

LLM4Legacy Study
Report 2023

TNO Public TNO 2024 R10650

19 March 2024

ICT, Strategy & Policy
www.tno.nl

 TNO Public

TNO 2024 R10650 19 March 2024

LLM4Legacy Study Report 2023

 TNO Public

Author(s) Joe Reynolds and Rosilde Corvino

Classification report TNO Public

Title LLM4Legacy Study Report 2023

Report text TNO Public

Number of pages 38 (excl. front and back cover)

Number of appendices 0

Programme number TNO 2024 R10650

Project name LLM4Legacy Study

Project number 060.58396/01.01

 TNO Public TNO 2024 R10650

 TNO Public

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,

microfilm or any other means without the previous written consent of TNO.

© 2024 TNO

 TNO Public TNO 2024 R10650

 TNO Public 3/38

Contents

Contents .. 3

1 Introduction ... 4

2 Context .. 5

3 Related Works ... 7
3.1 History ... 7
3.2 LLMs for SW Engineering ... 8
3.3 LLMs for Software Legacy ... 9
3.3.1 Code Maintenance .. 9
3.3.2 Code Statistics ... 10
3.3.3 Clone Detection and Refactoring .. 10
3.3.4 Code Analysis and Documentation .. 10
3.4 Conclusions on Related Work .. 11

4 LLM Lifecycle and Ecosystem .. 13
4.1 LLM Development and Use Lifecycle.. 13
4.1.1 Pre-training .. 14
4.1.2 Fine-tuning ... 15
4.1.3 Prompt Engineering.. 15
4.1.4 Retrieval Augmented Generation (RAG) .. 16
4.2 LLM Provider Ecosystem .. 17
4.2.1 LLM Service Providers ... 18
4.2.2 Pipeline Tooling ... 19
4.3 Conclusions on Model Lifecycle and Ecosystem .. 19

5 Experimental Setup for our Investigation ... 21
5.1 Pipeline Tooling ... 23
5.2 Experiment Summary .. 23
5.3 Research question 1 Can we extract knowledge in graph form from C++ source code using LLMs

and prompt engineering? ... 24
5.3.1 Introduction ... 24
5.3.2 Methodology .. 24
5.3.3 Results Summary .. 24
5.3.4 Conclusions .. 25
5.4 Research question 2 Can we use LLMs and RAG to extract knowledge in UML diagram form from a

C++ repository? ... 25
5.4.1 Introduction ... 25
5.4.2 Methodology .. 25
5.4.3 Results Summary .. 25
5.4.4 Analysis of Key Questions ... 26
5.4.5 Conclusions .. 26
5.5 Research question 3 Can we extract knowledge in text form from a C++ repository using LLMs and

RAG? 27
5.5.1 Introduction ... 27
5.5.2 Methodology .. 27
5.5.3 Results Summary .. 27
5.5.4 Analysis of Key Questions ... 28

 TNO Public TNO 2024 R10650

 TNO Public 4/38

5.5.5 Conclusions .. 28
5.6 Conclusions on the conducted experiments .. 28

6 Future Work and Report Conclusions ... 30
6.1 Our Future Research Questions ... 32

7 Bibliography ... 33

 TNO Public TNO 2024 R10650

 TNO Public 5/38

1 Introduction

This report describes the information collected between September and December 2023

during an ESI study on using Large Language Models (LLMs) to deal with legacy software.

This activity aimed to build knowledge around the topic via a study of related works and first

explorations with LLMs for legacy. The conclusion of this activity and, consequently, of this

document is to identify a set of open research questions and a plan to address them in the

coming years.

This document is structured as follows: Chapter 2 introduces the research context, explains

the applied nature of the conducted research, and presents some general open questions on

dealing with legacy code. Chapter 3 reports on a body of related works on LLMs, starting

with a brief history of their rise and progressively diving into their use in software

engineering in general and software maintenance, analysis, and restructuring in particular.

Chapter 4 describes the model lifecycle and all the phases an LLM goes through to acquire

general and specific capabilities. It also describes the ecosystem of LLM service providers

and the frameworks and tooling used to build complex LLM-based applications as a modular

pipeline. Chapter 5 describes the conducted experiments and discusses the observed results.

Chapter 6 discusses general conclusions and future work.

At the end of Chapters 3, 4, and 5, we will enumerate their conclusions, using them to justify

the choice of future works proposed in Chapter 6. The conclusions of each chapter refer back

to parts of the text highlighted in different colors.

 TNO Public TNO 2024 R10650

 TNO Public 6/38

2 Context

ESI is a TNO department actively working with industrial partners, primarily Original

Equipment Manufacturers (OEMs), for high-tech industrial equipment. We use our expertise

to embed cutting-edge methodologies into the Dutch high-tech systems industry to help

them cope with the ever-increasing complexity of their products.

ESI's unique role and proximity with industry is instrumental to observing and addressing

cross-domain problems, which are explored and solved by mutualizing the research efforts

of all our partners. Fundamental to our mission is also the tight cooperation with our

academic partners. ESI's ecosystem fosters research, networking, and knowledge exchange

to fulfill TNO's mission to impact industry and society positively.

A common issue troubling our industrial partners is how to deal with legacy software.

Indeed, they all have systems with large, embedded code, and their machines have a long

life with the support of deployed software that can last decades. The first question in this

context is: what is legacy software? For some, legacy software is code, usually deployed in

the field and only updated when needed. For others, it is any newly developed line of code.

In both these cases, legacy software is twofold. On the one hand, it holds at its core the

value and intellectual properties that give a company its competitive edge. On the other

hand, it is a burden as it requires continuous evolution and maintenance.

The terms "software evolution" and "maintenance" are defined in [1] as follows:

• Software maintenance is made of preventive, corrective, or adaptive actions on

deployed software (read "legacy code") to prevent it from failing, e.g., bug fixing.

• Software evolution means a continual code change during development from a

lesser, basic, or worse state to an advanced or better condition.

With the advent of continuous deployment practice [2], the borders between maintenance

and evolution and between deployed and development code tend to blur. Consequently,

software maintenance is estimated to take up to 90% of the software development life

cycle [3]. Gartner predicts that, by 2025, "technical debt will continue to compound on top of

existing technical debt", consuming an even more prominent part of the current IT budget

[4][5].

Despite many achievements in the field, e.g., Renaissance, Rascal, and Spoofax, dealing with

software legacy is not a solved problem. At ESI, our Renaissance tools have made possible

code analysis and restructuring that would otherwise have been impossible [6] [7], [8], [9].

There are, however, levels of complexity not tackled yet by our tools or other current

solutions:

- The problem of (architectural) code analysis is inherently complex. We deal with

much information scattered throughout the code base. Information gathering is

now possible with Renaissance DB or other custom extractors. However, interpreting

data, abstracting from irrelevant details, and modeling the code architecture from

the collected data still requires an "expert in the loop". In this context, an open

research question is the following: Is it possible to support the experts in dealing

 TNO Public TNO 2024 R10650

 TNO Public 7/38

with this large amount of data and assist them in interpreting data, abstracting

from irrelevant details, and modeling the code architecture from the collected data?

- Restructuring code is not always a straightforward translation from one obsolete

library or design pattern to a new one. It may require complex code rewriting that

also depends on the many variants of the obsolete library and design patterns

occurrences in the code. In this context, open research questions are:

o Can we help the experts identify the many variants of obsolete design

patterns and libraries?

o Can we help the expert design and implement an optimized solution for

code restructuring (optimization criteria might be readability, performance,

or minimum code change)?

o Can we help the experts prove code restructuring correctness?

With these open questions in mind and following the recent successes obtained by LLMs in

software engineering tasks of comparable complexity, we initiated this study to assess if and

how LLMs can help us address the unresolved questions in dealing with legacy software.

 TNO Public TNO 2024 R10650

 TNO Public 8/38

3 Related Works

In this chapter, we retrace the history of NLP (Natural Language Processing) until the birth of

LLMs (Large Language Models). We then focus on the successes of LLMs in software

engineering in general and software maintenance in particular.

3.1 History

NLP enables computers to understand, interpret, and generate human language using a

semantic model to encode and decode its meaning [10]. LLMs are part of NLP and enable

many applications, such as solving speech recognition problems, transforming audio into

text, automated reasoning, translation, question-answering, and text categorization.

NLP started in the 1950s and evolved throughout the 1980s, dominated mainly by the

Chomskyan theories of linguistics (e.g., transformational grammar), which profoundly

influenced the history of formal language parsing until recent times [11]. Transformational-

grammar-based NLP is called symbolic NLP [12].

In the 1990s and 2000s, we witnessed noticeable successes in statistical models, aka

methods counting word occurrences as n-grams and bag-of-words, and prediction models,

aka methods predicting the next word in a sequence as the first artificial neural network.

However, only in the 2010s, with the rise of deep neural networks, particularly Recurrent

Neural Networks (RNN) for languages, did the prediction models start to obtain better

results than symbolic NLP.

RNNs use a finite sequence to predict or label each sequence element (i.e., a word) based on

the element's context (i.e., other words in the sentence). A problem with RNNs is that

context information vanishes in long sequences. An evolution of RNNs that deals with this

problem is Long Short-Term RNNs, which introduce attention mechanisms to learn what to

remember and what to forget about the context of a given symbol in a sequence.

An essential complementary approach is word embeddings, which capture semantic

features of the words and encode them as vectors in a vector space. The most

straightforward form of embedding uses a dictionary as a base vector to represent words.

However, with time, more and more information has been included in vector embeddings,

such as position in the sentence or semantic relatedness or similarity [13].

In 2017, the paper "Attention is All You Need" [14] introduced the transformer architecture

where only attention mechanisms are used. Such an architecture provides more

parallelizable, faster-to-train encoder and decoder models. It was the birth of large

language models. In 2018, OpenAI introduced the decoder-only Generative Pre-trained

Transformer model [15], and in 2021, GPT-3 became a game-changer for its capability to

generate human-like text [16].

