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1 Introduction 

1.1 Project goals and scope 
The System Design to Service Actions (SD2Act) project is a cooperation between TNO-ESI 

and ASML, world leader in developing and manufacturing high-tech lithographic systems for 

the semiconductor industry.  

The generic goal of the SD2Act project is to develop a methodology that  minimizes the 

time to diagnose failures occurring in an ASML-like system.  

The methodology should be generically applicable to high-tech systems also from 

manufacturers other than ASML.  

The business driver for this project is that as high-tech systems become more and more 

capital intensive there is a strong drive to have no unscheduled down-time achieved 

through predictive maintenance.  On the long road towards predictive maintenance lie 

several milestones, one of which is to keep the amount of unexpected down time of high-

tech systems to a minimum for a fixed number of failures.  A large contributor to down-time 

is the amount of time needed by the complex diagnostic process. This is the process that 

infers the root cause of a failure from its symptoms.  Nowadays this diagnostic inference 

one.  

The specific goal of the SD2Act project is to aid and (when possible) replace the human 

diagnostic reasoning with a form of computer reasoning based on design information. 

The approach used in this project is to develop such a reasoning system making as much as 

possible use of the knowledge on the high- this is described by the 

edge create/generate model in Figure 1.1) 

For high-tech systems there are both many classes of causes that can lead to a system 

failure and many classes of symptoms that could results from these causes. Examples of 

classes of causes are: hardware malfunctions, software bugs, operator errors, abnormal 

environmental conditions. Examples of classes of symptoms are a system which: stops 

production, fails to execute a desired operational function, produces outputs with a quality 

lower than desired, requires too much energy to produce the desired outputs. Notice that a 

diagnostic problem can be the result of a many-to-many connection among elements of 

these two different classes of causes and symptoms.  

In the scope of the SD2Act project, failures are caused by hardware malfunctions which 

manifest by a system failing to execute one of its operational functions. 

Ideally, industry needs a generic diagnostic methodology that infers causes given 

symptoms, independently of their membership classes. Research on other aspects of this 

methodology is described below. 

1.2 Project position in the diagnostic landscape 
In this section we position the SD2Act project with respect to other projects done by TNO-ESI 

in the diagnostic domain. We give a list of commercially available off-the-shelf tools for 

diagnostics . Finally we briefly describe its position with respect to academic research. 
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1.2.1 Relation to TNO-ESI diagnostic projects 
TNO-ESI had conducted in the past years other projects with high-tech industrial partners in 

the domain of diagnostics. Specifically, the CareFree project with Canon Production Printing 

and the Assisted Diagnostic in Action (ADiA) project with ASML.  

The CareFree and ADiA project have a diagnostic scope different than the one of the SD2Act 

project: 

- the scope of the CareFree project is on diagnosing down-time situations caused by 

HW failures that manifest as  a system which stops production (rather than as a 

system that does not perform a function). More details on this project can be found 

in the TNO report (van Gerwen, 2024). 

- the ADiA project also focuses on HW failures, however the scope in ADiA differs as it 

assesses the diagnosability level of a system, i.e. the scope is shifted from 

diagnostics at operational time to diagnostics at design time. More details on this 

project can be found in (Barbini et al., 2021). 

 

Figure 1.1 Overview of TNO-ESI diagnostics projects. 

An overview of these projects and their position with respect to the design and operational 

diagnostics scopes is given in Figure 1.1.  

Despite the different scopes, the approach adopted in the different projects is overlapping. 

All the projects implement a model-based approach, with diagnostic computational models 

created/generated using  knowledge of the system design. Furthermore, as shown in Figure 

1.1, in the proposed approach the same diagnostic model is used both at design time and 

operational time. This implies that a unification of the approaches, yielding the overall 

diagnostic methodology needed by industry, even if not yet achieved, seems reasonably 

possible. An overview of this unified diagnostic methodology and its connection to model-

based system engineering approaches is detailed in (van Gerwen et al., 2022). 

1.2.2 Relation to off-the-shelf tooling 
A non-exhaustive list of off-the-shelf tools that, during the SD2Act project, have been 

investigated or have been identified as potentially interesting is given in Table 1.1. 
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Table 1.1: Non-exhaustive overview of off-the-shelf diagnostic tools. 

Name Website Reference 

MADe www.phmtechnology.com (Hess et al., 2008) 

TEAMS www.teamqsi.com (Deb et al., 1995) 

Kairos Workbench www.kairostech.no (Lind, 2011) 

RODON www.combitech.com (Adén & Stjernström, 2013) 

 

The criteria  for a tool to be considered were that it must offer a scalable modelling approach, 

be already successfully applied in an industrial context, and offer, to some degree, both design 

and operational diagnostics support. 

Furthermore, the selected tools all implement a model-based diagnostic approach, as in the 

SD2Act project. Several tools are nowadays being introduced in the diagnostic landscape that 

use a more data-driven approach, these have not been investigated in the SD2Act project. It 

is suggested that such tools are investigated in a follow-up project. 

The tool that is identified as most promising and as a consequence was in-depth 

investigated is MADe. The investigation was carried out by modelling example systems 

inspired by the ASML system. The conclusion of the investigation is that the MADe tool does 

not yet offer enough diagnostic support to be adopted by ASML. Specifically, high-tech 

systems like the ASML one: 

- are cyber-physical systems with intertwined HW and SW. However, the MADe tool 

does  not offer a suitable way to model SW and its role in the propagation of failures 

from component to system-level observables; 

- span several HW physical domains such as optics, thermal, mechanical and 

electromagnetic. All of these should be equally modelled in order to have an 

effective diagnosis. However, the MADe tool is focusing on a subset of these physical 

domains; 

- have a high level of complexity and diagnostic support is needed at operational 

time. However, the main goal of MADe is design for diagnostics and hence it offers 

limited operational diagnostic support.   

Based on these considerations, the conclusion is that the SD2Act and similar research 

projects are very much needed by the high-tech sector to solve their diagnostic challenges. 

1.2.3 Position with respect to academic research 
The SD2Act project provides a clearer picture of the gaps between  academic research and 

the needs of industry. Yet, the SD2Act does not deliver a full state-of-the-art report on 

diagnostic methods for high-tech systems. We suggest this as an activity for a follow-up 

project. 

The SD2Act project found that academic research in diagnostics is mostly focusing on 

component level in the HW domain, with detailed model-based (physics), data-driven, or 

hybrid approaches developed to infer the state of a single or a small set of HW components. 

These academic approaches usually deal with systems in the order of tens of components. 

However, high-tech industrial systems have in the order of thousands of HW components 

belonging to different physical domains and, as stated above, intertwined with control and 

safety SW. This extension of diagnostic methodologies from component-level to system-

level, defines a gap between the current academic state of the art and the industrial needs.  

http://www.phmtechnology.com/
http://www.teamqsi.com/
http://www.kairostech.no/
http://www.combitech.com/
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The issue is not merely one of scalability, understood as the ability to systematically build 

models for large systems and have computation on those models take a reasonable 

amount of time.  But more fundamentally, the issue lies in the emergence of behaviours at 

system level which are not derivable from modelling the interactions of single components, 

i.e. integration with system properties is needed. Academic research on this last aspect is 

needed. 

The SD2Act project attempts at filling this gap identified in academic research by focusing 

on methods to diagnose functional failures, i.e. failures that manifest by a system failing to 

execute one of its operational functions. 
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2 Methodology 

2.1 Overview 
Whereas the ultimate goal of the SD2Act methodology is to both improve the diagnosability 

of a system during its design phase (design for diagnostics) as well as to assist service 

engineers to come to a diagnosis when the system is deployed (operational diagnostics), the 

focus in SD2Act is on the latter. In this light, a diagnostic model is created on the basis of 

readily available system design information. This information is incorporated in a diagnostic 

assistant that is made available for the service engineer. 

 

Figure 2.1: High-level overview of the SD2Act methodology. 

The high-level overview of the SD2Act methodology workflow is depicted in Figure 2.1. On 

the left-hand side the design information is shown, which corresponds to the system design 

in Figure 1.1. On the right-hand side the operational diagnosis loop is shown, which is 

equivalent to the loop in the bottom of Figure 1.1. 

The SD2Act methodology follows a top-down approach to enable system-level diagnostics. 

In order to deal with the complexity of high-tech systems, the system is usually broken 

down into subsystems, which are again broken down into modules, and so forth. Finally, 

there are the individual hardware pieces and software components realizing the small 

subtasks within the whole system. The breakdown of the system represents a separation of 

concerns, where every element is designed to fulfil its own purpose, and the collection of 

them all makes the system function as designed. 

All levels in the system breakdown have their own concern: to fulfil their designed 

function(s). Moving to the diagnostic domain, a starting point for conducting a root cause 

analysis is usually something the system does incorrectly or not at all: a high-level function 

is not performed as expected. The root cause analysis consists of a drill-down from higher 

level observations to the root cause by focussing on the relevant pieces of the system, based 

on a set of observations, by inspecting the system step by step. This inspection is often done 
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root cause analysis is narrowed. 

The SD2Act project aims for this kind of functional drill-down, as it allows for system-level 

root-cause analysis and it is a rather natural way of doing exclusion diagnostics. To support 

this, we develop a methodology for the creation of functional diagnostic models, which 

captures system functions, their dependencies and their hierarchy. 

To allow for this, all of these dependencies are captured in a diagnostic network. This 

network represents the knowledge about the system while abstracting away from the 

reasoning formalism being used to do the diagnostic reasoning. This reasoning model is 

created based on the information in the network, after which it can be used for diagnosis by 

inserting findings from the system and service engineer into the reasoning model. Step by 

step, the reasoning model is capable of suggesting the best next steps to the service 

engineer. 

2.2 Methodology implementation 
To be able to experiment with the proposed methodology and to perform validation, a 

proof-of-concept implementation was made in Python. This proof-of-concept Python library 

is named MBDlyb and allows to experiment at scale, by easily specifying large networks. The 

library also formalizes and consolidates the research done in the project, and is actively 

being worked on through the course of the SD2Act project series. The high-level overview of 

the SD2Act methodology as implemented in MBDlyb is shown in Figure 2.2. See also Figure 

2.1 for comparison. 

 

Figure 2.2: High-  as it is implemented in MBDlyb. 
Orange edges (currently) require human involvement while green edges represent fully automated 
transformations or computations. 
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The implementation choices made in MBDlyb result in additional transformation steps 

compared to the generic method depicted in Figure 2.1. The system dependencies form the 

input to the diagnostic network, and the diagnoser is added as an interface between the 

reasoning model and the service engineer or system data. Also, a storage in the form of a 

graph database is added. Each of the different stages in the MBDlyb workflow is briefly 

described below. 

Stages in the workflow 
The conceptual meaning of each of the six stages shown in Figure 2.2 is briefly described  

below. The following sections elaborate more on the details of each of the stages. 

• System descriptions 

The system descriptions represents all system design information, both structured 

and unstructured, that is relevant for the creation of the diagnostic model. 

• System dependencies 

This stage represents the manual specification of the (functional) dependencies that 

should be in the diagnostic model. This is essentially the entry point of the 

methodology that converts design information to a format for which a semi-formal 

interpretation is defined. 

• Diagnostic network 

The diagnostic network represents all the knowledge that was provided for the 

creation of the functional diagnostic model. The semantics of the internal format 

are defined so that it allows being transformed into a formal reasoning model. 

• Graph DB 

The diagnostic network itself is instantiated by the library and only lives in memory 

for the time the MBDlyb application is running. A graph database provides a 

persistent storage space in which all knowledge of the diagnostic can be stored, so 

that the diagnostic model can be loaded at a later moment. Currently, Neo4j1 is the 

graph database use by MBDlyb to store the information in.  

• Reasoning model 

The reasoning model is the model that has a formal (mathematical) semantics that 

allows for diagnostic reasoning.  

• Diagnoser 

The diagnoser takes in findings from the system being diagnosed and uses the 

reasoning model to compute a diagnosis. It then suggests diagnostic tests to do and 

again takes in the findings. These steps are repeated until a final diagnosis is 

reached. Hereby the diagnoser implements operational diagnostics as depicted in 

the bottom of Figure 1.1. 

 

The remainder of this report considers the implemented methodology as the main 

methodology rather than the conceptual one presented in Figure 2.1, as most of the 

discussed features have been implemented in the proof-of-concept methodology 

implementation. 

_______ 

1 https://neo4j.com/ 

https://neo4j.com/


 

 

 TNO Public  TNO 2024 R10833 

 TNO Public 12/66 

2.3 Modelling 

Design information 
The design information needed to create the functional diagnostic model mainly consists of 

high-level system design information, such as functional breakdowns and system 

decompositions.  

In addition to those types of design information, also more structured system architectural 

models could be used as input. Capella (Roques, 2017) is a modelling workbench supporting 

the Arcadia method (Voirin, 2017). This systems engineering approach supports the system 

e system needs to 

perform. Multiple abstraction levels help in translating those system functions into 

subsystems with their own subfunctions, including the relations between these subsystems. 

Eventually, a connection to the concrete hardware pieces that need to realize such functions 

is made. This type of structured breakdown in the Capella model provides a good starting 

point for the creation of the functional diagnostic model. Being a model-based approach as 

well, the Capella model could in the future also allow for automatic model-to-model 

transformation. 

To allow the diagnostic model to estimate the health of individual hardware pieces, or 

groups thereof, these hardware pieces and their mapping to the system functions they 

realize must be known. For this, a material or part list could be used to add the components 

to the model. The functional deployment of the system functions onto those hardware 

pieces follows either from the breakdown of the part list or other types of design documents 

or models. The mapping of system functions onto hardware pieces can also be provided by a 

Capella model, as shown in Figure 2.3. 

 

Figure 2.3: Functional deployment onto hardware pieces as specified in a Capella model. The function 
 

Systems log a lot of data during operation, e.g., timeseries containing sensor data, software 

events and errors. Some of these observations provide direct health indicators for hardware 

pieces or report on the fulfilment of system functions. For example, software may report an 

error when it is unable to fulfil its requested task. If this task represents a system function 

that software is controlling, the reporting of this error is a direct indictor for a functional 

failure. These observables are all made automatically by the system and can often be 

inserted immediately into the diagnostic model, already eliminating many potential root 

causes from the diagnosis. Documentation where such information can be found are 

event/error lists of software components or Key Performance Indicator (KPI) lists. It is not 

always trivial how to map an observable to a function or hardware piece, so an expert in the 

loop may sometimes be needed to manually do this at the time of model construction. 

