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1 Introduction 

This report describes the information collected between September and December 2023 

during an ESI study on using Large Language Models (LLMs) to deal with legacy software. 

This activity aimed to build knowledge around the topic via a study of related works and first 

explorations with LLMs for legacy. The conclusion of this activity and, consequently, of this 

document is to identify a set of open research questions and a plan to address them in the 

coming years.  

 

This document is structured as follows: Chapter 2 introduces the research context, explains 

the applied nature of the conducted research, and presents some general open questions on 

dealing with legacy code. Chapter 3 reports on a body of related works on LLMs, starting 

with a brief history of their rise and progressively diving into their use in software 

engineering in general and software maintenance, analysis, and restructuring in particular. 

Chapter 4 describes the model lifecycle and all the phases an LLM goes through to acquire 

general and specific capabilities. It also describes the ecosystem of LLM service providers 

and the frameworks and tooling used to build complex LLM-based applications as a modular 

pipeline. Chapter 5 describes the conducted experiments and discusses the observed results. 

Chapter 6 discusses general conclusions and future work.  

 

At the end of Chapters 3, 4, and 5, we will enumerate their conclusions, using them to justify 

the choice of future works proposed in Chapter 6. The conclusions of each chapter refer back 

to parts of the text highlighted in different colors. 
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2 Context 

ESI is a TNO department actively working with industrial partners, primarily Original 

Equipment Manufacturers (OEMs), for high-tech industrial equipment. We use our expertise 

to embed cutting-edge methodologies into the Dutch high-tech systems industry to help 

them cope with the ever-increasing complexity of their products.  

 

ESI's unique role and proximity with industry is instrumental to observing and addressing 

cross-domain problems, which are explored and solved by mutualizing the research efforts 

of all our partners. Fundamental to our mission is also the tight cooperation with our 

academic partners. ESI's ecosystem fosters research, networking, and knowledge exchange 

to fulfill TNO's mission to impact industry and society positively.    

 

A common issue troubling our industrial partners is how to deal with legacy software. 

Indeed, they all have systems with large, embedded code, and their machines have a long 

life with the support of deployed software that can last decades. The first question in this 

context is: what is legacy software? For some, legacy software is code, usually deployed in 

the field and only updated when needed. For others, it is any newly developed line of code. 

In both these cases, legacy software is twofold. On the one hand, it holds at its core the 

value and intellectual properties that give a company its competitive edge. On the other 

hand, it is a burden as it requires continuous evolution and maintenance.  

 

The terms "software evolution" and "maintenance" are defined in [1] as follows: 

• Software maintenance is made of preventive, corrective, or adaptive actions on 

deployed software (read "legacy code") to prevent it from failing, e.g., bug fixing.  

• Software evolution means a continual code change during development from a 

lesser, basic, or worse state to an advanced or better condition.  

 

With the advent of continuous deployment practice [2], the borders between maintenance 

and evolution and between deployed and development code tend to blur. Consequently, 

software maintenance is estimated to take up to 90% of the software development life 

cycle [3]. Gartner predicts that, by 2025, "technical debt will continue to compound on top of 

existing technical debt", consuming an even more prominent part of the current IT budget 

[4][5]. 

 

Despite many achievements in the field, e.g., Renaissance, Rascal, and Spoofax, dealing with 

software legacy is not a solved problem. At ESI, our Renaissance tools have made possible 

code analysis and restructuring that would otherwise have been impossible [6] [7], [8], [9]. 

There are, however, levels of complexity not tackled yet by our tools or other current 

solutions:  

- The problem of (architectural) code analysis is inherently complex. We deal with 

much information scattered throughout the code base. Information gathering is 

now possible with Renaissance DB or other custom extractors. However, interpreting 

data, abstracting from irrelevant details, and modeling the code architecture from 

the collected data still requires an "expert in the loop". In this context, an open 

research question is the following: Is it possible to support the experts in dealing 
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with this large amount of data and assist them in interpreting data, abstracting 

from irrelevant details, and modeling the code architecture from the collected data?  

- Restructuring code is not always a straightforward translation from one obsolete 

library or design pattern to a new one. It may require complex code rewriting that 

also depends on the many variants of the obsolete library and design patterns 

occurrences in the code. In this context, open research questions are: 

o Can we help the experts identify the many variants of obsolete design 

patterns and libraries? 

o Can we help the expert design and implement an optimized solution for 

code restructuring (optimization criteria might be readability, performance, 

or minimum code change)?  

o Can we help the experts prove code restructuring correctness?  

 

With these open questions in mind and following the recent successes obtained by LLMs in 

software engineering tasks of comparable complexity, we initiated this study to assess if and 

how LLMs can help us address the unresolved questions in dealing with legacy software.  
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3 Related Works  

In this chapter, we retrace the history of NLP (Natural Language Processing) until the birth of 

LLMs (Large Language Models). We then focus on the successes of LLMs in software 

engineering in general and software maintenance in particular.  

 

3.1 History 
 

NLP enables computers to understand, interpret, and generate human language using a 

semantic model to encode and decode its meaning [10]. LLMs are part of NLP and enable 

many applications, such as solving speech recognition problems, transforming audio into 

text, automated reasoning, translation, question-answering, and text categorization.  

 

NLP started in the 1950s and evolved throughout the 1980s, dominated mainly by the 

Chomskyan theories of linguistics (e.g., transformational grammar), which profoundly 

influenced the history of formal language parsing until recent times [11]. Transformational-

grammar-based NLP is called symbolic NLP [12].  

 

In the 1990s and 2000s, we witnessed noticeable successes in statistical models, aka 

methods counting word occurrences as n-grams and bag-of-words, and prediction models, 

aka methods predicting the next word in a sequence as the first artificial neural network. 

However, only in the 2010s, with the rise of deep neural networks, particularly Recurrent 

Neural Networks (RNN) for languages, did the prediction models start to obtain better 

results than symbolic NLP.  

 

RNNs use a finite sequence to predict or label each sequence element (i.e., a word) based on 

the element's context (i.e., other words in the sentence). A problem with RNNs is that 

context information vanishes in long sequences. An evolution of RNNs that deals with this 

problem is Long Short-Term RNNs, which introduce attention mechanisms to learn what to 

remember and what to forget about the context of a given symbol in a sequence. 

 

An essential complementary approach is word embeddings, which capture semantic 

features of the words and encode them as vectors in a vector space. The most 

straightforward form of embedding uses a dictionary as a base vector to represent words. 

However, with time, more and more information has been included in vector embeddings, 

such as position in the sentence or semantic relatedness or similarity [13].  

 

In 2017, the paper "Attention is All You Need" [14] introduced the transformer architecture 

where only attention mechanisms are used. Such an architecture provides more 

parallelizable, faster-to-train encoder and decoder models. It was the birth of large 

language models. In 2018, OpenAI introduced the decoder-only Generative Pre-trained 

Transformer model [15], and in 2021, GPT-3 became a game-changer for its capability to 

generate human-like text [16]. 
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In November 2022, Chat GPT was released, quickly becoming "the fastest-growing 

consumer software application in history" [17]. 

 

3.2 LLMs for SW Engineering  
In 2021, CodeX, a fine-tuned GPT-3 model, started a vast trend of using LLMs for software 

engineering, particularly code generation. Codex is the model in GitHub's Copilot. By 

providing real-time suggestions and automating routine coding tasks,  Copilot has reportedly 

helped developers complete tasks in less than half the time compared to developers not 

using it [18]. Other works advise that Copilot is an asset only for experienced developers who 

can filter its results for correctness and optimality [19].  