 TNO Public TNO 2024 R10650

 TNO Public 9/38

In November 2022, Chat GPT was released, quickly becoming "the fastest-growing

consumer software application in history" [17].

3.2 LLMs for SW Engineering
In 2021, CodeX, a fine-tuned GPT-3 model, started a vast trend of using LLMs for software

engineering, particularly code generation. Codex is the model in GitHub's Copilot. By

providing real-time suggestions and automating routine coding tasks, Copilot has reportedly

helped developers complete tasks in less than half the time compared to developers not

using it [18]. Other works advise that Copilot is an asset only for experienced developers who

can filter its results for correctness and optimality [19].

Surveys [20], [21] report a large corpus of works using LLMs for many software engineering

applications such as code completion, code summarization, documentation, code

generation, program synthesis, software requirements engineering and design,

maintenance, evolution, deployment, software analytics, software engineering processes,

education, and others.

Another example of tools from these works, besides Copilot, is AlphaCode, which, in 2022,

produced a model ranking in the top 54% in competition with 5K humans. [22] The success

of AlphaCode in this competitive programming domain showcases the potential of LLMs to

assist in routine coding tasks and contribute creatively to formulating solutions to novel and

complex problems.

StarCoder, released in May 2023, is another LLM designed explicitly for coding applications.

It is known to be a highly versatile model, given that its training data features over 80

programming languages. The model specializes in code generation and completion rather

than chat, making it thrive as an AI coding assistant [23]. StarCoder's extensive context limit

of 8000 tokens (small units of text) and ability to handle significant batch inferences allow it

to operate at a scale greater than most other LLMs. Starcoder also aims to improve security

and intellectual property protection using training data pruned only to contain permissively

licensed code from GitHub.

Code LLaMa is a series of open-source LLMs produced by further fine-tuning the LLaMa 2

architecture on code and released in August 2023 [24]. It comes in three sizes: big, medium,

and small, and three flavors: code, instruct, and Python. The size must be tailored based on

the task and available resources. The code and code Python models specialize in real-time

code completion, similar to StarCoder. Meanwhile, the code instruct model best

understands human prompts and generates relevant code, creating a ChatGPT-like

experience.

It is valuable to distinguish the open-source LLMs StarCoder, AlphaCode, and the LLaMa

series from closed-source tools like ChatGPT and CodeX.

Open-source LLMs are those whose model weights are publicly available. The datasets used

to train these models and architecture are also open in some cases. Consequently, a

researcher could theoretically reproduce them, and they are far easier to host locally or on

cloud-based services. Fully open development allows for community research, democratizes

access to the models, and enables full audits throughout the whole development process.

 TNO Public TNO 2024 R10650

 TNO Public 10/38

Meanwhile, although OpenAI has made their LLMs available to the public, they have done so

through a paid API service without sharing all the details regarding their development

process. While API access allows researchers to experiment with these models, their ability

to understand the inner workings is limited. The high development costs make it nearly

impossible for academic institutions to develop these models from scratch. These factors

have created anxiety among academics about whether they can meaningfully contribute to

breakthroughs using closed-source models [25]. Furthermore, open-source LLMs are rapidly

improving in quality and size [26].

3.3 LLMs for Software Legacy

3.3.1 Code Maintenance
Large Language Models have shown the potential to impact the field of software

maintenance significantly, offering intelligent solutions for repair and vulnerability detection.

Consequently, the expensive and time-consuming manual labor and expertise required for

legacy software maintenance could be minimized. Hypotheses in this chapter are grounded

in academic research, as evidenced by the referenced scholarly articles. In most cases, they

have yet to be applied in industry.

Given their ability to assist developers with various coding tasks by synthesizing quality code

[27], using LLMs for automated program repair is a natural application. Initial investigations

with models like Codex [28] and StarCoder have proven their ability to complete infilling

tasks. In simple terms, buggy code can be removed and filled in with newly generated code

that the LLM deems suitable. Techniques have been developed recently to automate this

process. Alpharepair, presented in [29], [30], replaces buggy code snippets with masked

tokens and then uses the CodeBERT model [31] to replace these tokens with generated code

based on the context before and after the bugs. Although they return positive results, these

examples rely on using the LLM to generate programs according to the token distribution

without any structural or semantic understanding of the code. This lack of understanding

can lead to issues such as generating infeasible tokens without consideration of types.

Traditional deterministic Automated Program Repair (APR) tools do not suffer from these

challenges, meaning novel approaches have looked at combining them with LLMs to reduce

LLMs' hallucinations. Integrating a traditional completion engine has allowed for the

deterministic pruning of infeasible tokens suggested by the LLM and further context for the

LLM, leading to a more relevant generation for the codebase [32].

Legacy systems often lack a comprehensive suite of testing, which can lead to unexpected

and hard-to-diagnose behaviors. LLMs can detect these vulnerabilities by increasing scale

and picking up on nuances in the code. Programs incorporating LLMs into their workflow to

automatically generate many Unit Tests relevant to a specific package or repository are

already in development. With the creation of these tests on a large scale and results

comparable to those written by developers, time savings can be made if these were

implemented on legacy systems lacking total test coverage [33].

Alternative methods focus on using a deeper understanding of the code to generate test

cases, which conventional methods may overlook. The development of differential

prompting an evolution of example and "reason and act" prompting demonstrated that

 TNO Public TNO 2024 R10650

 TNO Public 11/38

an LLM can be especially useful in writing failure-inducing tests [34], ensuring a more

thorough examination of the software's robustness and reliability.

3.3.2 Code Statistics
Although they have been known to produce impressive results in exams [35], the base

functionality of LLMs is to predict the next token in a sequence of words. Therefore, they are

not naturally suited to performing mathematics or statistical analysis [36]. Due to their

deterministic nature, traditional methods for calculating the more complex metrics that can

characterize a codebase, such as cyclomatic complexity, Halstead complexity, and

maintainability index, are preferable.

However, this does not mean LLMs have no application in investigating code statistics. With

the development of plug-ins, Wolfram Alpha has been integrated into GPT-4's workflow. If

faced with a problem requiring mathematical reasoning, the model can make a query using

scientific software to calculate a suitable answer [37]. This area of LLM engineering is called

agent-based and involves any LLM that can use tools like calculators, search engines, or

executing code [38].

In this context, it would be feasible to have an LLM, which, when asked for cyclomatic

complexity, would run a premade script to calculate this value for the given code and then

format the answer as a natural language response. This integration allows for more intuitive

interaction with technology, giving new opportunities to gain insight for those not

experienced in statistical analysis, simplifying workflows, and saving time for experts.

3.3.3 Clone Detection and Refactoring
Legacy software systems often suffer from code duplication, leading to maintenance

challenges and increased technical debt. Clone detection, the process of identifying similar

or duplicate code fragments, is critical in maintaining and updating these systems.

Traditionally, this has been a manual and error-prone process, with deterministic systems

suffering due to the vast array of edge cases.

New approaches present compelling examples of how LLMs could be deployed for clone

detection. By mapping code snippets into a high-dimensional vector space, these models

can identify clusters of similar code, even if they differ in syntax [39]. The approach could be

instrumental in legacy systems where different programmers might have written similar

functionalities in various styles, given that code that performs similar functions or structures

will have comparable vector representations.

Refactoring is crucial in legacy systems to improve maintainability and readability without

changing the system's external behavior. LLMs can generate recommendations for code

improvement that adhere to best practices as defined by a user prompt, thus ensuring

higher code quality and reducing technical debt [40].

3.3.4 Code Analysis and Documentation
Legacy code often lacks complete or proper documentation, making it challenging and time-

consuming for developers to understand the system's functionality [41]. LLMs have already

 TNO Public TNO 2024 R10650

 TNO Public 12/38

proven their use in code summarization [42], and a natural extension of this ability is the

automated generation of documentation or recommendations for a codebase [43].

Currently, context size is the critical limiting factor for this solution, with documentation

often being generated for specific chunks of code rather than a high-level project scale.

Acting on the assumption that LLMs are adept at translating natural language to source

code and vice versa, the potential use case of a documentation tester presents itself. An

LLM-supported system could verify the extent to which the actual implementation of the

source code matches the documentation that describes it. It could write new

documentation or verify the consistency and accuracy of existing documentation with the

legacy code implementation. This area has little investigation, yet it appears to be promising.

An extension of code documentation generation is using LLMs to create architectural

diagrams to depict the interaction between components or other structural aspects of a

codebase, which may be helpful to a system architect or an engineer to reason about

current code status and possible improvements. By recognizing in code the patterns that

describe the interaction between components or the structural aspect under evaluation,

LLMs can generate a UML diagram describing the corresponding code structure and

architecture. This type of analysis has been previously explored with parser-based solutions

that help gather information scattered throughout the code base but always rely on the

domain expert to interpret data, abstract from irrelevant details, and model the code

architecture from the collected data. By supporting the domain expert in their tasks, this

process can become more time-efficient and less complex or error-prone, ultimately

providing a greater value in output.

3.4 Conclusions on Related Work
Throughout 2023, LLMs began to appear in industry-grade products, marking a significant

milestone in their commercial and practical adoption. Despite this progress, it is essential to

note that the predominant use of LLMs remains within academic research rather than

widespread industrial deployment. We can transition these models from academic concepts

to fully-fledged, industry-ready services by identifying areas where LLMs excel and

enhancing their capabilities.

Reviewing Chapter 3, we come to the following conclusions:

1. LLMs excel in understanding code functionality, summarization, code generation, code

improvement suggestions, and generating documentation. Evidence highlighted in

chapter [3.2]

2. Open-source LLMs are preferable to closed-source ones, with advantages in

transparency, accessibility, and community-driven development. Evidence highlighted in

chapter [3.2]

3. LLMs generative capability is best utilized alongside human input. By generating multiple

suggestions, an expert can act as a validator, selecting the best solution for a situation or

iteratively improving queries to create better outputs for the situation. Evidence

highlighted in chapter [3.2]

4. Experiments suggest that combining LLMs with traditional deterministic methods can

improve the results of automatic code repair. Evidence highlighted in chapter [3.3.1].

