loss in our study population may be a reduced anabolic resistance obtained through improved insulin sensitivity, 32 probably due to increased exercise volume, caloric restriction or both. However, a causal relation between improved insulin sensitivity and reduced anabolic resistance is not clear from the literature.³³ Muscle insulin sensitivity was indeed improved during the intensive lifestyle intervention, in participants that could be subtyped as muscle insulin resistant.³⁴ Individual data from our study revealed that those participants who had an increase in insulin sensitivity or a decrease in HbA1c had similar gains in lean mass during the follow-up period as the entire follow-up population (that is, about 0.6 kg on average). This suggests that not the improved insulin sensitivity but a continuation of exercise in a considerable proportion of the participants is the most plausible explanation for the observed increase in lean mass during follow-up. Exercise, and predominantly resistance exercise, is key to increasing lean mass, muscle strength and physical function in older adults. 35 We did not collect data on participation in programmed exercise activities throughout the follow-up phase, but the follow-up group at least

seemed to be more motivated to exercise than the participants who dropped out during the follow-up phase. Participants in the follow-up group had trained harder, and their physical component of the quality of life score had increased compared to the dropouts which may be linked to the higher training intensity. The observed difference in the quality of life is clinically meaningful³⁶ and may have increased their motivation to sustain healthy lifestyle behaviour and continue training after the intervention.

In general, lifestyle interventions in research settings do not necessarily promote sustainable behaviour change. ³⁷ However, the intensive lifestyle intervention in the present study may have resulted in meaningful lifestyle changes, caused by the following effective components reported for lifestyle interventions: guidance towards a healthy diet, application of behaviour change techniques, 38,39 intense regular exercise, individual and/or group counselling, face-to-face counselling,³ internal motivation to lose weight, social support and self-efficacy.⁴⁰ Sustained dietary behaviour in our study was reflected in a continued self-reported low-energy intake during follow-up, which is important for weight loss maintenance. 41 The observed energy intake suggested a continued caloric restriction; however, body weight did not decrease any further during the follow-up phase. Self-reported energy intake in our study population was most likely underestimated, which is typical for overweight or obesity.⁴¹ Physical activity as assessed by the physical activity diary was not significantly increased compared to baseline. However, walking speed and chair stand test time were both

Regarding participants' adherence to the intensive lifestyle intervention itself, a higher exercise programme attendance during the intervention was associated with greater improvements in chair stand performance and daily physical activity 6 months after the intervention. This suggests that training frequency or volume matters for physical functioning. Remarkably, a higher relative HIIT training load was associated with a lower increase in lean mass, while HIIT training load was not associated with lean mass at baseline. However, it should be noted that adherence to HIIT training intensity was relatively high. It could be that, in highly compliant participants, the intensive progressive exercise programme may have been sub-optimal for exercise-induced modulation of skeletal tissue in a situation of caloric restriction. Reduction in diabetes medication seemed to be related to an adequate caloric deficit during the intensive lifestyle intervention, which is also seen in the long-term Look AHEAD lifestyle intervention using moderate caloric restriction.46

In the 3-month intervention phase, we previously showed that adding a leucine and vitamin D-enriched protein drink resulted in a daily protein intake of about 1.2 g/kg BW that supported the preservation of lean mass during weight loss. 15 Average protein intake at the end of the follow-up phase was 0.79 g/kg BW/day, suggesting that higher protein intakes of about 1.2 g/kg BW/day may not be required for preservation, or even increase, of lean mass during weight maintenance. Similar findings have been shown in the DIOGENES trial where adults with overweight or obesity maintained their weight on a high (23 En%) or low (16 En%) protein diet, without significant difference in the observed increases in fat-free mass.⁴⁷ Surprisingly, the reported difference in increase in lean mass between the test and control group at 3 months 15 had disappeared at 9 months, indicating that the persons receiving the control drink during the lifestyle intervention gained on average more lean mass (+0.83 kg) during the follow-up phase compared to persons that received the protein drink (+0.34 kg). Daily protein intake in the test group decreased below 0.8 g/kg BW at follow-up, while intake remained above 0.8 g/kg BW during the whole 9 months in the control group. It seems that participants in the test group had not replaced the protein-containing study drink with other protein-containing foods during the follow-up phase. This could explain why lean mass differences between the test and control group had disappeared at follow-up. Whether continuation of the protein drink during follow-up, with or without voluntary exercise training, would have shown maintenance or further improvement in lean mass gain remains a subject for future research.