Besides the observations made by the system itself, there is a set of diagnostic tests that 

can be done to acquire additional information about the state of the system. Such 

diagnostic tests are typically documented in a service manual. The diagnostic tests should 

be linked to the specific functions or hardware pieces they provide information for regarding 

its health status, i.e., whether the function is performed (correctly) or whether the hardware 

piece is potentially unhealthy. 
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The types of information required to build a diagnostic model according to the presented 

methodology include the following: 

- Functional breakdown 

- Replaceable part/hardware lists and breakdowns 

- Functional deployment information onto the hardware 

- KPI/observability lists 

- (Diagnostic) tests and calibration lists 

Functional dependencies 
All relations are expressed by means of different types of functional dependencies. If 

function A requires function B to be performed, a functional dependency from B to A is 

specified. This specification can be done via a dependency matrix, in which all functions are 

listed both in the rows as well as in the columns. If the function in the column depends on 

the function in the row, the corresponding cell can be marked, as shown in Table 2.1. 

Table 2.1: An example dependency matrix. 

 Function_A Function_B Function_C Function_D 

Function_A  X X  

Function_B    X 

Function_C    X 

Function_D     

 

In this table, Function_B and Function_C both depend on Function_A, and Function_D 

depends on Function_B and Function_C. A similar matrix can be made to also express the 

dependencies of functions on hardware pieces, or to express the dependencies of 

observables and tests to functions or hardware pieces. These dependency matrices 

represent the functional dependencies that form the input to the methodology workflow. 

2.4 Diagnostic network 
From the functional dependency matrices, a diagnostic network is created. The diagnostic 

network is essentially a knowledge graph that forms the basis for the transformation to the 

reasoning model. This knowledge graph is automatically constructed from dependency 

tables, which are the result of a (currently) manual formalization step to capture the 

relevant design information. The dependencies from the dependency table are transformed 

into types of nodes and relations, representing different types of dependency relations. An 

example network is depicted in Figure 2.4. Different colours represent different types of 

nodes and the edges represent relations, for which the types are labelled. 

Details regarding the semantics of all types and the validity of certain relations are described 

in Section 2.4.1. The diagnostic network also provides potential for discovery of new 

functional dependencies that have not been documented explicitly by combining the 

documented knowledge with basic physics knowledge. This extension is described in Section 

2.4.2. An Excel-based approach to specify a basic diagnostic network is explained in Section 

2.4.3. 
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Figure 2.4: An example diagnostic network consisting of four different functions, four pieces of hardware, 

one system observables and two diagnostic tests. The functional dependencies between the functions 

(purple) correspond to the functional dependencies shown in Table 2.1. 

2.4.1 Building blocks 
The diagnostic network is a directed knowledge graph that consists of four types of nodes 

and six types of relations. The representation of each node and relation type and its 

semantics are explained below. Figure 2.4 shows an example diagnostic network, also 

illustrating the colours used to visualize the types. Note that not all types of relations are 

shown in the picture. 

 

Types of nodes 

Hardware node (orange) 

A hardware node represents the health of one or more hardware components in the system. 

At a high level in the system hierarchy, e.g., at subsystem-level, a hardware node represents 

the health of the collection of hardware pieces within that subsystem. 

A hardware node has at least 1 state valuation: Healthy, which represents that there is no 

problem with the hardware piece(s). Upon specification of a hardware node, one may 

specify the possible hardware faults and their prior probabilities to add more state 

valuations to the node. This allows for example for the specification of a hardware part that 

is 95% likely to be healthy, 4% likely to be contaminated and 1% likely to be malformed. 

These included faults and their likelihoods will d  

 

Function node (purple) 

A function node represents a system function and whether this system function is 

performed as expected or not. Many system functions break down into lower-level system 

functions, which are the subfunctions of such system function. For example, on a high level 

a system may have Heat up the house as system function, which usually breaks down into 

subfunctions like heating up some water, circulating the water, dissipating the heat towards 

the environment, etc. All of these functions are considered system functions and are 

expressed by function nodes, though they reflect different levels of the system hierarchy. 
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Function nodes have two possible state valuations: Ok and NOk, where the first indicates 

that the system function is performed according to expectation and the latter indicates it 

does not. A function node cannot be a root node in the network and therefore does not need 

any priors to be set, as the function can only be performed if either the realization of the 

function is Healthy Ok. 

 

Direct observable node (green) 

A direct observable node represents an automatic interpretation of an observation made by 

the system itself, e.g., an event in the log, a reported reading from a sensor or a KPI. Key is 

that this system observation must be automatically interpretable, which means that no 

an error logged by software, for which its presence in the event log can be checked 

automatically. An example based on sensor readings is when the reading must be within a 

certain predefined range, which can also automatically be checked. While using the 

diagnostic model to diagnose, these nodes determine the initial state of the diagnosis. 

Direct observable nodes have two possible state valuations: Ok and NOk. The first one 

indicates that the reading of this observable is not suspicious, i.e., it does not indicate a 

problem. The latter indicates a potential problem. For example, if a node represents the 

occurrence of an error in the event log its state should be NOk. 

 

Diagnostic test (blue) 

A diagnostic test node represents a diagnostic test that has to be triggered or executed by a 

service engineer to acquire additional data from the system. These are manual diagnostic 

tests, such as measuring the power in a certain place or testing whether a sensor triggers 

upon a manual action. Additionally, many systems have diagnostic self-tests that need to 

be started by a service engineer and for which the results need human interpretation. 

Another example is a parameter being logged automatically, for which also human 

interpretation is needed to assess whether or not the data is as expected. While using the 

diagnostic model to diagnose a certain situation, some of the diagnostic tests are executed, 

providing additional findings on top of the direct observations to come to a diagnosis. 

Identical to the direct observables, diagnostic tests have two state valuations: Ok and NOk, 

where the first indicates the diagnostic test result is as expected (according to normal 

operation conditions) and the latter does not. 

 

Types of relations 
Different types of relations allow for connecting specific types of nodes to each other. All 

relations are represented by directed edges from one node to the other. Table 2.2 provides 

an overview of the types of relations in the diagnostic network, including the valid source 

and target node types for each of the relations. 

Table 2.2: An overview of the types of relations in the diagnostic network. 

Name Label Color Source node types Target node types 

Realizes realizes Orange Hardware Function 

Required for required_for Purple Function Function 

Affects affects Red Hardware Function 

Subfunction subfunction_of Pink Function Function 
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Name Label Color Source node types Target node types 

Test tested_by Blue Hardware, Function Diagnostic Test 

Observable observed_by Green Hardware, Function Direct Observable 

 

Realizes (orange) 

The realizes relation represents the deployment of a function onto a hardware piece or 

group of hardware pieces. The relation edge direction is from a hardware node to a function 

node. The semantics of the relation is such that the function needs its realizing hardware 

pieces to be Healthy in order to function according to expectation, i.e., to be Ok. If one of the 

hardware pieces that realizes the function is not Healthy, the function will be NOk. 

 

Required for (purple) 

on another. Quite literally, the target function of the relation needs the source function to 

function properly (to be Ok) in order to function itself. This means that if a function has 

multiple incoming required for relations from other functions, it depends on all of them to be 

functioning. In logic, this is represented as an AND gate: the function is only Ok if all of its 

required functions are also Ok, otherwise it is NOk. 

  

Affects (red) 

The affects relation represents the potential disturbance a piece of (malfunctioning) 

hardware may pose on the fulfilment of a function. This could be used to represent physical 

effects, such as heat generation or vibration that is caused by a broken piece of hardware, 

that cause a function to fail, even though all of the functional dependencies of this function 

are in order. The main difference with the realizes relation is that this relation represents a 

non-functional relation between the hardware and the function. 

 

Subfunction (pink) 

higher-level functions into lower-level functions. The relation takes the lower-level function 

as a source and the higher-level function as a target. Semantically, this means that the 

higher-level function can only be performed as expected once all of its subfunctions are Ok. 

  

Test (blue) 

diagnostic test node. It represents the observability of the health of the hardware node or 

the capability to fulfil its function of a function node by doing the diagnostic test. A 

diagnostic test may be connected to multiple hardware or function nodes by means of 

multiple test relations, if the test provides observability on all those connected nodes. 

 

Observable (green) 

on correctly by means of a function 

node on a direct observable node. Similar to the test relation, multiple observable relations 

can connect different observed nodes to a single direct observable if the target observable 

provides information on the state of those source nodes. 
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2.4.2 Non-functional dependencies 
As described in Section 2.4.1, functional dependencies constitute the main source of 

information of the proposed diagnostic methodology. For complex systems however there 

might be diagnostic problems for which the path from a root cause to the observed 

functional symptoms might be via non-functional dependencies.  

With non-functional dependencies here we mean failure situations, like a leaking pipe or an 

overheating component, for which as a consequence a function impacts other functions. 

This is a dependency which in normal conditions is not there, that is such a function does not 

have an impact on the other functions. During the design of a system, these dependencies 

might be known to designers but likely are left out from the functional models so in a sense 

non-functional dependencies can be seen as not documented functional dependencies. 

These non-functional dependencies are left out based on implicit assumptions made on the 

environment in which the system is deployed and the normal operational status of its 

components. 

The goal of this section is to introduce an approach to systematically reconstruct these non-

functional dependencies for a system. To do so, we propose the workflow shown in Figure 

2.5.  

 

 

Figure 2.5: SD2Act methodology workflow for inference of non-functional dependencies. 

The difference with Figure 2.2 is on the lower left side. In order to reconstruct such non-

functional dependencies, we make use of hardware breakdowns and expert-based inference 

rules. The hardware breakdowns are first transferred to the graph DB, then inference rules 

are applied on the DB to infer the non-functional relations. In this way, we leverage the DB 

technology  to quickly perform such an inference, i.e. we do not need to write 

specific algorithms to infer these new relations. Based on a single inference rule, many non-

functional relations can be inferred, which minimizes the effort for designers. 

In more detail, the hardware breakdowns contain material and proximity information about 

parts. This can be gathered from sources like CAD drawings and parts databases. Examples 

are shown in Table 2.3 and Table 2.4. Table 2.3 shows the distance information, extracted 

from CAD drawings using the built-in clearance analysis functionality resulting in an 𝑀 ×𝑀 
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matrix for a system with 𝑀 HW components. Table 2.4 shows the property information for 

the parts, where each part can have associated any one of 𝑛 multiple property value. 

Examples of properties are the type of material, weight and thermal conductivity.  

Table 2.3: Computed distance between hardware components computed from the CAD drawing. 

 

 

 

 

 

Table 2.4: Property information on each of the hardware components.  

 

 

 

 

 

 

This information is then added to the graph DB and combined with the information from the 

functional dependencies via the HW nodes. As an example, Figure 2.6 shows the resulting 

graph DB after adding the distance information on top of the existing DB of Figure 2.4 from 

the Hardware_B node to the other hardware nodes. Not shown in the figure is that 

properties from Table 2.4 above have also been added to the Hardware nodes, such as 

HeatSource or SensitiveToHeat. 

From HW To HW Distance 

Hardware_A Hardware_B d_AB 

… … … 

Hardware_A Hardware_M d_AM 

Hardware_B Hardware_C d_BC 

HW Property_1 … Property_n 

Hardware_A Value_1 … Value_n 

Hardware_B Value_2 … … 

… … … … 

Hardware_M Value_1 … … 
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Figure 2.6: Example of graph DB with distance relations. 

Once such information is stored in the DB, we can perform expert-based queries that infer 

non-functional relations. As an example, to infer heat coupling between components close 

in space, one could perform the following query, where we used Neo4j Chyper query 

language syntax:  

 

1  MATCH (from_HW_node : Hardware{property :  'HeatSource'})--> 

2                 (d : DistanceRelation WHERE d.mm < min_distance)--> 

3                (to_HW_node:Hardware{property:'SensitiveToHeat'})--> 

4                (f:RealizesRelation)-->(to_FN_node) 

5  CREATE (from_HW_node)-[:InferredNonFunctionalHeatInfluence]->(to_FN_node) 

 

In lines 1 to 3 we find the HW nodes with a property HeatSource which are closer than 

min_distance to HW nodes with a property SensitiveToHeat. In line 4 we then find the 

function nodes realized by the latter HW nodes. In line 5, for each of combination of the 

above HW and function nodes we add a new relations of type 

InferredNonFunctionalHeatInfluence to the DB. 
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Executing such a query on the DB will then add the relation shown in Figure 2.7. Following 

our workflow, this inferred relations will then be transformed back into a diagnostic network 

as an Affects relation  to be used in a diagnosis since, in the extended network, a failure of 

Hardware_B can become a cause of a malfunctioning of Function_D. 

 

Figure 2.7: Inferred non-functional relation. 

Some considerations on this way to infer non-functional relations: 

• For large systems, computing the distance between all pairs of HW parts could be 

too computationally expensive. A possible solution would be to compute distances 

using the hierarchical decomposition. For example in a recursive way one could 

compute the distance among any two modules and then among any two sub-

module inside each single module. 

• The expert-based inference rules should be collected and maintained in a library. 

This library should also specify the way in which the inferred relations have to be 

transformed into the diagnostic network. 

 

2.4.3 From system design to a diagnostic network 
To express the system dependencies for the creation of the diagnostic models, we propose 

to use Excel to collect all the information (nodes and relations) in a structured way that 

should be stored in the Graph DB. The proposed template allows for relatively easy 

specification of a system at the cost of a number of assumptions, as an Excel template puts 

some limits on the expressive freedom of the model creation. This is in principle not a 

problem, as the template is merely used to demonstrate the creation of the model, rather 

than to provide a fully-fledged tool. An example of the proposed Excel template is shown in 

Figure 2.8. 

 

Figure 2.8: Example system specification using the Excel template. 

The template consists of an individual sheet per (sub)system to be specified. In Figure 2.8, 

-level view of our example system. The 

breakdown into smaller parts of our system is done via so-called Clusters. For every cluster, 
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one or more main functions and/or hardware pieces need to be specified. All are assigned a 

name. These specifications are shown in the first three columns of the template. 

The grey column(s) represent the main function(s) of the cluster being specified in the sheet. 

T  and the main function of this 

cluster is named 

function or hardware piece represented by the row to the function or observable 

  

In the blue columns, only the main functions of the clusters are listed. The second row 

represents the cluster of the function, while the third represents the function name. Again, 

green cells represent a dependency from the row to the column. Three interpretations of 

marked cells are valid: 

• Function → Function: this translates to a Required for relation from the first function 

to the latter. 

• Hardware → Function, within the same cluster: this translates to a Realizes relation 

from the hardware node to the function node. 

• Hardware → Function, in another cluster: this translates to an Affects relation from 

the hardware node to the function node. 

 

his is specified in the second row and ensures the observables to be 

translated into the proper node type in our diagnostic model. Whenever a cell is marked 

green, the observable in the respective column provides information about the function or 

hardware in the respective row. This is translated to an Observed by relation or a Tested by 

relation, depending on the observable type. Additionally, one can specify the costs attached 

ain header and 

each row must have a subheader indicating the name of the costs represented. In this 

assigned for each type of cost to distinguish (which may be 0). 

