m innovation
for life

Guided diagnosis of functional failures in cyber-
physical systems

SD2Act 2023

TNO Public) TNO 2024 R10833
April 30, 2024

) TNO Public mo inno_vation
for life

ICT, Strategy & Policy

www.tno.nl
+31 88 866 50 00
info@tno.nl
TNO 2024 R10833 - April 30, 2024
SD2Act 2023
Guided diagnosis of functional failures in cyber-
physical systems
Author(s) T.C. (Thomas) Nagele, L. (Leonardo) Barbini, R. (Robert) Passmann,
A. (Alvaro) Piedrafita Postigo
Classification report TNO Public
Title TNO Public
Report text TNO Public
Number of pages 66 (excl. front and back cover)
Number of appendices 0
Sponsor ASML
Project name SD2Act 2023
Project number 060.55515/01.01

) TNO Public

) TNO Public) TNO 2024 R10833

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

© 2024 TNO

) TNO Public

) TNO Public TNO Public) TNO 2024 R10833

Contents

CONTENTS ..ot 3
1 INEFOAUCTION ...ttt ettt bbbttt ettt 5
11 ProJECT OAIS BN SCOPEviuieiicieiiei bbbttt 5
1.2 Project position in the diagnOStiC [ANASCAPEc.cvirrririri e 5
1.2.1 Relation to TNO-ESI diagnOSLtiC PrOJECES......ccciiiiiiriieiriieisirieie sttt 6
1.2.2 Relation to Off-the-Shelf tOOING ...t en 6
1.2.3 Position with respect to academiC reSEAICH..........ccviiiric e 7
2 METNOUOIOGY ..ottt 9
21 OVEBIVIBWY ...ttt bbb bbb bbb bbbttt 9
2.2 Methodology IMPIEMENTATION ..ottt en 10
23 Modellingccoovverrniniririiniens .12
2.4 Diagnostic network..... .13
24.1 Building blocks...........ccocccrerenne. .14
2.4.2 Non-functional dependenciesccoovrernnene A7
2.4.3 From system design to a diagnostic network........... .20
25 From a diagnostic network to a reasoning Model............cccccoiiiiii e 25
251 NetwOrk tranSTOMMALIONcooieiiiieic bbbttt 25
2.5.2 Candidate reasoning fOrMalISIMScccuiiiiiii bbbttt 27
2.5.3 Chosen reasoning fOrMElISITIcccerrrrrrsrs sttt s st ss e 40
2.6 L= = LY=o [T Vo [0 41
2.6.1 Operational diagNOSIS [OOPcceiiueieiiieiiiirii ittt b bbbttt 41
2.6.2 Recommending the NeXt DESE SEIVICE ACTION ..ottt 43
3 APPHCALIONS ..ottt 49
31 CDmTAAIO PIAYETotk b bbbttt 49
70 50 R ¥ 1 Tod o) F= L0 (=T o1 (o =T T o 52
G 70 2 T = o [[0 53 1 o 1= 0710 PP 54
3.1.3 REASONING MOUEL......cciiiiiiiiiciiti bbbttt 56
G 70 0 S T = o [0 53 1 oY =T o = Lo TP 56
4 FUTUIE WOTK ...ttt ettt ettt et e e 57
4.1 DYNamic MOAEI CIEATION..........ccuiicriiriric bbb 57
4.2 DTS To i o] e [T= Vo [0 3 1 =TT 59
4.3 CoNNECTION TO HW MOEIS ...ttt 60
5 CONCIUSIONS ..ottt 61
51 LESSONS EAIMTviiiieiteie bbb bbb bbbttt bbbt 61
5.2 RECOMIMENUALIONS ...ttt bbbt 62
53 ACKNOWIEAGEIMENTS ...ttt bbbt 63

) TNO PublicTNO Public 3/66

) TNO Public TNO Public) TNO 2024 R10833

RETEIEINCES ... ettt ettt ettt e et e et e e bt e et e et e s bt e et e e st e s bt e et e e st e st e e et e e stesteesbeeensreesreeses 65

) TNO PublicTNO Public 4/66

) TNO Public) TNO 2024 R10833

1 Introduction

1.1 Project goals and scope

The System Design to Service Actions (SD2Act) project is a cooperation between TNO-ESI
and ASML, world leader in developing and manufacturing high-tech lithographic systems for
the semiconductor industry.

The generic goal of the SD2Act project is to develop a methodology that minimizes the
time to diagnose failures occurring in an ASML-like system.

The methodology should be generically applicable to high-tech systems also from
manufacturers other than ASML.

The business driver for this project is that as high-tech systems become more and more
capital intensive there is a strong drive to have no unscheduled down-time achieved
through predictive maintenance. On the long road towards predictive maintenance lie
several milestones, one of which is to keep the amount of unexpected down time of high-
tech systems to a minimum for a fixed number of failures. A large contributor to down-time
is the amount of time needed by the complex diagnostic process. This is the process that
infers the root cause of a failure from its symptoms. Nowadays this diagnostic inference
process highly relies on human reasoning, i.e. system’s experts solve diagnostic cases one by
one.

The specific goal of the SD2Act project is to aid and (when possible) replace the human
diagnostic reasoning with a form of computer reasoning based on design information.

The approach used in this project is to develop such a reasoning system making as much as
possible use of the knowledge on the high-tech system’s design (this is described by the
edge create/generate modelin Figure 1.1)

For high-tech systems there are both many classes of causes that can lead to a system
failure and many classes of symptoms that could results from these causes. Examples of
classes of causes are: hardware malfunctions, software bugs, operator errors, abnormal
environmental conditions. Examples of classes of symptoms are a system which: stops
production, fails to execute a desired operational function, produces outputs with a quality
lower than desired, requires too much energy to produce the desired outputs. Notice that a
diagnostic problem can be the result of a many-to-many connection among elements of
these two different classes of causes and symptoms.

In the scope of the SD2Act project, failures are caused by hardware malfunctions which
manifest by a system failing to execute one of its operational functions.

Ideally, industry needs a generic diagnostic methodology that infers causes given
symptoms, independently of their membership classes. Research on other aspects of this
methodology is described below.

1.2 Project position in the diagnostic landscape

In this section we position the SD2Act project with respect to other projects done by TNO-ESI
in the diagnostic domain. We give a list of commercially available off-the-shelf tools for
diagnostics . Finally we briefly describe its position with respect to academic research.

) TNO Public 5/66

) TNO Public) TNO 2024 R10833

1.2.1 Relation to TNO-ESI diagnostic projects

TNO-ESI had conducted in the past years other projects with high-tech industrial partners in
the domain of diagnostics. Specifically, the CareFree project with Canon Production Printing
and the Assisted Diagnostic in Action (ADiA) project with ASML.

The CareFree and ADIA project have a diagnostic scope different than the one of the SD2Act
project:

- the scope of the CareFree project is on diagnosing down-time situations caused by
HW failures that manifest as a system which stops production (rather than as a
system that does not perform a function). More details on this project can be found
in the TNO report (van Gerwen, 2024).

- the ADIA project also focuses on HW failures, however the scope in ADIA differs as it
assesses the diagnosability level of a system, i.e. the scope is shifted from
diagnostics at operational time to diagnostics at design time. More details on this
project can be found in (Barbini et al., 2021).

ADIA project

\

Diagnosability
improve design insights

N
k) j design loop diagnosability

create/generate model

diagnostics

Diagnostic
computational

model
perform service Best next _ compute
action service action

‘ process data

Operational \ /_ Design for \

diagnostics

collect data ~_» diagnosis loop

Observations

ll (e.g.timeseries)
SD2 (Ctl CareFree pl 0|ECtS

Figure 1.1 Overview of TNO-ESI diagnostics projects.

An overview of these projects and their position with respect to the design and operational
diagnostics scopes is given in Figure 1.1.

Despite the different scopes, the approach adopted in the different projects is overlapping.
All the projects implement a model-based approach, with diagnostic computational models
created/generated using knowledge of the system design. Furthermore, as shown in Figure
1.1, in the proposed approach the same diagnostic model is used both at design time and
operational time. This implies that a unification of the approaches, yielding the overall
diagnostic methodology needed by industry, even if not yet achieved, seems reasonably
possible. An overview of this unified diagnostic methodology and its connection to model-
based system engineering approaches is detailed in (van Gerwen et al., 2022).

1.2.2 Relation to off-the-shelf tooling

A non-exhaustive list of off-the-shelf tools that, during the SD2Act project, have been
investigated or have been identified as potentially interesting is given in Table 1.1.

) TNO Public 6/66

) TNO Public) TNO 2024 R10833

1.2.3

Table 1.1: Non-exhaustive overview of off-the-shelf diagnostic tools.

Name l Website ‘ Reference ‘
MADe www.phmtechnology.com (Hess et al., 2008)

TEAMS www.teamgsi.com (Deb et al., 1995)

Kairos Workbench www.kairostech.no (Lind, 2011)

RODON www.combitech.com (Aden & Stjernstrom, 2013)

The criteria for a tool to be considered were that it must offer a scalable modelling approach,
be already successfully applied in an industrial context, and offer, to some degree, both design
and operational diagnostics support.

Furthermore, the selected tools all implement a model-based diagnostic approach, as in the
SD2Act project. Several tools are nowadays being introduced in the diagnostic landscape that
use a more data-driven approach, these have not been investigated in the SD2Act project. It
is suggested that such tools are investigated in a follow-up project.

The tool that is identified as most promising and as a consequence was in-depth
investigated is MADe. The investigation was carried out by modelling example systems
inspired by the ASML system. The conclusion of the investigation is that the MADe tool does
not yet offer enough diagnostic support to be adopted by ASML. Specifically, high-tech
systems like the ASML one:

- are cyber-physical systems with intertwined HW and SW. However, the MADe tool
does not offer a suitable way to model SW and its role in the propagation of failures
from component to system-level observables;

- span several HW physical domains such as optics, thermal, mechanical and
electromagnetic. All of these should be equally modelled in order to have an
effective diagnosis. However, the MADe tool is focusing on a subset of these physical
domains;

- have a high level of complexity and diagnostic support is needed at operational
time. However, the main goal of MADe is design for diagnostics and hence it offers
limited operational diagnostic support.

Based on these considerations, the conclusion is that the SD2Act and similar research
projects are very much needed by the high-tech sector to solve their diagnostic challenges.

Position with respect to academic research

The SD2Act project provides a clearer picture of the gaps between academic research and
the needs of industry. Yet, the SD2Act does not deliver a full state-of-the-art report on
diagnostic methods for high-tech systems. We suggest this as an activity for a follow-up
project.

The SD2Act project found that academic research in diagnostics is mostly focusing on
component level in the HW domain, with detailed model-based (physics), data-driven, or
hybrid approaches developed to infer the state of a single or a small set of HW components.
These academic approaches usually deal with systems in the order of tens of components.
However, high-tech industrial systems have in the order of thousands of HW components
belonging to different physical domains and, as stated above, intertwined with control and
safety SW. This extension of diagnostic methodologies from component-level to system-
level, defines a gap between the current academic state of the art and the industrial needs.

) TNO Public 7/66

http://www.phmtechnology.com/
http://www.teamqsi.com/
http://www.kairostech.no/
http://www.combitech.com/

) TNO Public) TNO 2024 R10833

The issue is not merely one of scalability, understood as the ability to systematically build
models for large systems and have computation on those models take a reasonable
amount of time. But more fundamentally, the issue lies in the emergence of behaviours at
system level which are not derivable from modelling the interactions of single components,
i.e. integration with system properties is needed. Academic research on this last aspect is
needed.

The SD2Act project attempts at filling this gap identified in academic research by focusing
on methods to diagnose functional failures, i.e. failures that manifest by a system failing to
execute one of its operational functions.

) TNO Public 8/66

) TNO Public) TNO 2024 R10833

2

2.1

Methodology

Overview

Whereas the ultimate goal of the SD2Act methodology is to both improve the diagnosability
of a system during its design phase (design for diagnostics) as well as to assist service
engineers to come to a diagnosis when the system is deployed (operational diagnostics), the
focus in SD2Act is on the latter. In this light, a diagnostic model is created on the basis of
readily available system design information. This information is incorporated in a diagnostic
assistant that is made available for the service engineer.

SD2Act methodology

Operational data

System

e Diagnostic Reasoning
descriptions

network model
— 3
o) 0

17 1

ooao

|

Service engineer

b

o

L'
®
Diagnostic
steps

_______J&__._j____

Figure 2.1: High-level overview of the SD2Act methodology.

The high-level overview of the SD2Act methodology workflow is depicted in Figure 2.1. On
the left-hand side the design information is shown, which corresponds to the system design
in Figure 1.1. On the right-hand side the operational diagnosis loop is shown, which is
equivalent to the loop in the bottom of Figure 1.1.

The SD2Act methodology follows a top-down approach to enable system-level diagnostics.
In order to deal with the complexity of high-tech systems, the system is usually broken
down into subsystems, which are again broken down into modules, and so forth. Finally,
there are the individual hardware pieces and software components realizing the small
subtasks within the whole system. The breakdown of the system represents a separation of
concerns, where every element is designed to fulfil its own purpose, and the collection of
them all makes the system function as designed.

All levels in the system breakdown have their own concern: to fulfil their designed
function(s). Moving to the diagnostic domain, a starting point for conducting a root cause
analysis is usually something the system does incorrectly or not at all: a high-level function
is not performed as expected. The root cause analysis consists of a drill-down from higher
level observations to the root cause by focussing on the relevant pieces of the system, based
on a set of observations, by inspecting the system step by step. This inspection is often done

) TNO Public 9/66

) TNO Public) TNO 2024 R10833

2.2

on a functional level: ‘Does function X still work?” Depending on the answer, the scope of the
root cause analysis is harrowed.