 

Surveys [20], [21] report a large corpus of works using LLMs for many software engineering 

applications such as code completion, code summarization, documentation, code 

generation, program synthesis, software requirements engineering and design, 

maintenance, evolution, deployment, software analytics, software engineering processes, 

education, and others.  

 

Another example of tools from these works, besides Copilot, is AlphaCode, which, in 2022, 

produced a model ranking in the top 54% in competition with 5K humans. [22] The success 

of AlphaCode in this competitive programming domain showcases the potential of LLMs to 

assist in routine coding tasks and contribute creatively to formulating solutions to novel and 

complex problems. 

 

StarCoder, released in May 2023, is another LLM designed explicitly for coding applications. 

It is known to be a highly versatile model, given that its training data features over 80 

programming languages. The model specializes in code generation and completion rather 

than chat, making it thrive as an AI coding assistant [23]. StarCoder's extensive context limit 

of 8000 tokens (small units of text) and ability to handle significant batch inferences allow it 

to operate at a scale greater than most other LLMs. Starcoder also aims to improve security 

and intellectual property protection using training data pruned only to contain permissively 

licensed code from GitHub. 

 

Code LLaMa is a series of open-source LLMs produced by further fine-tuning the LLaMa 2 

architecture on code and released in August 2023 [24]. It comes in three sizes: big, medium, 

and small, and three flavors: code, instruct, and Python. The size must be tailored based on 

the task and available resources. The code and code Python models specialize in real-time 

code completion, similar to StarCoder. Meanwhile, the code instruct model best 

understands human prompts and generates relevant code, creating a ChatGPT-like 

experience. 

 

It is valuable to distinguish the open-source LLMs StarCoder, AlphaCode, and the LLaMa 

series from closed-source tools like ChatGPT and CodeX.  

 

Open-source LLMs are those whose model weights are publicly available. The datasets used 

to train these models and architecture are also open in some cases. Consequently, a 

researcher could theoretically reproduce them, and they are far easier to host locally or on 

cloud-based services. Fully open development allows for community research, democratizes 

access to the models, and enables full audits throughout the whole development process. 
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Meanwhile, although OpenAI has made their LLMs available to the public, they have done so 

through a paid API service without sharing all the details regarding their development 

process. While API access allows researchers to experiment with these models, their ability 

to understand the inner workings is limited. The high development costs make it nearly 

impossible for academic institutions to develop these models from scratch. These factors 

have created anxiety among academics about whether they can meaningfully contribute to 

breakthroughs using closed-source models [25]. Furthermore, open-source LLMs are rapidly 

improving in quality and size [26]. 

 

3.3 LLMs for Software Legacy 
 

3.3.1 Code Maintenance 
Large Language Models have shown the potential to impact the field of software 

maintenance significantly, offering intelligent solutions for repair and vulnerability detection. 

Consequently, the expensive and time-consuming manual labor and expertise required for 

legacy software maintenance could be minimized. Hypotheses in this chapter are grounded 

in academic research, as evidenced by the referenced scholarly articles. In most cases, they 

have yet to be applied in industry. 

 

Given their ability to assist developers with various coding tasks by synthesizing quality code 

[27], using LLMs for automated program repair is a natural application. Initial investigations 

with models like Codex [28] and StarCoder have proven their ability to complete infilling 

tasks. In simple terms, buggy code can be removed and filled in with newly generated code 

that the LLM deems suitable. Techniques have been developed recently to automate this 

process. Alpharepair, presented in [29], [30], replaces buggy code snippets with masked 

tokens and then uses the CodeBERT model [31] to replace these tokens with generated code 

based on the context before and after the bugs. Although they return positive results, these 

examples rely on using the LLM to generate programs according to the token distribution 

without any structural or semantic understanding of the code. This lack of understanding 

can lead to issues such as generating infeasible tokens without consideration of types. 

 

Traditional deterministic Automated Program Repair (APR) tools do not suffer from these 

challenges, meaning novel approaches have looked at combining them with LLMs to reduce 

LLMs' hallucinations. Integrating a traditional completion engine has allowed for the 

deterministic pruning of infeasible tokens suggested by the LLM and further context for the 

LLM, leading to a more relevant generation for the codebase [32].  

 

Legacy systems often lack a comprehensive suite of testing, which can lead to unexpected 

and hard-to-diagnose behaviors. LLMs can detect these vulnerabilities by increasing scale 

and picking up on nuances in the code. Programs incorporating LLMs into their workflow to 

automatically generate many Unit Tests relevant to a specific package or repository are 

already in development. With the creation of these tests on a large scale and results 

comparable to those written by developers, time savings can be made if these were 

implemented on legacy systems lacking total test coverage [33]. 

 

Alternative methods focus on using a deeper understanding of the code to generate test 

cases, which conventional methods may overlook. The development of differential 

prompting  an evolution of example and "reason and act" prompting  demonstrated that 
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an LLM can be especially useful in writing failure-inducing tests [34], ensuring a more 

thorough examination of the software's robustness and reliability. 

 

3.3.2 Code Statistics 
Although they have been known to produce impressive results in exams [35], the base 

functionality of LLMs is to predict the next token in a sequence of words. Therefore, they are 

not naturally suited to performing mathematics or statistical analysis [36]. Due to their 

deterministic nature, traditional methods for calculating the more complex metrics that can 

characterize a codebase, such as cyclomatic complexity, Halstead complexity, and 

maintainability index, are preferable. 

 

However, this does not mean LLMs have no application in investigating code statistics. With 

the development of plug-ins, Wolfram Alpha has been integrated into GPT-4's workflow. If 

faced with a problem requiring mathematical reasoning, the model can make a query using 

scientific software to calculate a suitable answer  [37]. This area of LLM engineering is called 

agent-based and involves any LLM that can use tools like calculators, search engines, or 

executing code [38].  

 

In this context, it would be feasible to have an LLM, which, when asked for cyclomatic 

complexity, would run a premade script to calculate this value for the given code and then 

format the answer as a natural language response. This integration allows for more intuitive 

interaction with technology, giving new opportunities to gain insight for those not 

experienced in statistical analysis, simplifying workflows, and saving time for experts. 

 

3.3.3 Clone Detection and Refactoring 
Legacy software systems often suffer from code duplication, leading to maintenance 

challenges and increased technical debt. Clone detection, the process of identifying similar 

or duplicate code fragments, is critical in maintaining and updating these systems. 

Traditionally, this has been a manual and error-prone process, with deterministic systems 

suffering due to the vast array of edge cases.  

 

New approaches present compelling examples of how LLMs could be deployed for clone 

detection. By mapping code snippets into a high-dimensional vector space, these models 

can identify clusters of similar code, even if they differ in syntax [39]. The approach could be 

instrumental in legacy systems where different programmers might have written similar 

functionalities in various styles, given that code that performs similar functions or structures 

will have comparable vector representations. 

Refactoring is crucial in legacy systems to improve maintainability and readability without 

changing the system's external behavior. LLMs can generate recommendations for code 

improvement that adhere to best practices as defined by a user prompt, thus ensuring 

higher code quality and reducing technical debt [40]. 

 

 

3.3.4 Code Analysis and Documentation 
Legacy code often lacks complete or proper documentation, making it challenging and time-

consuming for developers to understand the system's functionality [41]. LLMs have already 
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proven their use in code summarization [42], and a natural extension of this ability is the 

automated generation of documentation or recommendations for a codebase [43]. 