 

 

Figure 2.9: Color-coded mapping of the cells to the relation it is being translated into if the cell is marked 
green in the template. Grey cells are invalid to mark green. 

To represent all possible relations and node type being derived from the template, Figure 2.9 

shows a color-coded mapping to the different types of nodes and relations. The grey cells 

are invalid to mark as a dependency. A visual representation of the model as specified in 

Figure 2.8 is shown in Figure 2.10. 
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Figure 2.10: A visual representation of the diagnostic model as specified in Figure 2.8. 

The Excel template also provides support for hierarchical specification of a model. A cluster 

can be further detailed by adding a sheet to the Excel file with the name of the cluster. The 

template of the sheet is identical to the one in Figure 2.8. The grey part of the sheet should 

reflect the name of the cluster and all of its main functions as specified in the higher-level 

Subsystem_3’ in the example has two main functions, thus two grey 

columns are needed, as shown in Figure 2.11. 

  

Figure 2.11:  

This more detailed model of the cluster adds upon what has already been specified for the 

cluster. Apart from making sure the cluster name and main function names correspond to 

the upper level, the template works exactly the same. This cluster by itself, without loading it 

in the context of the higher-level system, is visualized by Figure 2.12. 

Subsystem_31 Subsystem_32 Direct DiagnosticTest

Cluster Type Name Function_31 Function_32 Function_311 Function_321 Function_311_Error Test_Function_321

Subsystem_31 Function Function_311 X X X X

Subsystem_31 Hardware Hardware_311 X

Subsystem_32 Function Function_321 X X

Subsystem_32 Hardware Hardware_321 X

Time 20

Functions Observables

Cost

Subsystem_3
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Figure 2.12: Visual representation of only the specification of Subsystem_3, as specified in Figure 2.11. 

By detailing out a cluster, the interfaces from other clusters to the detailed clusters are often 

unclear. Originally, functions of the other clusters were connected to the main functions of 

the to-be detailed cluster, while these target functions have now gotten one or more 

subfunctions, as shown in Figure 2.12. Consequently, it is unclear which subfunctions in the 

detailed cluster are the targets of the external functions that pointed to the cluster's main 

functions. When loading the model, this will be prompted and a choice should be made by 

the user of the library. An example prompt for the above system is shown in Figure 2.13. The 

be refined. The user may now chose to either maintain the original main function to be 

connected, or to clarify this connection to start from either one of the two subfunctions of 

selected function also has a more detailed specification available, a new prompt will appear 

to further refine. This does not happen if an explicit choice has been made to maintain the 

originally connected function (option 1). 

 

Figure 2.13: Example prompt to clarify the interfaces to a more detailed cluster. 

While these interface descriptions should be part of the model, these are not part of the 

Excel template. As such, the specification of these interfaces is saved to a separate file in 

JSON format to enable reloading of the model without having to answer all questions again. 

While it is suboptimal that these interface specifications are not included in a more 

structured form and part of the model specification itself, this approach allows the individual 

clusters to be specified in full isolation, without knowing in which context these will be 

placed. Upon initialization of the model, its placement is known and the further specification 

is needed. Future work may come up with a more structured approach that still maintains 

this benefit. 
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The final model, after detailing out one of the clusters, is shown in Figure 2.14. The four 

Required for Required for 
relations 

functions in Required for relations connected, as these are now 

going to subfunctions of those main functions.

 

Figure 2.14: The visualization of the final example model, including the detailed o  

The expressiveness of the current Excel template is limited in some ways to simplify the 

model specification. These limitations and the assumptions to deal with them are listed 

below. 

• The template does not allow for the specification of individual fault modes of the 

hardware nodes. Besides the default Healthy state, an Unhealthy state is created for 

each hardware node. Since the priors of the individual states cannot be added in the 

template either, the prior is set to be 99% Healthy, and 1% Unhealthy. 

• Direct observables may sometimes be faulty, being either a false positive or a false 

negative, meaning that the observable reports NOk while the function or hardware 

does not have a problem, or that it reports Ok while there is a problem respectively. 

To provide room for these faulty types of observations, each direct observable node 

has a 0.1% chance of being a false positive and a 1% chance of being a false 

negative. Rationale for these different values is that it is usually more likely to have 

something not being reported while it should than having something reported 

mistakenly. In future implementations, these numbers may be changed. 

• Like the direct observables, also diagnostic tests may be wrongly interpreted. To 

provide room for these manual observations, the diagnostic test nodes have a 

0.01% change of being a false positive and a 0.1% chance of being a false negative. 
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2.5 From a diagnostic network to a reasoning 
model 
Before we dive into discussing the different reasoning models, their virtues and challenges, 

and our implementation of those, we must discuss what is meant by reasoning in this 

context, and why is it necessary to construct a reasoning model on top of a diagnostic 

network. 

By reasoning we mean the deduction of (true) statements about a subject matter off of a 

collection of established (true) statements. These statements can be deterministic (if it rains 

the streets are wet) or probabilistic (tomorrow it will rain with 90% probability). An important 

caveat here is that the statements need not be true with respect to the real world, but with 

respect to a model. If our model is only approximately correct, or the evidence inserted in 

the model is incorrect, then its true statements are only approximately true.  

As we have discussed in Section 2.4, a diagnostic network is a rich knowledge graph 

designed to contain a functional representation of a system. In this representation we 

include everything that is relevant for the diagnosability of the system, such as nodes 

representing component health, component functions and their relations, abstract 

representations of KPIs etc., which allows us to understand how failures propagate through 

the system. 

As such, there is quite a lot of explanatory power captured within the knowledge graph itself, 

reasoning 

model.  

Through the introduction of rules and queries, one can use a diagnostic network to deduce 

that, for example, component A and component B are thermally coupled, since component 

A is made out of metal, component B provides active temperature control, and they are 

contiguous. This form of rules-based reasoning is possible within the knowledge graph, but is 

not the only kind of reasoning that one might want to do on a system. 

Most times, the kind of reasoning we are interested in is causal reasoning. We observe 

effects (system behaviour) and want to know what the causes are: which system 

components function as expected and which ones do not. Then, two problems arise. On the 

one hand, one effect can have many causes and we would like to have a way to quantify 

the likelihood of each one, particularly so in the complex systems we consider. On the other, 

one cause may only cause an effect with a certain probability. 

Hence a knowledge based approach is quickly not good enough. That is why we need to add 

a probabilistic reasoning framework to our diagnostic network. 

2.5.1 Network transformation 
While the semantics of all nodes and relations in the diagnostic network are described in 

Section 2.4.1 the formalization step to transform a diagnostic network into a probabilistic 

network is still missing. This section specifies the rules needed to transform from the first 

formalism to the other to allow for reasoning, regardless of which probabilistic formalism is 

selected. 

Every node in the diagnostic network is transformed to a conceptual equivalent in the 

probabilistic network. We shall refer to this conceptual equivalent as the probabilistic node  

in the selected reasoning formalism. The exact probabilistic formula embedded in each 

probabilistic node depends on all of the incoming relations to the node, as those represent 

the dependencies for this node. Essentially, all probabilistic nodes can be seen as AND-gates, 
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Hardware 

The probabilistic node for a hardware node only represents the prior probability of failure of 

the hardware it represents. It does not have any incoming edges, thus has no parents. Table 

2.5 shows an example conditional probability table (CPT) for a hardware node with only one 

faulty state, being Unhealthy, besides the default state Healthy. 

Table 2.5: Example conditional probability table for a probabilistic hardware node with only one faulty state. 

P(Healthy) P(Unhealthy) 

0.99 0.01 

 

Function 

A function node requires all of its parent function nodes, regardless of whether its relation is 

of type Subfunction or a Required for, to be Ok and all of its parent hardware nodes (via a 

Realizes relation) to be Healthy in order to be Ok. In all other ca

is NOk. Table 2.6 shows an example CPT for a function node with two parents. 

Table 2.6: Example CPT for a probabilistic function node with two parent nodes: one function node and one 
hardware node. 

Parent function node Parent hardware node P(Ok) P(NOk) 

Ok Healthy 1.0 0.0 

Ok Unhealthy 0.0 1.0 

NOk Healthy 0.0 1.0 

NOk Unhealthy 0.0 1.0 

 

Direct observable 

The probabilistic node for a direct observable is similar to the function node, as it also 

requires all of its parents to be Healthy or Ok in order to be Ok. Main difference is the 

incorporation of the false positive and false negative rates for the given observable. With 

these rates set to their default values for diagnostic networks, the CPT becomes like Table 

2.7. 

Table 2.7: Example CPT for a probabilistic direct observable node with two parent nodes. 

Parent function node Parent hardware node P(Ok) P(NOk) 

Ok Healthy 0.99 0.01 

Ok Unhealthy 0.001 0.999 

NOk Healthy 0.001 0.999 

NOk Unhealthy 0.001 0.999 

 

Diagnostic test 

The probabilistic node for a diagnostic test is very similar to the direct observable node and 

takes false positive and negative rates into account. An example for a diagnostic test with a 

single parent is shown in Table 2.8. 
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Table 2.8: Example CPT for a probabilistic diagnostic test node with one parent function node. 

Parent function node P(Ok) P(NOk) 

Ok 0.999 0.001 

NOk 0.0001 0.9999 

2.5.2 Candidate reasoning formalisms 
In the project SD2Act 2023 we have investigated 3 different reasoning formalisms: Bayesian 

networks, tensor networks, and probabilistic programming. Dynamic Bayesian networks 

were also studied in SD2Act 2022, but have not been further studied and thus will not be 

discussed in this report.  

The choice of investigated reasoning formalisms was motivated by the form of our 

diagnostic networks and the nature of the available data. Our reasoning formalisms should 

be discrete and graphical because a diagnostic network captures the structure of a system 

in a graph with hardware, function and observable nodes whose states are discrete. Given 

the small number of data available, and the probabilistic nature of the fault propagation and 

detection in the system, our formalism should also be Bayesian and model-based.  

All this considerations point us toward probabilistic graphical models as our best candidate 

framework. The most general formalism in this category of mathematical models is Factor 

graphs, of which tensor networks are an implementation (Robeva & Seigal, 2019). Bayesian 

networks are a subclass of factor graphs and can be implemented separately or as a special 

class of tensor networks. 

2.5.2.1 Bayesian networks 
The first formalism considered is that of Bayesian belief networks, hereafter shortened to 

Bayesian networks (BNs). 

A Bayesian network is a probabilistic model that uses directed acyclic graphs (DAGs) to 

encode joint probability distributions over a set 𝑿 = {𝑋1, … 𝑋𝑛} of discrete random variables. 

Every variable 𝑋𝑖 ∈ 𝑿 has associated a set of parents 𝑃𝑎(𝑋𝑖) ⊆ 𝑿\𝑋𝑖 and a conditional 

probability table(CPT), 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖)). The children of a node 𝑋𝑖 are the variables that have 𝑋𝑖 

as a parent. 

The set of random variables, together with their CPTs, define the nodes of a directed graph 

whose edges are determined by the dependencies in the CPTs. One edge for each 

parent→child relation. 

 

The Bayesian network, in the sense of the DAG with the variables and their CPTs, defines the 

joint probability distribution: 

𝑃(𝑋1, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))

𝑛

𝑖=1

 

In this way one can insert evidence by fixing the value of that variable in the factorization. 

The Bayesian network encodes the joint probability distribution implicitly and can be used to 

(𝑋1, … 𝑋𝑛) =

(𝑥1, … , 𝑥𝑛) 𝑋𝑘
of  

𝑃𝑘(𝑋𝑘) = ∑𝑃(𝑋1, … , 𝑋𝑛) = ∑∏𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖)),

𝑛

𝑖=1𝑋𝑘̅𝑋𝑘̅
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Where 𝑋𝑘̅ means that the summation goes over all variable save 𝑋𝑘. 

The process of summing over all variables but the target ones is called variable elimination, 

and its complexity depends greatly in the order and the intermediate information that is 

stored. 

In Bayesian networks, the algorithm that performs variable elimination is called  message 
passing (MP) or belief propagation (BP), and can compute all marginals in time:  

𝑂(𝑛 ⋅ max (dim(Xi))max⁡(dim⁡(𝑋𝑖))
max⁡(deg𝑋𝑖)⁡)⁡ 

where, dim⁡(𝑋𝑖) is the dimension of the variable 𝑋𝑖, deg(𝑋𝑖) is the in-degree of 𝑋𝑖 in the 

network, and n is the number of variables. 

Observe that for this algorithm to be useful for large networks, the maximum degree of 

nodes in the network must be independent of 𝑛, otherwise the exponential factor in the 

complexity would quickly take over and make computation impossible. A fully 

interconnected network where everything is allowed to directly depend on everything else is 

thus a non-starter. Thankfully, the systems we deal with are not fully interconnected but 

rather locally connected, they are structured. The point here is that structure is not only 

helpful, it is necessary for computation. 

 For a more in-depth discussion of Bayesian networks, see (Koller & Friedman, 2009). 

2.5.2.1.1 Limitations and challenges of Bayesian networks in the context of SD2Act 

In the course of the ADiA and SD2Act projects up to 2022, several limitations and challenges 

of Bayesian networks have been identified, namely: 

1. Enforcing global constraints: BNs do not allow the user to easily enforce system-

level constraints to, for example, express certain laws of physics and force the 

model to adhere to these at all times.  

2. Modelling stateful systems: Bayesian networks represent equilibrium states or states 

at a single moment of time. Stateful systems, such as state machines, which can 

change their state over time must be approached using dynamic/temporal Bayesian 

networks, but these cause scalability challenges as the network needs to be copied 

an unknown number of times.  

3. Reasoning over control and probabilistic loops: Bayesian networks cannot, by 

definition, contain loops. Control loops, however, are to be expected in cyber-

physical systems, which will translate into Bayesian networks with cycles. 

Probabilistic loops are another name for causal loops and are to be expected in 

systems where different components can affect each other in ways that are not 

directionally clear or unique.  

4. Description of the problem in terms of (probabilistic) relations by design engineers: 
Most engineers are not used to express system behaviour in term of probabilistic 

relations such as CPTs. 

To these limitations we must now add three. 

5. Reasoning with continuous variables: System variables may exist that are not well 

described by a binary or discrete set of states (e.g. degradation), but rather require 

continuous random variables to be described. BN in their current formulation cannot 

easily deal with continuous variables. This constitutes a bottleneck to extending the 

methodology to performance diagnostics, i.e. the diagnosis of underperforming 

systems. 

6. Temporal data: The current framework does not allow one to make use of time 

series or otherwise ordered data which could resolve some of the diagnostic 

ambiguity present in a static model. As discussed before, dynamic Bayesian 

networks are a possibility but have been found to have scalability issues.  
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7. Computation of joint entropies: The assisted diagnostic with hierarchy approach of 

section 4 relies on computing the conditional entropy of the hardware nodes with 

respect to the possible tests. This is a computationally expensive task that grows 

exponentially with the number of health nodes to be considered, and which is now a 

bottleneck to computation for the current implementation of Bayesian networks. 