The SD2Act project aims for this kind of functional drill-down, as it allows for system-level
root-cause analysis and it is a rather natural way of doing excl/usion diagnostics. To support
this, we develop a methodology for the creation of functional diagnostic models, which
captures system functions, their dependencies and their hierarchy.

To allow for this, all of these dependencies are captured in a diagnostic network. This
network represents the knowledge about the system while abstracting away from the
reasoning formalism being used to do the diagnostic reasoning. This reasoning model is
created based on the information in the network, after which it can be used for diagnosis by
inserting findings from the system and service engineer into the reasoning model. Step by
step, the reasoning model is capable of suggesting the best next steps to the service
engineer.

Methodology implementation

To be able to experiment with the proposed methodology and to perform validation, a
proof-of-concept implementation was made in Python. This proof-of-concept Python library
is named MBDIyb and allows to experiment at scale, by easily specifying large networks. The
library also formalizes and consolidates the research done in the project, and is actively
being worked on through the course of the SD2Act project series. The high-level overview of
the SD2Act methodology as implemented in MBDIybis shown in Figure 2.2. See also Figure
2.1 for comparison.

smEmEEEEEEEEEEEEEEEE- ~
System [system MBDIyb Python library !
descriptions Idependencies :
N 1
: B :
|—|—| 1
ooo 1 @ I
|
1
| | Operational data
| |
| |
| Diagnostic Reasoning 1
I network model Diagnoser |
1 000 Y :
| _ _
! _— o) :
I o T
| 1 Service engineer
! ' &
| 1
| 1
1 Diagnostic : /
I Graph DB steps
I a=| !
! !
M o _____ e

Figure 2.2: High-level overview of the SD2Act methodology’s workflow as it is implemented in MBDIyb.
Orange edges (currently) require human involvement while green edges represent fully automated
transformations or computations.

) TNO Public 10/66

) TNO Public) TNO 2024 R10833

The implementation choices made in MBD/yb result in additional transformation steps
compared to the generic method depicted in Figure 2.1. The system dependencies form the
input to the diagnostic network, and the diagnoser is added as an interface between the
reasoning model and the service engineer or system data. Also, a storage in the form of a
graph database is added. Each of the different stages in the MBD/ybworkflow is briefly
described below.

Stages in the workflow

The conceptual meaning of each of the six stages shown in Figure 2.2 is briefly described
below. The following sections elaborate more on the details of each of the stages.

e System descriptions
The system descriptions represents all system design information, both structured
and unstructured, that is relevant for the creation of the diagnostic model.

e System dependencies
This stage represents the manual specification of the (functional) dependencies that
should be in the diagnostic model. This is essentially the entry point of the
methodology that converts design information to a format for which a semi-formal
interpretation is defined.

e Diagnostic network
The diagnostic network represents all the knowledge that was provided for the
creation of the functional diagnostic model. The semantics of the internal format
are defined so that it allows being transformed into a formal reasoning model.

e Graph DB
The diagnostic network itself is instantiated by the library and only lives in memory
for the time the MBDIyb application is running. A graph database provides a
persistent storage space in which all knowledge of the diagnostic can be stored, so
that the diagnostic model can be loaded at a later moment. Currently, Neo4jis the
graph database use by MBDIyb to store the information in.

¢ Reasoning model
The reasoning model is the model that has a formal (mathematical) semantics that
allows for diagnostic reasoning.

e Diagnoser
The diagnoser takes in findings from the system being diagnosed and uses the
reasoning model to compute a diagnosis. It then suggests diagnostic tests to do and
again takes in the findings. These steps are repeated until a final diagnosis is
reached. Hereby the diagnoser implements operational diagnostics as depicted in
the bottom of Figure 1.1.

The remainder of this report considers the implemented methodology as the main
methodology rather than the conceptual one presented in Figure 2.1, as most of the
discussed features have been implemented in the proof-of-concept methodology
implementation.

1 https://neodj.com/

) TNO Public 11/66

https://neo4j.com/

) TNO Public) TNO 2024 R10833

2.3

Modelling

Design information

The design information needed to create the functional diagnostic model mainly consists of
high-level system design information, such as functional breakdowns and system
decompositions.

In addition to those types of design information, also more structured system architectural
models could be used as input. Capella (Roques, 2017) is a modelling workbench supporting
the Arcadia method (Voirin, 2017). This systems engineering approach supports the system
design by going systematically from the user’s needs to functions the system needs to
perform. Multiple abstraction levels help in translating those system functions into
subsystems with their own subfunctions, including the relations between these subsystems.
Eventually, a connection to the concrete hardware pieces that need to realize such functions
is made. This type of structured breakdown in the Capella model provides a good starting
point for the creation of the functional diagnostic model. Being a model-based approach as
well, the Capella model could in the future also allow for automatic model-to-model
transformation.

To allow the diagnostic model to estimate the health of individual hardware pieces, or
groups thereof, these hardware pieces and their mapping to the system functions they
realize must be known. For this, a material or part list could be used to add the components
to the model. The functional deployment of the system functions onto those hardware
pieces follows either from the breakdown of the part list or other types of design documents
or models. The mapping of system functions onto hardware pieces can also be provided by a
Capella model, as shown in Figure 2.3.

£F] powerCable §F] Converter

[E ACPower

>
@ SupplyPowerFromA @ CovertACtoDC ~

Figure 2.3: Functional deployment onto hardware pieces as specified in a Capella model. The function
‘ConvertACtoDC’ is realized by the hardware piece ‘Converter’.

Systems log a lot of data during operation, e.g., timeseries containing sensor data, software
events and errors. Some of these observations provide direct health indicators for hardware
pieces or report on the fulfilment of system functions. For example, software may report an
error when it is unable to fulfil its requested task. If this task represents a system function
that software is controlling, the reporting of this error is a direct indictor for a functional
failure. These observables are all made automatically by the system and can often be
inserted immediately into the diagnostic model, already eliminating many potential root
causes from the diagnosis. Documentation where such information can be found are
event/error lists of software components or Key Performance Indicator (KPI) lists. It is not
always trivial how to map an observable to a function or hardware piece, so an expert in the
loop may sometimes be needed to manually do this at the time of model construction.

Besides the observations made by the system itself, there is a set of diagnostic tests that
can be done to acquire additional information about the state of the system. Such
diagnostic tests are typically documented in a service manual. The diagnostic tests should
be linked to the specific functions or hardware pieces they provide information for regarding
its health status, i.e., whether the function is performed (correctly) or whether the hardware
piece is potentially unhealthy.

) TNO Public 12/66

) TNO Public) TNO 2024 R10833

2.4

The types of information required to build a diagnostic model according to the presented
methodology include the following:

- Functional breakdown

- Replaceable part/hardware lists and breakdowns

- Functional deployment information onto the hardware
- KPl/observability lists

- (Diagnostic) tests and calibration lists

Functional dependencies

All relations are expressed by means of different types of functional dependencies. If
function A requires function B to be performed, a functional dependency from B to A is
specified. This specification can be done via a dependency matrix, in which all functions are
listed both in the rows as well as in the columns. If the function in the column depends on
the function in the row, the corresponding cell can be marked, as shown in Table 2.1.

Table 2.1: An example dependency matrix.

Function_A Function_B Function_C Function_D
Function_A X X
Function_B X
Function_C X
Function_D

In this table, Function_B and Function_C both depend on Function_A, and Function_D
depends on Function_B and Function_C. A similar matrix can be made to also express the
dependencies of functions on hardware pieces, or to express the dependencies of
observables and tests to functions or hardware pieces. These dependency matrices
represent the functional dependencies that form the input to the methodology workflow.

Diagnostic network

From the functional dependency matrices, a diagnostic network is created. The diagnostic
network is essentially a knowledge graph that forms the basis for the transformation to the
reasoning model. This knowledge graph is automatically constructed from dependency
tables, which are the result of a (currently) manual formalization step to capture the
relevant design information. The dependencies from the dependency table are transformed
into types of nodes and relations, representing different types of dependency relations. An
example network is depicted in Figure 2.4. Different colours represent different types of
nodes and the edges represent relations, for which the types are labelled.

Details regarding the semantics of all types and the validity of certain relations are described
in Section 2.4.1. The diagnostic network also provides potential for discovery of new
functional dependencies that have not been documented explicitly by combining the
documented knowledge with basic physics knowledge. This extension is described in Section
2.4.2. An Excel-based approach to specify a basic diagnostic network is explained in Section
24.3.

) TNO Public 13/66

) TNO Public) TNO 2024 R10833

241

Hardware_A
Hardware_B Function_A Hardware_C
Function_B Hardware_D Function_C
observed_by
Y
Test_Function_B Function_D Function_C_Error

Test_Function_D

Figure 2.4: An example diagnostic network consisting of four different functions, four pieces of hardware,
one system observables and two diagnostic tests. The functional dependencies between the functions
(purple) correspond to the functional dependencies shown in Table 2.1.

Building blocks

The diagnostic network is a directed knowledge graph that consists of four types of nodes
and six types of relations. The representation of each node and relation type and its
semantics are explained below. Figure 2.4 shows an example diagnostic network, also
illustrating the colours used to visualize the types. Note that not all types of relations are
shown in the picture.

Types of nodes

Hardware node (orange)

A hardware node represents the health of one or more hardware components in the system.
At a high level in the system hierarchy, e.g., at subsystem-level, a hardware node represents
the health of the collection of hardware pieces within that subsystem.

A hardware node has at least 1 state valuation: Healthy, which represents that there is no
problem with the hardware piece(s). Upon specification of a hardware node, one may
specify the possible hardware faults and their prior probabilities to add more state
valuations to the node. This allows for example for the specification of a hardware part that
is 95% likely to be healthy, 4% likely to be contaminated and 1% likely to be malformed.
These included faults and their likelihoods will determine the hardware’s priors.

Function node (purple)

A function node represents a system function and whether this system function is
performed as expected or not. Many system functions break down into lower-level system
functions, which are the subfunctions of such system function. For example, on a high level
a system may have Heat up the house as system function, which usually breaks down into
subfunctions like heating up some water, circulating the water, dissipating the heat towards
the environment, etc. All of these functions are considered system functions and are
expressed by function nodes, though they reflect different levels of the system hierarchy.

) TNO Public 14/66

) TNO Public) TNO 2024 R10833

Function nodes have two possible state valuations: Ok and NOk, where the first indicates
that the system function is performed according to expectation and the latter indicates it
does not. A function node cannot be a root node in the network and therefore does not need
any priors to be set, as the function can only be performed if either the realization of the
function is Healthy, represented by Hardware nodes, or it’s realizing subfunctions are Ok.

Direct observable node (green)

A direct observable node represents an automatic interpretation of an observation made by
the system itself, e.g., an event in the log, a reported reading from a sensor or a KPI. Key is
that this system observation must be automatically interpretable, which means that no
human intervention is needed to estimate what the node’s state should be. An example is
an error logged by software, for which its presence in the event log can be checked
automatically. An example based on sensor readings is when the reading must be within a
certain predefined range, which can also automatically be checked. While using the
diagnostic model to diagnose, these nodes determine the initial state of the diagnosis.

Direct observable nodes have two possible state valuations: Ok and NOk. The first one
indicates that the reading of this observable is not suspicious, i.e., it does not indicate a
problem. The latter indicates a potential problem. For example, if a node represents the
occurrence of an error in the event log its state should be NOk.

Diagnostic test (blue)

A diagnostic test node represents a diagnostic test that has to be triggered or executed by a
service engineer to acquire additional data from the system. These are manual diagnostic
tests, such as measuring the power in a certain place or testing whether a sensor triggers
upon a manual action. Additionally, many systems have diagnostic self-tests that need to
be started by a service engineer and for which the results need human interpretation.
Another example is a parameter being logged automatically, for which also human
interpretation is needed to assess whether or not the data is as expected. While using the
diagnostic model to diagnose a certain situation, some of the diagnostic tests are executed,
providing additional findings on top of the direct observations to come to a diagnosis.

Identical to the direct observables, diagnostic tests have two state valuations: Ok and NOKk,
where the first indicates the diagnostic test result is as expected (according to normal
operation conditions) and the latter does not.

Types of relations

Different types of relations allow for connecting specific types of nodes to each other. All
relations are represented by directed edges from one node to the other. Table 2.2 provides
an overview of the types of relations in the diagnostic network, including the valid source
and target node types for each of the relations.

Table 2.2: An overview of the types of relations in the diagnostic network.

l Color l Source node types | Target node types
Realizes realizes Orange | Hardware Function
Required for | required_for Purple Function Function
Affects affects Red Hardware Function
Subfunction | subfunction_of | Pink Function Function

) TNO Public 15/66

) TNO Public) TNO 2024 R10833

| Color | Source node types | Target node types
Test tested_by Blue Hardware, Function | Diagnostic Test
Observable observed_by Green Hardware, Function | Direct Observable

Realizes (orange)

The realizes relation represents the deployment of a function onto a hardware piece or
group of hardware pieces. The relation edge direction is from a hardware node to a function
node. The semantics of the relation is such that the function needs its realizing hardware
pieces to be Healthyin order to function according to expectation, i.e., to be Ok If one of the
hardware pieces that realizes the function is not Healthy, the function will be NOKk.

Required for (purple)

The required for relation (‘required_for’) represents a functional dependency of one function
on another. Quite literally, the target function of the relation needs the source function to
function properly (to be OK) in order to function itself. This means that if a function has
multiple incoming required for relations from other functions, it depends on all of them to be
functioning. In logic, this is represented as an AND gate: the function is only Ok if all of its
required functions are also Ok, otherwise it is NOk.