4.1 | Clinical implications and recommendations for future research

In the present study, we showed preservation of lean mass in older adults with obesity and type 2 diabetes 6 months after combined lifestyle intervention. Interestingly, this sustained change was obtained after a relatively short intervention duration of 3 months, which is much shorter than the generally advised duration of 1 year.³ To achieve long-term preservation of lean mass, combined lifestyle interventions likely need to include an intensive exercise programme, on top of nutritional and behavioural support. The cost-effectiveness of such intensive combined lifestyle interventions remains to be evaluated in future research involving measurements of glucose control and cardiovascular disease incidence as well.

4.2 Strengths and limitations

The main strength of our study is the thorough evaluation of changes in body composition after combined lifestyle intervention in older adults with obesity and type 2 diabetes. Although designed as a researchbased lifestyle intervention focusing on the evaluation of lean mass and fat mass after 3 months, lean mass was preserved and the change in fat mass was sustained 6 months post-intervention. This is most likely due to the incorporation of various behaviour change techniques in our lifestyle intervention. Based on qualitative assessments, we did find several indications that behaviour had indeed changed after the 3-month lifestyle intervention. However, we did not measure behaviour objectively and used self-reported measures. Self-reported energy intake in individuals with obesity is most likely underestimated by the diet diary. 41 The 3-day physical activity diary using 30-min intervals possibly limited the sensitivity to detect changes. 48 The combined lifestyle intervention programme in our study seems fairly generalizable to practical settings, which is another strength of the study. The absence of measurements of glucose control at the end of the follow-up phase can be seen as a limitation of our study. Availability of these measurements would have enabled the evaluation of the sustainability of HbA1c reduction 6 months post-intervention. Finally, the number of dropouts at follow-up (28 out of 105) is considerable, which makes our results prone to selection bias. However, baseline characteristics did not differ between the follow-up population and the dropouts at follow-up and sensitivity analysis did not alter the statistical significance of the results on lean mass.

CONCLUSION

Our study showed that older adults with obesity and type 2 diabetes preserved their lean mass, their loss of fat mass and their improvements in physical functioning, 6 months after completing a 3-month intensive lifestyle intervention. The addition of the protein drink during the intervention did not affect the outcomes at follow-up.

ACKNOWLEDGEMENTS

We gratefully acknowledge Mariëtte van Rijmenam, Twan ten Haaf, Minse de Bos Kuil, Anita Tump, Renske Benedictus and Aldo Scafoglieri for their expert assistance during the study; all our study participants for their willingness to participate; our graduate students involved in the study for their dedication; Topsector Agri & Food, the Netherlands (AF12174), for providing financial support for the study; Danone Nutricia Research for providing study products and financial support for conducting the study; Tromp Medical BV, the Netherlands, for providing material support for the DXA scans; and the Dutch Research Council (NWO) for providing a Ph.D. grant for RGM.

CONFLICT OF INTEREST STATEMENT

JdV-vdB is an employee of Danone Nutricia Research. WP and SW are employees of the Netherlands Organisation for Applied Scientific Research (TNO), which is a not-for-profit reserach organization collaborating in several public-private partnerships or business-to-business research projects that receive funding from companies. All other authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Robert G Memelink https://orcid.org/0000-0003-0780-7360