 

Some of these limitations no longer apply in the functional modelling framework of SD2Act. 

The nature and importance of these limitations must be reassessed in the new modelling 

framework.  

Stepping away from modelling physical behaviour and towards functional modelling can 

potentially circumvent the need for enforcing global physical constraints (limitation 1), 

although non-functional relations can still exist that are best described as constraints 

between hardware nodes in the diagnostic network. 

Regarding the modelling of stateful systems and the reasoning of control loops (limitations 

2 and 3), the functional approach alleviates the limitations of Bayesian networks since the 

details of the control loop can now be abstracted away. Controller states no longer need to 

be tracked in time and are simply described as either performing their function or not. The 

same can be said, up to a point, about state machines. Further research is needed in this 

direction. 

Limitation number 4, i.e. difficulty of problem description by design engineers still applies but 

has now changed in nature. Whereas before the difficulty was in translating physical 

interactions into probabilistic variables and CPTs, the difficulty now is in describing a physical 

system at the functional level, a problem that has been the subject of much work in the 

model-based system engineering community. This is no coincidence, as the functional 

approach to diagnostics was conceived with this synergy in mind.  

For  limitations 5 and 6, reasoning with continuous variables and temporal data, neither 

Bayesian networks nor tensor networks provide satisfactory solutions. We are currently  

looking into probabilistic programming to tackle these. On the one hand, limiting our scope 

to functional behaviour and machine hard-downs reduces the necessity of continuous 

, the data from the field oftentimes comes in the form of time-

machine hard-down could be the result of a collection of underperforming factors, none of 

which is caused by a broken hardware, but which together compound to an out of spec 

functionality. Our current approach is to have service engineers use their field expertise to 

interpret the results of tests and KPIs yielding non-binary data and translate them into 

prob  

Limitation 7 is still under consideration. Possible solutions are a switch to approximate 

estimation of entropy via sampling, using computationally less expensive bounds on entropy 

as proxy for the real quantity or using the high-parallelization implementation of tensor 

networks to reduce computation time of the full conditional entropy. 

Let us summarize. The turn to functional modelling has ameliorated but not completely 

supressed the limitations of Bayesian networks as a reasoning formalism. We have not yet 

encountered the need for global variables, modelling state machines and control loops has 

not yet been attempted in a full case-study but we have reason to believe the functional 

approach goes a long way towards solving limitations 2 and 3. Functional modelling also 

allows us to piggyback on the systems engineering efforts and expertise to tackle limitation 

4.  

Nevertheless, some difficulties remain. Limitations 5, 6 and 7 are largely unaddressed. The 

translation between system behaviour and functional behaviour is far from unique. The 
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problem with probabilistic loops still has to be addressed. For this last item, we propose a 

work-around that allows us to compute inference in Bayesian networks with loops. This 

workaround, described in Section 2.5.2.1.2, comes at a computational cost, and so we later 

introduce tensor networks, a generalization of Bayesian networks that can directly deal with 

loops while maintaining all the functionalities of Bayesian networks. 

2.5.2.1.2 Loop cutting in Bayesian networks. A house heating example 

 

Figure 2.15: A simple example of a loopy system in the form of a house heating control loop.  

As was mentioned in the previous section, the issue of directed loops in the causal graph 

defined by a Bayesian network remains. Bayesian networks with directed causal loops are 

invalid inputs for the inference algorithms for two reasons: 

1. Belief propagation relies on locally sending messages along the DAG that flow from 

the roots to the leaves of the networks (and then back up). The problem with loops 

is that messages are then passed along the loop without ever hitting a leaf node 

and the algorithm never halts. 

2. A network with causal loops might not define a well-formed joint probability 

distribution, meaning that the sum over all variables need not sum up to one. In 

other words, if the network contains loops, the factorized joint function that it 

encodes via Equation 2.2 need not be a normalized joint probability distribution. 

 

In the following, we describe a procedure that modifies a BN with a loop allowing us to 

compute inference in the new network. We illustrate the procedure with an example. 

Consider the house heating system in Figure 2.15. Although not in the syntax of diagnostic 

networks described in Section 2.1, this is a kind of functional model because the states of 

the variables do not track the instantaneous states of the room, hardware components or 

settings, but rather their long term behaviour: Is the controller controlling?  Is the heater 
heating?  

  

Figure 2.16: CPT of Setting 

The CPTs of the system are all rather trivial and can be easily deduced from the name of the 

states. Only the CPT for setting is non-trivial (see line 2 of Figure 2.16), this is to allow for 

combinations where the measured temperature is controlled, but the system is not 

controlled, as would be the case with a drifting sensor. 

This seemingly sensible Bayesian network is ill-defined, as was explained in the previous 

section. The problem lies in the loop, and therefore we must find a way of formally cutting 
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the loop (i.e. modifying the network) while preserving the desired correlations in the new 

network. 

The method for cutting the loop proceeds in four steps. 

1. Identify a node in the loop and create a copy of the node, meaning, a new node 

with the same states as the original one, severing the connection between Node 

and its children

children. 

2. 

CPT is defined by 𝑃(𝐸𝑞𝑢𝑎𝑙 = ′𝑦𝑒𝑠′|𝑁𝑜𝑑𝑒 = 𝑛, 𝐶𝑜𝑝𝑦 = 𝑚) = {
1, ⁡𝑛 = 𝑚
0, ⁡𝑛 ≠ 𝑚

 

3. Insert as evi  

4.  

 

In the example of the house heating example, the loop is cut by identifying the Node in step 

Figure 2.17). 

 

 

Figure 2.17: Cut loop in a Bayesian network. 

This (conditioned) Bayesian network is now well-defined because it contains no direct cycles. 

 

One last observation before we move on is that it is the presence of a virtual Evidence node 

in the network here that allows us to cut the loop. If any of the variables of the loop were to 

be observed and inserted as evidence there would be no issue in updating the probabilities 

of the rest of the variables. In essence, it seems that adding evidence to loops is what makes 

them manageable, and this method is a way to insert evidence in the network when there is 

none from the field.  

This method does not come without drawbacks. We are modifying the network and the 

causal flow, and the choice of assigning flat priors to 𝐵′ is somewhat arbitrary, but most 

importantly, it requires us to find the loops and decide where to cut them. Loop finding is a 

very computationally expensive task that scales badly in the size of the network. 

One solution to this problem is to use tensor networks as a reasoning formalism. As 

discussed in Section 2.4.2.2, tensor networks generalize Bayesian networks with the added 

benefit that they can naturally deal with loops. In Appendix A we prove that this way of 

cutting a loop in a BN is equivalent to the way tensor networks naturally compute loops. 
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2.5.2.2 Tensor networks 
Tensor networks are the second probabilistic reasoning formalism that we study. There are 

many ways to define tensors, the easiest one is as multidimensional arrays of numbers. 

Every tensor has a set of indices that take values in their respective index domain. 

Mathematically a tensor 𝑇 ∈ ℝ𝑑1 × …× ℝ𝑑𝑛 being an array of numbers is denoted as: 

𝑇 = [𝑇𝑋1,…,𝑋𝑛]⁡
⁡⁡⁡⁡𝑤ℎ𝑒𝑟𝑒⁡𝑋𝑗 ∈ {1, … , 𝑑𝑗}⁡𝑓𝑜𝑟⁡𝑗 = 1,… , 𝑛,  or 𝑇 = 𝑇𝑋1,…,𝑋𝑛 for short. Capital letters 

denote the indices (lower-case letters denote values that those indices can take). If the 

number of indices is small, lower-case roman letters are often used to denote indices. 

The number of indices of an array is called the tensor order, (rank is also used, but should 

not be confused with matrix rank). A vector is thus an order-1 tensor, a matrix an order 2 

and so on (see Figure 2.18). 

  

Figure 2.18: Examples of tensors of order 1 to 3. The indices of the tensor act as coordinates on the array. 

A tensor network is a graphical representation of a product of tensors with (possibly) 

overlapping indices. 

Equation 2.1 

𝑇̃ = [𝑇̃𝑋1,…,𝑋𝑛] = ∏𝑇𝑋𝑠𝑗
(𝑗)

𝑙

𝑗=1

 

where 𝑆𝑖 is a subset of the set of all indices in the network. For example, let 𝑆𝑖 = {2,3,5} be 

the set of indices of a tensor 𝑇(𝑖), then 𝑇𝑋𝑠𝑗
(𝑖)

= 𝑇𝑋2,𝑋3,𝑋5
(𝑖)

 

In its graphical representation, the network contains one node for each factor in Equation 

2.1, and a (hyper-)edge for every index connecting all tensors that share that index (see 

Figure 2.19). 

  

Figure 2.19: Tensor network before and after contraction and its graphical representation. 

The basic operation on a tensor network is called tensor contraction and consists of 

summing over one or more of its indices. Contraction is done locally on the network, and the 

result of contracting an index between two or more tensors is a new tensor whose indices 

are the indices of the old tensors that were not contracted. 
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When several indices are contracted at once, the order of contraction can have a huge 

impact in the complexity of the operation. Although finding the optimal order of contraction 

is an NP-complete problem for arbitrary networks, there exist many algorithms that can 

nd tree-like the network, the 

easier it is to contract. 

Another way of understanding tensors is as maps from their indices to the real numbers. 

𝑇: [𝑑1] × …× [𝑑𝑛] → ℝ⁡ 

𝑇(𝑋1, … , 𝑋𝑛) = 𝑇𝑋1,…,𝑋𝑛 

In this notation, a tensor network is a representation of the map: 

Equation 2.2 

𝑇: [𝑑1] × …× [𝑑𝑛] → ℝ⁡ 

𝑇(𝑋1, … , 𝑋𝑛) = ∏𝑇𝑗(𝑋𝑆𝑗)

𝑙

𝑗=1

.⁡ 

Observe that this notation is reminiscent of that for the joint probability distribution of a 

Bayesian network. 

For the remainder of this report we will mostly use the second notation, but both are useful. 

Thinking of tensors and tensor networks as multivariate functions allows us to equate them 

to random variables and probability distributions, while thinking of them as arrays allows us 

to express them in terms a computer can better handle. 

2.5.2.2.1 Inference in tensor networks 

As has already been hinted at, tensor networks can be used to encode factorizations of joint 

probability distributions. Just by looking at Equation 2.2, we see that all we really need for 

this to be a probability distribution is that the factor tensors be non-negative and that it be 

normalized, i.e. contracting all indices equals 1. 

Every index thus represents a variable and every tensor a factor in the factorization of the 

joint probability distribution. 

Tensor contraction is then nothing but marginalization, also known as variable elimination. 

Similarly, inserting evidence is the same as fixing an index to a particular value or adding a 

delta factor to the factorization and contracting the index away. 

Moreover, because of the form of Equation 2.2, multiplication by constants commutes with 

the operation of index contraction. This means that we do not need to keep track of 

normalization constants, we simply compute them after marginalization (a much easier 

task). 

This turns out to be quite handy for application of the chain rule of probability, i.e. 

𝑃(𝑋|𝑌 = 𝑦) ∝ 𝑃(𝑋, 𝑌 = 𝑦). 

Having marginalization, insertion of evidence and the chain rule we have all the ingredients 

necessary for Bayesian inference (see Table 2.9). An in-depth analysis of this correspondence 

can be found in (Robeva & Seigal, 2019) and (Glasser et al., 2019).  

Table 2.9: Conceptual parallels between tensor networks and Bayesian inference. 

Joint probability distribution 

 

𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐴, 𝐵) 

tensor network 
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Marginalization 

 

 

𝑃(𝐶) =∑𝑃(𝐴, 𝐵, 𝐶)

𝐴,𝐵

 

Tensor contraction 

Insertion of evidence 

 

 

𝑃(𝐴, 𝐵, 𝐶 = 𝑐) = 𝑃(𝐴, 𝐵, 𝐶) ⋅ 𝛿𝐶=𝑐 

addition of delta node 

Chain rule 

 

 

𝑃(𝐴, 𝐵|𝐶 = 𝑐) ∝ 𝑃(𝐴, 𝐵, 𝐶 = 𝑐) 

Constant invariance 

 

The current implementation of marginalization on MBDlyb computes all marginals 

sequentially. The complexity of this naïve algorithm (if indeed one could call it an algorithm) 

is 𝑂(𝑛2), where 𝑛 is the number of variables in the network. This is worse than the 𝑂(𝑛) 

algorithm for marginalization in Bayesian networks, but still fast enough for us at this stage 

of development.  

Further improvements in the algorithm are possible by storing intermediate computations 

and fetching their result rather than recomputing them like we do now.  

2.5.2.2.2 Bayesian networks as a subclass of tensor networks 

In a Bayesian network, we put variables and their CPTs into nodes and connect them 

representation of a factorized joint probability distribution of the form: 

Equation 2.3 

𝑃(𝑋1, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))

𝑛

𝑖=1

 

This is but a special case of the factorized function in Equation 2.2.  

where ⁡𝑆𝑖 = {𝑋𝑖 , 𝑃𝑎(𝑋𝑖)}, 𝑚 = 𝑛, and each 𝑓𝑖 is a conditional probability table. 

 But as we have seen, this can be also expressed graphically as a tensor network. In general, 

the changes to the graphical representation are that nodes in a BN that were labelled by a 

variable name, call it 𝑌, and contained its CPT are replaced by: 

a. A tensor with one index per parent of 𝑌 and one for 𝑌 itself, containing the CPT of 𝑌, 

b. One edge per variable. If the variable appears multiple times (because it is a parent 

to many nodes), this is a hyperedge.  

 

A simple example will illustrate this perfectly. Consider the Bayesian network in Figure 2.20. 
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Figure 2.20: Example Bayesian network. 

This network is a representation of the joint probability distribution: 

𝑃(𝑈,𝑊, 𝑋, 𝑌, 𝑍) = 𝑃𝑈(𝑈) ⋅ 𝑃𝑊(𝑊) ⋅ 𝑃𝑋|𝑈,𝑊(𝑋|𝑈,𝑊) ⋅ 𝑃𝑌|𝑋(𝑌|𝑋) ⋅ 𝑃𝑍|𝑋(𝑍|𝑋) 

  

A visualization of this joint probability distribution as a tensor network looks is shown in 

Figure 2.21. 

  

Figure 2.21: Tensor network visualization of the example Bayesian network. 

Indeed, we see here that the tensor network contains one tensor per element in the 

factorization and one edge for each variable, including a hyperedge for 𝑋 because this 

variable appears in the tensors 𝑃(𝑋|𝑈,𝑊), 𝑃(𝑌|𝑋), 𝑃(𝑍|𝑋). 