5. LLMs have potential in tasks that benefit from combining their natural randomness and

general coding knowledge. These include and are evidenced by highlights in the relevant

chapter:

a. (Unit) test generation [3.3.1]

 TNO Public TNO 2024 R10650

 TNO Public 13/38

b. Clone detection [3.3.3]

c. Detecting inconsistencies between code and documentation [3.3.4]

d. Code improvement recommendations [3.3.3]

 TNO Public TNO 2024 R10650

 TNO Public 14/38

4 LLM Lifecycle and
Ecosystem

This chapter describes the LLM Lifecycle from pre-training to fine-tuning and use. It also

describes the ecosystem underlying this lifecycle, computing resources, data management,

service providers, and cloud infrastructure.

4.1 LLM Development and Use Lifecycle
The model development and use lifecycle for an LLM like GPT-4 involves several stages, each

aiming to enhance the model's performance for specific tasks or domains. Figure 1 depicts a

simplified overview of this process.

The first step is pre-training the model on Web Data. In this phase, the model is exposed to

vast text data scraped from the web. The goal is to help the model learn a broad

understanding of language, including grammar, vocabulary, and various writing styles. This

stage does not focus on any specific task but aims to build a robust general foundation.

After pre-training, the model undergoes fine-tuning to domain or task-specific needs. This

phase involves training the model on a more focused dataset relevant to a specific domain

(like medical texts) or task (like answering questions or completing code). The purpose is to

adapt the model's broad knowledge to the nuances and specific requirements of the targeted

area.

A fine-tuned model can learn from context, which means it can understand and respond

based on the immediate context provided in a prompt. This context can include instructions,

examples, or specific questions. The model uses this context to generate relevant and

accurate responses.

Prompts can be enhanced using templates (structured formats) or Retrieval-Augmented

Generation (RAG). RAG combines the model's language generation capabilities with the ability

to retrieve and use relevant external information from a database, improving the quality and

relevance of responses.

One of the limitations of LLMs is the context size. The model can only process a limited amount

of text at a time (like the last few paragraphs or a certain number of tokens/words).

A sliding window technique is used to manage more extended conversations or documents.

Using a sliding window means the model focuses on the most recent part of the text (or

 TNO Public TNO 2024 R10650

 TNO Public 15/38

conversation) and 'slides' this window forward as new information is added, effectively

keeping the most relevant parts in view while older parts are phased out.

[44] provides detailed insights into the architecture and training process of GPT-3, which is

similar to other LLMs.

[45] discusses the RAG system and how it enhances language model outputs with external

knowledge retrieval. The following chapters discuss these concepts in more depth and

summarize related works.

Figure 1. LLM development and use lifecycle

4.1.1 Pre-training
LLMs are designed to understand, generate, and manipulate language. They are 'large' as

they are pre-trained on vast amounts of text data, enabling them to 'understand' a range of

language patterns and idioms by predicting the next token in a self-supervised pattern [46].

This pre-training involves using vast amounts of data usually crawled from the internet

[47] - to learn billions of parameters. It is currently an incredibly expensive process in terms

of both computing power and money [48]. Specific to our investigation is that codebases,

including documentation and user comments, are often included in LLMs training data. Due

to their ingestion of source code [23], LLMs understanding of human language and patterns

can also be extended to codebases like C++. This understanding aligns well with the

software engineering community's understanding of 'good code', as LLMs can grasp

nuances of what engineers mean by this term due to sentiment analysis from user

comments corresponding to good and bad code being included in training data.

Comparisons with code quality checkers like Lint and its modern variants have shown that

LLMs can contribute valuable insights. However, due to their random nature, they are not

replacements for these tools and should be viewed as complementary [20].

It is currently outside the scope of this investigation to train a model from scratch due to the

extreme costs. However, it will be valuable to keep up with advancements. Competitive

models are rapidly decreasing in size while increasing performance, and the best models

today will be easily surpassed in six months.

 TNO Public TNO 2024 R10650

 TNO Public 16/38

4.1.2 Fine-tuning
Fine-tuning is a process where a pre-trained LLM is further 'tuned' to perform a new but

related task. This process readjusts the model's internal weights. The adjustments can be

applied to the entire model or selectively to specific network layers. Fine-tuning can add new

knowledge to a model but is primarily used to adapt its behavior [49]. The 'fine-tuned'

model is an entirely distinct and specialized version of the original, so it must be hosted

separately.

A common misconception regarding fine-tuning is the form of data required to complete the

task. It is not enough to only have a dataset like a book or codebase to tune an LLM, at

which point it will absorb the knowledge. The data must be prepared in a way that presents

the expected input and output format so the model can learn the patterns. For instance, a

pre-trained model is fed with question-answer pairs to train a chatbot to answer questions.

Therefore, if one wanted to teach a model about a codebase using fine-tuning, one would

have to give it questions regarding that codebase on the generally accepted scale of 10,000

to 1,000,000 examples. This range provides a balance between having a sufficiently large

dataset to capture the nuances of a task and being manageable in terms of computational

resources. This knowledge is then static and will not adjust again without retraining.

Furthermore, it is 'baked into' the model, meaning recovering the source of this information

becomes elusive, and it becomes difficult to check whether it is accurate and correct.

Even the most novel ways of fine-tuning LLMs remain resource-intensive [50], both in terms

of computational power required for training and the storage space for multiple specialized

models. When a model is fine-tuned for multiple tasks, there is the added complexity of

ensuring that these tasks do not negatively influence each other this could lead to a

situation where multiple models are required for optimal performance.

Fine-tuning thrives when preparing powerful models for specific behavior-based tasks. The

Llama series is a strong example of how a base model can be tuned for multiple uses [51].
- Llama 2 is a robust base model performing well in generalist benchmarking chal-

lenges.

- Code Llama is a fine-tuned version of Llama 2, better at predicting the next token in

programming contexts. This model was created by fine-tuning Llama 2 on code-

specific portions of its dataset for a longer time.

- Code Llama Python was specialized by fine-tuning the Code Llama model on 100B

tokens worth of example Python questions and answers. Therefore, it performs very

well at tasks regarding the language.

- Code Llama Instruct was specialized by fine-tuning Code Llama using natural lan-

guage instruction input and the expected output. Consequently, it is best in conver-

sational contexts.

Our investigation is explicitly focused on C++ understanding and, as an extension, UML or

GraphML architecture diagram generation. Consequently, it would be realistic to fine-tune an

LLM for one of these tasks using a dataset of C++ and UML questions and answers and then

observe whether this can increase the value of our results.

4.1.3 Prompt Engineering
The prompt (input query) to an LLM can be crafted to effectively guide and optimize the

generated response. Prompting involves understanding the nuances of how these models

 TNO Public TNO 2024 R10650

 TNO Public 17/38

interpret and respond to different types of input and using this insight to formulate clear,

contextually appropriate prompts aligned with the desired output. Effective prompt

engineering can be implemented at a low cost and significantly enhance the quality,

relevance, and accuracy of the responses from an LLM [52].

Prompt engineering can be split into several different sub-categories that serve various use

cases and can significantly impact the effectiveness and quality of a model's response.

These methods are not independent and can be combined for optimal results. Methods

include:
1. Instruction-Based/Zero-Shot Prompts are created that directly tell the model what

to do. The goal is to be straightforward and unambiguous in communicating the

task to the model. For example, "Wr

[53].

2. Conversational Prompting/Few-Shot Prompts are structured as part of a conversa-

tion or dialogue and effectively guide the model to a desired response. Most chatbot

applications automatically operate on this principle, where a natural conversation

can guide the model to a conclusion [54].

3. Role-Based Prompts assign the model a role, which affects the quality and style of

the output. For example, "You are a helpful teacher. Please explain this concept to a

code..." [55].

4. Example-Based Prompts contain examples of an ideal output that guides the

model on how to respond. For example, the skeleton structure of an architectural

diagram can be included to shape the output, or code can be provided to identify

differences and issues [34].

5. Chain of Thought/Reasoning and Acting Prompts give precise instructions explain-

ing the chain of reasoning and steps the LLM should follow to achieve the desired

output. The prompts also encourage the model to think aloud or detail its thought

process step by step. This method is most helpful in making complex reasoning

tasks more explainable to the user and improving the accuracy of the results [56].

6. Contextual Prompts that add relevant context or background information regard-

ing a question can help an LLM understand and generate more accurate and rele-

vant responses [57].

Finding the optimal prompt can prove very challenging due to the sensitivity of LLMs and

often requires extensive trial and error methods [58]. New techniques are being developed

using predetermined systems or LLMs to give the optimal prompt based on user queries

[59].

4.1.4 Retrieval Augmented Generation (RAG)
A development on contextual prompting, Retrieval Augmented Generation (RAG) integrates

database searches into the LLMs' response [45]. With relevant data in the context window,

the LLMs' responses are helpful, factual, and citable outputs. Various databases, including

SQL, vector embedding, and knowledge graphs, can be employed.

Storing and retrieving data as vectors via apposite libraries such as FAISS or VectorDB is cost-

effective and efficient compared to fine-tuning LLMs. This approach is especially beneficial

for frequently updated knowledge bases, like code repositories, which receive regular push

changes. The quality and completeness of the retrieved data and, therefore, the LLMs'

output directly depend on the database structure and quality of embeddings.