Affects (red)

The affects relation represents the potential disturbance a piece of (malfunctioning)
hardware may pose on the fulfilment of a function. This could be used to represent physical
effects, such as heat generation or vibration that is caused by a broken piece of hardware,
that cause a function to fail, even though all of the functional dependencies of this function
are in order. The main difference with the realizes relation is that this relation represents a
non-functional relation between the hardware and the function.

Subfunction (pink)

The subfunction relation (‘subfunction_of’) represents part of the functional breakdown of
higher-level functions into lower-level functions. The relation takes the lower-level function
as a source and the higher-level function as a target. Semantically, this means that the
higher-level function can only be performed as expected once all of its subfunctions are Ok.

Test (blue)

The test relation (‘tested_by’) connects either a hardware node or a function node to a
diagnostic test node. It represents the observability of the health of the hardware node or
the capability to fulfil its function of a function node by doing the diagnostic test. A
diagnostic test may be connected to multiple hardware or function nodes by means of
multiple test relations, if the test provides observability on all those connected nodes.

Observable (green)

The observable relation (‘observed_by’) represents the observability of either the hardware
node’s health or the ability to perform a system function correctly by means of a function
node on a direct observable node. Similar to the test relation, multiple observable relations
can connect different observed nodes to a single direct observable if the target observable
provides information on the state of those source nodes.

) TNO Public 16/66

) TNO Public) TNO 2024 R10833

2.4.2 Non-functional dependencies

As described in Section 2.4.1, functional dependencies constitute the main source of
information of the proposed diagnostic methodology. For complex systems however there
might be diagnostic problems for which the path from a root cause to the observed
functional symptoms might be via non-functional dependencies.

With non-functional dependencies here we mean failure situations, like a leaking pipe or an
overheating component, for which as a consequence a function impacts other functions.
This is a dependency which in normal conditions is not there, that is such a function does not
have an impact on the other functions. During the design of a system, these dependencies
might be known to designers but likely are left out from the functional models so in a sense
non-functional dependencies can be seen as not documented functional dependencies.
These non-functional dependencies are left out based on implicit assumptions made on the
environment in which the system is deployed and the normal operational status of its
components.

The goal of this section is to introduce an approach to systematically reconstruct these non-
functional dependencies for a system. To do so, we propose the workflow shown in Figure

2.5
- \
/ .
System | Svstem MBDIyb Python library
descriptions Idependencies
N
=. £E
¥y 222
l Operational data
Diagnostic Reasoning
network model Diagnoser

Service engineer

&

Hardware
breakdowns

£ n

Inference
rules

Diagnostic
Graph DB steps

=
\V)

Inferred
relations

7

8 —
b—
o—

- e - . e e o e e e -

Figure 2.5: SD2Act methodology workflow for inference of non-functional dependencies.

The difference with Figure 2.2 is on the lower left side. In order to reconstruct such non-
functional dependencies, we make use of hardware breakdowns and expert-based inference
rules. The hardware breakdowns are first transferred to the graph DB, then inference rules
are applied on the DB to infer the non-functional relations. In this way, we leverage the DB
technology’s functionality to quickly perform such an inference, i.e. we do not need to write
specific algorithms to infer these new relations. Based on a single inference rule, many non-
functional relations can be inferred, which minimizes the effort for designers.

In more detail, the hardware breakdowns contain material and proximity information about
parts. This can be gathered from sources like CAD drawings and parts databases. Examples
are shown in Table 2.3 and Table 2.4. Table 2.3 shows the distance information, extracted
from CAD drawings using the built-in clearance analysis functionality resulting inan M x M

) TNO Public 17/66

) TNO Public) TNO 2024 R10833

matrix for a system with M HW components. Table 2.4 shows the property information for
the parts, where each part can have associated any one of n multiple property value.
Examples of properties are the type of material, weight and thermal conductivity.

Table 2.3: Computed distance between hardware components computed from the CAD drawing.

From HW To HW Distance

Hardware_A | Hardware_B | d_AB

Hardware_A | Hardware_M | d_AM

Hardware_B | Hardware_C | d_BC

Table 2.4: Property information on each of the hardware components.

Property_11 ... Property_n

Hardware_A | Value_1 Value_n

Hardware_B | Value_2

Hardware_M | Value_1

This information is then added to the graph DB and combined with the information from the
functional dependencies via the HW nodes. As an example, Figure 2.6 shows the resulting
graph DB after adding the distance information on top of the existing DB of Figure 2.4 from
the Hardware_B node to the other hardware nodes. Not shown in the figure is that
properties from Table 2.4 above have also been added to the Hardware nodes, such as
HeatSource or SensitiveToHeat.

) TNO Public 18/66

) TNO Public) TNO 2024 R10833

o
Oig
r%i?%f
floy,
Hardware_A
$
& R,
Qéﬁd) a %%h, Hardware_C
[‘.
: p
: &

uma\ﬂﬂsnﬂgm

ysazIeeY w

00

o
p

I g
% 4
% §
L 4

**“%6
.- TestRelation “ TestRelation % ‘

Figure 2.6: Example of graph DB with distance relations.

Reatzg

“Rayy, %

Once such information is stored in the DB, we can perform expert-based queries that infer
non-functional relations. As an example, to infer heat coupling between components close

in space, one could perform the following query, where we used Neo4j Chyper query
language syntax:

1 MATCH (from_HW_node : Hardware{property : 'HeatSource'})-->

2 (d : DistanceRelation WHERE d.mm < min_distance)-->
3 (to_HW_node:Hardware{property:'SensitiveToHeat'})-->
4 (f:RealizesRelation)-->(to_FN_node)

5 CREATE (from_HW_node)-[:InferredNonFunctionalHeatInfluence]->(to_FN_node)

In lines 1 to 3 we find the HW nodes with a property HeatSource which are closer than
min_distance to HW nodes with a property SensitiveToHeat. In line 4 we then find the
function nodes realized by the latter HW nodes. In line 5, for each of combination of the
above HW and function nodes we add a new relations of type
InferredNonFunctionalHeatInfluence to the DB.

) TNO Public 19/66

) TNO Public) TNO 2024 R10833

243

Executing such a query on the DB will then add the relation shown in Figure 2.7. Following
our workflow, this inferred relations will then be transformed back into a diagnostic network
as an Affectsrelation to be used in a diagnosis since, in the extended network, a failure of
Hardware_B can become a cause of a malfunctioning of Function_D.

RealizesRelation O RealizesRelation

Figure 2.7: Inferred non-functional relation.

Some considerations on this way to infer non-functional relations:

e Forlarge systems, computing the distance between all pairs of HW parts could be
too computationally expensive. A possible solution would be to compute distances
using the hierarchical decomposition. For example in a recursive way one could
compute the distance among any two modules and then among any two sub-
module inside each single module.

e The expert-based inference rules should be collected and maintained in a library.
This library should also specify the way in which the inferred relations have to be
transformed into the diagnostic network.

From system design to a diagnostic network

To express the system dependencies for the creation of the diagnostic models, we propose
to use Excel to collect all the information (nodes and relations) in a structured way that
should be stored in the Graph DB. The proposed template allows for relatively easy
specification of a system at the cost of a number of assumptions, as an Excel template puts
some limits on the expressive freedom of the model creation. This is in principle not a
problem, as the template is merely used to demonstrate the creation of the model, rather
than to provide a fully-fledged tool. An example of the proposed Excel template is shown in
Figure 2.8.

Functions
System y 1 2 y 3 Direct Direct DiagnosticTest DiagnosticTest

MainFunction Function_11 Function 21 Function_31 Function_32 Function_21 Error Function_31_KPI Test Function_11 Test Hardware_21 31

Figure 2.8: Example system specification using the Excel template.

The template consists of an individual sheet per (sub)system to be specified. In Figure 2.8,
the sheet name is ‘System’, which represents the top-level view of our example system. The
breakdown into smaller parts of our system is done via so-called Clusters. For every cluster,

) TNO Public 20/66

) TNO Public) TNO 2024 R10833

one or more main functions and/or hardware pieces need to be specified. All are assigned a
name. These specifications are shown in the first three columns of the template.

The grey column(s) represent the main function(s) of the cluster being specified in the sheet.
The name of the displayed cluster specification is ‘System’ and the main function of this
cluster is named ‘MainFunction’. Every cell marked green indicates a dependency from the
function or hardware piece represented by the row to the function or observable
represented by the column. The two marked dependencies of the ‘MainFunction’ are
‘Function21’ and ‘Function31’ of clusters 2 and 3 respectively. This results in those functions
to be subfunctions of the ‘MainFunction’ function of the cluster ‘System’.

In the blue columns, only the main functions of the clusters are listed. The second row
represents the cluster of the function, while the third represents the function name. Again,
green cells represent a dependency from the row to the column. Three interpretations of
marked cells are valid:

e Function - Function: this translates to a Required forrelation from the first function
to the latter.

e Hardware = Function, within the same cluster: this translates to a Realizes relation
from the hardware node to the function node.

e Hardware - Function, in another cluster: this translates to an Affectsrelation from
the hardware node to the function node.

The orange columns represent the observables, which can be either ‘Direct’ or
‘DiagnosticTest’. This is specified in the second row and ensures the observables to be
translated into the proper node type in our diagnostic model. Whenever a cell is marked
green, the observable in the respective column provides information about the function or
hardware in the respective row. This is translated to an Observed by relation or a Tested by
relation, depending on the observable type. Additionally, one can specify the costs attached
to conducting a diagnostic test. The final row(s) of the table have ‘Cost’ as main header and
each row must have a subheader indicating the name of the costs represented. In this
example, only ‘Time’ costs are considered. Every diagnostic test should have a number
assigned for each type of cost to distinguish (which may be 0).

Functions
System y 1 y 2 y 3 Direct Direct DiagnosticTest DiagnosticTest
Cluster MainFunction Function_11 Function_21 Function_31 Function_32 Function_21_Error Function_31_KPI Test_Function_11 Test_Hardware_21_31
50 TN Function Function_11

EIRECUEN Hardware Hardware 11 NN - r |

BB GNP Function Function_21

Legend
Nodes Relations
Hardware Subfunction
Function Reguired for
Direct Observable Node Realizes

Diagnostic Test
Observed by
Tested by

Invalid relation

Figure 2.9: Color-coded mapping of the cells to the relation it is being translated into if the cell is marked
green in the template. Grey cells are invalid to mark green.

To represent all possible relations and node type being derived from the template, Figure 2.9
shows a color-coded mapping to the different types of nodes and relations. The grey cells
are invalid to mark as a dependency. A visual representation of the model as specified in
Figure 2.8 is shown in Figure 2.10.

) TNO Public 21/66

) TNO Public) TNO 2024 R10833

System

Subsystem_2

| B

Subsystem_3

affects N\

pbserved by
Subsystem_1

| Function_21_Error

‘ ;

| Test_Hardware_21_31 |

Test_Function_11 Function_31

observed by

Y
Function_31_KPI

I E‘_

Figure 2.10: A visual representation of the diagnostic model as specified in Figure 2.8.

The Excel template also provides support for hierarchical specification of a model. A cluster
can be further detailed by adding a sheet to the Excel file with the name of the cluster. The
template of the sheet is identical to the one in Figure 2.8. The grey part of the sheet should
reflect the name of the cluster and all of its main functions as specified in the higher-level
sheet. For example, ‘Subsystem_3’ in the example has two main functions, thus two grey
columns are needed, as shown in Figure 2.11.

Functions

Observables

Subsystem_3 Subsystem_31 Subsystem_32 Direct DiagnosticTest
Cluster Function_31 Function_32 Function_311 Function_321 Function_311_Error Test_Function_321
SIHS ¥ Function Function_311
SUEA ek Hardware Hardware_311
SIES I RePA Function Function_321
SUEA G ePA] Hardware Hardware_321
Cost Time 20

Figure 2.11: Detailing out of ‘Subsystem_3’ in the Excel template.

This more detailed model of the cluster adds upon what has already been specified for the
cluster. Apart from making sure the cluster name and main function names correspond to
the upper level, the template works exactly the same. This cluster by itself, without loading it
in the context of the higher-level system, is visualized by Figure 2.12.

) TNO Public 22/66

) TNO Public) TNO 2024 R10833

Subsystem_3
Subsystem_31
Hardware_311
— Subsystem_32
Function_311 Hardware 321
bsered_b
Function_31 Function_311_Error Function_321
Function_32 Test Function_321

Figure 2.12: Visual representation of only the specification of Subsystem_3, as specified in Figure 2.11.

By detailing out a cluster, the interfaces from other clusters to the detailed clusters are often
unclear. Originally, functions of the other clusters were connected to the main functions of
the to-be detailed cluster, while these target functions have now gotten one or more
subfunctions, as shown in Figure 2.12. Consequently, it is unclear which subfunctions in the
detailed cluster are the targets of the external functions that pointed to the cluster's main
functions. When loading the model, this will be prompted and a choice should be made by
the user of the library. An example prompt for the above system is shown in Figure 2.13. The
main function ‘Function_32’ has been detailed by assigning subfunctions to it and needs to
be refined. The user may now chose to either maintain the original main function to be
connected, or to clarify this connection to start from either one of the two subfunctions of
the main function. In this case, option 3 (‘Function_321’) was selected. Note that if the
selected function also has a more detailed specification available, a new prompt will appear
to further refine. This does not happen if an explicit choice has been made to maintain the
originally connected function (option 1).