Currently, context size is the critical limiting factor for this solution, with documentation 

often being generated for specific chunks of code rather than a high-level project scale. 

 

Acting on the assumption that LLMs are adept at translating natural language to source 

code and vice versa, the potential use case of a documentation tester presents itself. An 

LLM-supported system could verify the extent to which the actual implementation of the 

source code matches the documentation that describes it. It could write new 

documentation or verify the consistency and accuracy of existing documentation with the 

legacy code implementation. This area has little investigation, yet it appears to be promising. 

 

An extension of code documentation generation is using LLMs to create architectural 

diagrams to depict the interaction between components or other structural aspects of a 

codebase, which may be helpful to a system architect or an engineer to reason about 

current code status and possible improvements. By recognizing in code the patterns that 

describe the interaction between components or the structural aspect under evaluation, 

LLMs can generate a UML diagram describing the corresponding code structure and 

architecture. This type of analysis has been previously explored with parser-based solutions 

that help gather information scattered throughout the code base but always rely on the 

domain expert to interpret data, abstract from irrelevant details, and model the code 

architecture from the collected data. By supporting the domain expert in their tasks, this 

process can become more time-efficient and less complex or error-prone, ultimately 

providing a greater value in output. 

 

3.4 Conclusions on Related Work 
Throughout 2023, LLMs began to appear in industry-grade products, marking a significant 

milestone in their commercial and practical adoption. Despite this progress, it is essential to 

note that the predominant use of LLMs remains within academic research rather than 

widespread industrial deployment. We can transition these models from academic concepts 

to fully-fledged, industry-ready services by identifying areas where LLMs excel and 

enhancing their capabilities.  

 

Reviewing Chapter 3, we come to the following conclusions: 

1. LLMs excel in understanding code functionality, summarization, code generation, code 

improvement suggestions, and generating documentation. Evidence highlighted in 

chapter [3.2] 

2. Open-source LLMs are preferable to closed-source ones, with advantages in 

transparency, accessibility, and community-driven development. Evidence highlighted in 

chapter [3.2] 

3. LLMs generative capability is best utilized alongside human input. By generating multiple 

suggestions, an expert can act as a validator, selecting the best solution for a situation or 

iteratively improving queries to create better outputs for the situation. Evidence 

highlighted in chapter [3.2] 

4. Experiments suggest that combining LLMs with traditional deterministic methods can 

improve the results of automatic code repair. Evidence highlighted in chapter [3.3.1]. 

5. LLMs have potential in tasks that benefit from combining their natural randomness and 

general coding knowledge. These include and are evidenced by highlights in the relevant 

chapter: 

a. (Unit) test generation [3.3.1] 
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b. Clone detection [3.3.3] 

c. Detecting inconsistencies between code and documentation [3.3.4] 

d. Code improvement recommendations [3.3.3] 
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4 LLM Lifecycle and 
Ecosystem 

This chapter describes the LLM Lifecycle from pre-training to fine-tuning and use. It also 

describes the ecosystem underlying this lifecycle, computing resources, data management, 

service providers, and cloud infrastructure.  

 

4.1 LLM Development and Use Lifecycle 
The model development and use lifecycle for an LLM like GPT-4 involves several stages, each 

aiming to enhance the model's performance for specific tasks or domains. Figure 1 depicts a 

simplified overview of this process. 

 

The first step is pre-training the model on Web Data. In this phase, the model is exposed to 

vast text data scraped from the web. The goal is to help the model learn a broad 

understanding of language, including grammar, vocabulary, and various writing styles. This 

stage does not focus on any specific task but aims to build a robust general foundation. 

 

After pre-training, the model undergoes fine-tuning to domain or task-specific needs. This 

phase involves training the model on a more focused dataset relevant to a specific domain 

(like medical texts) or task (like answering questions or completing code). The purpose is to 

adapt the model's broad knowledge to the nuances and specific requirements of the targeted 

area. 

 

A fine-tuned model can learn from context, which means it can understand and respond 

based on the immediate context provided in a prompt. This context can include instructions, 

examples, or specific questions. The model uses this context to generate relevant and 

accurate responses.  

 

Prompts can be enhanced using templates (structured formats) or Retrieval-Augmented 

Generation (RAG). RAG combines the model's language generation capabilities with the ability 

to retrieve and use relevant external information from a database, improving the quality and 

relevance of responses. 

 

One of the limitations of LLMs is the context size. The model can only process a limited amount 

of text at a time (like the last few paragraphs or a certain number of tokens/words). 

 

A sliding window technique is used to manage more extended conversations or documents. 

Using a sliding window means the model focuses on the most recent part of the text (or 
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conversation) and 'slides' this window forward as new information is added, effectively 

keeping the most relevant parts in view while older parts are phased out. 

 

[44] provides detailed insights into the architecture and training process of GPT-3, which is 

similar to other LLMs. 

 

[45] discusses the RAG system and how it enhances language model outputs with external 

knowledge retrieval. The following chapters discuss these concepts in more depth and 

summarize related works.  

 

Figure 1. LLM development and use lifecycle 

 

4.1.1 Pre-training 
LLMs are designed to understand, generate, and manipulate language. They are 'large' as 

they are pre-trained on vast amounts of text data, enabling them to 'understand' a range of 

language patterns and idioms by predicting the next token in a self-supervised pattern [46]. 

This pre-training involves using vast amounts of data  usually crawled from the internet 

[47] - to learn billions of parameters. It is currently an incredibly expensive process in terms 

of both computing power and money [48]. Specific to our investigation is that codebases, 

including documentation and user comments, are often included in LLMs training data. Due 

to their ingestion of source code [23], LLMs understanding of human language and patterns 

can also be extended to codebases like C++. This understanding aligns well with the 

software engineering community's understanding of 'good code', as LLMs can grasp 

nuances of what engineers mean by this term due to sentiment analysis from user 

comments corresponding to good and bad code being included in training data. 

Comparisons with code quality checkers like Lint and its modern variants have shown that 

LLMs can contribute valuable insights. However, due to their random nature, they are not 

replacements for these tools and should be viewed as complementary [20]. 

 

It is currently outside the scope of this investigation to train a model from scratch due to the 

extreme costs. However, it will be valuable to keep up with advancements. Competitive 

models are rapidly decreasing in size while increasing performance, and the best models 

today will be easily surpassed in six months.  
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4.1.2 Fine-tuning 
Fine-tuning is a process where a pre-trained LLM is further 'tuned' to perform a new but 

related task. This process readjusts the model's internal weights. The adjustments can be 

applied to the entire model or selectively to specific network layers. Fine-tuning can add new 

knowledge to a model but is primarily used to adapt its behavior [49]. The 'fine-tuned' 

model is an entirely distinct and specialized version of the original, so it must be hosted 

separately.  

 

A common misconception regarding fine-tuning is the form of data required to complete the 

task. It is not enough to only have a dataset like a book or codebase to tune an LLM, at 

which point it will absorb the knowledge. The data must be prepared in a way that presents 

the expected input and output format so the model can learn the patterns. For instance, a 

pre-trained model is fed with question-answer pairs to train a chatbot to answer questions. 