 TNO Public TNO 2024 R10650

 TNO Public 18/38

A primary limitation of RAG is the LLMs' restricted context window. The context window

dictates how much information is accessible to the LLM during inference, consequently

limiting the scale and scope of the knowledge that will be used to generate a response. If

not all the information required to answer a question can be included in the query context, it

will be lost, and the answer will be incomplete. The context window size varies per model,

with Llama-2 being about 1600 tokens and GPT-4 and Code-Llama34b being an order of

magnitude greater at 16,000 tokens. Context size will likely increase as models are produced

with larger architectures [60]. Innovations are underway to extend these windows with

attempts to give LLMs the ability to analyze entire codebases in one shot [61]. Research

demonstrates that simultaneous LLM and retriever fine-tuning can also improve RAG's

ability to generate answers to domain-specific queries [62].

Evaluation of RAG systems requires insight into the retrieval system's context relevancy, the

LLMs' effective use of retrieved information, and the overall quality of generated content

[63].

4.2 LLM Provider Ecosystem
Figure 2 depicts the Language Model Ecosystem, which encompasses:

• Cloud Service Providers: companies and platforms that offer cloud computing

resources and specialized hardware like GPUs (Graphics Processing Units) and TPUs

(Tensor Processing Units) for training and deploying models. They also offer data

storage and management solutions, ensuring data security and accessibility.

Examples include AWS (Amazon Web Services), Google Cloud, and Microsoft Azure.

• LLM service providers like Hugging Face, OpenAI, and AWS Machine Learning. They

offer platforms and tools that allow developers to access and integrate LLM

functionalities into applications. More specifically, they offer APIs and tools for model

selection and configuration, fine-tuning, performing inference, and efficiently

mapping these models on hardware to optimize performance for various applications.

LLM service providers are or make use of cloud service providers.

• Pipeline tooling: development framework offering tools for building advanced

applications, using modular components as large language models, databases for

retrieval augmented generation, and other agents, simplifying the creation of

context-aware, reasoning AI systems.

Figure 2. Language model ecosystem

 TNO Public TNO 2024 R10650

 TNO Public 19/38

4.2.1 LLM Service Providers
The massive scale of LLM models (GPT-4 has 1 trillion parameters) often makes them

unwieldy and impractical to host on local devices. Consequently, several platforms have

begun to offer cloud services to host custom or premade models. It is a rapidly changing

landscape with a few dominant companies and new services introduced monthly.

Table 1 provides a comparative analysis of the three major service providers in the context

of machine learning capabilities: Azure ML [64], AWS ML [65], and Hugging Face [66]. It aims

to guide users in selecting the most appropriate service for their specific ML needs based on

cost, scalability, and project requirements.

Table 1. Comparison of Cloud Service Providers

Feature/
Metric

Azure ML AWS ML Hugging Face

Pricing - Pay-as-you-go
- Tiered pricing based on
usage
- Cost to deploy Llama-2-
7b inference endpoint =
$7.65/hr

- Pay-as-you-go and token-
based cost
- Tiered pricing based on
usage
- Cost to deploy Llama-2-7b
inference endpoint =
$1.84/hr

- Pay-as-you-go
- Free tier with a
subscription for advanced
features
- Cost to deploy Llama-2-
7b inference endpoint =
$1.30/hr

Scalability - Easily scalable with Azure
infrastructure

- Highly scalable, integrates
with AWS ecosystem

- Compute is based on an
Azure and AWS provider
infrastructure

Special
Features

- Integrated with other
Azure services

- Wide range of ML services
(Bedrock is simple,
Sagemaker is advanced)
- Strong integration with
data storage and processing
services

- Focus on NLP and
transformer models
- Large model hub with
access to the newest/most
comprehensive range

Ideal Use
Cases

- Enterprise solutions
- Complex ML projects
involving various Azure
services

- Large-scale data
processing and ML
deployments
- Projects requiring
integration with AWS
services

- NLP-focused projects
- Researchers and small
teams experimenting with
pre-trained models

Azure machine learning workspaces provide a cloud-based environment where models can

be trained, deployed, automated, managed, and tracked. Initially, for general machine

learning models, they were quick to pivot focus to LLMs in 2023, providing premade

deployment of huge LLMs. The platform has a robust infrastructure as it has been based on

the standard Azure architecture, which is the basis of many businesses. Azure Kubernetes

Services allows for scaling containerized ML models on a production scale. It is costly to

deploy small endpoints as they only allow the renting of high-power GPUs.

Amazon Sagemaker offers a cloud environment to build, train, and deploy custom machine

learning models. Very recently, in a pivot to the LLM domain, they have introduced Amazon

Bedrock, which allows for the utilization of inference for pre-trained models, eliminating the

necessity for custom training. Compute resources are priced by the hour or by tokens

used/generated, giving this provider a far more flexible price point.

 TNO Public TNO 2024 R10650

 TNO Public 20/38

Hugging Face has a key focus on NLP and LLM development. Hugging Face provides the

most advanced range of models as it hosts a massive range of open-source solutions. It also

has a thriving open-source community that openly shares academic papers, models, and

datasets as they are created. This provider has less background infrastructure, generally

leasing it from AWS or Azure, but also allows for cheap and highly flexible endpoints. It was

our primary choice for deploying the Code-Llama model series during this investigation.

4.2.2 Pipeline Tooling
Frameworks and libraries such as LangChain, Haystack, and LlamaIndex are versatile tooling

designed to enhance large language models' capabilities by streamlining complex

application development. They function as a modular pipeline, allowing developers to

combine components like chat interfaces, search integrations, and language model

functionalities. This abstraction layer simplifies the creation of sophisticated workflows,

including information retrieval, conversation management, and data processing, refer to

Figure 2. By leveraging these frameworks, developers can focus on designing and

implementing the logic of their applications without getting bogged down in the intricacies

of underlying model architectures. The result is a more efficient and accessible way to

harness the power of language AI for innovative and practical solutions.

4.3 Conclusions on Model Lifecycle and
Ecosystem
Reviewing Chapter 4, we come to the following conclusions:

1. Training an LLM from scratch is currently too costly and challenging for our cur-

rent use cases and therefore is outside the scope of this investigation, we will in-

stead be focusing on their applications. Evidence is highlighted in chapter [4.1.1].

2. Fine-tuning an LLM to comprehend and generate information related to a spe-

cific codebase would be a misjudgment. This type of fine-tuning requires input-

output pairs of source code and associated questions. The major challenges are the

feasibility of acquiring an appropriate dataset and then keeping this and the model

updated. Evidence is highlighted in chapter [4.1.2].

3. Fine-tuning an LLM for translating C++ source code into architectural models is a

novel possibility. This fine-tuning would require a dataset comprising source code

and corresponding diagrams, which could potentially be generated using tools like

Renaissance. Evidence is highlighted in chapter [4.1.2].

4. Prompt engineering is vital in applying LLMs, and various techniques should be

employed for the best results. Evidence is highlighted in chapter [4.1.3].

5. The size of their context windows limits current LLMs. Therefore, global code analy-

sis is unfeasible with just-in-context learning, given that no LLM can currently

scale to a codebase featuring millions of lines of code. Evidence is highlighted in

chapter [4.1.4].

6. To source and verify information output by LLMs, the use of Retrieval Augmented

Generation via a database or internet search is necessary. LLMs often provide elu-

sive and imprecise answers, especially in domain-specific knowledge concepts. Evi-

dence is highlighted in chapter [4.1.4].

 TNO Public TNO 2024 R10650

 TNO Public 21/38

7. In retrieval systems, the accuracy and completeness of an LLM's output are di-

rectly linked to the quality of the RAG embeddings or database structure. Evi-

dence is highlighted in chapter [4.1.4].

8. From a practical and infrastructural standpoint, it is advised to use a service provider

rather than go through the prohibitive and often expensive process of setting up an

LLM locally or with our API. The key benefits are flexibility and scalability. Evidence is

highlighted in chapter [4.2].

9. Given that the project is still in an exploratory phase, we recommend using Hug-

ging Face as it is the service provider most suited to research with the biggest

number of models and the lowest costs. In an industrial-level application, the pro-

vider can easily be switched to AWS Bedrock to serve users on a larger scale. Evi-

dence is highlighted in chapter [4.2].

 TNO Public TNO 2024 R10650

 TNO Public 22/38

5 Experimental Setup for our
Investigation

Our primary goal was to determine the feasibility and optimal methods for employing an

LLM to extract and analyze knowledge from a C++ codebase. Considering input data needed

to answer repository-specific questions, fine-tuning an LLM for code analysis would be

expensive, codebase-dependent, and quickly become irrelevant.

We used a RAG-assisted LLM with a vector database backend to create a proof-of-concept

system. Figure 3 depicts the implemented pipeline and its five stages:

1. Download

➢ Objective: To acquire the target repository's code and documentation in

their raw forms.

➢ Versatility: The system is designed as a generalist to extract data from any

C++ repository. A variety of solutions were tested. Each required optimiza-

tions, but all worked at a base level.

2. Preprocessing

➢ Objective: To transform the raw codebase into an optimal state for embed-

ding into the vector store.

➢ Procedure: Automated scripts separate C++ code and text. The former is to-

kenized and split by declarations, while the latter keeps its form and is sepa-

rated by line breaks. Metadata is added to all sections, and a directory

structure is produced.

3. Processing

➢ Objective: To embed the processed data into a vector store, creating a

searchable, indexed database that facilitates efficient query retrieval.

➢ Procedure: Embedding algorithms convert the data into vector representa-

tions stored in a FAISS database.

➢ Versatility: Different embedding algorithms can be implemented quickly.

During our investigation, text-embedding-ada-002 and gte-base were

tested.

4. Query

➢ Objective: To form the ideal RAG query tailored to our codebase.

➢ Procedure: Our retriever method identifies and compiles pertinent infor-

mation from the database. Components for the RAG query include the origi-

nal query, relevant context, and a templated instruction for the LLM, which

dictates its behavior.

5. Inference

➢ Objective: To generate responses to queries using an LLM.

➢ Procedure: The LLM analyses the RAG query and generates a response based

on the combined more relevant information in the context.