REFERENCES

- Zhang Y, Pan XF, Chen J, et al. Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. *Diabetologia*. 2020;63(1):21-33. doi:10.1007/s00125-019-04985-9
- National Health Care Institute, n.d., Gecombineerde leefstijlinterventie [Combined lifestyle intervention]. Accessed on July 10, 2023; https://www.zorginstituutnederland.nl/Verzekerde+zorg/ gecombineerde-leefstijlinterventie-gli-zvw
- Williamson DA. Fifty years of behavioral/lifestyle interventions for overweight and obesity: where have we been and where are we going? Obesity (Silver Spring). 2017;25:1867-1875. doi:10.1002/oby.21914
- Zucatti KP, Teixeira PP, Wayerbacher LF, et al. Long-term effect of lifestyle interventions on the cardiovascular and all-cause mortality of subjects with prediabetes and type 2 diabetes: a systematic review and meta-analysis. *Diabetes Care.* 2022;45(11):2787-2795. doi:10.2337/ dc22-0642
- Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015;115(9):1447-1463. doi:10.1016/j.jand.2015.02.031
- Villareal DT, Apovian CM, Kushner RF, Klein S, American Society for Nutrition; NAASO, The Obesity Society. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obes Res. 2005;13(11):1849-1863. doi:10.1038/oby.2005.228
- Vink RG, Roumans NJ, Arkenbosch LA, Mariman EC, van Baak MA. The effect of rate of weight loss on long-term weight regain in adults with overweight and obesity. *Obesity (Silver Spring)*. 2016;24(2):321-327. doi:10.1002/oby.21346

Lifestyle Medicine ______

- Rossi AP, Rubele S, Calugi S, et al. Weight cycling as a risk factor for low muscle mass and strength in a population of males and females with obesity. Obesity (Silver Spring). 2019;27(7):1068-1075. doi:10.1002/ oby.22493
- Hamer M, O'Donovan G. Sarcopenic obesity, weight loss, and mortality: the English Longitudinal Study of Ageing. Am J Clin Nutr. 2017;106(1):125-129. doi:10.3945/ajcn.117.152488
- Cava E, Yeat NC, Mittendorfer B. Preserving healthy muscle during weight loss. Adv Nutr. 2017;8(3):511-519. doi:10.3945/an.116. 014506
- Park SW, Goodpaster BH, Lee JS, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. *Diabetes Care*. 2009;32(11):1993-1997. doi:10.2337/dc09-0264
- DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. *Diabetes Care*. 2009;32(2):S157-S163. doi:10.2337/dc09-S302
- Leitner DR, Frühbeck G, Yumuk V, et al. Obesity and type 2 diabetes: two diseases with a need for combined treatment strategies—EASO can lead the way. Obes Facts. 2017;10(5):483-492. doi:10.1159/000480525
- Dunstan DW, Daly RM, Owen N, et al. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. *Diabetes Care*. 2002;25(10):1729-1736. doi:10.2337/diacare. 25.10.1729
- Memelink RG, Pasman WJ, Bongers A, et al. Effect of an enriched protein drink on muscle mass and glycemic control during combined lifestyle intervention in older adults with obesity and type 2 diabetes: a double-blind RCT. Nutrients. 2020;13(1):64. doi:10.3390/ nu13010064
- McGlory C, van Vliet S, Stokes T, Mittendorfer B, Phillips SM. The impact of exercise and nutrition on the regulation of skeletal muscle mass. J Physiol. 2019;597(5):1251-1258. doi:10.1113/JP275443
- 17. Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJ. A high whey protein-, leucine-, and vitamin Denriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. *Am J Clin Nutr.* 2015;101(2):279-286. doi:10.3945/ajcn.114.090290
- Flore G, Preti A, Carta MG, et al. Weight maintenance after dietary weight loss: systematic review and meta-analysis on the effectiveness of behavioural intensive intervention. *Nutrients*. 2022;14(6):1259. doi:10.3390/nu14061259
- Dutch Institute for Healthcare Improvement. Richtlijn diagnostiek en behandeling van obesitas bij volwassenen en kinderen [Guideline diagnosis and treatment of obesity in adults and children]. CBO: 2008.
- Michie S, Richardson M, Johnston M, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81-95. doi:10.1007/ s12160-013-9486-6
- van der Zee KI, Sanderman R, Heyink JW, de Haes H. Psychometric qualities of the RAND 36-Item Health Survey 1.0: a multidimensional measure of general health status. Int J Behav Med. 1996;3:104-122.
- van der Zee KI, Sanderman R. Het meten van de algemene gezondheidstoestand met de RAND-36, een handleiding [Assessment of general health status using the RAND-36, a manual]. UMCG/Rijksuniversiteit Groningen; 2012.
- National Institute for Public Health and the Environment. NEVO-Online, versie 2013/4.0 [Dutch Food Composition Database, version 2013/4.0]. RIVM: 2013.
- Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. doi:10.3389/fphys.2012.00260