Therefore, if one wanted to teach a model about a codebase using fine-tuning, one would 

have to give it questions regarding that codebase on the generally accepted scale of 10,000 

to 1,000,000 examples. This range provides a balance between having a sufficiently large 

dataset to capture the nuances of a task and being manageable in terms of computational 

resources. This knowledge is then static and will not adjust again without retraining. 

Furthermore, it is 'baked into' the model, meaning recovering the source of this information 

becomes elusive, and it becomes difficult to check whether it is accurate and correct.  

 

Even the most novel ways of fine-tuning LLMs remain resource-intensive [50], both in terms 

of computational power required for training and the storage space for multiple specialized 

models. When a model is fine-tuned for multiple tasks, there is the added complexity of 

ensuring that these tasks do not negatively influence each other  this could lead to a 

situation where multiple models are required for optimal performance. 

 

Fine-tuning thrives when preparing powerful models for specific behavior-based tasks. The 

Llama series is a strong example of how a base model can be tuned for multiple uses [51]. 
- Llama 2 is a robust base model performing well in generalist benchmarking chal-

lenges. 

- Code Llama is a fine-tuned version of Llama 2, better at predicting the next token in 

programming contexts. This model was created by fine-tuning Llama 2 on code-

specific portions of its dataset for a longer time. 

- Code Llama  Python was specialized by fine-tuning the Code Llama model on 100B 

tokens worth of example Python questions and answers. Therefore, it performs very 

well at tasks regarding the language. 

- Code Llama  Instruct was specialized by fine-tuning Code Llama using natural lan-

guage instruction input and the expected output. Consequently, it is best in conver-

sational contexts. 

Our investigation is explicitly focused on C++ understanding and, as an extension, UML or 

GraphML architecture diagram generation. Consequently, it would be realistic to fine-tune an 

LLM for one of these tasks using a dataset of C++ and UML questions and answers and then 

observe whether this can increase the value of our results. 

 

4.1.3 Prompt Engineering 
The prompt (input query) to an LLM can be crafted to effectively guide and optimize the 

generated response. Prompting involves understanding the nuances of how these models 
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interpret and respond to different types of input and using this insight to formulate clear, 

contextually appropriate prompts aligned with the desired output. Effective prompt 

engineering can be implemented at a low cost and significantly enhance the quality, 

relevance, and accuracy of the responses from an LLM [52]. 

 

Prompt engineering can be split into several different sub-categories that serve various use 

cases and can significantly impact the effectiveness and quality of a model's response. 

These methods are not independent and can be combined for optimal results. Methods 

include: 
1. Instruction-Based/Zero-Shot  Prompts are created that directly tell the model what 

to do. The goal is to be straightforward and unambiguous in communicating the 

task to the model. For example, "Wr

[53]. 

2. Conversational Prompting/Few-Shot  Prompts are structured as part of a conversa-

tion or dialogue and effectively guide the model to a desired response. Most chatbot 

applications automatically operate on this principle, where a natural conversation 

can guide the model to a conclusion [54]. 

3. Role-Based  Prompts assign the model a role, which affects the quality and style of 

the output. For example, "You are a helpful teacher. Please explain this concept to a 

code..." [55]. 

4. Example-Based  Prompts contain examples of an ideal output that guides the 

model on how to respond. For example, the skeleton structure of an architectural 

diagram can be included to shape the output, or code can be provided to identify 

differences and issues [34]. 

5. Chain of Thought/Reasoning and Acting  Prompts give precise instructions explain-

ing the chain of reasoning and steps the LLM should follow to achieve the desired 

output. The prompts also encourage the model to think aloud or detail its thought 

process step by step. This method is most helpful in making complex reasoning 

tasks more explainable to the user and improving the accuracy of the results [56]. 

6. Contextual   Prompts that add relevant context or background information regard-

ing a question can help an LLM understand and generate more accurate and rele-

vant responses [57]. 

Finding the optimal prompt can prove very challenging due to the sensitivity of LLMs and 

often requires extensive trial and error methods [58]. New techniques are being developed 

using predetermined systems or LLMs to give the optimal prompt based on user queries 

[59]. 

 

4.1.4 Retrieval Augmented Generation (RAG) 
A development on contextual prompting, Retrieval Augmented Generation (RAG) integrates 

database searches into the LLMs' response [45]. With relevant data in the context window, 

the LLMs' responses are helpful, factual, and citable outputs. Various databases, including 

SQL, vector embedding, and knowledge graphs, can be employed. 

 

Storing and retrieving data as vectors via apposite libraries such as FAISS or VectorDB is cost-

effective and efficient compared to fine-tuning LLMs. This approach is especially beneficial 

for frequently updated knowledge bases, like code repositories, which receive regular push 

changes. The quality and completeness of the retrieved data and, therefore, the LLMs' 

output directly depend on the database structure and quality of embeddings. 
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A primary limitation of RAG is the LLMs' restricted context window. The context window 

dictates how much information is accessible to the LLM during inference, consequently 

limiting the scale and scope of the knowledge that will be used to generate a response. If 

not all the information required to answer a question can be included in the query context, it 

will be lost, and the answer will be incomplete. The context window size varies per model, 

with Llama-2 being about 1600 tokens and GPT-4 and Code-Llama34b being an order of 

magnitude greater at 16,000 tokens. Context size will likely increase as models are produced 

with larger architectures [60]. Innovations are underway to extend these windows with 

attempts to give LLMs the ability to analyze entire codebases in one shot [61]. Research 

demonstrates that simultaneous LLM and retriever fine-tuning can also improve RAG's 

ability to generate answers to domain-specific queries [62].  

 

Evaluation of RAG systems requires insight into the retrieval system's context relevancy, the 

LLMs' effective use of retrieved information, and the overall quality of generated content 

[63]. 

 

4.2 LLM Provider Ecosystem  
Figure 2 depicts the Language Model Ecosystem, which encompasses: 

• Cloud Service Providers: companies and platforms that offer cloud computing 

resources and specialized hardware like GPUs (Graphics Processing Units) and TPUs 

(Tensor Processing Units) for training and deploying models. They also offer data 

storage and management solutions, ensuring data security and accessibility. 

Examples include AWS (Amazon Web Services), Google Cloud, and Microsoft Azure. 

• LLM service providers like Hugging Face, OpenAI, and AWS Machine Learning. They 

offer platforms and tools that allow developers to access and integrate LLM 

functionalities into applications. More specifically, they offer APIs and tools for model 

selection and configuration, fine-tuning, performing inference, and efficiently 

mapping these models on hardware to optimize performance for various applications. 

LLM service providers are or make use of cloud service providers.  

• Pipeline tooling: development framework offering tools for building advanced 

applications, using modular components as large language models, databases for 

retrieval augmented generation, and other agents, simplifying the creation of 

context-aware, reasoning AI systems. 

 

 

Figure 2. Language model ecosystem 
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4.2.1 LLM Service Providers  
The massive scale of LLM models (GPT-4 has 1 trillion parameters) often makes them 

unwieldy and impractical to host on local devices. Consequently, several platforms have 

begun to offer cloud services to host custom or premade models. It is a rapidly changing 

landscape with a few dominant companies and new services introduced monthly. 

 

Table 1 provides a comparative analysis of the three major service providers in the context 

of machine learning capabilities: Azure ML [64], AWS ML [65], and Hugging Face [66]. It aims 

to guide users in selecting the most appropriate service for their specific ML needs based on 

cost, scalability, and project requirements. 