2.5.2.2.3 Loops in tensor networks 

Tensor networks can natively deal with both of the issues that make loops incompatible with 

Bayesian networks. 

On the one hand, tensor contraction, the operation used for variable elimination on tensor 

networks, bypasses the problems encountered by message passing in evaluating loops 

altogether by not being directional.  

On the other hand, the issue of loops of local conditional dependencies that do not amount 

to a well-defined joint probability distribution is also not a limitation of tensor networks. That 

is because tensor networks are not limited to such functions. As long as we remember to 

normalize our results at the end, computation on networks with loops is always possible, 

and the result, as we will see at the end of this section, is always proportional to a well-

formed conditional probability distribution on the modified Bayesian network that breaks the 

loop (see Section 2.5.2.1.2). 

2.5.2.2.4 Example of a loop in a functional diagnostic network 

Let us illustrate how tensor networks deal with loops with the simple case of two functions, 

𝐹1, 𝐹2, each with their own hardware and KPI nodes, and each dependent on the other (see 

Figure 2.22). 
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In order to fully describe this system we need to specify the hardware priors, conditional 

probability tables of the function nodes and CPTs of the observable nodes. For the prior 

probabilities of 𝐻1 and 𝐻2 we choose [𝑃(𝐻𝑖 = 𝑂𝑘) = 0.95; ⁡𝑃(𝐻𝑖 = 𝑁𝑂𝑘) = 0.05], while for the 

KPIs we choose a false positive and false negative rate of 0.01.  

Special care must be taken when choosing the CPTs of 𝐹1 and 𝐹2. By default, in MBDlyb we 

define the CPT of a node to be the logical 𝐴𝑁𝐷 of its parent nodes (Section 2.5.1). If we were 

to apply the default in this case, our variables 𝐹1 and 𝐹2 would become perfectly correlated. 

We would not have a loop but rather the same variable twice. In principle, it could happen 

that a system has a set of function variables that form a loop where each one is strictly 

Normal N . In that case, the tensor network 

would (correctly) make all variables in the loop perfectly correlated. For our purposes now, 

however, this is not insightful enough. We would still like the hardware nodes to be 

necessary for their functions to be performed, but will relax the assumption that an 

abnormal function necessarily makes its functional children perform abnormally. Moreover, 

we will make it such that an A   𝐹1 is unlikely to make 𝐹2 abnormal, while an 

abnormal 𝐹2 is very likely to make 𝐹1 malfunction. This is made manually, but a working 

solution is part of the library. The resulting tensor arrays are those in Figure 2.23.     

 

 

Figure 2.23: Tensor network with tensor arrays fully specified. Observe the difference in the second lines of 
both middle arrays. These different values make for a weak influence from right to left and a strong 
influence from left to right. 

Figure 2.22: A simple functional network containing two function nodes forming a probabilistic loop. The left 
diagram represents the diagnostic network, while the right one is the resulting tensor network. This is not a 
complete characterization because the priors and CPTs are yet to be specified. 
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The first question one might have is what are the posterior probabilities of all nodes prior to 

inserting evidence. These correspond to rows 1 and 2 of Table 2.10. If we now insert as 

evidence 𝐾𝑃𝐼1 = 𝑁𝑂𝑘, or alternatively 𝐾𝑃𝐼2 = 𝑁𝑂𝑘, the resulting posteriors are those in rows 

3-4 and 5-6 of Table 2.10, respectively.  

These are the same numbers one obtains if one uses a Bayesian network with the loop cut 

according to the procedure in Section 2.5.2.1.2. 

What transpires from looking at these numbers, especially the cases where we insert 

evidence, is the asymmetry in the cross-influence between 𝐹1 and 𝐹2. When the evidence is 

𝐾𝑃𝐼1 = 𝑁𝑂𝑘, the posterior probability of 𝐻1 being broken jumps considerably, while that for 

𝐻2 stays nearly constant, at the same time, the probability of 𝐹2 = 𝑁𝑂𝑘 is very high (which is 

attributed to the strong influence of 𝐹1 on 𝐹2 rather than to 𝐻2 being broken). 

In contrast, when  𝐾𝑃𝐼2 = 𝑁𝑂𝑘, both hardware nodes are considerably more likely to be 

broken than before in roughly equal ways. What is happening here is that, because of the 

strong influence of 𝐹1 on 𝐹2, the latter is an indicator for the former, so when strong 

evidence comes for 𝐹2 = 𝑁𝑂𝑘, one possibility is 𝐻2 = 𝐵𝑟𝑜𝑘𝑒𝑛, but another one is that 𝐹1 =

𝑁𝑂𝑘, which, if true, would be caused by 𝐻1 = 𝐵𝑟𝑜𝑘𝑒𝑛. We will have another look at these 

numbers in Section 2.5.2.2.5. 

Table 2.10: Posterior probabilities for the system with no evidence inserted, after inserting evidence for 𝐾𝑃𝐼1 
and after inserting evidence for 𝐾𝑃𝐼2. 

Case State/variable 𝐻1 𝐻2 𝐹1 𝐹2 𝐾𝑃𝐼1 𝐾𝑃𝐼2 

No evidence Healthy/Ok 0.956 0.956 0.822 0.797 0.815 0.791 

Broken/NOk 0.044 0.044 0.178 0.203 0.185 0.209 

𝐾𝑃𝐼1 = 𝑁𝑂𝑘 Healthy/Ok 0.766 0.942 0.044 0.087 0 0.095 

Broken/NOk 0.234 0.058 0.956 0.913 1 0.905 

𝐾𝑃𝐼2 = 𝑁𝑂𝑘 Healthy/Ok 0.832 0.793 0.195 0.038 0.201 0 

Broken/NOk 0.168 0.207 0.805 0.962 0.799 1 

 

2.5.2.2.5 Advantages and Challenges in tensor networks 

Although tensor networks are a strict generalization of Bayesian networks, in SD2Act we do 

not make use of their superior expressive power to create models, meaning that the 

diagnostic models described in section 2 are very BN-like. The use of TNs has therefore no 

effect on the kinds of models we create, and their impact is felt on the computational back-

end of things. In particular, using TNs allows us to easily deal with loops and has 

implications (both positive and negative) on the computation complexity of marginalization 

and entropy calculations, and the interpretation of results in the presence of loops. We 

would be remiss if we did not mention too any of the features of tensor networks not 

explored in SD2Act, so we close this section with a brief discussion of those. 

• Loops 
The computation of marginals (and therefore entropies) on networks with loops is 

possible on the TN without workarounds or additional steps. 

 

• Computation of marginals  
Our benchmarking experiments show that the basic contraction of edges (the TN 

version of variable elimination) on the chosen TN library Quimb (see quimb 
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documentation2) is much faster than the equivalent computation of messages on 

the BN library PyAgrum (see PyAgrum documentation3). 

However, this advantage is cancelled by the fact that our algorithm for computing 

all marginals is very primitive, requiring 𝑂(𝑛2) operations, rather than the 𝑂(𝑛) 

required for belief propagation in the BN. 

Our results show that belief propagation on a BN takes ~⁡𝐾1 ⋅ 𝑛 steps, where 𝑛 is the 

number of nodes in the network, whereas the naïve algorithm for computation of 

marginals on the corresponding TN takes ~⁡𝐾2 ⋅ 𝑛
2 steps, where 𝐾1 ≈ 10−3⁡ and 𝐾2 ≈

10−4. 

This means that there is both need and room for improvement in the TN algorithm 

for computing marginals. 

The main reason sequential marginalization of the TN has worse scaling than belief 

propagation on a BN is redundant computation. BP manages to avoid redundant 

computation by storing the result of all intermediate computations and fetching it 

every time the algorithm calls for a computation it has already performed. 

At the moment we do no such thing in the TN algorithm. 

Additionally, we are not making use of the parallelization and GPU acceleration that 

is supported by Quimb because of the need to run the computation on a Linux 

environment. 

 

• Computation of joint entropies 

Our chosen TN implementation allows for the in-situ computation of functions like 

the joint entropy of a subset of nodes, whose joint probability would be too large to 

store in memory (and too costly to compute). 

 

In the example given in a tutorial4 for entropy calculations, one can compute the 

joint entropy of 27 variables (without GPU acceleration) in a network with 304 nodes 

in under 90 seconds. The computation time is reduced to 13 seconds if one 

considers only 18 variables.   

Further reductions would follow for less complicated networks (this one is an 

extreme case) and if one were to use GPU acceleration. 

simply out of reach in the Bayesian network formalism. 

_______ 

2 https://quimb.readthedocs.io/en/latest/index.html 
3 https://pyagrum.readthedocs.io/en/1.11.0/ 
4 https://cotengra.readthedocs.io/en/main/examples/ex_large_output_lazy.html 

Figure 2.24: [Left] TN with 304 nodes and 18 output indices in red. [Right] Code computing the 
contraction tree and the joint entropy of all 18 output indices. Observe that most of the computation 
time is in computing the contraction tree. For very hierarchical and tree-like networks this would be 
much faster. 

https://quimb.readthedocs.io/en/latest/index.html
https://pyagrum.readthedocs.io/en/1.11.0/
https://cotengra.readthedocs.io/en/main/examples/ex_large_output_lazy.html
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• Interpretation of results in networks with loops 

In the example detailed in Section 2.5.2.2.4 we have a TN with a loop between 

𝐹1and 𝐹2. In this network, we set the influence of 𝐹1 = 𝑁𝑂𝑘 on 𝐹2 much bigger than 

the influence of 𝐹2 = 𝑁𝑂𝑘 on 𝐹1. As we already discussed, this leads us to reasonable 

diagnostics in the sense that 𝐾𝑃𝐼1 = 𝑁𝑂𝑘 makes both 𝐹1 and 𝐹2 very likely 𝑁𝑂𝑘 but 

only suspects 𝐻1 of being broken. However, the actual numbers for the posterior 

probabilities of 𝐻1 and 𝐻2 vary quite a lot with the strength of the mutual influence 

between 𝐹1 and 𝐹2  

While it seems that the diagnostic result is quite robust to the choice of influence 

strength, it remains an open question what are the right values for these influences. 

We have already encountered some non-trivial behaviour on an ASML-specific case 

whose simplified structure is that of 

Figure 2.25. 

  

Figure 2.25: A likely false positive that shows the ability of these models to create causal artifacts. 

In this network, 𝐾𝑃𝐼2 and 𝐾𝑃𝐼3 suggest that both components in the loop are 

healthy while, at the same time, 𝐾𝑃𝐼1 reports NOk. This is very likely a false positive 

of 𝐾𝑃𝐼1, which the tensor network detects because the posteriors of both health 

nodes report Healthy with very high probability. However, depending on the strength 

of the influence between 𝐹1 and 𝐹2, the network reports a substantial probability 

that they are both NOk. For cross-influences that are both 0.75, the model reports a 

33% and 29% chance of 𝐹1 and 𝐹2 being NOk, respectively. But this happens at the 

same time that both 𝐻1 and ⁡𝐻2 are very likely Healthy. The functions are making 

each other malfunction. When the coupling between function nodes is weakened to 

0.75 on one direction and 0.05 in the other, the causality loop (predictably) 

disappears. 

What we have here are malfunctioning functions that are not caused by any 

malfunctioning hardware. This is an artifact of the model, but one that does not 

seem to lead to a misdiagnosis. More investigation is required. 

 

• Features of tensor networks identified but not realized in MBDlyb 
o Hyperedges as global variables and constraints. We consider this not 

necessary at this stage (see Section 2.5.2.1.1). 

o Non-causal relations. The biggest unused feature of tensor networks is their 

ability to encode non-causal relations through the use of tensors whose 

rows (or columns) do not sum up to one, i.e. tensors that are not conditional 

probability tables.  
For example, consider two Boolean variables, 𝑋1 and 𝑋2. If we want to 

enforce that 𝑋1 = 𝑋2 (no causality here, just a constraint), one can introduce 

in the network a tensor 𝛿 whose array is simply a 2x2 identity matrix. One 

could go further and enforce any equation on a group of variables of the 

form 𝑓(𝑋1, … , 𝑋𝑘) = 0 by introducing a tensor 𝑇 whose array is defined by:  
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𝑇𝑋1…𝑋𝑘 {
1⁡⁡⁡⁡𝑖𝑓⁡𝑓(𝑋1, … , 𝑋𝑘) = 0⁡
0⁡⁡⁡⁡𝑒𝑙𝑠𝑒.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

In physics, when two particles affect each other we do not use the concept 

of causality, but rather, we say that they interact. This is then translated into 

an interaction term in the equations of motion of the system. 

One could attempt the same in diagnostic networks where we have two 

functions that directly affect each other, translating a loop into an 

interaction tensor (see Figure 2.26). As long as it is a non-negative tensor, 
any interaction tensor 𝐺𝑋1,𝑋2 is allowed. 

 

Figure 2.26: [Left] Interaction between variables expressed as a bidirectional causal 

relation. [Right] Interaction expresses as a non-causal factor. 

 

o Correspondence to other computational formalisms: 
It is known in the tensor network community that tensor networks can be 

used to encode a few other computational formalisms. While here we have 

used the correspondence between tensor networks and factor graphs, the 

former can also be used to encode, among others, Hidden Markov Chains 

(HMC), Borne machines, quantum circuits or satisfiability formulas. In many 

of these there exist algorithms for computing various quantities of interest, 

sampling, parameter learning and approximating probability distributions, 

see (Glasser et al., 2018), (Rams et al., 2021) and (Bañuls, 2023). 

 

o Modelling with continuous variables: 
It is possible to generalize tensor networks to the setting where the 

variables are continuous variables described by exponential probability 

density functions (like Gaussian, Exponential, Beta, etc.) and the factors are 

no longer arrays of numbers but functions, or rather transformations on the 

random variables. This is known in the literature as factor graphs (tensor 

networks and discrete factor graphs are the same thing). While continuous 

factor graphs are much more expressive probabilistic models than tensor 

networks or Bayesian networks, inference on FG is much more complicated. 

There exist several implementations of continuous factor graphs, such as 

the Julia-based library RxInfer5, or the C++-based GTSAM6.  

2.5.3 Chosen reasoning formalism 
In this section we have considered two reasoning formalisms for diagnostics, Bayesian 

networks and tensor networks. We have seen that the latter include the former and that, 

although many of the limitations of Bayesian networks identified in the ADiA project have 

changed (see Section 2.5.2.1.1) some challenges remain for which tensor networks are the 

more appropriate formalism. We have also discussed the unique features of tensor networks 

and their limitations. In light of this discussion, we have decided to use tensor networks as 

our primary reasoning formalism, using the python library Quimb as our implementation of 

tensor networks. Nonetheless, we have decided to continue supporting Bayesian networks 

_______ 

5 https://github.com/ReactiveBayes/RxInfer.jl 
6 https://gtsam.org/ 

https://github.com/ReactiveBayes/RxInfer.jl
https://gtsam.org/
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for the time being, implemented using the python library PyAgrum, given the familiarity of 

some of the authors with the software and the minimal overhead that this incurs. 