➢ Versatility: This stage is adaptable and has been tested with OpenAI's GPT-4

and Meta's Code-Llama models from Hugging Face.

 TNO Public TNO 2024 R10650

 TNO Public 23/38

Figure 3: Architecture of our RAG-assisted LLM pipeline

 TNO Public TNO 2024 R10650

 TNO Public 24/38

5.1 Pipeline Tooling
Our pipeline was written in Python, which features several open-source libraries for

implementing LLM's into custom applications. These libraries allow for easy implementation

and testing of various retrieval methods - the algorithms required to find relevant data from

large databases or vector stores.

LangChain is the open-source framework we currently utilize in our pipeline. It is designed to

build applications that combine LLMs with various components such as databases, APIs, and

software systems. Our experience with LangChain has been positive, although it sometimes

lacks modularity and is still under development, meaning it will change with time.

We also tested Haystack during our investigation. It is an open-source framework focused

on building search systems for large datasets. It implements relevance scoring and a range

of document retrieval methods yet suffers in its ability to interact with external APIs. This

limitation made experimentation with a range of LLMs difficult, leading us to end our

experiment with Haystack and continue using LangChain.

LlamaIndex is a promising new framework we look to experiment with in the future. We aim

to explore whether it can complement or enhance our existing pipeline, particularly

regarding data indexing, retrieval efficiency, and expansion of context windows.

Using LangChain has enabled us to effectively incorporate techniques like Prompt

Engineering and RAG. As we move forward, we aim to deepen our use of these

methodologies, regardless of the underlying tool, to improve the precision and context-

awareness of our LLM applications.

5.2 Experiment Summary

We conducted three experiments to test the capability of base LLMs and our pipeline setup.

Table 2. Summary of experiments and results

Experiment Remarks Validation method Conclusions

Architectural

diagram extraction

from C++ code

snippets

- Base foundation models tested

- Various LLMs compared

- Toy code comprising Publisher

Subscriber design patterns used

- Limited scaling capabilities

- Refined prompts required

Evaluation against

Renaissance results

Renaissance outperforms

out-of-the-box LLMs for

diagram extraction tasks

Architectural

diagram extraction

from C++ repository

- Foundation models combined

with RAG

- Open source and obfuscated

codebase analyzed

- 12,000 lines of code

Evaluation against

Renaissance results

Renaissance outperforms

out-of-the-box LLMs for

diagram extraction tasks

Generating English

explanations from

C++ repository

- Foundation models combined

with RAG

- Open source codebase outside

the models training data

- 60,000 lines of code

Evaluation against

human benchmarks

Traditional tools lack

these capabilities,

highlighting LLMs

potential in this domain

 TNO Public TNO 2024 R10650

 TNO Public 25/38

5.3 Research question 1 Can we extract
knowledge in graph form from C++ source
code using LLMs and prompt engineering?

5.3.1 Introduction
This experiment delves into how LLMs, specifically GPT-4 and Code-Llama iterations,

interpret C++ code, which implements a publisher-subscriber pattern. The goal is to use

these generative models to create valid publisher-subscriber network graphs in dot format.

5.3.2 Methodology
The models GPT-4, Code-Llama-7b, Code-Llama-13b, and Code-Llama-34b were tested

with five different C++ code snippets representing publisher and subscriber relationships.

These snippets aimed to evaluate the LLMs ability to identify relationships in a network

graph and accurately generate a diagram depicting them in a dot file.

The prompts incorporated role-based, chain-of-thought, and example-based methods to

optimize results. Custom prompts were handwritten for each question. It was infrequent

that a valid diagram was produced with a general prompt. As the output of these models is

indeterministic each query was made three times and the best output chosen.

5.3.3 Results Summary
Table 3. Architectural diagram extraction from C++ code snippets

Question GPT-4 Code-Llama-7b Code-Llama-13b Code-Llama-34b

1 Correct and

detailed dot file.

Best answer.

Failed to generate a dot

diagram but demonstrated

understanding through text.

Valid, but separate

graphs created for

each stage.

Correct dot file but

uses a different

approach.

2 Correct and

detailed dot file.

Best answer.

Failed to produce a diagram

but showed understanding

through text.

Correct dot file,

similar to GPT-4.

Correct dot file,

similar to GPT-4.

3 Correct and

detailed dot file.

Best answer.

Correct logic, but the diagram

lacks details.

Incorrectly included

arrows in both

directions.

Correct and complete

dot file.

4 Correct and

complete dot file.

Only accurate

answer.

Nearly correct. Missed one

connection.

Incorrect, Cluster13

was mislabelled as a

publisher.

Incorrect, Cluster13

was mislabelled as a

publisher.

5 Most complete and

correct, with a

minor artifact.

Incorrect answer. Too general to be

helpful.

Similar to GPT-4 but

incomplete.

 TNO Public TNO 2024 R10650

 TNO Public 26/38

5.3.4 Conclusions
This investigation demonstrates that all our LLMs can convert source code into DOT

architectural diagrams. GPT-4 performed best, but the smaller, more specialized Code-

Llama-34b produced comparable results. An important note is that each question required

careful prompt engineering from the researcher to produce accurate diagrams.

While this does underscore the potential for LLMs to assist in software architecture tasks

such as interpretation and visualization, an automated system that consistently produces

accurate results will require many more layers of complexity. A key benefit of producing

these diagrams with LLMs instead of the classical approach involving parsers is that they are

produced significantly faster.

Furthermore, there is a question of bias in prompt ability prompt engineering as a science

is far more developed for GPT-4 than the Llama models. Maybe with further investigation, a

prompt that made the Llama models perform in a superior manner might be developed.

5.4 Research question 2 Can we use LLMs and
RAG to extract knowledge in UML diagram
form from a C++ repository?

5.4.1 Introduction
This experiment assesses the capability of a RAG pipeline in generating Unified Modeling

Language (UML) diagrams from a C++ codebase using natural language queries. The RAG

pipeline's performance in retrieving relevant documents and accurately depicting code

architecture is analyzed.

5.4.2 Methodology
The LLM was given access to information about the codebase by the pipeline described in

Chapter 5.1 and a general prompt asking for a UML diagram. Natural Language Queries were

made to the pipeline thrice, and the most accurate returned architecture diagram was

selected.

Retriever Relevance Score indicates the efficiency of document retrieval, which varied from

1/1 (perfect retrieval) to 7/9 (suboptimal retrieval). Lower scores implied a need for

refinement in the RAG search algorithm.

These diagrams were later compared with Renaissance tooling, a deterministic system that

gave the ground truth. Furthermore, in some cases, the same question was asked with a

text output to see whether knowledge was lost in the LLM's creation of a UML diagram.

5.4.3 Results Summary
The investigation yielded varied results across different questions, with a mix of complete

and incomplete UML diagrams and varying levels of correctness and verboseness. The

Retriever Relevance scores indicated the efficacy of the document retrieval process, which

varied significantly across questions.

 TNO Public TNO 2024 R10650

 TNO Public 27/38

Table 2. Repository Level Architecture Extraction Results

Question Retriever Relevance

Score

Completeness Correctness Verboseness

Usage of `reader.h` 7/9 Incomplete Incorrect Acceptable

Usage of `writer.h` 17/18 Incomplete Incorrect Acceptable

Presence of an external

library

11/17 Complete Incorrect Acceptable

Repository's directory

structure

2/5 Complete Correct Acceptable

Data flow in

`readFromString.cpp`

7/16 Complete Incorrect Excessive

Information

Simplified data flow in

`readFromString.cpp`

2/3 Complete Incorrect Acceptable

`json_cpp` header files

and their usage

1 Incomplete Correct Excessive

Information

5.4.4 Analysis of Key Questions
Q1 & Q2 (Usage of header files): Demonstrated the pipeline's partial understanding of

header file dependencies but failed to represent the complete and accurate architecture in

UML diagrams.

Q3 (External library algorithm): Identified most file dependencies correctly, but the UML

diagram lacked accuracy and completeness.

Q4 (Repository structure): Produced a complete and correct UML diagram showcasing the

RAG pipeline's potential in representing high-level structures. Due to custom embeddings for

this question this is the only diagram that was perfect.

Q5 & Q6 (Dataflow in readFromString.cpp): Exhibited a mismatch between textual

understanding and UML diagram representation. Both text and UML diagrams failed to

describe the system accurately.

Q7 (General dependencies): While the diagram was correct, it lacked clarity due to over-

complexity, underscoring the challenge of representing intricate dependencies in a

comprehensible UML format.

5.4.5 Conclusions
This study reveals that the RAG pipeline can successfully retrieve relevant documents and

demonstrate an understanding of C++ code. However, there are notable gaps in the

pipeline's ability to accurately and consistently translate this understanding into UML

diagrams. Remarkably, the pipeline struggles with general queries and representing intricate

code dependencies.

One clear benefit of the LLM approach compared to parser-based methods is the speed at

which it can create these diagrams. A database can be created in a matter of minutes, and

each query takes less than a minute to produce a suitable graph output. Comparing this to

the classical methods, which take hours to complete, a clear use case can be identified.

Limitations on current results are the RAG search algorithm, lack of structured output from

our RAG search, and overly general prompts. Future improvements should focus on these

aspects. Alternatively, a more specialized database such as a knowledge graph might be

 TNO Public TNO 2024 R10650

 TNO Public 28/38

a suitable replacement for our embeddings, given that this already provides a structure,

helpful metadata, and natural hierarchy.

5.5 Research question 3 Can we extract
knowledge in text form from a C++
repository using LLMs and RAG?

5.5.1 Introduction
This experiment benchmarks the ability of a RAG-assisted LLM pipeline to extract knowledge

from an unfamiliar C++ codebase. By comparing human participants and LLMs, the study

evaluates LLMs' understanding and response accuracy to a set of tailored software

development questions at the codebase level.