Table 1. Comparison of Cloud Service Providers 

Feature/ 
Metric 

Azure ML AWS ML  Hugging Face 

Pricing - Pay-as-you-go 
- Tiered pricing based on 
usage  
- Cost to deploy Llama-2-
7b inference endpoint = 
$7.65/hr 

- Pay-as-you-go and token-
based cost 
- Tiered pricing based on 
usage 
- Cost to deploy Llama-2-7b 
inference endpoint = 
$1.84/hr 

- Pay-as-you-go 
- Free tier with a 
subscription for advanced 
features 
- Cost to deploy Llama-2-
7b inference endpoint = 
$1.30/hr 

Scalability - Easily scalable with Azure 
infrastructure 

- Highly scalable, integrates 
with AWS ecosystem 

- Compute is based on an 
Azure and AWS provider 
infrastructure 

Special 
Features 

- Integrated with other 
Azure services 

- Wide range of ML services 
(Bedrock is simple, 
Sagemaker is advanced) 
- Strong integration with 
data storage and processing 
services 

- Focus on NLP and 
transformer models 
- Large model hub with 
access to the newest/most 
comprehensive range 

Ideal Use 
Cases 

- Enterprise solutions 
- Complex ML projects 
involving various Azure 
services 

- Large-scale data 
processing and ML 
deployments 
- Projects requiring 
integration with AWS 
services 

- NLP-focused projects 
- Researchers and small 
teams experimenting with 
pre-trained models 

 

Azure machine learning workspaces provide a cloud-based environment where models can 

be trained, deployed, automated, managed, and tracked. Initially, for general machine 

learning models, they were quick to pivot focus to LLMs in 2023, providing premade 

deployment of huge LLMs. The platform has a robust infrastructure as it has been based on 

the standard Azure architecture, which is the basis of many businesses. Azure Kubernetes 

Services allows for scaling containerized ML models on a production scale. It is costly to 

deploy small endpoints as they only allow the renting of high-power GPUs. 

 

Amazon Sagemaker offers a cloud environment to build, train, and deploy custom machine 

learning models. Very recently, in a pivot to the LLM domain, they have introduced Amazon 

Bedrock, which allows for the utilization of inference for pre-trained models, eliminating the 

necessity for custom training. Compute resources are priced by the hour or by tokens 

used/generated, giving this provider a far more flexible price point. 
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Hugging Face has a key focus on NLP and LLM development. Hugging Face provides the 

most advanced range of models as it hosts a massive range of open-source solutions. It also 

has a thriving open-source community that openly shares academic papers, models, and 

datasets as they are created. This provider has less background infrastructure, generally 

leasing it from AWS or Azure, but also allows for cheap and highly flexible endpoints. It was 

our primary choice for deploying the Code-Llama model series during this investigation. 

4.2.2 Pipeline Tooling  
Frameworks and libraries such as LangChain, Haystack, and LlamaIndex are versatile tooling 

designed to enhance large language models' capabilities by streamlining complex 

application development. They function as a modular pipeline, allowing developers to 

combine components like chat interfaces, search integrations, and language model 

functionalities. This abstraction layer simplifies the creation of sophisticated workflows, 

including information retrieval, conversation management, and data processing, refer to 

Figure 2. By leveraging these frameworks, developers can focus on designing and 

implementing the logic of their applications without getting bogged down in the intricacies 

of underlying model architectures. The result is a more efficient and accessible way to 

harness the power of language AI for innovative and practical solutions. 

 

4.3 Conclusions on Model Lifecycle and 
Ecosystem 
Reviewing Chapter 4, we come to the following conclusions: 

1. Training an LLM from scratch is currently too costly and challenging for our cur-

rent use cases and therefore is outside the scope of this investigation, we will in-

stead be focusing on their applications. Evidence is highlighted in chapter [4.1.1]. 

2. Fine-tuning an LLM to comprehend and generate information related to a spe-

cific codebase would be a misjudgment. This type of fine-tuning requires input-

output pairs of source code and associated questions. The major challenges are the 

feasibility of acquiring an appropriate dataset and then keeping this and the model 

updated. Evidence is highlighted in chapter [4.1.2]. 

3. Fine-tuning an LLM for translating C++ source code into architectural models is a 

novel possibility. This fine-tuning would require a dataset comprising source code 

and corresponding diagrams, which could potentially be generated using tools like 

Renaissance. Evidence is highlighted in chapter [4.1.2]. 

4. Prompt engineering is vital in applying LLMs, and various techniques should be 

employed for the best results. Evidence is highlighted in chapter [4.1.3]. 

5. The size of their context windows limits current LLMs. Therefore, global code analy-

sis is unfeasible with just-in-context learning, given that no LLM can currently 

scale to a codebase featuring millions of lines of code. Evidence is highlighted in 

chapter [4.1.4]. 

6. To source and verify information output by LLMs, the use of Retrieval Augmented 

Generation via a database or internet search is necessary. LLMs often provide elu-

sive and imprecise answers, especially in domain-specific knowledge concepts. Evi-

dence is highlighted in chapter [4.1.4]. 
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7. In retrieval systems, the accuracy and completeness of an LLM's output are di-

rectly linked to the quality of the RAG embeddings or database structure. Evi-

dence is highlighted in chapter [4.1.4]. 

8. From a practical and infrastructural standpoint, it is advised to use a service provider 

rather than go through the prohibitive and often expensive process of setting up an 

LLM locally or with our API. The key benefits are flexibility and scalability. Evidence is 

highlighted in chapter [4.2]. 

9. Given that the project is still in an exploratory phase, we recommend using Hug-

ging Face as it is the service provider most suited to research  with the biggest 

number of models and the lowest costs. In an industrial-level application, the pro-

vider can easily be switched to AWS Bedrock to serve users on a larger scale. Evi-

dence is highlighted in chapter [4.2]. 
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5 Experimental Setup for our 
Investigation 

Our primary goal was to determine the feasibility and optimal methods for employing an 

LLM to extract and analyze knowledge from a C++ codebase. Considering input data needed 

to answer repository-specific questions, fine-tuning an LLM for code analysis would be 

expensive, codebase-dependent, and quickly become irrelevant. 

 

We used a RAG-assisted LLM with a vector database backend to create a proof-of-concept 

system. Figure 3 depicts the implemented pipeline and its five stages: 

 
1. Download 

➢ Objective: To acquire the target repository's code and documentation in 

their raw forms. 

➢ Versatility: The system is designed as a generalist to extract data from any 

C++ repository. A variety of solutions were tested. Each required optimiza-

tions, but all worked at a base level. 

2. Preprocessing  

➢ Objective: To transform the raw codebase into an optimal state for embed-

ding into the vector store. 

➢ Procedure: Automated scripts separate C++ code and text. The former is to-

kenized and split by declarations, while the latter keeps its form and is sepa-

rated by line breaks. Metadata is added to all sections, and a directory 

structure is produced. 

3. Processing 

➢ Objective: To embed the processed data into a vector store, creating a 

searchable, indexed database that facilitates efficient query retrieval. 

➢ Procedure: Embedding algorithms convert the data into vector representa-

tions stored in a FAISS database. 

➢ Versatility: Different embedding algorithms can be implemented quickly. 

During our investigation, text-embedding-ada-002 and gte-base were 

tested. 

4. Query 

➢ Objective: To form the ideal RAG query tailored to our codebase. 

➢ Procedure: Our retriever method identifies and compiles pertinent infor-

mation from the database. Components for the RAG query include the origi-

nal query, relevant context, and a templated instruction for the LLM, which 

dictates its behavior. 