Ambiguous source function: Subsystem 3.Function 32 -> Subsystem 1.Function 11,
please specify Subsystem 3.Function 32:

1. Subsystem 3.Function 32%*

2. Subsystem 3.Subsystem 31.Function 311

3. Subsystem 3.Subsystem 32.Function 321
Comma-separated number (s) :3

Figure 2.13: Example prompt to clarify the interfaces to a more detailed cluster.

While these interface descriptions should be part of the model, these are not part of the
Excel template. As such, the specification of these interfaces is saved to a separate file in
JSON format to enable reloading of the model without having to answer all questions again.
While it is suboptimal that these interface specifications are not included in a more
structured form and part of the model specification itself, this approach allows the individual
clusters to be specified in full isolation, without knowing in which context these will be
placed. Upon initialization of the model, its placement is known and the further specification
is needed. Future work may come up with a more structured approach that still maintains
this benefit.

) TNO Public 23/66

) TNO Public) TNO 2024 R10833

The final model, after detailing out one of the clusters, is shown in Figure 2.14. The four
Required forrelations crossing the border of ‘Subsystem_3’ replaced the Required for
relations to and from the main functions ‘Function_31’ and ‘Function_32’. The main
functions in ‘Subsystem_3’ have no more Required forrelations connected, as these are now
going to subfunctions of those main functions.

System

Subsystem_1 Subsystem_2

(o]]

Subsystem_3

Subsystem_31

4
Function_11 Hardware_311 Function_21

(] Subsystem_32 1)

A 4
Hardware_321 l Function_311 | | Hardware_31 | Function_21_Error

Function_321

Function_311_Error

| Function_31 I Test_Hardware_21_31

Function_31_KPI | MainFunction

o]

Figure 2.14: The visualization of the final example model, including the detailed out ‘Subsystem_3’ cluster.

The expressiveness of the current Excel template is limited in some ways to simplify the
model specification. These limitations and the assumptions to deal with them are listed
below.

¢ The template does not allow for the specification of individual fault modes of the
hardware nodes. Besides the default Healthy state, an Unhealthy state is created for
each hardware node. Since the priors of the individual states cannot be added in the
template either, the prior is set to be 99% Healthy, and 1% Unhealthy.

e Direct observables may sometimes be faulty, being either a false positive or a false
negative, meaning that the observable reports NOk while the function or hardware
does not have a problem, or that it reports Ok while there is a problem respectively.
To provide room for these faulty types of observations, each direct observable node
has a 0.1% chance of being a false positive and a 1% chance of being a false
negative. Rationale for these different values is that it is usually more likely to have
something not being reported while it should than having something reported
mistakenly. In future implementations, these numbers may be changed.

e Like the direct observables, also diagnostic tests may be wrongly interpreted. To
provide room for these manual observations, the diagnostic test nodes have a
0.01% change of being a false positive and a 0.1% chance of being a false negative.

) TNO Public 24/66

) TNO Public) TNO 2024 R10833

2.5

251

From a diagnhostic network to a reasoning
model

Before we dive into discussing the different reasoning models, their virtues and challenges,
and our implementation of those, we must discuss what is meant by reasoning in this
context, and why is it necessary to construct a reasoning model on top of a diagnostic
network.

By reasoning we mean the deduction of (true) statements about a subject matter off of a
collection of established (true) statements. These statements can be deterministic (if it rains
the streets are wet) or probabilistic (tomorrow it will rain with 90% probability). An important
caveat here is that the statements need not be true with respect to the real world, but with
respect to a model. If our model is only approximately correct, or the evidence inserted in
the model is incorrect, then its frue statements are only approximately true.

As we have discussed in Section 2.4, a diagnostic network is a rich knowledge graph
designed to contain a functional representation of a system. In this representation we
include everything that is relevant for the diagnosability of the system, such as nodes
representing component health, component functions and their relations, abstract
representations of KPIs etc., which allows us to understand how failures propagate through
the system.

As such, there is quite a lot of explanatory power captured within the knowledge graph itself,
and one could use it as is to ‘reason’ about the system without need of any reasoning
model.

Through the introduction of rules and queries, one can use a diagnostic network to deduce
that, for example, component A and component B are thermally coupled, since component
A is made out of metal, component B provides active temperature control, and they are
contiguous. This form of rules-based reasoning is possible within the knowledge graph, but is
not the only kind of reasoning that one might want to do on a system.

Most times, the kind of reasoning we are interested in is causal reasoning. We observe
effects (system behaviour) and want to know what the causes are: which system
components function as expected and which ones do not. Then, two problems arise. On the
one hand, one effect can have many causes and we would like to have a way to quantify
the likelihood of each one, particularly so in the complex systems we consider. On the other,
one cause may only cause an effect with a certain probability.

Hence a knowledge based approach is quickly not good enough. That is why we need to add
a probabilistic reasoning framework to our diagnostic network.

Network transformation

While the semantics of all nodes and relations in the diagnostic network are described in
Section 2.4.1 the formalization step to transform a diagnostic network into a probabilistic
network is still missing. This section specifies the rules needed to transform from the first
formalism to the other to allow for reasoning, regardless of which probabilistic formalism is
selected.

Every node in the diagnostic network is transformed to a conceptual equivalent in the
probabilistic network. We shall refer to this conceptual equivalent as the probabilistic node
in the selected reasoning formalism. The exact probabilistic formula embedded in each
probabilistic node depends on all of the incoming relations to the node, as those represent
the dependencies for this node. Essentially, all probabilistic nodes can be seen as AND-gates,
as they require all of its parents to be ‘as expected’. In details, this means the following.

) TNO Public 25/66

) TNO Public) TNO 2024 R10833

Hardware

The probabilistic node for a hardware node only represents the prior probability of failure of
the hardware it represents. It does not have any incoming edges, thus has no parents. Table
2.5 shows an example conditional probability table (CPT) for a hardware node with only one
faulty state, being Unhealthy, besides the default state Healthy.

Table 2.5: Example conditional probability table for a probabilistic hardware node with only one faulty state.

P(Healthy) | P(Unhealthy)

0.99 0.01

Function

A function node requires all of its parent function nodes, regardless of whether its relation is
of type Subfunction or a Required for, to be Ok and all of its parent hardware nodes (via a
Realizes relation) to be Healthyin order to be Ok. In all other cases, the function node’s state
is NOk. Table 2.6 shows an example CPT for a function node with two parents.

Table 2.6: Example CPT for a probabilistic function node with two parent nodes: one function node and one
hardware node.

Parent function node | Parent hardware node | P(Ok) | P(NOK)

Ok Healthy 1.0 0.0
Ok Unhealthy 0.0 1.0
NOk Healthy 0.0 1.0
NOk Unhealthy 0.0 1.0

Direct observable

The probabilistic node for a direct observable is similar to the function node, as it also
requires all of its parents to be Healthy or Okin order to be Ok Main difference is the
incorporation of the false positive and false negative rates for the given observable. With
these rates set to their default values for diagnostic networks, the CPT becomes like Table
2.7.

Table 2.7: Example CPT for a probabilistic direct observable node with two parent nodes.

Parent function node | Parent hardware node l P(Ok) ‘ P(NOK)

Ok Healthy 0.99 0.01

Ok Unhealthy 0.001 | 0.999
NOk Healthy 0.001 | 0.999
NOk Unhealthy 0.001 | 0.999

Diagnostic test

The probabilistic node for a diagnostic test is very similar to the direct observable node and
takes false positive and negative rates into account. An example for a diagnostic test with a
single parent is shown in Table 2.8.

) TNO Public 26/66

) TNO Public) TNO 2024 R10833

Table 2.8: Example CPT for a probabilistic diagnostic test node with one parent function node.

Parent function node l P(Ok) l P(NOKk) ‘

Ok 0.999 0.001
NOk 0.0001 | 0.9999

2.5.2 Candidate reasoning formalisms

In the project SD2Act 2023 we have investigated 3 different reasoning formalisms: Bayesian
networks, tensor networks, and probabilistic programming. Dynamic Bayesian networks
were also studied in SD2Act 2022, but have not been further studied and thus will not be
discussed in this report.

The choice of investigated reasoning formalisms was motivated by the form of our
diagnostic networks and the nature of the available data. Our reasoning formalisms should
be discrete and graphical because a diagnostic network captures the structure of a system
in a graph with hardware, function and observable nodes whose states are discrete. Given
the small number of data available, and the probabilistic nature of the fault propagation and
detection in the system, our formalism should also be Bayesian and model-based.

All this considerations point us toward probabilistic graphical models as our best candidate
framework. The most general formalism in this category of mathematical models is Factor
graphs, of which tensor networks are an implementation (Robeva & Seigal, 2019). Bayesian
networks are a subclass of factor graphs and can be implemented separately or as a special
class of tensor networks.

2.5.2.1 Bayesian networks

The first formalism considered is that of Bayesian belief networks, hereafter shortened to
Bayesian networks (BNs).

A Bayesian network is a probabilistic model that uses directed acyclic graphs (DAGs) to
encode joint probability distributions over a set X = {X;, ... X,,} of discrete random variables.

Every variable X; € X has associated a set of parents Pa(X;) € X\X; and a conditional
probability table(CPT), P(X;|Pa(X;)). The children of a node X; are the variables that have X;
as a parent.

The set of random variables, together with their CPTs, define the nodes of a directed graph
whose edges are determined by the dependencies in the CPTs. One edge for each
parent->child relation.

The Bayesian network, in the sense of the DAG with the variables and their CPTs, defines the
joint probability distribution:

P(Xy, o X,) = HP(X”Pa(XL-))

In this way one can insert evidence by fixing the value of that variable in the factorization.

The Bayesian network encodes the joint probability distribution implicitly and can be used to
answer questions like “What is the probability of a given assignment (X, ... X;,) =
(%1, -, x)?”, or “What is the marginal probability of a variable X, ?”. That is, what is the result

of
n

P.(X)) = Z P(Xy, ..., X,) = Z P(X;|Pa(X)),
XE 1

Xz i=

) TNO Public 27/66

) TNO Public) TNO 2024 R10833

25211

Where X3 means that the summation goes over all variable save X,.

The process of summing over all variables but the target ones is called variable elimination,
and its complexity depends greatly in the order and the intermediate information that is
stored.

In Bayesian networks, the algorithm that performs variable elimination is called message
passing (MP) or belief propagation (BP), and can compute all marginals in time:

0(n - max (dim(X;))max (dim (X;))™max (degXi)
where, dim (X;) is the dimension of the variable X;, deg(X;) is the in-degree of X; in the
network, and n7is the number of variables.

Observe that for this algorithm to be useful for large networks, the maximum degree of
nodes in the network must be independent of n, otherwise the exponential factor in the
complexity would quickly take over and make computation impossible. A fully
interconnected network where everything is allowed to directly depend on everything else is
thus a non-starter. Thankfully, the systems we deal with are not fully interconnected but
rather locally connected, they are structured. The point here is that structure is not only
helpful, it is necessary for computation.

For a more in-depth discussion of Bayesian networks, see (Koller & Friedman, 2009).

Limitations and challenges of Bayesian networks in the context of SD2Act

In the course of the ADIA and SD2Act projects up to 2022, several limitations and challenges
of Bayesian networks have been identified, namely:

1. Enforcing global constraints: BNs do not allow the user to easily enforce system-
level constraints to, for example, express certain laws of physics and force the
model to adhere to these at all times.

2. Modelling stateful systems. Bayesian networks represent equilibrium states or states
at a single moment of time. Stateful systems, such as state machines, which can
change their state over time must be approached using dynamic/temporal Bayesian
networks, but these cause scalability challenges as the network needs to be copied
an unknown number of times.

3. Reasoning over control and probabilistic loops.: Bayesian networks cannot, by
definition, contain loops. Control loops, however, are to be expected in cyber-
physical systems, which will translate into Bayesian networks with cycles.
Probabilistic loops are another name for causal loops and are to be expected in
systems where different components can affect each other in ways that are not
directionally clear or unique.

4. Description of the problem in terms of (probabilistic) relations by design engineers:
Most engineers are not used to express system behaviour in term of probabilistic
relations such as CPTs.

To these limitations we must now add three.

5. Reasoning with continuous variables. System variables may exist that are not well
described by a binary or discrete set of states (e.g. degradation), but rather require
continuous random variables to be described. BN in their current formulation cannot
easily deal with continuous variables. This constitutes a bottleneck to extending the
methodology to performance diagnostics, i.e. the diagnosis of underperforming
systems.

6. Temporal data. The current framework does not allow one to make use of time
series or otherwise ordered data which could resolve some of the diagnostic
ambiguity present in a static model. As discussed before, dynamic Bayesian
networks are a possibility but have been found to have scalability issues.

) TNO Public 28/66

) TNO Public) TNO 2024 R10833

7. Computation of joint entropies. The assisted diagnostic with hierarchy approach of
section 4 relies on computing the conditional entropy of the hardware nodes with
respect to the possible tests. This is a computationally expensive task that grows
exponentially with the number of health nodes to be considered, and which is now a
bottleneck to computation for the current implementation of Bayesian networks.

Some of these limitations no longer apply in the functional modelling framework of SD2Act.

The nature and importance of these limitations must be reassessed in the new modelling
framework.

Stepping away from modelling physical behaviour and towards functional modelling can
potentially circumvent the need for enforcing global physical constraints (limitation 1),
although non-functional relations can still exist that are best described as constraints
between hardware nodes in the diagnostic network.

Regarding the modelling of stateful systems and the reasoning of control loops (limitations
2 and 3), the functional approach alleviates the limitations of Bayesian networks since the
details of the control loop can now be abstracted away. Controller states no longer need to
be tracked in time and are simply described as either performing their function or not. The
same can be said, up to a point, about state machines. Further research is needed in this
direction.