- 25. Hensrud DD. Dietary treatment and long-term weight loss and maintenance in type 2 diabetes. Obes Res. 2001;9(4):348S-353S. doi:10. 1038/obv.2001.141
- 26. Berk KA, Buijks HIM, Verhoeven AJM, et al. Group cognitive behavioural therapy and weight regain after diet in type 2 diabetes: results from the randomised controlled POWER trial. Diabetologia. 2018;61(4):790-799. doi:10.1007/s00125-017-4531-9
- 27. van Baak MA, Hul G, Astrup A, Saris WH. Physical activity, weight loss, and weight maintenance in the DiOGenes multicenter trial. Front Nutr. 2021;8:683369. doi:10.3389/fnut.2021.683369
- 28. Lean MEJ, Leslie WS, Barnes AC, et al. Durability of a primary careled weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(5):344-355. doi:10.1016/S2213-8587(19)30068-3
- 29. de Hoogh IM, Pasman WJ, Boorsma A, van Ommen B, Wopereis S. Effects of a 13-week personalized lifestyle intervention based on the diabetes subtype for people with newly diagnosed type 2 diabetes. Biomedicines. 2022;10(3):643. doi:10.3390/biomedicines10030643
- 30. Duijzer G, Haveman-Nies A, Jansen SC, et al. Effect and maintenance of the SLIMMER diabetes prevention lifestyle intervention in Dutch primary healthcare: a randomised controlled trial. Nutr Diabetes. 2017;7(5):e268. doi:10.1038/nutd.2017.21
- 31. Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR. Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr. 2009;29:21-41. doi:10.1146/annurev-nutr-080508-141056
- 32. Guillet C, Masgrau A, Walrand S, Boirie Y. Impaired protein metabolism: interlinks between obesity, insulin resistance and inflammation. Obes Rev. 2012;13(Suppl. 2):51-57. doi:10.1111/j.1467-789X.2012.01037.x
- 33. Paquin J, Lagacé JC, Brochu M, Dionne IJ. Exercising for insulin sensitivity—Is there a mechanistic relationship with quantitative changes in skeletal muscle mass? Front Physiol. 2021;12:656909. doi:10.3389/fphys.2021.656909
- 34. Pasman WJ, Memelink RG, de Vogel-Van den Bosch J, et al. Obese older type 2 diabetes mellitus patients with muscle insulin resistance benefit from an enriched protein drink during combined lifestyle intervention: the PROBE study. Nutrients. 2020;12(10):2979. doi:10.3390/ nu12102979
- 35. Izquierdo M, Merchant RA, Morley JE, et al. International exercise recommendations in older adults (ICFSR): expert consensus guidelines. J Nutr Health Aging. 2021;25(7):824-853. doi:10.1007/s12603-021-1665-8
- 36. Samsa G, Edelman D, Rothman ML, Williams GR, Lipscomb J, Matchar D. Determining clinically important differences in health status measures: a general approach with illustration to the Health Utilities Index Mark II. Pharmacoeconomics. 1999;15(2):141-155. doi:10.2165/ 00019053-199915020-00003
- 37. Wycherley TP, Mohr P, Noakes M, Clifton PM, Brinkworth GD. Self-reported facilitators of, and impediments to maintenance of healthy lifestyle behaviours following a supervised research-based lifestyle intervention programme in patients with type 2 diabetes. Diabet Med. 2012;29(5):632-639. doi:10.1111/j.1464-5491.2011 .03451.x
- 38. Södlerlund A, Fischer A, Johansson T. Physical activity, diet and behaviour modification in the treatment of overweight and obese adults: a systematic review. Perspect Public Health. 2009;129(3):132-142. doi:10.1177/1757913908094805
- 39. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and The Obesity Society. Circulation. 2014;129(25):S102-S138. doi:10.1161/01.cir.0000437739. 71477.ee. Suppl 2.