5. Inference  

➢ Objective: To generate responses to queries using an LLM. 

➢ Procedure: The LLM analyses the RAG query and generates a response based 

on the combined more relevant information in the context. 

➢ Versatility: This stage is adaptable and has been tested with OpenAI's GPT-4 

and Meta's Code-Llama models from Hugging Face. 



 

 

 TNO Public  TNO 2024 R10650 

 TNO Public 23/38 

 

 

Figure 3: Architecture of our RAG-assisted LLM pipeline 
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5.1 Pipeline Tooling 
Our pipeline was written in Python, which features several open-source libraries for 

implementing LLM's into custom applications. These libraries allow for easy implementation 

and testing of various retrieval methods - the algorithms required to find relevant data from 

large databases or vector stores. 

 

LangChain is the open-source framework we currently utilize in our pipeline. It is designed to 

build applications that combine LLMs with various components such as databases, APIs, and 

software systems. Our experience with LangChain has been positive, although it sometimes 

lacks modularity and is still under development, meaning it will change with time. 

 

We also tested Haystack during our investigation. It is an open-source framework focused 

on building search systems for large datasets. It implements relevance scoring and a range 

of document retrieval methods yet suffers in its ability to interact with external APIs. This 

limitation made experimentation with a range of LLMs difficult, leading us to end our 

experiment with Haystack and continue using LangChain. 

 

LlamaIndex is a promising new framework we look to experiment with in the future. We aim 

to explore whether it can complement or enhance our existing pipeline, particularly 

regarding data indexing, retrieval efficiency, and expansion of context windows. 

 

Using LangChain has enabled us to effectively incorporate techniques like Prompt 

Engineering and RAG. As we move forward, we aim to deepen our use of these 

methodologies, regardless of the underlying tool, to improve the precision and context-

awareness of our LLM applications. 

5.2 Experiment Summary 
 

We conducted three experiments to test the capability of base LLMs and our pipeline setup.  

Table 2. Summary of experiments and results 

Experiment Remarks Validation method Conclusions 

Architectural 

diagram extraction 

from C++ code 

snippets 

- Base foundation models tested 

- Various LLMs compared 

- Toy code comprising Publisher 

Subscriber design patterns used 

- Limited scaling capabilities 

- Refined prompts required 

Evaluation against 

Renaissance results 

Renaissance outperforms 

out-of-the-box LLMs for 

diagram extraction tasks 

Architectural 

diagram extraction 

from C++ repository 

- Foundation models combined 

with RAG 

- Open source and obfuscated 

codebase analyzed 

- 12,000 lines of code 

 

Evaluation against 

Renaissance results 

Renaissance outperforms 

out-of-the-box LLMs for 

diagram extraction tasks 

Generating English 

explanations from 

C++ repository 

- Foundation models combined 

with RAG 

- Open source codebase outside 

the models training data 

- 60,000 lines of code 

 

Evaluation against 

human benchmarks 

Traditional tools lack 

these capabilities, 

highlighting LLMs 

potential in this domain 
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5.3 Research question 1  Can we extract 
knowledge in graph form from C++ source 
code using LLMs and prompt engineering? 

5.3.1 Introduction  
This experiment delves into how LLMs, specifically GPT-4 and Code-Llama iterations, 

interpret C++ code, which implements a publisher-subscriber pattern. The goal is to use 

these generative models to create valid publisher-subscriber network graphs in dot format. 

5.3.2 Methodology 
The models  GPT-4, Code-Llama-7b, Code-Llama-13b, and Code-Llama-34b  were tested 

with five different C++ code snippets representing publisher and subscriber relationships. 

These snippets aimed to evaluate the LLMs ability to identify relationships in a network 

graph and accurately generate a diagram depicting them in a dot file.  

 

The prompts incorporated role-based, chain-of-thought, and example-based methods to 

optimize results. Custom prompts were handwritten for each question. It was infrequent 

that a valid diagram was produced with a general prompt. As the output of these models is 

indeterministic each query was made three times and the best output chosen.  

5.3.3 Results Summary 
Table 3. Architectural diagram extraction from C++ code snippets 

Question GPT-4  Code-Llama-7b  Code-Llama-13b  Code-Llama-34b  

1 Correct and 

detailed dot file. 

Best answer. 

Failed to generate a dot 

diagram but demonstrated 

understanding through text. 

Valid, but separate 

graphs created for 

each stage. 

Correct dot file but 

uses a different 

approach. 

2 Correct and 

detailed dot file. 

Best answer. 

Failed to produce a diagram 

but showed understanding 

through text. 

Correct dot file, 

similar to GPT-4. 

Correct dot file, 

similar to GPT-4. 

3 Correct and 

detailed dot file. 

Best answer. 

Correct logic, but the diagram 

lacks details. 

Incorrectly included 

arrows in both 

directions. 

Correct and complete 

dot file. 

4 Correct and 

complete dot file. 

Only accurate 

answer. 

Nearly correct. Missed one 

connection. 

Incorrect, Cluster13 

was mislabelled as a 

publisher. 

Incorrect, Cluster13 

was mislabelled as a 

publisher. 

5 Most complete and 

correct, with a 

minor artifact. 

Incorrect answer. Too general to be 

helpful. 

Similar to GPT-4 but 

incomplete. 
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5.3.4 Conclusions 
This investigation demonstrates that all our LLMs can convert source code into DOT 

architectural diagrams. GPT-4 performed best, but the smaller, more specialized Code-

Llama-34b produced comparable results. An important note is that each question required 

careful prompt engineering from the researcher to produce accurate diagrams. 

While this does underscore the potential for LLMs to assist in software architecture tasks 

such as interpretation and visualization, an automated system that consistently produces 

accurate results will require many more layers of complexity. A key benefit of producing 

these diagrams with LLMs instead of the classical approach involving parsers is that they are 

produced significantly faster. 

 

Furthermore, there is a question of bias in prompt ability  prompt engineering as a science 

is far more developed for GPT-4 than the Llama models. Maybe with further investigation, a 

prompt that made the Llama models perform in a superior manner might be developed. 

 

5.4 Research question 2  Can we use LLMs and 
RAG to extract knowledge in UML diagram 
form from a C++ repository? 

5.4.1 Introduction 
This experiment assesses the capability of a RAG pipeline in generating Unified Modeling 

Language (UML) diagrams from a C++ codebase using natural language queries. The RAG 

pipeline's performance in retrieving relevant documents and accurately depicting code 

architecture is analyzed. 

5.4.2 Methodology 
The LLM was given access to information about the codebase by the pipeline described in 

Chapter 5.1 and a general prompt asking for a UML diagram. Natural Language Queries were 

made to the pipeline thrice, and the most accurate returned architecture diagram was 

selected.  

 

Retriever Relevance Score indicates the efficiency of document retrieval, which varied from 

1/1 (perfect retrieval) to 7/9 (suboptimal retrieval). Lower scores implied a need for 

refinement in the RAG search algorithm. 

 

These diagrams were later compared with Renaissance tooling, a deterministic system that 

gave the ground truth. Furthermore, in some cases, the same question was asked with a 

text output to see whether knowledge was lost in the LLM's creation of a UML diagram. 