5.5.2 Methodology
Humans were given access to the repository via a GitHub link. At the same time, the LLMs

were connected to a vector database containing data from the repository through the RAG

pipeline described in Chapter 5.1. The participants were subjected to a questionnaire

designed to assess their understanding of the repository's specific functions, interactions,

and broader features.

The first three questions had subjective answers. To avoid human bias, the marking process

involved creating new BERT embeddings [67] for all correct non-LLM answers in phase space

and finding the median point. The Euclidean distance from this point to all answers was then

used to rank them, with those closest to the median being the most 'representative' or

agreed upon answer, consequently being awarded the most points. The remaining questions

were factual and scored based on accuracy.

It was ensured that the repository was not in the LLM's training data to emulate a setting

where the experiment was conducted on proprietary software. Furthermore, LLMs were

required to cite sources from the code for their responses, proving that the source of the

information was retrieved.

5.5.3 Results Summary
Participants were broadly categorized into four grades based on their total scores:

- Grade A: Human-B (36), Human-A (33)

- Grade B: GPT-4 (30), Code-Llama-13b (29), Human-D (26)

- Grade C: Code-Llama-7b (23)

- Grade D: Human-C (13), Human-F (12), Human-E (10)

The results corroborated with the relative C++ skill levels of the human participants (Human-

B ranked themselves as best), lending credence to our marking system. Code-Llama-13b's

performance was comparable to GPT-4, demonstrating that a far smaller but fine-tuned

model may be as effective in specific scenarios.

 TNO Public TNO 2024 R10650

 TNO Public 29/38

5.5.4 Analysis of Key Questions
Q1(Codebase Functionality Summary): Participants provided varying levels of detail. Human-

B and GPT-4 were notably comprehensive in their answer.

Q2(Describe function 'timeSortDayList'): Humans and LLMs gave helpful answers but with

interesting differences. Humans tended to give a more direct description of what the

function did regarding how it interacted with the rest of the calendar. In contrast, the LLMs

gave a factual documentation-like description. Code-Llama-13b was the only function to

mention its dual implementation in the codebase.

Q3(Interaction between 'newEvent' and 'updateCalendar'): Humans and Code-Llamas gave

more detail into the functional interplay between the two components, while GPT-4 detailed

the process flow.

Q4(Where in the code is 'isDarkStyle'): Only Human-A and Code-Llama-13b identified all

occurrences in the codebase. Code-Llama-13b interestingly identified its duplication at

points in the repository at one point being a 'setter' and the other a 'getter' function.

Q5(External Dependencies): The best responses identified two of three dependencies,

highlighting limitations in both human and LLM abilities to locate such information.

Q6(Code smells in 'wavcat.cpp'): GPT-4 and most humans identified valid improvements,

while Code-Llamas suggested only formatting enhancements.

Q7(Speech generation components): Participants were very successful, but Code-Llama

excelled in detailing key components and their functions.

5.5.5 Conclusions
This study demonstrates the nuanced capabilities of RAG-assisted LLMs in comprehending

and analyzing complex C++ codebases with natural language output. The larger models of

Code-Llama-13b and GPT-4 performed well, particularly in detailed analysis and

understanding of specific components. However, there are still some areas where human

expertise outperforms, especially in identifying more general aspects of the codebase.

It is demonstrated that RAG shows promise in aiding repository-level code analysis.

Nevertheless, the limitation remains that the model may not include vital facts in its answer

if a critical code snippet is missed in the vector store query. However, the results still

highlight the potential of LLMs in aiding software development and analysis, suggesting

specific areas like documentation generation and code duplication identification for LLM-

powered systems.

5.6 Conclusions on the conducted experiments
Reviewing Chapter 5, our overall conclusion is that we recommend combining multiple

techniques to optimize performance. This recommendation includes the use of RAG,

enhanced prompting methods, and structured embeddings to address the limitations

observed and enhance the overall effectiveness of the LLMs in handling complex code-

related tasks.

 TNO Public TNO 2024 R10650

 TNO Public 30/38

We split our conclusions into two categories.

Conclusions on the experimental Setup:

1) LangChain is currently the tool of choice for creating LLM-assisted applications.

Haystack is not yet mature enough to be used, and we plan to experiment with

LlamaIndex in the future. Evidence is highlighted in chapter [5.2].

2) Code-Llama has been noted for its smaller size, cost-effectiveness, and open-

source nature while delivering performance comparable to GPT-4. This

characteristic makes it viable for future exploration, although more advanced models

may soon eclipse it. Evidence is highlighted in chapters [5.4] and [5.5].

Conclusions on the research questions:

3) When provided with adequate context, LLMs demonstrate a good understanding

of code and can effectively translate this understanding into natural language.

This evidence is highlighted in chapter [5.5.5].

4) When provided with source code and specific prompting, LLMs can draw UML and

GraphML diagrams. The quality of results tends to decrease as the complexity of the

code increases. This performance degradation is likely linked to the context size and

quality of embeddings. Evidence is highlighted in chapter [5.3.4].

5) RAG-assisted LLMs show enhanced code understanding and summarisation

abilities at a repository level. The effectiveness of these models heavily depends on

the quality of embeddings and retrieval methods in the RAG pipeline. Evidence is

highlighted in chapter [5.5.5].

6) RAG-assisted LLMs struggle to represent code in UML diagrams. The lack of a

specific prompt, full repository-level knowledge, and structured information

contribute to this problem. However, when the code directory structure was queried,

the LLM performed well thanks to the independent storage of this information within

the embeddings. This conclusion is highlighted in chapter [5.4.5].

 TNO Public TNO 2024 R10650

 TNO Public 31/38

6 Future Work and Report
Conclusions

In exploring the application of LLMs for model-based engineering tools in C++ code, we

gained significant insights and identified several avenues for future development.

The indeterministic nature of LLMs suggests that experts are still required to guide LLMs

toward accurate outputs. Therefore, an LLM-based assistant that improves software

architects' and developers' efficiency to achieve higher-value tasks is more realistic than a

fully automated solution.

However, let us consider the following observations resulting from the research conducted

so far:
- According to conclusion 1 of Chapter 3, LLMs excel in code generation and under-

standing tasks.

- According to conclusion 4 of Chapter 5, LLMs perform well in drawing UML and

GraphML diagrams with adequate context and specific prompting. However, this

performance suffers from scale.

- According to conclusion 6 of Chapter 5, LLMs perform well if the correct infor-

mation is structurally stored in embeddings.

These observations show promise for LLMs in contributing positively to code analysis and

transformation challenges.

From conclusions 3, 4, 5, and 6 of Chapter 5, we realize that LLMs are less effective at

extracting information from C++ into graphs than into natural language. Significant

refinements in their consistency and reliability are required before they can match or

surpass deterministic tools like Renaissance. However, with these refinements, we believe

that LLMs could extend or replace legacy software's current parser-based analysis and

transformation methods.

Based on conclusions 3 of chapter 4 and 4 and 6 of chapter 5, a novel research area would

be to fine-tune an LLM specifically for the goal of C++ to UML or GraphML translation . At

a high level, this could be achieved by using Renaissance to create a large dataset of pairs of

C++ code and corresponding architecture diagrams. This challenging experiment might fail,

but it would be highly advantageous if the objective were achieved. In this case, we could

imagine producing a methodology wherein pipelines are created capable of translating

from any formal language into UML or GraphML diagrams, removing, as a whole, the

need to build parsers for this purpose.

In conclusion 5, in Chapter 5, vector embeddings are a promising method for retrieving

the correct information regarding codebase-level questions; however, while code snippets

used for the embeddings provided sufficient information for LLMs to extract textual

knowledge conclusions 4 and 6 of Chapter 5 inform us that creating insightful, correct, and

complete graphs requires more structured data and tailored prompts.

 TNO Public TNO 2024 R10650

 TNO Public 32/38

Based on conclusion 7 of chapter 4 and conclusion 5 of chapter 5, we propose to

investigate how effective using a graph database will be as a backend for our RAG

system. We expect LLM results to be enhanced if the data can be retrieved more effectively

and in a richer structure. We can also directly compare the effectiveness of semantic search

and graph queries for our goals. Alternatively, based on the same conclusions, we intend to

optimize our current vector store in multiple ways. We propose to use LlamaIndex to

enhance our embeddings and create multiple vector stores for specific questions.

Additionally, we plan to make graphs using Renaissance for different architectural views,

which we would annotate and use an LLM to retrieve essential data from them.

Let us also consider the following conclusions:
- Conclusion 3, in Chapter 3, says that LLMs' generative capabilities are best utilized

alongside human input.

- Conclusion 5, in Chapter 3, informs us that LLMs excel in:

a) Code generation

b) Understanding code functionality

c) Code summarization

d) Code documentation generation

- Conclusion 5 of Chapter 5 indicates LLMs have potential in code improvement rec-

ommendations.

- Conclusion 5 and 6 of Chapter 5 tell us that RAG-assisted LLMs thrive in code un-

derstanding and summarization; however, the quality of the embeddings in the

RAG highly influences their results.

These observations suggest that LLMs can help code experts interpret data, abstract from

irrelevant details, and model the code architecture from the collected data.

Building on these insights, we propose investigating how to use an LLM to assist experts in

using Renaissance tools more effectively and efficiently. We look to experiment using our

LLM system to detect obsolete libraries or design patterns and offer targeted

improvement suggestions. Moreover, systems like Copilot have demonstrated the

effectiveness of using an LLM to generate code within a specific template. We hope to utilize

this functionality in the Renaissance system by enabling developers to efficiently produce

diverse concrete syntax patterns and fluent scripts.

Based on our conclusions 1 of Chapter 3 and 5 of Chapter 5, which proved the effectiveness

of LLMs in generating summaries of functions and components, we aim to enrich the Neo4j

database produced by Renaissance with more comprehensive information using LLM-

generated documentation.