Limitation number 4, i.e. difficulty of problem description by design engineers still applies but
has now changed in nature. Whereas before the difficulty was in translating physical
interactions into probabilistic variables and CPTs, the difficulty now is in describing a physical
system at the functional level, a problem that has been the subject of much work in the
model-based system engineering community. This is no coincidence, as the functional
approach to diagnostics was conceived with this synergy in mind.

For limitations 5 and 6, reasoning with continuous variables and temporal data, neither
Bayesian networks nor tensor networks provide satisfactory solutions. We are currently
looking into probabilistic programming to tackle these. On the one hand, limiting our scope
to functional behaviour and machine hard-downs reduces the necessity of continuous
variables, because both hardware and functional nodes are discrete (‘Healthy/broken’,
‘OK/NCOK’). On the other hand, the data from the field oftentimes comes in the form of time-
series’ that cannot automatically be inserted into our discrete reasoning engine, and a
machine hard-down could be the result of a collection of underperforming factors, none of
which is caused by a broken hardware, but which together compound to an out of spec
functionality. Our current approach is to have service engineers use their field expertise to
interpret the results of tests and KPIs yielding non-binary data and translate them into
probabilistic ‘OK/NOK’ evidence.

Limitation 7 is still under consideration. Possible solutions are a switch to approximate
estimation of entropy via sampling, using computationally less expensive bounds on entropy
as proxy for the real quantity or using the high-parallelization implementation of tensor
networks to reduce computation time of the full conditional entropy.

Let us summarize. The turn to functional modelling has ameliorated but not completely
supressed the limitations of Bayesian networks as a reasoning formalism. We have not yet
encountered the need for global variables, modelling state machines and control loops has
not yet been attempted in a full case-study but we have reason to believe the functional
approach goes a long way towards solving limitations 2 and 3. Functional modelling also
allows us to piggyback on the systems engineering efforts and expertise to tackle limitation
4.

Nevertheless, some difficulties remain. Limitations 5, 6 and 7 are largely unaddressed. The
translation between system behaviour and functional behaviour is far from unique. The

) TNO Public 29/66

) TNO Public) TNO 2024 R10833

25212

problem with probabilistic loops still has to be addressed. For this last item, we propose a
work-around that allows us to compute inference in Bayesian networks with loops. This
workaround, described in Section 2.5.2.1.2, comes at a computational cost, and so we later
introduce tensor networks, a generalization of Bayesian networks that can directly deal with
loops while maintaining all the functionalities of Bayesian networks.

Loop cutting in Bayesian networks. A house heating example

H_Control

H_Heater H_Tmp_Sensor
T

H_House

OK

OK OK

-
NotHeating B oK

StuckOff | | |

StuckOn

Setting

AlwaysOn
Controlled
AlwaysOff

i bt OpenWindow

[i1]

DriftsHigh i 5 |

DriftsLow

RealTemp

MeasTemp

AlwaysYes

| Controlled

AlwaysNo

Low

Controlled
High

Low
Controlled
High

) TNO Public

o = == &

Figure 2.15: A simple example of a loopy system in the form of a house heating control loop.

As was mentioned in the previous section, the issue of directed loops in the causal graph
defined by a Bayesian network remains. Bayesian networks with directed causal loops are
invalid inputs for the inference algorithms for two reasons:

1. Belief propagation relies on locally sending messages along the DAG that flow from
the roots to the leaves of the networks (and then back up). The problem with loops
is that messages are then passed along the loop without ever hitting a leaf node
and the algorithm never halts.

2. A network with causal loops might not define a well-formed joint probability
distribution, meaning that the sum over all variables need not sum up to one. In
other words, if the network contains loops, the factorized joint function that it
encodes via Equation 2.2 need not be a normalized joint probability distribution.

In the following, we describe a procedure that modifies a BN with a loop allowing us to
compute inference in the new network. We illustrate the procedure with an example.

Consider the house heating system in Figure 2.15. Although not in the syntax of diagnostic
networks described in Section 2.1, this is a kind of functional model because the states of
the variables do not track the instantaneous states of the room, hardware components or
settings, but rather their long term behaviour: ‘/s the controller controlling?, ‘ Is the heater
heating?.

H_Control

MeasTemp1

AlwaysOn Controlled AlwaysOff

OK
OK
0K
StuckOff
StuckOff
StuckOff
StuckOn
StuckOn
StuckOn

Low
Controlled
High
Low
Controlled
High
Low
Controlled
High

100
33.33

100
100
100

Figure 2.16: CPT of Setting

The CPTs of the system are all rather trivial and can be easily deduced from the name of the
states. Only the CPT for setting is non-trivial (see line 2 of Figure 2.16), this is to allow for
combinations where the measured temperature is controlled, but the system is not
controlled, as would be the case with a drifting sensor.

This seemingly sensible Bayesian network is ill-defined, as was explained in the previous
section. The problem lies in the loop, and therefore we must find a way of formally cutting

30/66

) TNO Public) TNO 2024 R10833

the loop (i.e. modifying the network) while preserving the desired correlations in the new
network.
The method for cutting the loop proceeds in four steps.

1. Identify a node in the loop and create a copy of the node, meaning, a new node
with the same states as the original one, severing the connection between Node
and its children, and replacing it with a connection between Copy and Node’s
children.

2. Create a new node ‘Equal’ that is a child of the original node and its copy and whose
CPT is defined by P(Equal = 'yes'|Node = n,Copy = m) = {1’ n=m

0, n#Fm
Insert as evidence ‘Equal=yes’
4. Give uniform priors to ‘Copy’.

w

In the example of the house heating example, the loop is cut by identifying the Node in step
1 with ‘MeasTemp’ and adding ‘MeasTemp1l’ as its copy node (see Figure 2.17).

H_Control
= H_Heater H_Tmp_Sensor
3 = H_House —
oK 04— oK 97 2 — OK 920 |—
susor 278 Novieatng 273 | 1] Spenncow 378 [l Sl 8
M > 111 DriftsLow _ 1.00
Setting Heat RealTemp MeasTemp
AlwaysOn 906 @ »| AlwaysYes 6.32 »| Low 15m o) LOW 180
Controlled 87.3 jmm——m—n Controlled 87.2 j—m—— Controlled 87.2 m—m——m Controlled 89.1 j—m—"
AlwaysOff 3.69 AlwaysNo 643 High 362 High 270

A

MeasTemp1
Low 818 p
Controlled 89.1 p——
High 270

Figure 2.17: Cut loop in a Bayesian network.

This (conditioned) Bayesian network is now well-defined because it contains no direct cycles.
The combination of giving ‘MeasTemp1’ uniform priors and conditioning on ‘Equal=yes’
makes ‘MeasTemp’and ‘MeasTemp?’ perfectly correlated, which allows us to ‘pass’ the value
of ‘MeasTemp’ to the variable ‘Setting’ in the update phase, by actually passing it the value
of ‘MeasTemp?’. This constitutes an indirect way of enforcing constraints.

One last observation before we move on is that it is the presence of a virtual Evidence node
in the network here that allows us to cut the loop. If any of the variables of the loop were to
be observed and inserted as evidence there would be no issue in updating the probabilities
of the rest of the variables. In essence, it seems that adding evidence to loops is what makes
them manageable, and this method is a way to insert evidence in the network when there is
none from the field.

This method does not come without drawbacks. We are modifying the network and the
causal flow, and the choice of assigning flat priors to B’ is somewhat arbitrary, but most
importantly, it requires us to find the loops and decide where to cut them. Loop finding is a
very computationally expensive task that scales badly in the size of the network.

One solution to this problem is to use tensor networks as a reasoning formalism. As
discussed in Section 2.4.2.2, tensor networks generalize Bayesian networks with the added
benefit that they can naturally deal with loops. In Appendix A we prove that this way of
cutting a loop in a BN is equivalent to the way tensor networks naturally compute loops.

) TNO Public 31/66

) TNO Public) TNO 2024 R10833

2.5.2.2 Tensor networks

Tensor networks are the second probabilistic reasoning formalism that we study. There are
many ways to define tensors, the easiest one is as multidimensional arrays of numbers.
Every tensor has a set of /indices that take values in their respective index domain.
Mathematically a tensor T € R%t x ... x R% being an array of numbers is denoted as:

T =|[Tx,.x,| whereX;€{1,..,d;} forj=1,..,n, orT =Ty, _ forshort. Capital letters

denote the indices (lower-case letters denote values that those indices can take). If the
number of indices is small, lower-case roman letters are often used to denote indices.

The number of indices of an array is called the tensor order, (rank is also used, but should
not be confused with matrix rank). A vector is thus an order-1 tensor, a matrix an order 2
and so on (see Figure 2.18).

s P &
A e e b
AI By - Big Ciin v Cim
A= :2 B= : H C= H H 3

2

Am Crr!ll Crm!l

i i j ‘

Figure 2.18: Examples of tensors of order 1 to 3. The indices of the tensor act as coordinates on the array.

A tensor network is a graphical representation of a product of tensors with (possibly)
overlapping indices.

Equation 2.1

1
T= [T’XL---'X‘H.] = 1_[T)g])
j=1

where §; is a subset of the set of all indices in the network. For example, let S; = {2,3,5} be
the set of indices of a tensor T®, then 7" = 7,
Sj 243,45

In its graphical representation, the network contains one node for each factor in Equation
2.1, and a (hyper-)edge for every index connecting all tensors that share that index (see
Figure 2.19).

contraction
i J k i = k
(a8 c

Figure 2.19: Tensor network before and after contraction and its graphical representation.

Cijk = AL_]BJk Index j Cik = ZAUB]’C
J

The basic operation on a tensor network is called tensor contraction and consists of
summing over one or more of its indices. Contraction is done locally on the network, and the
result of contracting an index between two or more tensors is a new tensor whose indices
are the indices of the old tensors that were not contracted.

) TNO Public 32/66

) TNO Public) TNO 2024 R10833

25221

When several indices are contracted at once, the order of contraction can have a huge
impact in the complexity of the operation. Although finding the optimal order of contraction
is an NP-complete problem for arbitrary networks, there exist many algorithms that can
quickly find “good” contraction orders. The more structured and tree-like the network, the
easier it is to contract.

Another way of understanding tensors is as maps from their indices to the real numbers.
T:[d] X ..x[d,] >R

T(Xy, s Xn) = Tx,, xy

In this notation, a tensor network is a representation of the map:

Equation 2.2

T:[d{] X ..x[d,] > R

l
T(Xl, ...,Xn) = HT}(XS]) .
j=1

Observe that this notation is reminiscent of that for the joint probability distribution of a
Bayesian network.

For the remainder of this report we will mostly use the second notation, but both are useful.
Thinking of tensors and tensor networks as multivariate functions allows us to equate them
to random variables and probability distributions, while thinking of them as arrays allows us
to express them in terms a computer can better handle.

Inference in tensor networks

As has already been hinted at, tensor networks can be used to encode factorizations of joint
probability distributions. Just by looking at Equation 2.2, we see that all we really need for
this to be a probability distribution is that the factor tensors be non-negative and that it be
normalized, i.e. contracting all indices equals 1.

Every index thus represents a variable and every tensor a factor in the factorization of the
joint probability distribution.
Tensor contraction is then nothing but marginalization, also known as variable elimination.

Similarly, inserting evidence is the same as fixing an index to a particular value or adding a
delta factor to the factorization and contracting the index away.

Moreover, because of the form of Equation 2.2, multiplication by constants commutes with
the operation of index contraction. This means that we do not need to keep track of
normalization constants, we simply compute them after marginalization (a much easier
task).

This turns out to be quite handy for application of the chain rule of probability, i.e.

PX|Y =y) x P(X,Y = y).

Having marginalization, insertion of evidence and the chain rule we have all the ingredients
necessary for Bayesian inference (see Table 2.9). An in-depth analysis of this correspondence
can be found in (Robeva & Seigal, 2019) and (Glasser et al., 2019).
Table 2.9: Conceptual parallels between tensor networks and Bayesian inference.
Joint probability distribution tensor network

P(A,B,C) = P(A)P(B|A)P(C|A, B)

) TNO Public 33/66

) TNO Public) TNO 2024 R10833

25222

Marginalization Tensor contraction

P(C) = Z P(A,B,(C)
AB

Insertion of evidence

P(A,B,C =c¢) =P(A,B,C) - b¢=

Chain rule

P(A,B|C = ¢) x P(4,B,C =c)

The current implementation of marginalization on MBDlyb computes all marginals
sequentially. The complexity of this naive algorithm (if indeed one could call it an algorithm)
is 0(n?), where n is the number of variables in the network. This is worse than the 0(n)
algorithm for marginalization in Bayesian networks, but still fast enough for us at this stage
of development.

Further improvements in the algorithm are possible by storing intermediate computations
and fetching their result rather than recomputing them like we do now.

Bayesian networks as a subclass of tensor networks

In a Bayesian network, we put variables and their CPTs into nodes and connect them
through directed edges to the nodes’ parents and children. That is nothing but a graphical
representation of a factorized joint probability distribution of the form:

Equation 2.3

P(Xy, . X)) = HP(Xi|Pa(Xl-))

This is but a special case of the factorized function in Equation 2.2.
where S; = {X;, Pa(X;)}, m = n, and each f; is a conditional probability table.

But as we have seen, this can be also expressed graphically as a tensor network. In general,
the changes to the graphical representation are that nodes in a BN that were labelled by a
variable name, call it Y, and contained its CPT are replaced by:

a. A tensor with one index per parent of Y and one for Y itself, containing the CPT of Y,
b. One edge per variable. If the variable appears multiple times (because it is a parent
to many nodes), this is a hyperedge.

A simple example will illustrate this perfectly. Consider the Bayesian network in Figure 2.20.