5.4.3 Results Summary 
The investigation yielded varied results across different questions, with a mix of complete 

and incomplete UML diagrams and varying levels of correctness and verboseness. The 

Retriever Relevance scores indicated the efficacy of the document retrieval process, which 

varied significantly across questions. 
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Table 2. Repository Level Architecture Extraction Results 

Question Retriever Relevance 

Score 

Completeness Correctness Verboseness 

Usage of `reader.h` 7/9 Incomplete Incorrect Acceptable 

Usage of `writer.h` 17/18 Incomplete Incorrect Acceptable 

Presence of an external 

library 

11/17 Complete Incorrect Acceptable 

Repository's directory 

structure 

2/5 Complete Correct Acceptable 

Data flow in 

`readFromString.cpp` 

7/16 Complete Incorrect Excessive 

Information 

Simplified data flow in 

`readFromString.cpp` 

2/3 Complete Incorrect Acceptable 

`json_cpp` header files 

and their usage 

1 Incomplete Correct Excessive 

Information 

5.4.4 Analysis of Key Questions 
Q1 & Q2 (Usage of header files): Demonstrated the pipeline's partial understanding of 

header file dependencies but failed to represent the complete and accurate architecture in 

UML diagrams. 

Q3 (External library algorithm): Identified most file dependencies correctly, but the UML 

diagram lacked accuracy and completeness. 

Q4 (Repository structure): Produced a complete and correct UML diagram showcasing the 

RAG pipeline's potential in representing high-level structures. Due to custom embeddings for 

this question this is the only diagram that was perfect. 

Q5 & Q6 (Dataflow in readFromString.cpp): Exhibited a mismatch between textual 

understanding and UML diagram representation. Both text and UML diagrams failed to 

describe the system accurately. 

Q7 (General dependencies): While the diagram was correct, it lacked clarity due to over-

complexity, underscoring the challenge of representing intricate dependencies in a 

comprehensible UML format. 

5.4.5 Conclusions 
This study reveals that the RAG pipeline can successfully retrieve relevant documents and 

demonstrate an understanding of C++ code. However, there are notable gaps in the 

pipeline's ability to accurately and consistently translate this understanding into UML 

diagrams. Remarkably, the pipeline struggles with general queries and representing intricate 

code dependencies.  

 

One clear benefit of the LLM approach compared to parser-based methods is the speed at 

which it can create these diagrams. A database can be created in a matter of minutes, and 

each query takes less than a minute to produce a suitable graph output. Comparing this to 

the classical methods, which take hours to complete, a clear use case can be identified. 

 

Limitations on current results are the RAG search algorithm, lack of structured output from 

our RAG search, and overly general prompts. Future improvements should focus on these 

aspects. Alternatively, a more specialized database  such as a knowledge graph  might be 
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a suitable replacement for our embeddings, given that this already provides a structure, 

helpful metadata, and natural hierarchy. 

5.5 Research question 3  Can we extract 
knowledge in text form from a C++ 
repository using LLMs and RAG? 

5.5.1 Introduction 
This experiment benchmarks the ability of a RAG-assisted LLM pipeline to extract knowledge 

from an unfamiliar C++ codebase. By comparing human participants and LLMs, the study 

evaluates LLMs' understanding and response accuracy to a set of tailored software 

development questions at the codebase level. 

5.5.2 Methodology 
Humans were given access to the repository via a GitHub link. At the same time, the LLMs 

were connected to a vector database containing data from the repository through the RAG 

pipeline described in Chapter 5.1. The participants were subjected to a questionnaire 

designed to assess their understanding of the repository's specific functions, interactions, 

and broader features.  

 

The first three questions had subjective answers. To avoid human bias, the marking process 

involved creating new BERT embeddings [67] for all correct non-LLM answers in phase space 

and finding the median point. The Euclidean distance from this point to all answers was then 

used to rank them, with those closest to the median being the most 'representative' or 

agreed upon answer, consequently being awarded the most points. The remaining questions 

were factual and scored based on accuracy. 

 

It was ensured that the repository was not in the LLM's training data to emulate a setting 

where the experiment was conducted on proprietary software. Furthermore, LLMs were 

required to cite sources from the code for their responses, proving that the source of the 

information was retrieved. 

5.5.3 Results Summary 
Participants were broadly categorized into four grades based on their total scores: 

- Grade A: Human-B (36), Human-A (33) 

- Grade B: GPT-4 (30), Code-Llama-13b (29), Human-D (26) 

- Grade C: Code-Llama-7b (23) 

- Grade D: Human-C (13), Human-F (12), Human-E (10) 

The results corroborated with the relative C++ skill levels of the human participants (Human-

B ranked themselves as best), lending credence to our marking system. Code-Llama-13b's 

performance was comparable to GPT-4, demonstrating that a far smaller but fine-tuned 

model may be as effective in specific scenarios. 
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5.5.4 Analysis of Key Questions 
Q1(Codebase Functionality Summary): Participants provided varying levels of detail. Human-

B and GPT-4 were notably comprehensive in their answer. 

Q2(Describe function 'timeSortDayList'): Humans and LLMs gave helpful answers but with 

interesting differences. Humans tended to give a more direct description of what the 

function did regarding how it interacted with the rest of the calendar. In contrast, the LLMs 

gave a factual documentation-like description. Code-Llama-13b was the only function to 

mention its dual implementation in the codebase. 

Q3(Interaction between 'newEvent' and 'updateCalendar'): Humans and Code-Llamas gave 

more detail into the functional interplay between the two components, while GPT-4 detailed 

the process flow.  

Q4(Where in the code is 'isDarkStyle'): Only Human-A and Code-Llama-13b identified all 

occurrences in the codebase. Code-Llama-13b interestingly identified its duplication at 

points in the repository  at one point being a 'setter' and the other a 'getter' function. 

Q5(External Dependencies): The best responses identified two of three dependencies, 

highlighting limitations in both human and LLM abilities to locate such information. 

Q6(Code smells in 'wavcat.cpp'): GPT-4 and most humans identified valid improvements, 

while Code-Llamas suggested only formatting enhancements. 

Q7(Speech generation components): Participants were very successful, but Code-Llama 

excelled in detailing key components and their functions. 

5.5.5 Conclusions 
This study demonstrates the nuanced capabilities of RAG-assisted LLMs in comprehending 

and analyzing complex C++ codebases with natural language output. The larger models of 

Code-Llama-13b and GPT-4 performed well, particularly in detailed analysis and 

understanding of specific components. However, there are still some areas where human 

expertise outperforms, especially in identifying more general aspects of the codebase.  

 

It is demonstrated that RAG shows promise in aiding repository-level code analysis. 

Nevertheless, the limitation remains that the model may not include vital facts in its answer 

if a critical code snippet is missed in the vector store query. However, the results still 

highlight the potential of LLMs in aiding software development and analysis, suggesting 

specific areas like documentation generation and code duplication identification for LLM-

powered systems. 

5.6 Conclusions on the conducted experiments 
Reviewing Chapter 5, our overall conclusion is that we recommend combining multiple 

techniques to optimize performance. This recommendation includes the use of RAG, 

enhanced prompting methods, and structured embeddings to address the limitations 

observed and enhance the overall effectiveness of the LLMs in handling complex code-

related tasks.  
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We split our conclusions into two categories. 

 

Conclusions on the experimental Setup: 

1) LangChain is currently the tool of choice for creating LLM-assisted applications. 

Haystack is not yet mature enough to be used, and we plan to experiment with 

LlamaIndex in the future. Evidence is highlighted in chapter [5.2]. 