Lastly, conclusion 5a of Chapter 3 indicates that LLMs can effectively create tests. We

propose to harness this to improve Renaissance by adding a layer of auto-generated

tests to validate code restructuring before implementing significant system changes .

In conclusion, while LLMs hold great promise as tools to augment the field of legacy

software analysis and transformation, there is a clear need for further development to

harness their capabilities. Their inherent indeterminism suggests that the most innovative

and efficient applications will be when they are utilized alongside deterministic tools or

under the guidance of experienced professionals.

 TNO Public TNO 2024 R10650

 TNO Public 33/38

6.1 Our Future Research Questions
The most achievable goals are at the top and the hardest at the bottom.

• How do we integrate LLMs, Renaissance, RAG, and prompting in an agent-based archi-
tecture?

• How can we use Renaissance to create structured embeddings for the vector store and
LLM with pictures/UML and annotations, Graph search, or Neo4j integration?

• How can we use an LLM to improve the Renaissance user experience, save developers
time, and further reduce the complexity of code analysis and refactoring?

o Can we analyze code to find obsolete libraries or design patterns and sug-
gest how to improve them? improve human decision

o Can we generate all possible variations of concrete syntax patterns and flu-
ent scripts to automate the creation of renaissance code analyses and
transformations? Streamline Renaissance input

o Can we augment a Neo4j database with summary/documentation for func-
tions, classes, declarations, and libraries? Improve human decisions with a
better data store. Would it be preferable to write all beforehand or popup
and make a small search

o Can we use an LLM to generate tests before implementing significant sys-
tem changes improve human efficiency

• Is it possible to fine-tune a model to translate C++ into UML or GraphML diagrams? Is
fine-tuning a solution to emulate Renaissance behavior with an LLM

 TNO Public TNO 2024 R10650

 TNO Public 34/38

7 Bibliography

[1] P. Tripathy, "Software Evolution and Maintenance".

[2] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin, "Synthesizing

Continuous Deployment Practices Used in Software Development," in 2015 Agile

Conference, Aug. 2015, pp. 1–10. doi: 10.1109/Agile.2015.12.

[3] "Software maintenance costs," archive.ph. Accessed: Nov. 02, 2023. [Online].

Available: https://archive.ph/oBlIr

[4] "Application Modernization Should Be Business-Centric, Continuous and

Multiplatform." Accessed: Nov. 02, 2023. [Online]. Available:

https://www.gartner.com/en/documents/3848474

[5] "What are the drivers for application modernisation? | Computer Weekly,"

ComputerWeekly.com. Accessed: Nov. 02, 2023. [Online]. Available:

https://www.computerweekly.com/feature/What-are-the-drivers-for-application-

modernisation

[6] S. Klusener, A. Mooij, J. Ketema, and H. Van Wezep, "Reducing Code

Duplication by Identifying Fresh Domain Abstractions," in 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME), Madrid: IEEE, Sep.

2018, pp. 569–578. doi: 10.1109/ICSME.2018.00020.

[7] A. J. Mooij, J. Ketema, S. Klusener, and M. Schuts, "Reducing Code Complexity

through Code Refactoring and Model-Based Rejuvenation," in 2020 IEEE 27th

International Conference on Software Analysis, Evolution and Reengineering

(SANER), London, ON, Canada: IEEE, Feb. 2020, pp. 617–621. doi:

10.1109/SANER48275.2020.9054823.

[8] P. Van de Laar, “TNO/Renaissance-Ada.” TNO, Dec. 08, 2023. Accessed: Jan.

18, 2024. [Online]. Available: https://github.com/TNO/Renaissance-Ada

[9] M. T. W. Schuts, R. T. A. Aarssen, P. M. Tielemans, and J. J. Vinju, "Large‐

scale semi‐automated migration of legacy C/C++ test code," Softw. Pract. Exp., vol.

52, no. 7, pp. 1543–1580, Jul. 2022, doi: 10.1002/spe.3082.

[10] D. Khurana, A. Koli, K. Khatter, and S. Singh, "Natural language processing:

state of the art, current trends and challenges," Multimed. Tools Appl., vol. 82, no. 3,

pp. 3713–3744, Jan. 2023, doi: 10.1007/s11042-022-13428-4.

[11] "Parsing: a timeline -- V3.1." Accessed: Nov. 03, 2023. [Online]. Available:

https://jeffreykegler.github.io/personal/timeline_v3

[12] "Natural language processing," Wikipedia. Oct. 24, 2023. Accessed: Nov. 03,

2023. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Natural_language_processing&oldid=118

1607362

[13] "A Brief History of Word Embeddings," Gavagai. Accessed: Nov. 03, 2023.

[Online]. Available: https://www.gavagai.io/text-analytics/a-brief-history-of-word-

embeddings/

[14] A. Vaswani et al., "Attention Is All You Need." arXiv, Aug. 01, 2023. doi:

10.48550/arXiv.1706.03762.

 TNO Public TNO 2024 R10650

 TNO Public 35/38

[15] "Improving language understanding with unsupervised learning." Accessed:

Nov. 03, 2023. [Online]. Available: https://openai.com/research/language-

unsupervised

[16] J. Yang et al., "Harnessing the Power of LLMs in Practice: A Survey on

ChatGPT and Beyond." arXiv, Apr. 27, 2023. doi: 10.48550/arXiv.2304.13712.

[17] “ChatGPT,” Wikipedia. Nov. 02, 2023. Accessed: Nov. 03, 2023. [Online].

Available: https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1183178806

[18] S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, "The Impact of AI on

Developer Productivity: Evidence from GitHub Copilot." arXiv, Feb. 13, 2023. doi:

10.48550/arXiv.2302.06590.

[19] A. Moradi Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C. Desmarais,

and Z. M. (Jack) Jiang, "GitHub Copilot AI pair programmer: Asset or Liability?," J.

Syst. Softw., vol. 203, p. 111734, Sep. 2023, doi: 10.1016/j.jss.2023.111734.

[20] A. Fan et al., "Large Language Models for Software Engineering: Survey and

Open Problems." arXiv, Nov. 11, 2023. Accessed: Dec. 21, 2023. [Online].

Available: http://arxiv.org/abs/2310.03533

[21] X. Hou et al., "Large Language Models for Software Engineering: A Systematic

Literature Review." arXiv, Sep. 12, 2023. Accessed: Dec. 21, 2023. [Online].

Available: http://arxiv.org/abs/2308.10620

[22] Y. Li et al., "Competition-Level Code Generation with AlphaCode," Science,

vol. 378, no. 6624, pp. 1092–1097, Dec. 2022, doi: 10.1126/science.abq1158.

[23] R. Li et al., "StarCoder: may the source be with you!" arXiv, May 09, 2023.

Accessed: Dec. 05, 2023. [Online]. Available: http://arxiv.org/abs/2305.06161

[24] B. Rozière et al., “Code Llama: Open Foundation Models for Code”.

[25] J. Togelius and G. N. Yannakakis, "Choose Your Weapon: Survival Strategies

for Depressed AI Academics." arXiv, Mar. 31, 2023. Accessed: Dec. 05, 2023.

[Online]. Available: http://arxiv.org/abs/2304.06035

[26] H. Chen et al., "ChatGPT's One-year Anniversary: Are Open-Source Large

Language Models Catching up?" arXiv, Dec. 05, 2023. Accessed: Dec. 08, 2023.

[Online]. Available: http://arxiv.org/abs/2311.16989

[27] J. Austin et al., "Program Synthesis with Large Language Models." arXiv, Aug.

15, 2021. Accessed: Dec. 04, 2023. [Online]. Available:

http://arxiv.org/abs/2108.07732

[28] J. A. Prenner, H. Babii, and R. Robbes, "Can OpenAI's codex fix bugs?: an

evaluation on QuixBugs," in Proceedings of the Third International Workshop on

Automated Program Repair, Pittsburgh Pennsylvania: ACM, May 2022, pp. 69–75.

doi: 10.1145/3524459.3527351.

[29] C. S. Xia, Y. Wei, and L. Zhang, "Automated Program Repair in the Era of

Large Pre-trained Language Models," in 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE), Melbourne, Australia: IEEE, May 2023,

pp. 1482–1494. doi: 10.1109/ICSE48619.2023.00129.

[30] C. S. Xia and L. Zhang, "Less Training, More Repairing Please: Revisiting

Automated Program Repair via Zero-shot Learning." arXiv, Jul. 25, 2022. Accessed:

Dec. 04, 2023. [Online]. Available: http://arxiv.org/abs/2207.08281

[31] Z. Feng et al., "CodeBERT: A Pre-Trained Model for Programming and Natural

Languages." arXiv, Sep. 18, 2020. Accessed: Dec. 19, 2023. [Online]. Available:

http://arxiv.org/abs/2002.08155

 TNO Public TNO 2024 R10650

 TNO Public 36/38

[32] Y. Wei, C. S. Xia, and L. Zhang, "Copiloting the Copilots: Fusing Large

Language Models with Completion Engines for Automated Program Repair," in

Proceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, Nov. 2023, pp. 172–184.

doi: 10.1145/3611643.3616271.

[33] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, "An Empirical Evaluation of Using

Large Language Models for Automated Unit Test Generation." arXiv, Sep. 06, 2023.

Accessed: Dec. 04, 2023. [Online]. Available: http://arxiv.org/abs/2302.06527

[34] T.-O. Li et al., "Nuances are the Key: Unlocking ChatGPT to Find Failure-

Inducing Tests with Differential Prompting." arXiv, Sep. 09, 2023. Accessed: Dec.

05, 2023. [Online]. Available: http://arxiv.org/abs/2304.11686

[35] C. G. West, "AI and the FCI: Can ChatGPT Project an Understanding of

Introductory Physics?" arXiv, Mar. 26, 2023. Accessed: Dec. 05, 2023. [Online].