) TNO Public 34/66

) TNO Public) TNO 2024 R10833

25223

25224

Figure 2.20: Example Bayesian network.

This network is a representation of the joint probability distribution:
PUW,X,Y,Z) = Py(U) - Py (W) - Pxjyw(X|U,W) - Pyx(Y|X) - Pzx(Z|X)

A visualization of this joint probability distribution as a tensor network looks is shown in
Figure 2.21.

]

Pyx
Y

Figure 2.21: Tensor network visualization of the example Bayesian network.

Indeed, we see here that the tensor network contains one tensor per element in the
factorization and one edge for each variable, including a hyperedge for X because this
variable appears in the tensors P(X|U, W), P(Y|X), P(Z|X).

Loops in tensor networks

Tensor networks can natively deal with both of the issues that make loops incompatible with
Bayesian networks.

On the one hand, tensor contraction, the operation used for variable elimination on tensor
networks, bypasses the problems encountered by message passing in evaluating loops
altogether by not being directional.

On the other hand, the issue of loops of local conditional dependencies that do not amount
to a well-defined joint probability distribution is also not a limitation of tensor networks. That
is because tensor networks are not limited to such functions. As long as we remember to
normalize our results at the end, computation on networks with loops is always possible,
and the result, as we will see at the end of this section, is always proportional to a well-
formed conditional probability distribution on the modified Bayesian network that breaks the
loop (see Section 2.5.2.1.2).

Example of a loop in a functional diagnostic network

Let us illustrate how tensor networks deal with loops with the simple case of two functions,
F,, F,, each with their own hardware and KPI nodes, and each dependent on the other (see
Figure 2.22).

) TNO Public 35/66

) TNO Public) TNO 2024 R10833

Py Pr

1 2

Hy H,

P F1HWH2,F1
F 7,
Prpi,|F, EI{P}A |y

KPI, Kpi,

Figure 2.22: A simple functional network containing two function nodes forming a probabilistic loop. The left
diagram represents the diagnostic network, while the right one is the resulting tensor network. This is not a
complete characterization because the priors and CPTs are yet to be specified.

In order to fully describe this system we need to specify the hardware priors, conditional
probability tables of the function nodes and CPTs of the observable nodes. For the prior
probabilities of H; and H, we choose [P(H; = Ok) = 0.95; P(H; = NOk) = 0.05], while for the
KPIs we choose a false positive and false negative rate of 0.01.

Special care must be taken when choosing the CPTs of F; and F,. By default, in MBDlyb we
define the CPT of a node to be the logical AND of its parent nodes (Section 2.5.1). If we were
to apply the default in this case, our variables F; and F, would become perfectly correlated.
We would not have a loop but rather the same variable twice. In principle, it could happen
that a system has a set of function variables that form a loop where each one is strictly
required to be ‘Normal for the next one to be ‘Mormal’. In that case, the tensor network
would (correctly) make all variables in the loop perfectly correlated. For our purposes now,
however, this is not insightful enough. We would still like the hardware nodes to be
necessary for their functions to be performed, but will relax the assumption that an
abnormal function necessarily makes its functional children perform abnormally. Moreover,
we will make it such that an ‘4bnormal’ F, is unlikely to make F, abnormal, while an
abnormal F, is very likely to make F; malfunction. This is made manually, but a working
solution is part of the library. The resulting tensor arrays are those in Figure 2.23.

OK NOk OK NOk
95 5 95 5
@ @
< b
H1 F2 Normal Abnormal H2 F1 Normal Abnormal
OK Normal 100 0 OK Normal 100
OK Abnormal 20 20 Func@. FiFunc@. P2 oK Abnormal 20 80
NOk Normal 0 100 NOk Normal 0 100
NOk Abnormal 0 100 NOk Abnormal 0 100
E-1 P2
kig@prL [Fe Ok NOK [F2 [ok NOk ke1(er2

KPI'1

Normal
Abnormal

Normal
Abnormal

’ls;
1

KPI_2

Figure 2.23: Tensor network with tensor arrays fully specified. Observe the difference in the second lines of
both middle arrays. These different values make for a weak influence from right to left and a strong
influence from left to right.

) TNO Public

36/66

) TNO Public) TNO 2024 R10833

25225

The first question one might have is what are the posterior probabilities of all nodes prior to
inserting evidence. These correspond to rows 1 and 2 of Table 2.10. If we now insert as
evidence KPI, = NOk, or alternatively KPI, = NOk, the resulting posteriors are those in rows
3-4 and 5-6 of Table 2.10, respectively.

These are the same numbers one obtains if one uses a Bayesian network with the loop cut
according to the procedure in Section 2.5.2.1.2.

What transpires from looking at these numbers, especially the cases where we insert
evidence, is the asymmetry in the cross-influence between F; and F,. When the evidence is
KPI, = NOk, the posterior probability of H; being broken jumps considerably, while that for
H, stays nearly constant, at the same time, the probability of F, = NOk is very high (which is
attributed to the strong influence of F; on F, rather than to H, being broken).

In contrast, when KPI, = NOk, both hardware nodes are considerably more likely to be
broken than before in roughly equal ways. What is happening here is that, because of the
strong influence of F, on F,, the latter is an indicator for the former, so when strong
evidence comes for F, = NOk, one possibility is H, = Broken, but another one is that F;, =
NOk, which, if true, would be caused by H; = Broken. We will have another look at these
numbers in Section 2.5.2.2.5.

Table 2.10: Posterior probabilities for the system with no evidence inserted, after inserting evidence for KPI,
and after inserting evidence for KPI,.

Case State/variable H, H, F; F, KPI; KPI,
No evidence | Healthy/Ok | 0.956 | 0.956 | 0.822 | 0.797 | 0.815 0.791
Broken/NOk | 0.044 | 0.044 | 0.178 | 0.203 | 0.185 0.209
KPI, = NOk Healthy/Ok | 0.766 | 0.942 | 0.044 | 0.087 0 0.095
Broken/NOk | 0.234 | 0.058 | 0.956 | 0.913 1 0.905
KPI, = NOk Healthy/Ok | 0.832 | 0.793 | 0.195 | 0.038 | 0.201 0
Broken/NOk | 0.168 | 0.207 | 0.805 | 0.962 | 0.799 1

Advantages and Challenges in tensor networks

Although tensor networks are a strict generalization of Bayesian networks, in SD2Act we do
not make use of their superior expressive power to create models, meaning that the
diagnostic models described in section 2 are very BN-like. The use of TNs has therefore no
effect on the kinds of models we create, and their impact is felt on the computational back-
end of things. In particular, using TNs allows us to easily deal with loops and has
implications (both positive and negative) on the computation complexity of marginalization
and entropy calculations, and the interpretation of results in the presence of loops. We
would be remiss if we did not mention too any of the features of tensor networks not
explored in SD2Act, so we close this section with a brief discussion of those.

e [oops
The computation of marginals (and therefore entropies) on networks with loops is
possible on the TN without workarounds or additional steps.

e Computation of marginals
Our benchmarking experiments show that the basic contraction of edges (the TN
version of variable elimination) on the chosen TN library Quimb (see quimb

) TNO Public 37/66

) TNO Public) TNO 2024 R10833

o
7 - o . o
seo S . ' 0 * .)
o) .~ v, 8
ooy, .o - 1Y Y i % 0s

documentation?) is much faster than the equivalent computation of messages on
the BN library PyAgrum (see PyAgrum documentation?).

However, this advantage is cancelled by the fact that our algorithm for computing
all marginals is very primitive, requiring 0(n?) operations, rather than the 0(n)
required for belief propagation in the BN.

Our results show that belief propagation on a BN takes ~ K, - n steps, where n is the
number of nodes in the network, whereas the naive algorithm for computation of
marginals on the corresponding TN takes ~ K, - n? steps, where K; ~ 1073 and K, ~
1074,

This means that there is both need and room for improvement in the TN algorithm
for computing marginals.

The main reason sequential marginalization of the TN has worse scaling than belief
propagation on a BN is redundant computation. BP manages to avoid redundant
computation by storing the result of all intermediate computations and fetching it
every time the algorithm calls for a computation it has already performed.

At the moment we do no such thing in the TN algorithm.

Additionally, we are not making use of the parallelization and GPU acceleration that
is supported by Quimb because of the need to run the computation on a Linux
environment.

Computation of joint entropies

Our chosen TN implementation allows for the in-situ computation of functions like
the joint entropy of a subset of nodes, whose joint probability would be too large to
store in memory (and too costly to compute).

In the example given in a tutorial? for entropy calculations, one can compute the
joint entropy of 27 variables (without GPU acceleration) in a network with 304 nodes
in under 90 seconds. The computation time is reduced to 13 seconds if one
considers only 18 variables.

Further reductions would follow for less complicated networks (this one is an
extreme case) and if one were to use GPU acceleration.

We must stress that to the best of the author’s knowledge, these computations are
simply out of reach in the Bayesian network formalism.

e) T *—3 L | o oty % [771 1 tree sub = htn.contraction_tree(output_inds=output_inds, optimize=opt)

1 S = sum(
2 # using autoray handles numpy/cupy/torch/jax etc.
) . 3 -do("sum", p_chunk * do("log", p_chunk))
5 ."..., L5 e i X I» 4 for p_chunk in tree_sub.gen_output_chunks(
5 htn.arrays, progbar=True,
6)
7)

Figure 2.24: [Left] TN with 304 nodes and 18 output indices in red. [Right] Code computing the
contraction tree and the joint entropy of all 18 output indices. Observe that most of the computation
time is in computing the contraction tree. For very hierarchical and tree-like networks this would be
much faster.

2 https://quimb.readthedocs.io/en/latest/index.html

3 https://pyagrum.readthedocs.io/en/1.11.0/

4 https://cotengra.readthedocs.io/en/main/examples/ex_large_output_lazy.html

) TNO Public

38/66

https://quimb.readthedocs.io/en/latest/index.html
https://pyagrum.readthedocs.io/en/1.11.0/
https://cotengra.readthedocs.io/en/main/examples/ex_large_output_lazy.html

) TNO Public) TNO 2024 R10833

) TNO Public

Interpretation of results in networks with loops

In the example detailed in Section 2.5.2.2.4 we have a TN with a loop between
Fyand F,. In this network, we set the influence of F; = NOk on F, much bigger than
the influence of F, = NOk on F;. As we already discussed, this leads us to reasonable
diagnostics in the sense that KPI; = NOk makes both F; and F, very likely NOk but
only suspects H, of being broken. However, the actual numbers for the posterior
probabilities of H; and H, vary quite a lot with the strength of the mutual influence
between F; and F,, which is ultimately a modeler’s choice.

While it seems that the diagnostic result is quite robust to the choice of influence
strength, it remains an open question what are the right values for these influences.

We have already encountered some non-trivial behaviour on an ASML-specific case
whose simplified structure is that of

Figure 2.25.

Figure 2.25: A likely false positive that shows the ability of these models to create causal artifacts.

In this network, KPI, and KPI; suggest that both components in the loop are
healthy while, at the same time, KPI, reports NOk. This is very likely a false positive
of KPI;, which the tensor network detects because the posteriors of both health
nodes report Healthy with very high probability. However, depending on the strength
of the influence between F,; and F,, the network reports a substantial probability
that they are both NOk. For cross-influences that are both 0.75, the model reports a
33% and 29% chance of F; and F, being NOk, respectively. But this happens at the
same time that both H; and H, are very likely Healthy. The functions are making
each other malfunction. When the coupling between function nodes is weakened to
0.75 on one direction and 0.05 in the other, the causality loop (predictably)
disappears.

What we have here are malfunctioning functions that are not caused by any
malfunctioning hardware. This is an artifact of the model, but one that does not
seem to lead to a misdiagnosis. More investigation is required.

Features of tensor networks identified but not realized in MBDlyb

o Hyperedges as global variables and constraints. We consider this not
necessary at this stage (see Section 2.5.2.1.1).

o Non-causal relations. The biggest unused feature of tensor networks is their
ability to encode non-causal relations through the use of tensors whose
rows (or columns) do not sum up to one, i.e. tensors that are not conditional
probability tables.

For example, consider two Boolean variables, X; and X,. If we want to
enforce that X; = X, (no causality here, just a constraint), one can introduce
in the network a tensor § whose array is simply a 2x2 identity matrix. One
could go further and enforce any equation on a group of variables of the
form f(X,, ..., Xx) = 0 by introducing a tensor T whose array is defined by:

39/66

) TNO Public) TNO 2024 R10833

Ty, xe {1 if f(Xy, 0, X)) =0
0 else.

In physics, when two particles affect each other we do not use the concept

of causality, but rather, we say that they interact. This is then translated into

an interaction term in the equations of motion of the system.

One could attempt the same in diagnostic networks where we have two

functions that directly affect each other, translating a loop into an

interaction tensor (see Figure 2.26). As long as it is a non-negative tensor,

any interaction tensor Gy, , is allowed.

F 1R F _|L|_Fz

Figure 2.26: [Left] Interaction between variables expressed as a bidirectional causal
relation. [Right] Interaction expresses as a non-causal factor.

Correspondence to other computational formalisms:

It is known in the tensor network community that tensor networks can be
used to encode a few other computational formalisms. While here we have
used the correspondence between tensor networks and factor graphs, the
former can also be used to encode, among others, Hidden Markov Chains
(HMC), Borne machines, quantum circuits or satisfiability formulas. In many
of these there exist algorithms for computing various quantities of interest,
sampling, parameter learning and approximating probability distributions,
see (Glasser et al., 2018), (Rams et al., 2021) and (Bariuls, 2023).

Modelling with continuous variables.