2) Code-Llama has been noted for its smaller size, cost-effectiveness, and open-

source nature while delivering performance comparable to GPT-4. This 

characteristic makes it viable for future exploration, although more advanced models 

may soon eclipse it. Evidence is highlighted in chapters [5.4] and [5.5]. 

 

Conclusions on the research questions: 

3) When provided with adequate context, LLMs demonstrate a good understanding 

of code and can effectively translate this understanding into natural language. 

This evidence is highlighted in chapter [5.5.5]. 

4) When provided with source code and specific prompting, LLMs can draw UML and 

GraphML diagrams. The quality of results tends to decrease as the complexity of the 

code increases. This performance degradation is likely linked to the context size and 

quality of embeddings. Evidence is highlighted in chapter [5.3.4]. 

5) RAG-assisted LLMs show enhanced code understanding and summarisation 

abilities at a repository level. The effectiveness of these models heavily depends on 

the quality of embeddings and retrieval methods in the RAG pipeline. Evidence is 

highlighted in chapter [5.5.5]. 

6) RAG-assisted LLMs struggle to represent code in UML diagrams. The lack of a 

specific prompt, full repository-level knowledge, and structured information 

contribute to this problem. However, when the code directory structure was queried, 

the LLM performed well thanks to the independent storage of this information within 

the embeddings. This conclusion is highlighted in chapter [5.4.5]. 
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6 Future Work and Report 
Conclusions 

In exploring the application of LLMs for model-based engineering tools in C++ code, we 

gained significant insights and identified several avenues for future development.  

 

The indeterministic nature of LLMs suggests that experts are still required to guide LLMs 

toward accurate outputs. Therefore, an LLM-based assistant that improves software 

architects' and developers' efficiency to achieve higher-value tasks is more realistic than a 

fully automated solution.  

However, let us consider the following observations resulting from the research conducted 

so far: 
- According to conclusion 1 of Chapter 3, LLMs excel in code generation and under-

standing tasks. 

- According to conclusion 4 of Chapter 5, LLMs perform well in drawing UML and 

GraphML diagrams with adequate context and specific prompting. However, this 

performance suffers from scale. 

- According to conclusion 6 of Chapter 5, LLMs perform well if the correct infor-

mation is structurally stored in embeddings. 

These observations show promise for LLMs in contributing positively to code analysis and 

transformation challenges. 

 

From conclusions 3, 4, 5, and 6 of Chapter 5, we realize that LLMs are less effective at 

extracting information from C++ into graphs than into natural language. Significant 

refinements in their consistency and reliability are required before they can match  or 

surpass deterministic tools like Renaissance. However, with these refinements, we believe 

that LLMs could extend or replace legacy software's current parser-based analysis and 

transformation methods. 

 

Based on conclusions 3 of chapter 4 and 4 and 6 of chapter 5, a novel research area would 

be to fine-tune an LLM specifically for the goal of C++ to UML or GraphML translation . At 

a high level, this could be achieved by using Renaissance to create a large dataset of pairs of 

C++ code and corresponding architecture diagrams. This challenging experiment might fail, 

but it would be highly advantageous if the objective were achieved. In this case, we could 

imagine producing a methodology wherein pipelines are created capable of translating 

from any formal language into UML or GraphML diagrams, removing, as a whole, the 

need to build parsers for this purpose.  

 

In conclusion 5, in Chapter 5, vector embeddings are a promising method for retrieving 

the correct information regarding codebase-level questions; however, while code snippets 

used for the embeddings provided sufficient information for LLMs to extract textual 

knowledge conclusions 4 and 6 of Chapter 5 inform us that creating insightful, correct, and 

complete graphs requires more structured data and tailored prompts.  
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Based on conclusion 7 of chapter 4 and conclusion 5 of chapter 5, we propose to 

investigate how effective using a graph database will be as a backend for our RAG 

system. We expect LLM results to be enhanced if the data can be retrieved more effectively 

and in a richer structure. We can also directly compare the effectiveness of semantic search 

and graph queries for our goals. Alternatively, based on the same conclusions, we intend to 

optimize our current vector store in multiple ways. We propose to use LlamaIndex to 

enhance our embeddings and create multiple vector stores for specific questions. 

Additionally, we plan to make graphs using Renaissance for different architectural views, 

which we would annotate and use an LLM to retrieve essential data from them. 

  

Let us also consider the following conclusions:  
- Conclusion 3, in Chapter 3, says that LLMs' generative capabilities are best utilized 

alongside human input. 

- Conclusion 5, in Chapter 3, informs us that LLMs excel in:  

a) Code generation 

b) Understanding code functionality  

c) Code summarization  

d) Code documentation generation  

- Conclusion 5 of Chapter 5 indicates LLMs have potential in code improvement rec-

ommendations. 

- Conclusion 5 and 6 of Chapter 5 tell us that RAG-assisted LLMs thrive in code un-

derstanding and summarization; however, the quality of the embeddings in the 

RAG highly influences their results.  

These observations suggest that LLMs can help code experts interpret data, abstract from 

irrelevant details, and model the code architecture from the collected data. 

 

Building on these insights, we propose investigating how to use an LLM to assist experts in 

using Renaissance tools more effectively and efficiently. We look to experiment using our 

LLM system to detect obsolete libraries or design patterns and offer targeted 

improvement suggestions. Moreover, systems like Copilot have demonstrated the 

effectiveness of using an LLM to generate code within a specific template. We hope to utilize 

this functionality in the Renaissance system by enabling developers to efficiently produce 

diverse concrete syntax patterns and fluent scripts.  

 

Based on our conclusions 1 of Chapter 3 and 5 of Chapter 5, which proved the effectiveness 

of LLMs in generating summaries of functions and components, we aim to enrich the Neo4j 

database produced by Renaissance with more comprehensive information using LLM-

generated documentation. 

 

Lastly, conclusion 5a of Chapter 3 indicates that LLMs can effectively create tests. We 

propose to harness this to improve Renaissance by adding a layer of auto-generated 

tests to validate code restructuring before implementing significant system changes . 

 

In conclusion, while LLMs hold great promise as tools to augment the field of legacy 

software analysis and transformation, there is a clear need for further development to 

harness their capabilities. Their inherent indeterminism suggests that the most innovative 

and efficient applications will be when they are utilized alongside deterministic tools or 

under the guidance of experienced professionals.  
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6.1 Our Future Research Questions 
The most achievable goals are at the top and the hardest at the bottom. 

 

• How do we integrate LLMs, Renaissance, RAG, and prompting in an agent-based archi-
tecture?  

• How can we use Renaissance to create structured embeddings for the vector store and 
LLM with pictures/UML and annotations, Graph search, or Neo4j integration?  

• How can we use an LLM to improve the Renaissance user experience, save developers 
time, and further reduce the complexity of code analysis and refactoring?  

o Can we analyze code to find obsolete libraries or design patterns and sug-
gest how to improve them?  improve human decision  

o Can we generate all possible variations of concrete syntax patterns and flu-
ent scripts to automate the creation of renaissance code analyses and 
transformations?  Streamline Renaissance input  

o Can we augment a Neo4j database with summary/documentation for func-
tions, classes, declarations, and libraries?  Improve human decisions with a 
better data store. Would it be preferable to write all beforehand or popup 
and make a small search  

o Can we use an LLM to generate tests before implementing significant sys-
tem changes  improve human efficiency 

• Is it possible to fine-tune a model to translate C++ into UML or GraphML diagrams? Is 
fine-tuning a solution to emulate Renaissance behavior with an LLM 
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