Available: http://arxiv.org/abs/2303.01067

[36] X.-Q. Dao and N.-B. Le, "Investigating the Effectiveness of ChatGPT in

Mathematical Reasoning and Problem Solving: Evidence from the Vietnamese

National High School Graduation Examination." arXiv, Oct. 31, 2023. Accessed:

Dec. 05, 2023. [Online]. Available: http://arxiv.org/abs/2306.06331

[37] E. Davis and S. Aaronson, "Testing GPT-4 with Wolfram Alpha and Code

Interpreter plug-ins on math and science problems." arXiv, Aug. 14, 2023. Accessed:

Dec. 05, 2023. [Online]. Available: http://arxiv.org/abs/2308.05713

[38] Q. Wu et al., "AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent

Conversation." arXiv, Oct. 03, 2023. Accessed: Dec. 05, 2023. [Online]. Available:

http://arxiv.org/abs/2308.08155

[39] G. Malik, M. Cevik, and A. Başar, "Data Augmentation for Conflict and

Duplicate Detection in Software Engineering Sentence Pairs." arXiv, May 16, 2023.

Accessed: Dec. 05, 2023. [Online]. Available: http://arxiv.org/abs/2305.09608

[40] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, "ChatGPT

Prompt Patterns for Improving Code Quality, Refactoring, Requirements Elicitation,

and Software Design." arXiv, Mar. 11, 2023. Accessed: Sep. 22, 2023. [Online].

Available: http://arxiv.org/abs/2303.07839

[41] T. Ahmed and P. Devanbu, "Few-shot training LLMs for project-specific code-

summarization." arXiv, Sep. 08, 2022. Accessed: Dec. 05, 2023. [Online]. Available:

http://arxiv.org/abs/2207.04237

[42] M. F. Wong, S. Guo, C. N. Hang, S. W. Ho, and C. W. Tan, "Natural Language

Generation and Understanding of Big Code for AI-Assisted Programming: A

Review," Entropy, vol. 25, no. 6, p. 888, Jun. 2023, doi: 10.3390/e25060888.

[43] P. Bhattacharya et al., "Exploring Large Language Models for Code

Explanation." arXiv, Oct. 25, 2023. Accessed: Dec. 05, 2023. [Online]. Available:

http://arxiv.org/abs/2310.16673

[44] T. B. Brown et al., "Language Models are Few-Shot Learners," arXiv.org.

Accessed: Dec. 21, 2023. [Online]. Available: https://arxiv.org/abs/2005.14165v4

[45] P. Lewis et al., "Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks." arXiv, Apr. 12, 2021. Accessed: Dec. 19, 2023. [Online]. Available:

http://arxiv.org/abs/2005.11401

 TNO Public TNO 2024 R10650

 TNO Public 37/38

[46] S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, "LLM is Like a Box of

Chocolates: the Non-determinism of ChatGPT in Code Generation." arXiv, Aug. 05,

2023. Accessed: Dec. 06, 2023. [Online]. Available: http://arxiv.org/abs/2308.02828

[47] A. Al-Kaswan and M. Izadi, "The (ab)use of Open Source Code to Train Large

Language Models." arXiv, Feb. 28, 2023. Accessed: Sep. 22, 2023. [Online].

Available: http://arxiv.org/abs/2302.13681

[48] X. Li et al., "FLM-101B: An Open LLM and How to Train It with $100K

Budget." arXiv, Sep. 17, 2023. Accessed: Dec. 06, 2023. [Online]. Available:

http://arxiv.org/abs/2309.03852

[49] C. Huyen, "Reinforcement_Learning_from_Human_Feedback." Accessed: Dec.

08, 2023. [Online]. Available: https://huyenchip.com/2023/05/02/rlhf.html

[50] K. Lv, Y. Yang, T. Liu, Q. Gao, Q. Guo, and X. Qiu, "Full Parameter Fine-

tuning for Large Language Models with Limited Resources." arXiv, Jun. 16, 2023.

Accessed: Dec. 06, 2023. [Online]. Available: http://arxiv.org/abs/2306.09782

[51] H. Touvron, L. Martin, and K. Stone, "Llama 2: Open Foundation and Fine-

Tuned Chat Models".

[52] J. Shin, C. Tang, T. Mohati, M. Nayebi, S. Wang, and H. Hemmati, "Prompt

Engineering or Fine Tuning: An Empirical Assessment of Large Language Models in

Automated Software Engineering Tasks." arXiv, Oct. 10, 2023. Accessed: Dec. 06,

2023. [Online]. Available: http://arxiv.org/abs/2310.10508

[53] Z. Yuan, J. Liu, Q. Zi, M. Liu, X. Peng, and Y. Lou, "Evaluating Instruction-

Tuned Large Language Models on Code Comprehension and Generation." arXiv,

Aug. 02, 2023. Accessed: Dec. 06, 2023. [Online]. Available:

http://arxiv.org/abs/2308.01240

[54] T. B. Brown et al., "Language Models are Few-Shot Learners." arXiv, Jul. 22,

2020. Accessed: Dec. 06, 2023. [Online]. Available: http://arxiv.org/abs/2005.14165

[55] M. Shanahan, K. McDonell, and L. Reynolds, "Role-Play with Large Language

Models." arXiv, May 25, 2023. Accessed: Dec. 06, 2023. [Online]. Available:

http://arxiv.org/abs/2305.16367

[56] J. Wei et al., "Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models." arXiv, Jan. 10, 2023. Accessed: Sep. 22, 2023. [Online]. Available:

http://arxiv.org/abs/2201.11903

[57] S. Gao, X.-C. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu, "What Makes

Good In-context Demonstrations for Code Intelligence Tasks with LLMs?" arXiv,

Aug. 08, 2023. Accessed: Dec. 06, 2023. [Online]. Available:

http://arxiv.org/abs/2304.07575

[58] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, "Fantastically Ordered

Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity."

arXiv, Mar. 03, 2022. Accessed: Dec. 06, 2023. [Online]. Available:

http://arxiv.org/abs/2104.08786

[59] Q. Ye, M. Axmed, R. Pryzant, and F. Khani, "Prompt Engineering a Prompt

Engineer." arXiv, Nov. 09, 2023. Accessed: Dec. 06, 2023. [Online]. Available:

http://arxiv.org/abs/2311.05661

[60] “Anthropic_Introducing_Claude_2.1.pdf.”

[61] F. Zhang et al., "RepoCoder: Repository-Level Code Completion Through

Iterative Retrieval and Generation." arXiv, Oct. 20, 2023. Accessed: Dec. 19, 2023.

[Online]. Available: http://arxiv.org/abs/2303.12570

 TNO Public TNO 2024 R10650

 TNO Public 38/38

[62] S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana, and S.

Nanayakkara, "Improving the Domain Adaptation of Retrieval Augmented

Generation (RAG) Models for Open Domain Question Answering," Trans. Assoc.

Comput. Linguist., vol. 11, pp. 1–17, Jan. 2023, doi: 10.1162/tacl_a_00530.

[63] S. Es, J. James, L. Espinosa-Anke, and S. Schockaert, "RAGAS: Automated

Evaluation of Retrieval Augmented Generation." arXiv, Sep. 26, 2023. Accessed:

Dec. 19, 2023. [Online]. Available: http://arxiv.org/abs/2309.15217

[64] "Azure Machine Learning - ML as a Service | Microsoft Azure." Accessed: Jan.

05, 2024. [Online]. Available: https://azure.microsoft.com/en-us/products/machine-

learning

[65] "Machine Learning and Artificial Intelligence - Amazon Web Services,"

Amazon Web Services, Inc. Accessed: Jan. 05, 2024. [Online]. Available:

https://aws.amazon.com/machine-learning/

[66] "Hugging Face – The AI community building the future." Accessed: Jan. 05,

2024. [Online]. Available: https://huggingface.co/

[67] D. Dhami, "Understanding BERT — Word Embeddings," Medium. Accessed:

Jan. 05, 2024. [Online]. Available: https://medium.com/@dhartidhami/understanding-

bert-word-embeddings-7dc4d2ea54ca

ICT, Strategy & Policy

www.tno.nl

	Contents
	1 Introduction
	2 Context
	3 Related Works
	3.1 History
	3.2 LLMs for SW Engineering
	3.3 LLMs for Software Legacy
	3.3.1 Code Maintenance
	3.3.2 Code Statistics
	3.3.3 Clone Detection and Refactoring
	3.3.4 Code Analysis and Documentation

	3.4 Conclusions on Related Work

	4 LLM Lifecycle and Ecosystem
	4.1 LLM Development and Use Lifecycle
	4.1.1 Pre-training
	4.1.2 Fine-tuning
	4.1.3 Prompt Engineering
	4.1.4 Retrieval Augmented Generation (RAG)

	4.2 LLM Provider Ecosystem
	4.2.1 LLM Service Providers
	4.2.2 Pipeline Tooling

	4.3 Conclusions on Model Lifecycle and Ecosystem

	5 Experimental Setup for our Investigation
	5.1 Pipeline Tooling
	5.2 Experiment Summary
	5.3 Research question 1 – Can we extract knowledge in graph form from C++ source code using LLMs and prompt engineering?
	5.3.1 Introduction
	5.3.2 Methodology
	5.3.3 Results Summary
	5.3.4 Conclusions

	5.4 Research question 2 – Can we use LLMs and RAG to extract knowledge in UML diagram form from a C++ repository?
	5.4.1 Introduction
	5.4.2 Methodology
	5.4.3 Results Summary
	5.4.4 Analysis of Key Questions
	5.4.5 Conclusions

	5.5 Research question 3 – Can we extract knowledge in text form from a C++ repository using LLMs and RAG?
	5.5.1 Introduction
	5.5.2 Methodology
	5.5.3 Results Summary
	5.5.4 Analysis of Key Questions
	5.5.5 Conclusions

	5.6 Conclusions on the conducted experiments

	6 Future Work and Report Conclusions
	6.1 Our Future Research Questions

	7 Bibliography