It is possible to generalize tensor networks to the setting where the
variables are continuous variables described by exponential probability
density functions (like Gaussian, Exponential, Beta, etc.) and the factors are
no longer arrays of numbers but functions, or rather transformations on the
random variables. This is known in the literature as factor graphs (tensor
networks and discrete factor graphs are the same thing). While continuous
factor graphs are much more expressive probabilistic models than tensor
networks or Bayesian networks, inference on FG is much more complicated.
There exist several implementations of continuous factor graphs, such as
the Julia-based library RxInfer?, or the C++-based GTSAM®.

2.5.3 Chosen reasoning formalism

In this section we have considered two reasoning formalisms for diagnostics, Bayesian
networks and tensor networks. We have seen that the latter include the former and that,

although many

of the limitations of Bayesian networks identified in the ADIA project have

changed (see Section 2.5.2.1.1) some challenges remain for which tensor networks are the
more appropriate formalism. We have also discussed the unique features of tensor networks
and their limitations. In light of this discussion, we have decided to use tensor networks as
our primary reasoning formalism, using the python library Quimb as our implementation of
tensor networks. Nonetheless, we have decided to continue supporting Bayesian networks

% https://github.com/ReactiveBayes/RxInfer.jl

6 https://gtsam.org/

) TNO Public

40/66

https://github.com/ReactiveBayes/RxInfer.jl
https://gtsam.org/

) TNO Public) TNO 2024 R10833

for the time being, implemented using the python library PyAgrum, given the familiarity of
some of the authors with the software and the minimal overhead that this incurs.

2.6 Iterative diagnosis

In this section, we will describe the /terative diagnostic process that forms a core part of our
methodology as well as theoretical learnings about the diagnostic process. In a nutshell: by
performing service actions on the system and feeding their results back into the diagnostic
system, we can recommend service actions that are perfectly aligned with the needs of the
diagnoser.

The following will be our running example:

Your cherished CD Radlio player, a relic from the golden 90s, suddenly falls silent. The
music that once filled your room is no more. You’re determined to breathe life back into
this piece of nostalgia. So, what’s your first move? Do you dive into settings, tweaking and
turning knobs in hopes of hitting the right combination? Or do you opt for a fresh power
source, replacing the old battery with a new surge of energy?

Approaching this conundrum systematically, you might be tempted to take the most
insightful service action, assuming, of course, you have a measure for that. After all, the
more insights you have on the status of the system, the quicker you can make it work again.
But what if it turns out that the most insightful diagnostic action you could take on the CD
Radio player is a comprehensive measurement of its main board? For this task you would
need a specialist measuring device that costs a significant amount of money and will also
take a few days to be shipped to you. So, before going down that road, it may be much more
sensible to consider a /ess insightful but more affordable diagnostic test, such as trying
different settings to determine whether it’s only the CD that stopped working or also the
radio receiver.

This example illustrates the common thread of this section: striking the right balance
between diagnostic insight and diagnostic cost to find the best next diagnostic action. To get
there, we need to take a few steps. First, we will discuss the operational diagnosis loop in
more detail. We then move towards the workings of the diagnoser and discuss both criteria
- diagnostic information gain and cost of diagnostic actions - in isolation. Finally, we will
describe our methodology for combining those criteria into a single value that expresses the
value of the diagnostic action in the current context.

2.6.1 Operational diagnosis loop

7
_ perform service p compute
action
=1

L= ((\&I process data
A diagnosis loop

collect data

Operational
diagnostics

v

Figure 2.27: The operational diagnosis loop consists of a realized system, observations, a diagnostic
computational model and service actions.

The operational diagnosis loop, as depicted in Figure 2.27, is an iterative process for root
cause analysis in malfunctioning high-tech systems. This loop consists of four essential
components:

e the realized system,

) TNO Public 41/66

) TNO Public) TNO 2024 R10833

e adiagnostic computational model,
e timeseries and other observations,
e service actions.

The operational diagnosis loop starts from a realized system in its operational context, i.e.
the system is already built and running in its environment.

The design process of the system is (usually) concluded. Hence, a diagnostic action may help
us find the problem but will not change the system design to make it easier to find the
problem.”

The realized system produces operational data in the form of timeseries and observations.
For example, this could be error or event logs, logs of measurements that the system
collects during operation, or observations such as a warning indicators. In the context of the
SD2Act project, we also call these direct observables as the information can be obtained
from the system directly, without any additional means (see also Section 2.4.1).
The direct observables (timeseries and other observations) are then fed into the diagnostic
computational model. For details about the computational model, we refer to the previous
chapter. Crucial for the operational diagnosis loop is that the diagnostic computational
model calculates an optimal next service action that can be performed on the system.
Finally, the best next service actions are performed on the realized system and their results
are fed back into the diagnostic computational model. This closes the diagnosis loop. Note
that service actions in the context of SD2Act are usually considered to be measuring KPIs or
indirect observables. They provide measurements or insight into system components for
which - as opposed to direct observables - some effort has to be taken. The results of these
efforts are entered as evidence into the reasoning model. We do not consider replacements
of parts or trying alternative settings as service actions in the context of SD2Act, for these
types of service actions see (van Gerwen et al., 2023). See Figure 2.28 for an illustration of
the goal of assisted, iterative diagnostics as opposed to conventional diagnostics.
Diagnosis Diagnosis

100

90

80

70

60

50

40

30

Diagnostic Information

20

10

low high
costs costs

Total Cost

== Conventional Diagnostics == Assisted Diagnostics

Figure 2.28: This graphic illustrates the goal of iterated diagnostics: reducing the number of service actions
(the dots) as well as the total cost of the diagnostic procedure. Through iterated diagnostics we aim to push
the graph from right to left.

70ne can also consider a diagnosis loop in the context of designing systems. The goal there is to improve system
design in order to facilitate diagnostics in the operational context.

) TNO Public 42/66

) TNO Public) TNO 2024 R10833

2.6.2

2.6.2.1

26211

26212

26213

Recommending the next best service action

In this section and its subsections, we will describe our methodology for recommending the
next best service action. To begin with, there are two main criteria for choosing a service
action:

e The (expected) information gain of a service action, i.e., insight the service action
promises to provide on the status of the system.

e The (expected) cost of performing said service action. Cost may depend dynamically on
the system’s current state, and may also make reference to duration.

If one considers only cost, then one might end up performing many affordable but useless
tests. On the other hand, if one considers only information gain, then one might recommend
tests that are so expensive that they are not considered cost-effective to carry out.
Potentially, the same information gain could be achieved by combining a few less
informative tests that are jointly less expensive. These considerations illustrate that both
cost and information gain should be considered when choosing the next service action.

We will now discuss both criteria in isolation and then move on to approaches for combining
them.

Diagnostic information gain

The first criterion for recommending service actions is diagnostic information gain, i.e., we
will now discuss a measure for how much we learn about the health of the system by
performing a service action.

Technical preliminaries and scope of the methodology.

The minimal assumptions for applying the techniques discussed in this section are the
existence of a diagnostic model for a complex system satisfying the following assumptions:
A random variable T; is associated to every test j of the system.

A random variable X; is associated to every hardware component i of the system such that

we can retrieve the probability P (X; = "Ok"), potentially dependent on some evidence E, i.e.
a set of observed variables with the corresponding observations.

Given sets of random variables X and Y, we can retrieve the entropy of X, H(X), and the
entropy of X conditioned onY, H(X|Y).

Note that we need not assume the random variables to be discrete: the assumptions above
allow for reformulations in the continuous setting.

Methodology

Our methodology for recommending a diagnostic test solely based on information gain is to
perform the diagnostic test T; that minimizes the conditional entropy of the set of hardware
nodes X = {X,, ..., X,;}, given some evidence £

argmin; Hg (X|T;) = argmin; Hg (X, ..., X,,|T}).

The rationale behind this methodology is to select the diagnostic test that is expected to
reduce the overall uncertainty about the system’s health the most.

Scalability of the methodology

Calculating conditional entropy is an extremely expensive operation because it requires the
computation of a joint probability table involving all variables involved. For example,
calculating the conditional entropy for a test in a system with just 100 relevant hardware
components with 2 states will be practically unfeasible as it requires computing a joint

) TNO Public 43/66

) TNO Public) TNO 2024 R10833

probability table with 211 rows. In practice, we therefore limit the entropy calculation to
approximately 10 hardware components that are most likely to be faulty. We will now
describe this approach formally.
Let the ranking r: {0, ..., n} - {0, ..., n} be a bijection such thati < jimplies

P(X,) = Ok|E) < P(X,(;y = Ok|E),
where E is some evidence consisting of the measuring results of our direct and indirect
observables. Our recommendation is to minimize Hg(X,(o), ..., Xr(my|T;) for a computationally
feasible m < n. In other words, the next recommended diagnostic test is:

argmin; HE(Xr(O), ...,Xr(m)|TL-).

While this approach makes the computations tractable, it has two main drawbacks. To avoid
cumbersome notation, we will now write H when also H; could apply.
First, given our current approach for scalability of the methodology, it is possible that we
undervalue the information gain of diagnostic tests by ignoring their impact on lesser
suspected hardware components. A test T; that does not influence the probability
P(X,qo = Ok|E) for k < m,®will have worst-case conditional entropy in that
H(Xr 0y, - » Xramy|Ti) = H(Xr(0), > Xpemy | T;) fOr every diagnostic test T;. This is problematic as
it is simultaneously possible that H(X|T;) < H(X|T;) for some diagnostic test T;.

A second, less significant drawback is that the recommendation of diagnostic tests at the
beginning of the process may happen at random. This happens, in particular, when there are
more than m hardware components with equal least priors? and corresponding diagnostic
tests with equal rates for false positive and false negative. In such situations, all these
diagnostic tests will receive the same conditional entropy value with respect to the
hardware components X;), ..., Xjqn) Selected as relevant.

Despite these drawbacks, our approach for scalability works sufficiently well across our test

cases. Further investigation of other approaches for scalability may still be fruitful. One may
consider, for example:

1. Recommend the diagnostic test T; that minimizes the average entropy H(X;|T;) for
all i.

2. Partition the set of diagnostic tests X into I buckets of maximal size m, X¥, such that
H(X*|T;) becomes computationally feasible. Then minimize the average of all these
bucket entropies. Note that the buckets could be randomly generated as well as cre-
ated according to some heuristic, e.g., by bucketing functionally related compo-
nents.

Another way to achieve above points is to investigate estimations such as Shearer’s
inequality and work generalizing it, see (Madiman & Tetali, 2007).

Itis crucial to note that every such approach will make slightly different selections and
optimizes for slightly different goals. Therefore, extensive testing on practical examples is
unavoidable.

An alternative approach might be to investigate efficient algorithms for calculating
(approximate) entropy when large numbers of random variables are involved.

8 For example, this may happen in a Bayesian Network if X and T; are d-separated for all k < m given the
evidence E.

¢ Mathematically speaking, in this case there are several maps j, k, L, ... satisfying the conditions of the second
paragraph of this section such that j(i) # k(i) = 1(i) # j(i), for all i < i, < m, where i, is large enough.

) TNO Public 44/66

) TNO Public) TNO 2024 R10833

26214

2.6.2.2

26221

The effect of prior probabilities

0.42

—— H(H1, H2, H3 | T1)
H(H1, H2, H3 | T3)

0.40

0.38

0.36

0.34

0.32

0.30

0.00 0.02 0.04 0.06 0.08 0.10 o o
Failure prior H1

Figure 2.29: A toy example illustrating the dependence of entropy-based recommendations of next
diagnostic actions on prior probabilities on the health of the corresponding hardware nodes. The model has
evidence inserted that T2 indicates a failure (“NOk”). In the graph, we vary the prior for health H1 between
0.00 and 0.10 while keeping everything else fixed (failure probabilities of H2 and H3 are 0.01). We can see
that there is a clear dependence on the failure prior in H1 on whether test T1 or test T3 has lower entropy (on
the y-axis) and is, therefore, recommended.

As a final remark on diagnostic information gain, we would like to point out that the prior
probabilities for failures of hardware component crucially impact which diagnostic test will
be recommended. For illustration, consider Figure 2.29 where we compare the conditional
entropy of all hardware components with respect to two different diagnostic tests. We vary
the prior failure probability of one test and keep everything else fixed. In conclusion, it
crucially depends on the prior probabilities which diagnostic test is expected to decrease
entropy the most. In other words: the order in which tests are recommended depends on
the prior probabilities (among other things). Hence, choosing at least approximately correct
prior probabilities is crucial in the process of diagnostic modelling.

Cost of diagnostic actions

We will now move on towards our modelling of costs of diagnhostic actions. Returning to our
CD radio player example, recall the diagnostic test of performing a comprehensive analysis
of the CD radio player’s main board with a dedicated measuring device. The cost of this test
depends not only on the time it takes the engineer to perform the measurement (and
potentially their salary, etc.) but also on whether or not the measuring device is available,
whether or not the CD radio player has already been disassembled, and so on. To model the
cost of a diagnostic test, we therefore consider fixed costs and dynamic cost that depend on
the state of the system that is currently being diagnosed. We will now describe our
methodology of dynamically computing cost of diagnostic tests.

Types of costs and fixed costs

To allow for insightful information as well as potential optimization later, we assume costs
to be broken down into various types that are fixed for each test T;. These fixed cost in
various types are not dependent on the overall state of the system to be diagnosed. This
breakdown in types is particularly helpful when the decision about the next diagnostic action
depends not only on its total cost but must also be optimised with respect to other
constraints, such as time, workforce available, or similar.

For improved readability, we restrict ourselves to diagnostic costs of a single type in this
report. An adaptation to multiple types of cost is straightforward.