- 40. Elfhag K. Rössner S. Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes Rev. 2005;6(1):67-85. doi:10.1111/j.1467-789X. 2005.00170.x
- 41. Wing RR. Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82(Suppl 1):222S-225S. doi:10.1093/ajcn/82.1.222S
- 42. Houston DK, Neiberg RH, Miller ME, et al. Physical function following a long-term lifestyle intervention among middle aged and older adults with type 2 diabetes: the Look AHEAD study. J Gerontol A Biol Sci Med Sci. 2018;73(11):1552-1559. doi:10.1093/gerona/glx204
- 43. Gonzalez-Bautista E, de Souto Barreto P, Salinas-Rodriguez A, et al. Clinically meaningful change for the chair stand test: monitoring mobility in integrated care for older people. J Cachexia Sarcopenia Muscle. 2022;13(5):2331-2339. doi:10.1002/jcsm.13042
- 44. Kwon S, Perera S, Pahor M, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). J Nutr Health Aging. 2009;13(6):538-544. doi:10.1007/ s12603-009-0104-z
- 45. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743-749. doi:10.1111/j. 1532-5415.2006.00701.x
- 46. Pi-Sunyer X. The Look AHEAD Trial: a review and discussion of its outcomes. Curr Nutr Rep. 2014;3(4):387-391. doi:10.1007/s13668-014-
- 47. Aller EE, Larsen TM, Claus H, et al. Weight loss maintenance in overweight subjects on ad libitum diets with high or low protein content and glycemic index: the DIOGENES trial 12-month results. Int J Obes (Lond). 2014;38(12):1511-1517. doi:10.1038/ijo.2014.52
- 48. Haskell WL. Physical activity by self-report: a brief history and future issues. J Phys Act Health. 2012;9(Suppl 1):S5-S10. doi:10.1123/jpah.9. s1.s5

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Memelink RG, Hijlkema A, Valentin B, et al. Long-term preservation of lean mass and sustained loss of fat mass after completion of an intensive lifestyle intervention in older adults with obesity and type 2 diabetes. Lifestyle Medicine. 2024;5:e103. https://doi.org/10.1002/lim2.103

AUTHOR BIOGRAPHY

Robert Memelink is a teacher and researcher in nutrition and exercise at the Faculty of Sports and Nutrition at the Amsterdam University of Applied Sciences (AUAS). He teaches research skills, body composition assessment, and nutrition and sports, and he supervises graduate students in nutrition and dietetics during their bachelor thesis on topics related to nutrition, exercise and lifestyle. In addition, Robert is a visiting lecturer in sports nutrition at the Faculty of Behavioural and Movement Sciences at the Vrije Universiteit Amsterdam. Robert obtained a master's degree

Lifestyle Medicine WII FY 13 of

in food technology at the Agricultural University Wageningen, the Netherlands, and in human movement sciences at the Vrije Universiteit Amsterdam, the Netherlands. Until 2013, he worked as a researcher in the fields of sports nutrition and clinical nutrition at Nutricia Research, the Netherlands. In 2013, Robert joined the Amsterdam University of Applied Sciences and coordinated the PROBE study on behalf of the PROBE study consortium, in the Amsterdam Nutritional Assessment Center. In 2017, Robert received a PhD grant from the Dutch Research Council for his research on the preservation of muscle mass during weight loss

in older adults with obesity and type 2 diabetes, next to his work as a teacher at the AUAS. His PhD project is embedded in the Amsterdam Movement Sciences research institute at the Amsterdam University Medical Centers and is conducted as a joint PhD together with the Gerontology Department of the Faculty of Medicine and Pharmacy at the Vrije Universiteit Brussel, Brussels, Belgium. Robert is currently setting up a research line on Lifestyle within the research group Nutrition and Exercise led by Professor Peter Weijs at the AUAS.