2.6 Iterative diagnosis 
In this section, we will describe the iterative diagnostic process that forms a core part of our 

methodology as well as theoretical learnings about the diagnostic process. In a nutshell: by 

performing service actions on the system and feeding their results back into the diagnostic 

system, we can recommend service actions that are perfectly aligned with the needs of the 

diagnoser. 

The following will be our running example: 

Your cherished CD Radio player, a relic from the golden 90s, suddenly falls silent. The 

th
turning knobs in hopes of hitting the right combination? Or do you opt for a fresh power 
source, replacing the old battery with a new surge of energy?  

Approaching this conundrum systematically, you might be tempted to take the most 
insightful service action, assuming, of course, you have a measure for that. After all, the 

more insights you have on the status of the system, the quicker you can make it work again. 

But what if it turns out that the most insightful diagnostic action you could take on the CD 

Radio player is a comprehensive measurement of its main board? For this task you would 

need a specialist measuring device that costs a significant amount of money and will also 

take a few days to be shipped to you. So, before going down that road, it may be much more 

sensible to consider a less insightful but more affordable diagnostic test, such as trying 

opped working or also the 

radio receiver.  

This example illustrates the common thread of this section: striking the right balance 

between diagnostic insight and diagnostic cost to find the best next diagnostic action. To get 

there, we need to take a few steps. First, we will discuss the operational diagnosis loop in 

more detail. We then move towards the workings of the diagnoser and discuss both criteria 

 diagnostic information gain and cost of diagnostic actions  in isolation. Finally, we will 

describe our methodology for combining those criteria into a single value that expresses the 

value of the diagnostic action in the current context.  

 

2.6.1 Operational diagnosis loop 

 

Figure 2.27: The operational diagnosis loop consists of a realized system, observations, a diagnostic 
computational model and service actions. 

The operational diagnosis loop, as depicted in Figure 2.27, is an iterative process for root 

cause analysis in malfunctioning high-tech systems. This loop consists of four essential 

components: 

• the realized system,  
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• a diagnostic computational model, 

• timeseries and other observations, 

• service actions. 

The operational diagnosis loop starts from a realized system in its operational context, i.e. 

the system is already built and running in its environment. 

The design process of the system is (usually) concluded. Hence, a diagnostic action may help 

us find the problem but will not change the system design to make it easier to find the 

problem.7 

The realized system produces operational data in the form of timeseries and observations. 

For example, this could be error or event logs, logs of measurements that the system 

collects during operation, or observations such as a warning indicators. In the context of the 

SD2Act project, we also call these direct observables as the information can be obtained 

from the system directly, without any additional means (see also Section 2.4.1).  

The direct observables (timeseries and other observations) are then fed into the diagnostic 

computational model. For details about the computational model, we refer to the previous  

chapter. Crucial for the operational diagnosis loop is that the diagnostic computational 

model calculates an optimal next service action that can be performed on the system. 

Finally, the best next service actions are performed on the realized system and their results 

are fed back into the diagnostic computational model. This closes the diagnosis loop. Note 

that service actions in the context of SD2Act are usually considered to be measuring KPIs or 

indirect observables. They provide measurements or insight into system components for 

which  as opposed to direct observables  some effort has to be taken. The results of these 

efforts are entered as evidence into the reasoning model. We do not consider replacements 

of parts or trying alternative settings as service actions in the context of SD2Act, for these 

types of service actions see (van Gerwen et al., 2023). See Figure 2.28 for an illustration of 

the goal of assisted, iterative diagnostics as opposed to conventional diagnostics. 

 

Figure 2.28: This graphic illustrates the goal of iterated diagnostics: reducing the number of service actions 
(the dots) as well as the total cost of the diagnostic procedure. Through iterated diagnostics we aim to push 
the graph from right to left. 

_______ 

7 One can also consider a diagnosis loop in the context of designing systems. The goal there is to improve system 
design in order to facilitate diagnostics in the operational context.  



 

 

 TNO Public  TNO 2024 R10833 

 TNO Public 43/66 

2.6.2 Recommending the next best service action 
In this section and its subsections, we will describe our methodology for recommending the 

next best service action. To begin with, there are two main criteria for choosing a service 

action: 

• The (expected) information gain of a service action, i.e., insight the service action 

promises to provide on the status of the system. 

• The (expected) cost of performing said service action. Cost may depend dynamically on 

 

If one considers only cost, then one might end up performing many affordable but useless 

tests. On the other hand, if one considers only information gain, then one might recommend 

tests that are so expensive that they are not considered cost-effective to carry out. 

Potentially, the same information gain could be achieved by combining a few less 

informative tests that are jointly less expensive. These considerations illustrate that both 

cost and information gain should be considered when choosing the next service action.  

We will now discuss both criteria in isolation and then move on to approaches for combining 

them. 

2.6.2.1 Diagnostic information gain 
The first criterion for recommending service actions is diagnostic information gain, i.e., we 

will now discuss a measure for how much we learn about the health of the system by 

performing a service action.  

2.6.2.1.1 Technical preliminaries and scope of the methodology.  

The minimal assumptions for applying the techniques discussed in this section are the 

existence of a diagnostic model for a complex system satisfying the following assumptions: 

A random variable 𝑇𝑗 is associated to every test 𝑗 of the system. 

A random variable 𝑋𝑖 is associated to every hardware component 𝑖 of the system such that 

we can retrieve the probability 𝑃𝐸(𝑋𝑖 = " ), potentially dependent on some evidence 𝐸, i.e. 

a set of observed variables with the corresponding observations. 

Given sets of random variables 𝑋 and 𝑌, we can retrieve the entropy of 𝑋, 𝐻(𝑋), and the 

entropy of 𝑋 conditioned on 𝑌, 𝐻(𝑋|𝑌). 

Note that we need not assume the random variables to be discrete: the assumptions above 

allow for reformulations in the continuous setting.  

2.6.2.1.2 Methodology 

Our methodology for recommending a diagnostic test solely based on information gain is to 

perform the diagnostic test 𝑇𝑖  that minimizes the conditional entropy of the set of hardware 

nodes 𝑋 = {𝑋0, … , 𝑋𝑛}, given some evidence E:  

argmin𝑖 ⁡H𝐸(𝑋|𝑇𝑖) ⁡= ⁡argmin𝑖 ⁡H𝐸(𝑋0, … , 𝑋𝑛|𝑇𝑖). 

The rationale behind this methodology is to select the diagnostic test that is expected to 

 

2.6.2.1.3 Scalability of the methodology 

Calculating conditional entropy is an extremely expensive operation because it requires the 

computation of a joint probability table involving all variables involved. For example, 

calculating the conditional entropy for a test in a system with just 100 relevant hardware 

components with 2 states will be practically unfeasible as it requires computing a joint 
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probability table with 2101 rows. In practice, we therefore limit the entropy calculation to 

approximately 10 hardware components that are most likely to be faulty. We will now 

describe this approach formally.  

Let the ranking 𝑟: {0, … , 𝑛} → {0, … , n} be a bijection such that 𝑖⁡ < ⁡𝑗 implies 

𝑃(𝑋𝑟(𝑖) = 𝑂𝑘|𝐸) ≤ 𝑃(𝑋𝑟(𝑗) = 𝑂𝑘|𝐸), 

where 𝐸 is some evidence consisting of the measuring results of our direct and indirect 

observables. Our recommendation is to minimize HE(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑖) for a computationally 

feasible 𝑚⁡ ≤ 𝑛. In other words, the next recommended diagnostic test is: 

argmin𝑖 ⁡HE(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑖). 

While this approach makes the computations tractable, it has two main drawbacks. To avoid 

cumbersome notation, we will now write 𝐻 when also 𝐻𝐸  could apply. 

First, given our current approach for scalability of the methodology, it is possible that we 

undervalue the information gain of diagnostic tests by ignoring their impact on lesser 

suspected hardware components. A test 𝑇𝑖  that does not influence the probability 

𝑃(𝑋𝑟(𝑘) = 𝑂𝑘|𝐸) for 𝑘⁡ ≤ 𝑚,8 will have worst-case conditional entropy in that 

H(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑖) ≥ H(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑗) for every diagnostic test 𝑇𝑗. This is problematic as 

it is simultaneously possible that H(𝑋|𝑇𝑖) ≤ H(𝑋|𝑇𝑗) for some diagnostic test 𝑇𝑗. 

A second, less significant drawback is that the recommendation of diagnostic tests at the 

beginning of the process may happen at random. This happens, in particular, when there are 

more than 𝑚 hardware components with equal least priors9 and corresponding diagnostic 

tests with equal rates for false positive and false negative. In such situations, all these 

diagnostic tests will receive the same conditional entropy value with respect to the 
hardware components 𝑋𝑗(0), … , 𝑋𝑗(𝑚) selected as relevant. 

Despite these drawbacks, our approach for scalability works sufficiently well across our test 

cases. Further investigation of other approaches for scalability may still be fruitful. One may 

consider, for example:  

1. Recommend the diagnostic test 𝑇𝑗 that minimizes the average entropy H(𝑋𝑖|𝑇𝑗) for 

all 𝑖. 

2. Partition the set of diagnostic tests 𝑋 into 𝑙 buckets of maximal size 𝑚, 𝑋𝑘, such that 

H(𝑋𝑘|𝑇𝑗) becomes computationally feasible. Then minimize the average of all these 

bucket entropies. Note that the buckets could be randomly generated as well as cre-

ated according to some heuristic, e.g., by bucketing functionally related compo-

nents. 

Another way to achieve above points is to 

inequality and work generalizing it, see (Madiman & Tetali, 2007). 

It is crucial to note that every such approach will make slightly different selections and 

optimizes for slightly different goals. Therefore, extensive testing on practical examples is 

unavoidable. 

An alternative approach might be to investigate efficient algorithms for calculating 

(approximate) entropy when large numbers of random variables are involved. 

_______ 

8 For example, this may happen in a Bayesian Network if 𝑋𝑗(𝑘) and 𝑇𝑖 are d-separated for all 𝑘 ≤ 𝑚 given the 

evidence 𝐸. 
9 Mathematically speaking, in this case there are several maps 𝑗, 𝑘, 𝑙, … satisfying the conditions of the second 

paragraph of this section such that 𝑗(𝑖) ≠ 𝑘(𝑖) ≠ 𝑙(𝑖) ≠ 𝑗(𝑖), for all 𝑖 < 𝑖0 < 𝑚, where 𝑖0 is large enough. 



 

 

 TNO Public  TNO 2024 R10833 

 TNO Public 45/66 

2.6.2.1.4 The effect of prior probabilities

 
Figure 2.29: A toy example illustrating the dependence of entropy-based recommendations of next 
diagnostic actions on prior probabilities on the health of the corresponding hardware nodes. The model has 

ph, we vary the prior for health H1 between 
0.00 and 0.10 while keeping everything else fixed (failure probabilities of H2 and H3 are 0.01). We can see 
that there is a clear dependence on the failure prior in H1 on whether test T1 or test T3 has lower entropy (on 
the y-axis) and is, therefore, recommended. 

 

As a final remark on diagnostic information gain, we would like to point out that the prior 

probabilities for failures of hardware component crucially impact which diagnostic test will 

be recommended. For illustration, consider Figure 2.29 where we compare the conditional 

entropy of all hardware components with respect to two different diagnostic tests. We vary 

the prior failure probability of one test and keep everything else fixed. In conclusion, it 

crucially depends on the prior probabilities which diagnostic test is expected to decrease 

entropy the most. In other words: the order in which tests are recommended depends on 

the prior probabilities (among other things). Hence, choosing at least approximately correct 

prior probabilities is crucial in the process of diagnostic modelling. 

2.6.2.2 Cost of diagnostic actions 
We will now move on towards our modelling of costs of diagnostic actions. Returning to our 

CD radio player example, recall the diagnostic test of performing a comprehensive analysis 

depends not only on the time it takes the engineer to perform the measurement (and 

potentially their salary, etc.) but also on whether or not the measuring device is available, 

whether or not the CD radio player has already been disassembled, and so on. To model the 

cost of a diagnostic test, we therefore consider fixed costs and dynamic cost that depend on 

the state of the system that is currently being diagnosed. We will now describe our 

methodology of dynamically computing cost of diagnostic tests. 

2.6.2.2.1 Types of costs and fixed costs 

To allow for insightful information as well as potential optimization later, we assume costs 

to be broken down into various types that are fixed for each test 𝑇𝑖 . These fixed cost in 

various types are not dependent on the overall state of the system to be diagnosed. This 

breakdown in types is particularly helpful when the decision about the next diagnostic action 

depends not only on its total cost but must also be optimised with respect to other 

constraints, such as time, workforce available, or similar. 

For improved readability, we restrict ourselves to diagnostic costs of a single type in this 

report. An adaptation to multiple types of cost is straightforward. 
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2.6.2.2.2 System state and dynamic costs 

Informally, we can think of the system state as a finite collection of Boolean conditions, 

𝑐0, … , 𝑐𝑛, describing a set of changing properties of the system that are relevant for the costs 

of diagnostic tests. In our CD radio play example, such a condition could encode, for 

example, whether the case of the CD Radio player is open (𝑐0 = 1) or closed (𝑐0 = 0), or 

whether the measuring device is directly available for inspection (𝑐1 = 1) or not (𝑐1 = 0). 

Dynamic costs are accrued whenever these conditions must be changed for a diagnostic 

ently 

closed, or a measuring device to be ordered that is not locally available.   

Formally, a system state is a function 𝑠:⁡{0, … , 𝑛} ⁡→ {0, 1}. We will also use the notation 𝑐𝑖
𝑠 =

𝑠(𝑖) to denote the value of system condition 𝑖 in state 𝑠. Informally, 𝑐𝑖
𝑠 = 𝑠(𝑖) = 1 means 

that condition 𝑖⁡is true in state 𝑠, and 𝑐𝑖
𝑠 = 𝑠(𝑖) = 0 means that condition 𝑖 is false in state 𝑠. 

A dynamic cost function is a map 𝑐: {0, … , 𝑛} × {0,1} → ℝ>0 where 𝑐(𝑖, 0) is the cost of setting 

condition i to 0, and 𝑐(𝑖, 1) is the cost of setting condition i to 1.  

To every diagnostic test 𝑇𝑖 , we assign a (potentially empty) set 𝐶𝑖 of tuples (𝑗, 𝑏), where 𝑗 ≤

𝑛, and 𝑏⁡ ∈ {0, 1}. The intended meaning is that (𝑗, 0) ∈ 𝐶𝑖 if and only if test 𝑖 requires 

condition 𝑗 to be false, and (𝑗, 1) ∈ 𝐶𝑖 if and only if test 𝑖 requires condition 𝑗 to be true. If a 

condition 𝑗 does not occur in any tuple in 𝐶𝑖, then the intended meaning is that test 𝑖 
depends neither on 𝑐𝑗 being true nor on 𝑐𝑗 being false.10 

Finally, given a system state 𝑠, a dynamic cost function 𝑐, and a set of conditions 𝐶𝑖 for a 

diagnostic test 𝑇𝑖 , we can compute its dynamic cost as follows: 

𝑐𝑑𝑦𝑛
𝑠 (𝑇𝑖) ⁡= ⁡ ∑ 𝑐(𝑗, 𝑏)

(𝑗,𝑏)∈𝐶𝑖⁡with⁡𝑐𝑗
𝑠≠𝑏

 

The total cost of performing a diagnostic test consists of (the sum of) its fixed costs, denoted 

by 𝑐fix(𝑇𝑖), as well as its dynamic costs: 

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇𝑖) = ⁡ 𝑐𝑓𝑖𝑥(𝑇𝑖) ⁡+ 𝑐𝑑𝑦𝑛

𝑠 (𝑇𝑖)⁡ 

Note that we left the system state implicit in the previous equation; if necessary, it may be 

denoted by adding a superscript 𝑠 to any of the cost functions that depend on it. When a 

diagnostic test 𝑇𝑖  is performed, the system state 𝑠 is updated to 𝑠𝑛𝑒𝑤  according to the 

conditions required by the diagnostic test: 

𝑠𝑛𝑒𝑤(𝑗) ⁡= ⁡ {
𝑏, if⁡(𝑗, 𝑏)⁡in⁡𝐶𝑖 ,

𝑠(𝑗), otherwise.
 

 

2.6.2.3 Combination of information gain an cost 
Our approach for combining information gain and cost is to combine them into a single loss 
value for aggregating recommendations that take both criteria into account.  

Recall from previous section that we want to minimise the conditional entropy H(𝑋|𝑇𝑖), 

where X is a suitable set of random variables describing the system health, and 𝑇𝑖  is the 

diagnostic test under consideration. Moreover, we denote the total cost of performing test 𝑇𝑖  

by 𝑐𝑡𝑜𝑡𝑎𝑙(𝑇𝑖).
11  

_______ 

10 In this situation the test can thus be performed independently of the value of 𝑐𝑖. If, however, the costs of 
performing the test are different depending on values of 𝑐𝑖, then one may need to introduce a helper condition 𝑐𝑗 

that models those costs. If required by the diagnostic context, one could, of course, make an easy modification to 
move the dynamic costs per condition from system-wide to test-specific (or add an option for test-specific costs). 

11 While the total cost may depend on system state 𝑠 if the cost of the diagnostic test has a dynamic component, 
we usually leave it implicit to avoid cumbersome notation.  
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To start our discussion, it is helpful to consider the following informal formulations of our 

two minimalization criteria: by minimising the conditional entropy H(𝑋|𝑇𝑖), we minimise the 
total number of diagnostic steps. On the other hand, by minimising the cost 𝑐𝑡𝑜𝑡𝑎𝑙(𝑇𝑖), we 
minimise the cost of the next diagnostic action. We would like to minimise both at the same 

time. Of course, this is not always possible as sometimes the most insightful diagnostic 

action will also be the most expensive (see the CD radio player example from the 

introduction of this chapter). Hence, we need to balance the two appropriately to achieve a 

reduction of total diagnostic costs by aiming for a balanced reduction of both the total 

number of steps as well as the cost of the next action. 

Formally, we propose the following formula for aggregating the loss 𝑙(𝑇𝑖) of a diagnostic 

action 𝑇𝑖 : 

𝑙𝑏(𝑇𝑖) = 𝑏
H(𝑋|𝑇𝑖)

𝑚𝑎𝑥
𝑖

H(𝑋|𝑇𝑖)
+ (1 − 𝑏)

𝑐total(𝑇𝑖)

𝑚𝑎𝑥
𝑖

𝑐total(𝑇𝑖)
, 

where the balance 𝑏 ∈ [0,1]. It is easy to see that minimising 𝑙0 is equivalent to minimising 

𝑐total and minimising 𝑙1 is equivalent to minimising H(𝑋|𝑇𝑖). Any value strictly between 0 and 

1 minimises a combination of cost and entropy. Note that we normalise both entropy and 

cost with respect to their maximal values (at the current stage); the range of 𝑙𝑏 is thus 

contained in [0,1]. Normalisation is necessary to overcome imbalances resulting from the 

very different scales of entropy and cost (the difference can easily span several orders of 

magnitude). The latter point is also an advantage we see of our loss function over other 

approaches, such as minimising the information gain per cost. 

The recommended next service action is the one that has least loss value. The results of 

simulations, see Figure 2.30, show that choosing a good balance value 𝑏 can dramatically 

decrease the overall diagnostic costs. The simulation also shows that the optimal balance 

value depends not only on the structure of the diagnostic model but also on how the costs 

are distributed. It is therefore vital future work to develop an optimisation method for 

balance values. Brute forcing the balance value might be feasible if the models are not too 

big and do not change too often but other means of optimisation are worthy of 

investigation. First experiments with reinforcement learning seem promising12. 

 

_______ 

12 Reinforcement learning for this optimisation process is expected to be further investigated through a student 
internship in 2024. 
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Figure 2.30: Results of simulating the diagnostic process in the diagnostic model shown in the upper left 
corner. The balance values 𝑏 were simulated in steps of 0.05 between 0 and 1, and at each step the 
diagnostic test with the least loss value is chosen. The costs mentioned at the top of each graph are 
assigned, in order, as the costs of measuring the corresponding OutputKPI. We worked with the single fault 
assumption (i.e. we inserted only one fault in the system) and the procedure stops once the faulty 
component is identified with a probability of half the second least healthy component. 
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3 Applications 

This section describes applications of the methodology on case studies. Each case study 

serves one or more purposes, which are highlighted in the introduction of the case. 

3.1 CD-radio player 
A CD-radio player is selected as toy example for experimenting with the methodology. The 

system is inspired on a semi-portable CD player that also has a radio receiver to play radio.  

The system can thus play audio received by either the CD reader, or the radio receiver. Only 

one source can be selected by switching a mechanical switch. The system is powered by 

connecting a cable to an AC power socket, or by a set of batteries. The CD-radio player 

consists of four main modules 

1. The power system, which provides power to the other modules. The main power 

comes from either an AC wall socket or inserted batteries. 

2. The CD reader module, which reads audio from the CD and transforms it into a 

digital audio signal. 

3. The radio receiver, which transforms radio waves to a digital audio stream. 

4. The audio system, which transforms an incoming digital audio stream into sound 

waves. 

 

The CD-radio player is modelled according to the Arcadia methodology (Voirin, 2017) as a 

Capella model. On the highest level, two main functions are fulfilled by the system, being 

PlayCD and PlayRadio. To achieve this, the four subsystems as described above are included. 

These four subsystems as well as their main functions are shown in Figure 3.1. For each of 

these subsystems  main functions, a functional breakdown can be made. These functional 

breakdowns are shown in Figure 3.2. Also, a physical breakdown of the system in different 

modules or components is created, which is shown in Figure 3.3. The deployment of the 

functions on the components is shown in Figure 3.4. 



 

 

 TNO Public  TNO 2024 R10833 

 TNO Public 50/66 

 

Figure 3.1: High-level functional flow of the CD-radio player. Functions are shown in green boxes and their 
deployment on components is represented by the blue box in which the functions are located. For example, 
ProvidePower is a function deployed on the PowerSystem. 

 

Figure 3.2: Functional breakdowns of the main functions of the four subsystems: ProvidePower, ReadCD, 
ReceiveRadio and GenerateAudio. 



 

 

 TNO Public  TNO 2024 R10833 

 TNO Public 51/66 

 

Figure 3.3: Physical breakdown of the system, down to the lowest level for which the Capella model of the 
CD-radio player was created. 

 

Figure 3.4: The physical architecture includes the deployed functions and the functional exchanges between 
all functions. 
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Finally, functional chains can be specified in Capella to indicate specific uses of series of 

functional exchanges, tying together different functions needed to fulfil a specific task. For 

every task, one may create a specific functional chain. Figure 3.5 shows four functional 

chains representing different uses, though partly overlapping, of the CD-radio player. The 

following functional chains are created: 

- Power provision from AC power. 

- Power provision from batteries. 

- Functional exchanges for playing a CD, without power provision. 

- Functional exchanges for playing radio, without power provision. 

 

The rationale for adding these four functional chains is that in order to have a functioning 

CD-radio player, one of the two power provisioning chains and one of the two functional 

exchanges regarding information flow should be selected. One of the first group and one of 

the second group together to form a good combined functional chain for fulfilling one of the 

two main functions of the system. 

 

Figure 3.5: Physical architecture showing also four functional chains: power provision via either battery or AC 
socket, and the information exchange to play either CD or radio. 

Note that the CD-radio player is just an example system used for illustration purposes. There 

are many more ways in which a similar system can be split up into subsystems and in which 

the functional breakdown can be done. 

3.1.1 Functional dependencies 
Based on the specification of the CD-radio player in Capella, one can put the same 

information in the Excel template as introduced in Section 2.4. To do this, the functions and 

components are transformed into functions and hardware pieces in the template. The 

component breakdown shown in Figure 3.3 serves as a basis for the clusters to be created: 
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Figure 3.6: Specification of the CD-radio player in the SD2Act Excel template. 

as the main functions of each of the contained clusters. Figure 3.6 shows the Excel table as 

it is manually defined based on the Capella model. Note that this table contains the 

abstraction of what is shown in Figure 3.5. Since the observables are not specified in the 

Capella model, these were added based on a less formal description of the system. While 

this first step is a manual one, the Capella model itself is formally specified and would allow 

for potential automatic model-to-model transformation to ensure future scalability of the 

method. For this, the formal semantics of, for example, a functional chain need to be 

specified properly, as this is now subject to interpretation from the modeler. The following 

transformations are now applied to the Capella model to come to the Excel-based models: 

- Every component in the component breakdown, except for the top-level one, is 

transformed into a hardware components. The top-level component is transformed 

into the main cluster. 

- If the component has subcomponents according to the component breakdown, a 

cluster will be created for the component. The hardware node created will be put 

inside the cluster, if applicable. 

thus will be a cluster. However, it will also be a hardware type that is put inside the 

cluster. 

- Every function is transformed into a function in the Excel template. The function 

will be put in the same cluster as where the component on which the function is 

 

- Top-level main functions will be created as function nodes inside the top-level 

system. 

- The functional deployment on components as specified in Capella determines 

which hardware-to-function relation is marked green in the Excel table. For 

(according to Figure 3.1), thus the cell mapping the respective hardware to the 

function is marked green. 

- The functional exchanges shown in the system architecture diagrams indicate the 

cells to be marked for function-to-

provides its function to all three other main functions, as shown in Figure 3.1, thus 

gets those three cells marked in the table. 

- The same transformations are applied on each level in the hierarchy, where the 

respective levels of granularity should also match the diagrams and levels in the 

breakdowns in Capella. 

 

Each of the subsystems of the CD-radio player is also detailed out in the Excel template. An 

example of one of those subsystem specifications is shown in Figure 3.7. 

PowerSystem CDReader RadioReceiver AudioSystem Direct Direct

Cluster Type Name PlayCD PlayRadio ProvidePower ReadCD ReceiveRadio GenerateAudio CD_Error Radio_Error ListenRadio ListenCD

PowerSystem Function ProvidePower X X X

PowerSystem Hardware PowerSystem X

CDReader Function ReadCD X X X X

CDReader Hardware CDReader X

RadioReceiver Function ReceiveRadio X X X X

RadioReceiver Hardware RadioReceiver X

AudioSystem Function GenerateAudio X X X X

AudioSystem Hardware AudioSystem X

Time 5 5

Functions

CDRadioPlayer

Cost

Observables

DiagnosticTest
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Figure 3.7: AudioSystem cluster specification in the SD2Act Excel template. 

3.1.2 Diagnostic network 
With the specification of the system completed in Excel, one can automatically create a 

diagnostic network and visualize it as a graph. The parser will ask for some interfaces (as 

shown earlier in Figure 2.13) to be specified, as the model combines different granularity 

levels. However, note that these questions are asked because the Excel template does not 

provide this information. In principle, this interface information is available in Capella at the 

lowest levels of granularity. If some model-to-model transformation will be developed in the 

future, this might eliminate the need for asking these questions completely. The resulting 

model is shown in Figure 3.8. 

 

Figure 3.8: Visualization of the diagnostic network of the CD-radio player. 

It is also possible to just load the top-level of the system specification to start out with a 

smaller diagnostic network. This is also very useful for visualization purposes. A visualization 

of the high-level model, without loading in all the details on the individual subsystems, is 

shown in Figure 3.9. 

AudioSystem DAC Amplifier Speaker

Cluster Type Name GenerateAudio TransformDigitalToAnalog AmplifySignal MakeAudio Measure_Raw_Signal Measure_Amplified_Signal

DAC Function TransformDigitalToAnalog X X X

DAC Hardware DAC X

Amplifier Function AmplifySignal X X X

Amplifier Hardware Amplifier X

Speaker Function MakeAudio X

Speaker Hardware Speaker X

Time 10 10

ObservablesFunctions

Cost

DiagnosticTest
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Figure 3.9: High-level visualization of the diagnostic network of the CD-radio player. 

The diagnostic network can also be written to a Neo4j DB to enable querying and loading the 

network from there. A visualization of this model is shown in Figure 3.10. 

 

Figure 3.10: Visualization of the diagnostic network of the CD-radio player in Neo4j. 
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3.1.3 Reasoning model 
The diagnostic network can be transformed automatically into a reasoning model, being 

either a Bayesian network or a Tensor network, as it does not contain any loops. The 

visualization of such a reasoning model is very similar to the pictures in the previous section. 

However, the intended functionality of the CD-radio player cannot be captured accurately 

given the current modelling approach and extension of the methodology is needed to be 

capable of doing so. In the current approach, all parent function or hardware nodes of a 

given function node must be Ok or Healthy. The CD-radio player, however, has a physical 

switch that selects either the audio to come from the CD or from the radio. Also, there are 

two complementary power sources of which only one of them has to work in order to fulfil 

modelled as OR-gates rather than AND-gates, or may even require more extensive logical 

formulae to deal with the intended functional dependencies. Because of this limitation of 

the current methodology, the reasoning model that is created does not accurately reflect 

the behaviour of the CD-radio player and consequently cannot reliably be used for diagnostic 

reasoning. 

To overcome this limitation, another type of relation needs to be added to the model to be 

able to cope with these more complex dependency relations in the system, as these are not 

uncommon in real-life systems. Possible solutions have been proposed, but none of them 

has been implemented yet. The plan is to address this limitation in 2024. 

3.1.4 Diagnostic scenarios 
Since the generated reasoning model currently does not reflect the intended behaviour of 

the CD-radio player, example diagnostic scenarios will be added to the report once the 

methodology can cope with more complex functional dependencies. 
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4 Future work 

In this section we detail future work items that we envision for the proposed methodology. 

On top of items introduced in the above sections here we detailed out new items.  

 

In the previous sections we identified the following items for future work: 

- Automate the transformation of Capella models into diagnostic models according to 

the SD2Act methodology. [Sections 2.4 and 3.1] 

- Improve the specification of the interface behaviour (functional) across different 

hierarchical levels. [Section 2.4.3] 

- Optimize the computation of the conditional entropy for a large number of health 

nodes. [Section 2.6.2.1.3] 

- Optimize the balance of cost and information gain for computation of best next 

service action. [Section 2.6.2.3] 

- Specify functional behaviour via (complex) logic formulae, as an extension of the 

simple AND gates supported with the current methodology. [Sections 3.1.3 and 

3.1.4] 

 

The new items for future work introduced in this section are: 

- Dynamic model creation, for scoping of the diagnostic root cause analysis for each 

given case. 

- Design for diagnostics, for having at design time a functional overview of the 

diagnostic coverage of a given system, identification of diagnostic limitations and 

consequent improvement of the system design. 

- Connection of Hardware and Functional diagnostic models, for having a unified 

diagnostic approach for the same system. 

These items are described in more detail below. 

4.1 Dynamic model creation 
In Section 2.4.1 

dependencies for diagnostics. We showed how to create a diagnostic network, Section 2.4.3, 

and how to translate this network into a reasoning model, Section 2.5. In the proposed 

approach, the diagnostic network is hierarchical, while the reasoning model does not 

contain hierarchy, i.e. it is a static and flattened version of the diagnostic network. A large 

model is created up to the lowest level of hierarchy for all modules. While this may be a 

correct model, it is also sensitive for conflicting findings being inserted as evidence. An 

example for this is the situation in which some hardware components report problems in 

their KPIs, while the functions realized by these hardware components do not report any 

issues, due to for example redundancy. To overcome such issues, we identify two 

improvements to the current approach which should allow to dynamically create diagnostic 

reasoning models. 

Firstly, investigate ways to achieve hierarchical diagnosis in such a way to allow a human-

-  functional hierarchy. In hierarchical 
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diagnosis the reasoning model is dynamic as it grows in size in the direction of the 

subsystem of interest. The direction of growth is guided by the evidence gathered from 

running diagnostic tests, see Figure 4.1 for a toy example. This approach will decrease 

uncertainty in the diagnosis: by excluding from the model (minor) issues reported by low 

hierarchical levels, in the figure these are all the orange triangles in the transparent boxes. 

These are not relevant for the diagnostic reasoning at the higher hierarchical level. 

Furthermore, this will allow for an easier explanation of the diagnostic reasoning executed 

by the model, as it resembles the approach adopted by humans and the models are 

inherently smaller. In order to achieve this hierarchical diagnosis, we need an approach to 

determine which hierarchical level(s) to focus on during the diagnostic process. Similarly to 

the selection of the next diagnostic test, determining which level to focus on should be 

based both on expected added diagnostic information and cost of this action. First 

experiments with an algorithm by Nakakuki et al. (Nakakuki et al., 1992) seem worthy of 

further investigation (algorithm for measuring whether and which box to open). 

 

 

Figure 4.1: Hierarchical diagnosis. Transparent boxes are not detailed out in the hierarchical diagnosis, while 
they are considered in a flat reasoning model. 

system as described in the diagnostic network. This is would take hierarchical diagnosis a 

step further, as it will lead to reasoning models that are not directly derivable from the 

transformation of a diagnostic network at a given hierarchy to a reasoning model. The 

advantage of this approach is that the dynamically created reasoning models are even 

smaller than in hierarchical diagnosis and more scoped to the diagnostic problem at hand, 

to quickly drive the diagnostic process. We propose the architecture shown in Figure 4.2 to 

achieve this. 
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Figure 4.2: Architecture for the dynamic creation of reasoning models. In blue the difference with the current 
SD2Act architecture: a graph DB is used to store and query, based on diagnostic evidence, the diagnostic 
network. 

The difference with the current SD2Act architecture of Figure 2.5 is the presence of a an 

edge between the Graph DB  and the Diagnoser. The meaning of this edge is to query the DB 

to return the relevant subgraphs for the given diagnostic problem. 

The central idea is that these queries, based on the evidence gathered by performing 

diagnostics tests, will return the most relevant diagnostic network for the given diagnostic 

problem. This diagnostic network will then be transformed into a reasoning model on which 

diagnostic inference can be performed, in such a way to have a reasoning model scoped to 

the diagnostic problem at hand.  

4.2 Design for diagnostics 
In Section 1.2.1 we detailed the relation of SD2Act with the ADiA project, the scope of the 

latter being design for diagnostics based on HW diagnostic models. Future investigations 

should allow for design for diagnostic for functional diagnostic models, as developed in 

SD2Act.  

Such design for diagnostic analysis should compute which functions, at different hierarchical 

levels, cannot be performed as a consequence of HW failures. This information can then be 

used to spot observability limitations, i.e. different functions cannot be performed if the 

same HW is failing. Subsequently, to mitigate such observability gaps designers can decide 

to add additional tests to the system. Interestingly, these tests could require the attempt to 

execute a different function with the system, thus connecting to the work done with 
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reasoning with interventions in the Carefree project, see (van Gerwen et al., 2023) for more 

details. 

4.3 Connection to HW models 
The diagnostic models created with the SD2Act approach and those created with the 

CareFree and ADiA ones, see Section 1.2.1, contain the concept of HW components. In the 

diagnostic models these are represented as hidden random variables with discrete states, 

e.g. Broken, Healthy,. Despite the HW node being a shared type among these different 

models, there is a conceptual difference.  

Specifically, in the functional models of SD2Act HW nodes determine the possibility of a 

function to be fulfilled or not; while in the physics based models of ADiA and CareFree HW 

nodes are related to the correct or incorrect propagation of physical quantities through the 

system. Therefore, further investigations are needed to fully understand if and how these 

models can be related to each other, or even integrated into a single model. Possibly, the 

HW nodes represent the linking pin of these two fundamentally different type of modelling. 
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5 Conclusions 

The goal of the SD2Act project is to aid in failure analysis by computer-based diagnostic 

reasoning. First, system design information is transformed into a diagnostic network. This  

network can be seen as a graph with clearly defined types of nodes and types of relations 

between the nodes. The transformation can be done in two ways. Firstly, it can be done 

(fully) automatic if the design is documented in a (highly) structured manner, e.g. as part of 

a MBSE design approach. Secondly, it can be done manually, possibly assisted by tools, for 

example by using the Excel templated presented in this report. Next, a reasoning model can 

be generated from the diagnostic network. Bayesian Networks and Tensor Networks are 

evaluated in this report as potential reasoning formalisms on which the reasoning model 

can be based. Based on both system and human observations, the reasoning model 

iteratively suggests the next diagnostic test to execute to a service engineer, to efficiently 

come to the fault in the system. 

5.1 Lessons learnt 
Below we discuss the lesson learnt by developing the described methodology and applying it 

to the high-tech domain, like an ASML system in scope of the SD2Act project. We present the 

lessons learnt by splitting them up in a number of categories.  

 

1. Transforming functional design information into a diagnostic model 

a. Functional breakdowns at the level of detail that is needed to create diagnostic 

models are hard to find. Most of the time, parts of relevant information need to 

be identified manually in a large set of unstructured or semi-structured 

documents and diagrams. 

b. Even though it is hard to find the necessary information, the information is 

available in the organization, documented or not. Once the information is found, 

a structured approach like the proposed Excel template proves to be a useful 

method to store this information. 

c. The main advantage of the approach based on an Excel template is its 

simplicity, as it was pointed out to those we presented the approach to. Most 

people would be able to grasp the concept and start discussing within minutes. 

Another advantage is the flexibility of not having to define the system to the 

fullest detail, as it allows for a relatively light-weight start of using the proposed 

methodology. 

 

2. Recommending diagnostic tests and service actions 

a. It is possible to incorporate costs of performing diagnostic tests into the 

diagnostic model and combine it with the expected information gain to come to 

a recommended diagnostic test. Combining these two potentially brings an 

advantage in making decisions in the diagnostic process. 

b. Case studies show potential for selecting more cost-efficient paths by taking test 

costs into account compared to only considering the expected information gain 

when selecting a test. Comparing this to solved cases reveals that there is also 

potential for eliminating some of the conducted tests while using the model. It 

must be noted, however, that the model does not cover the full system and 
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may be biased because of that. More case studies need to be conducted to 

confirm it is really more cost-efficient.  

c. Balancing cost and expected information gain throughout the diagnosis is not 

trivial. Depending on many non-technicalities, such as contractual obligations or 

agreements, severity of the escalation, warranty or duration of the escalation, a 

different balance between the properties may be desired. Optimizing this is not 

trivial and requires additional research. It may also be left unoptimized, in which 

the freedom of choice is left with the organization. 

 

3. Inference of non-functional dependencies 

a. It is possible to derive undocumented dependency relations by applying physics 

laws onto design knowledge as inference rules on a knowledge graph. This 

approach requires rather specific design information to be stored in the 

knowledge graph for the inference to work. 

b. While the concept of deriving new dependencies from a knowledge base via 

rule-based querying is relatively straight-forward, it can be quite challenging to 

ensure the necessary information is in the knowledge base. In our case study, 

temperature and the distances between hardware components must be known. 

Gathering or deriving all such information turned out to be a major endeavour. 

This can be solved by having all knowledge sources be connected (or 

connectable) to each other, for example by using extensive model-based 

approaches. 

 

4. Reasoning formalism 

a. The tensor network formalism replaces the Bayesian networks as reasoning 

formalism. Tensor networks offer identical functionality and provide 

opportunities Bayesian networks do not. They can deal with cyclic networks, 

which will quickly be found at higher levels of abstraction of the proposed 

functional modelling. 

b. While tensor networks are somewhat slower than Bayesian networks for 

computing posterior probabilities, this reduction of computation speed does not 

seem to be a problem for the size of networks currently being built. Additionally, 

there are still some improvements that can be done on the tensor network 

algorithms to speed up computation. 

5.2 Recommendations 
1. As long as the required information for the diagnostic models is not captured in a single 

model, the information needs to be acquired from other documents and models. While 

there may be many (semi-)structured sources available from which one may extract bits 

and pieces of information needed for the diagnostic models, it turned out to be a 

challenging task to bring all information together. To facilitate this it is recommended to 

assign an identifier to every instance of every component and to ensure all references 

and mentions of this instance use the same identifier. This would greatly benefit the 

construction of a model even in the absence of a full-fledged model based engineering 

approach. Note that this identifier goes a step further compared to being able to identify 

spare parts, as the unique location of the part should also be included. 

 

2. Extending upon recommendation 1, it would be good to use well-structured formats to 

store knowledge. This would benefit not only the creation of diagnostic models, but also 
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the capability of retrieving information from the knowledge base (traceability) and 

reusability of the information. While models are very much suited for this task, following 

up upon recommendation 1 together with using well-defined spreadsheets or databases 

may also improve upon the current situation. 
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Appendix A 
In Section 2.5.2.1.2 we described a procedure for computing inference in Bayesian networks 

with loops. We will prove now that simple tensor contraction in tensor networks with loops is 

equivalent to that procedure. 

 

Consider the simple Bayesian Network above, and let 𝑃1(𝐴|𝐵)⁡and 

𝑃1(𝐵|𝐴) be the conditional probability tables defining A and B 

according to this causality structure. The joint probability distribution 

implied by this network, 𝑃1(𝐴, 𝐵) = 𝑃1(𝐴|𝐵) ⋅ 𝑃1(𝐵|𝐴) is not well 

defined according to standard rules of BN construction because it need not sum up to one, 

although one could normalize it. Moreover, belief propagation could not be used in  this 

by translating this BN into a TN. And therefore, we can use all the TN tools introduced before. 

 

Consider now the modified BN one obtains by applying the 

procedure of Section 2.5.2.1.2. where the CPT 𝑃2(𝐵|𝐴) is the same 

as before, i.e. 𝑃2(𝐵|𝐴) = 𝑃1(𝐵|𝐴), the CPT for 𝐴 in this network is the 

same as that for 𝐴 in the previous network just swapping ⁡𝐵 for 𝐵′, 

i.e. 𝑃2(𝐴|𝐵
′) = 𝑃1(𝐴|𝐵), 𝐵

′ has uniform priors and 𝐸 is the equality 
node whose CPT is 𝑃2(𝐸 = 𝑇𝑟𝑢𝑒|𝐵, 𝐵′ = 𝑏, 𝑏′) = 𝛿𝑏,𝑏′ and 

𝑃2(𝐸 = 𝐹𝑎𝑙𝑠𝑒|𝐵, 𝐵′ = 𝑏, 𝑏′) = 1 − 𝛿𝑏,𝑏′. 

 

This is now a well-formed Bayesian network whose joint probability distribution is: 

⁡𝑃2(𝐴, 𝐵, 𝐵
′, 𝐸) = 𝑃2(𝐴|𝐵

′) ⋅ 𝑃2(𝐵|𝐴) ⋅ 𝑃2(𝐵
′)𝑃2(𝐸|𝐵, 𝐵

′). 

Using Bayes rule after conditioning on⁡𝐸 = 𝑇𝑟𝑢𝑒  we obtain: 

𝑃2(𝐴, 𝐵, 𝐵′|𝐸 = 𝑇𝑟𝑢𝑒) ∝ 𝑃2(𝐸 = 𝑇𝑟𝑢𝑒|𝐴, 𝐵, 𝐵′) ⋅ 𝑃2(𝐴, 𝐵, 𝐵
′) 

And marginalizing over 𝐵′ yields: 

𝑃2(𝐴, 𝐵 = 𝑎, 𝑏|𝐸 = 𝑇𝑟𝑢𝑒) ∝∑𝑃2(𝐴 = 𝑎|𝐵′ = 𝑏) ⋅ 𝑃2(𝐵 = 𝑏|𝐴 = 𝑎) ⋅
1

dim(𝐵′)
⋅ 𝛿𝑏,𝑏′

𝑏′

∝ 𝑃2(𝐴 = 𝑎|𝐵′ = 𝑏) ⋅ 𝑃2(𝐵 = 𝑏|𝐴 = 𝑎) = 𝑃1(𝐴, 𝐵 = 𝑎, 𝑏) 

Extending this proof to loops with three or more variables is a straightforward exercise, all 

one needs to do is define a partition a network with a loop into two sets that cut across the 

loop and consider the Cartesian product of all variables in each set as a new variable, after 

which the argument above would apply. 
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