) TNO Public 45/66

) TNO Public) TNO 2024 R10833

26222

2.6.2.3

System state and dynamic costs

Informally, we can think of the system state as a finite collection of Boolean conditions,

Co, -+, Cn, describing a set of changing properties of the system that are relevant for the costs
of diagnostic tests. In our CD radio play example, such a condition could encode, for
example, whether the case of the CD Radio player is open (¢, = 1) or closed (¢, = 0), or
whether the measuring device is directly available for inspection (¢; = 1) or not (c; = 0).
Dynamic costs are accrued whenever these conditions must be changed for a diagnostic
test. For example, a diagnostic test might require the case to be opened while it’s currently
closed, or a measuring device to be ordered that is not locally available.

Formally, a system state is a function s: {0, ...,n} — {0,1}. We will also use the notation ¢ =
s(i) to denote the value of system condition i in state s. Informally, ¢ = s(i) = 1 means
that condition i is true in state s, and ¢/ = s(i) = 0 means that condition i is false in state s.
A dynamic cost function is a map c: {0, ...,n} x {0,1} » R>? where c(i, 0) is the cost of setting
condition i to 0, and c(i, 1) is the cost of setting condition i to 1.

To every diagnostic test T;, we assign a (potentially empty) set C; of tuples (j, b), where j <
n,and b € {0, 1}. The intended meaning is that (j, 0) € C; if and only if test i requires
condition j to be false, and (j, 1) € C; if and only if test i requires condition j to be true. If a
condition j does not occur in any tuple in C;, then the intended meaning is that test i
depends neither on ¢; being true nor on c; being false.

Finally, given a system state s, a dynamic cost function ¢, and a set of conditions C; for a
diagnostic test T;, we can compute its dynamic cost as follows:

G =) cGb)
(j,b)EC; with cjs-¢b

The total cost of performing a diagnostic test consists of (the sum of) its fixed costs, denoted
by c5x(T:), as well as its dynamic costs:

Ctotat(T)) = Crix(T)) + cayn(Ty)
Note that we left the system state implicit in the previous equation; if necessary, it may be
denoted by adding a superscript s to any of the cost functions that depend on it. When a
diagnostic test T; is performed, the system state s is updated to s,,.,, according to the
conditions required by the diagnostic test:

~ _ (b, if (j, b) in C;,

Snew(/) = {s(j), otherwise.

Combination of information gain an cost

Our approach for combining information gain and cost is to combine them into a single /oss
value for aggregating recommendations that take both criteria into account.

Recall from previous section that we want to minimise the conditional entropy H(X|T;),
where X is a suitable set of random variables describing the system health, and T; is the
diagnostic test under consideration. Moreover, we denote the total cost of performing test T;

by Ctotal (Ti)-ﬂ

19 1n this situation the test can thus be performed independently of the value of ;. If, however, the costs of
performing the test are different depending on values of c;, then one may need to introduce a helper condition ¢;
that models those costs. If required by the diagnostic context, one could, of course, make an easy modification to
move the dynamic costs per condition from system-wide to test-specific (or add an option for test-specific costs).

22 while the total cost may depend on system state s if the cost of the diagnostic test has a dynamic component,
we usually leave it implicit to avoid cumbersome notation.

) TNO Public 46/66

) TNO Public) TNO 2024 R10833

To start our discussion, it is helpful to consider the following informal formulations of our
two minimalization criteria: by minimising the conditional entropy H(X|T;), we minimise the
total number of diagnostic steps. On the other hand, by minimising the cost ¢;,.4;(T;), we
minimise the cost of the next diagnostic action. We would like to minimise both at the same
time. Of course, this is not always possible as sometimes the most insightful diagnostic
action will also be the most expensive (see the CD radio player example from the
introduction of this chapter). Hence, we need to balance the two appropriately to achieve a
reduction of total diagnostic costs by aiming for a balanced reduction of both the total
number of steps as well as the cost of the next action.

Formally, we propose the following formula for aggregating the loss I(T;) of a diagnostic
action T;:

H(X | Ti) Ctotal (Ti)

T)=b————— 1- maxc.. (T.Y
,(T) = b max HXIT) +(1-b) max ceotar(T;)

where the balance b € [0,1]. It is easy to see that minimising [, is equivalent to minimising
Crotal @Nd Minimising [, is equivalent to minimising H(X|T;). Any value strictly between 0 and
1 minimises a combination of cost and entropy. Note that we normalise both entropy and
cost with respect to their maximal values (at the current stage); the range of [, is thus
contained in [0,1]. Normalisation is necessary to overcome imbalances resulting from the
very different scales of entropy and cost (the difference can easily span several orders of
magnitude). The latter point is also an advantage we see of our loss function over other
approaches, such as minimising the information gain per cost.

The recommended next service action is the one that has least loss value. The results of
simulations, see Figure 2.30, show that choosing a good balance value b can dramatically
decrease the overall diagnostic costs. The simulation also shows that the optimal balance
value depends not only on the structure of the diagnostic model but also on how the costs
are distributed. It is therefore vital future work to develop an optimisation method for
balance values. Brute forcing the balance value might be feasible if the models are not too
big and do not change too often but other means of optimisation are worthy of
investigation. First experiments with reinforcement learning seem promising?2,

22 Reinforcement learning for this optimisation process is expected to be further investigated through a student
internship in 2024.

) TNO Public 47/66

) TNO Public) TNO 2024 R10833

Cost distribution: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

4.9
]
o
2
o
o 4.8 1
=
&
=
o 4.7
]
S
S
g
7
<]
= 4.6
=
©
o
>
@
T 45
>
]
0.0 0.2 0.4 0.6 0.8 1.0
balance (0 - only cost; 1 - only entropy)
Cost distribution: [7.0, 6.0, 5.0, 4.0, 5.0, 6.0, 7.0] Cost distribution: [10.0, 11.0, 10.0, 9.0, 10.0, 11.0, 9.0]
54
344
Il 7 931
o °
5 8
g g 521
= =
s Eol
= =
S B 504
s 8
3 8
o %
2 49 4
2 30+ 2
& &
] @
b=l T 48
5 294 &
fud B a7
o o 47
= s
& ©
28 4
L 46 1 I |
T T T T T T y T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
balance (0 - only cost; 1 - only entropy) balance (0 - only cost; 1 - only entropy)
Cost distribution: [1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0] Cost distribution: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
235 q
E 11.5 4 ‘E 23.0
Fl Fl
& &
o o 22.51
= 11.04 E
£ £ 22,0
g i
g % 2151
8 105 A 8
Y o
b} o 21.01
<} <}
£ £
g g
£ 100 2 2051
) 1)
o =]
® T 20.0
@ @
% o5/ G
: 19.5 J-
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
balance (0 - only cost; 1 - only entropy) balance (0 - only cost; 1 - only entropy)

Figure 2.30: Results of simulating the diagnostic process in the diagnostic model shown in the upper left
corner. The balance values b were simulated in steps of 0.05 between 0 and 1, and at each step the
diagnostic test with the least loss value is chosen. The costs mentioned at the top of each graph are
assigned, in order, as the costs of measuring the corresponding OutputKPIl. We worked with the single fault
assumption (i.e. we inserted only one fault in the system) and the procedure stops once the faulty
component is identified with a probability of half the second least healthy component.

) TNO Public 48/66

) TNO Public) TNO 2024 R10833

3 Applications

This section describes applications of the methodology on case studies. Each case study
serves one or more purposes, which are highlighted in the introduction of the case.

3.1 CD-radio player

A CD-radio player is selected as toy example for experimenting with the methodology. The
system is inspired on a semi-portable CD player that also has a radio receiver to play radio.

The system can thus play audio received by either the CD reader, or the radio receiver. Only
one source can be selected by switching a mechanical switch. The system is powered by
connecting a cable to an AC power socket, or by a set of batteries. The CD-radio player
consists of four main modules

1. The power system, which provides power to the other modules. The main power
comes from either an AC wall socket or inserted batteries.

2. The CD reader module, which reads audio from the CD and transforms it into a
digital audio signal.

3. The radio receiver, which transforms radio waves to a digital audio stream.

4. The audio system, which transforms an incoming digital audio stream into sound
waves.

The CD-radio player is modelled according to the Arcadia methodology (Voirin, 2017) as a
Capella model. On the highest level, two main functions are fulfilled by the system, being
PlayCD and PlayRadio. To achieve this, the four subsystems as described above are included.
These four subsystems as well as their main functions are shown in Figure 3.1. For each of
these subsystems’ main functions, a functional breakdown can be made. These functional
breakdowns are shown in Figure 3.2. Also, a physical breakdown of the system in different
modules or components is created, which is shown in Figure 3.3. The deployment of the
functions on the components is shown in Figure 3.4.

) TNO Public 49/66

) TNO Public) TNO 2024 R10833

4L] CDRadioPlayer

@ ProvidePower |4
»

L] CDReader
> @ ReadCD >

2 @ ReceiveRadio [

@ GenerateAudio

-

Figure 3.1: High-level functional flow of the CD-radio player. Functions are shown in green boxes and their
deployment on components is represented by the blue box in which the functions are located. For example,
ProvidePoweris a function deployed on the PowerSystem.

@ ProvidePower
@ SupplyPowerFromBattery | | @ SupplyPowerFromAC @ CovertACtoDC @ DistributePower @ IndicatePower
@ ReadCD
@ SpinCD @ llluminateCD @ DetectReflectedLaser @ ConvertLightToSignal @ TransformSignalToAudio
CE
® ReceiveRadio il D
@R Rad l‘ ignal @ TransformSignalToAudio @ TransformDigitalToAnalog @ AmplifySignal @ MakeAudio

Figure 3.2: Functional breakdowns of the main functions of the four subsystems: ProvidePower, ReadCD,
ReceiveRadlo and GenerateAudio.

) TNO Public

50/66

) TNO Public) TNO 2024 R10833

Figure 3.3: Physical breakdown of the system, down to the lowest level for which the Capella model of the
CD-radio player was created.

Figure 3.4: The physical architecture includes the deployed functions and the functional exchanges between
all functions.

) TNO Public 51/66

) TNO Public) TNO 2024 R10833

3.1.1

Finally, functional chains can be specified in Capella to indicate specific uses of series of
functional exchanges, tying together different functions needed to fulfil a specific task. For
every task, one may create a specific functional chain. Figure 3.5 shows four functional
chains representing different uses, though partly overlapping, of the CD-radio player. The
following functional chains are created:

Power provision from AC power.
Power provision from batteries.
Functional exchanges for playing a CD, without power provision.
Functional exchanges for playing radio, without power provision.

The rationale for adding these four functional chains is that in order to have a functioning
CD-radio player, one of the two power provisioning chains and one of the two functional
exchanges regarding information flow should be selected. One of the first group and one of
the second group together to form a good combined functional chain for fulfilling one of the
two main functions of the system.

B coRadioPlayer

BcoReader

B Transducer Esoard

DB AudiosigI

W erponeosien [0 TN Poisdo

Figure 3.5: Physical architecture showing also four functional chains: power provision via either battery or AC
socket, and the information exchange to play either CD or radio.

Note that the CD-radio player is just an example system used for illustration purposes. There
are many more ways in which a similar system can be split up into subsystems and in which
the functional breakdown can be done.

Functional dependencies

Based on the specification of the CD-radio player in Capella, one can put the same
information in the Excel template as introduced in Section 2.4. To do this, the functions and
components are transformed into functions and hardware pieces in the template. The
component breakdown shown in Figure 3.3 serves as a basis for the clusters to be created:
the main cluster is called ‘CDRadioPlayer’. This main cluster contains four clusters:
‘PowerSystem’, ‘CDReader’, ‘RadioReceiver’, and ‘AudioSystem’.

) TNO Public 52/66

) TNO Public) TNO 2024 R10833

RadioReceiver
RadioReceiver

Functions
CDRadioPlayer ~ PowerSystem CDReader RadioReceiver AudioSystem Direct Direct DiagnosticTest
PlayCD PlayRadio ProvidePower ReadCD ReceiveRadio GenerateAudio CD_Error Radio_Error ListenRadio ListenCD

Function ProvidePower
Hardware PowerSystem
Function ReadCD
Hardware CDReader
Function ReceiveRadio
Hardware RadioReceiver
Function GenerateAudio
Hardware AudioSystem

Figure 3.6: Specification of the CD-radio player in the SD2Act Excel template.

The main system specification sheet ‘CDRadioPlayer’ consists the two main functions as well
as the main functions of each of the contained clusters. Figure 3.6 shows the Excel table as
it is manually defined based on the Capella model. Note that this table contains the
abstraction of what is shown in Figure 3.5. Since the observables are not specified in the
Capella model, these were added based on a less formal description of the system. While
this first step is a manual one, the Capella model itself is formally specified and would allow
for potential automatic model-to-model transformation to ensure future scalability of the
method. For this, the formal semantics of, for example, a functional chain need to be
specified properly, as this is now subject to interpretation from the modeler. The following
transformations are now applied to the Capella model to come to the Excel-based models:

Every component in the component breakdown, except for the top-level one, is
transformed into a hardware components. The top-level component is transformed
into the main cluster.

If the component has subcomponents according to the component breakdown, a
cluster will be created for the component. The hardware node created will be put
inside the cluster, if applicable. For example, ‘PowerSystem’ has subcomponents,
thus will be a cluster. However, it will also be a hardware type that is put inside the
cluster. Hence, there is a ‘PowerSystem’ hardware piece inside the ‘PowerSystem’
cluster.

Every function is transformed into a function in the Excel template. The function
will be put in the same cluster as where the component on which the function is
deployed is. For example, ‘ProvidePower’ is a function that is deployed on the
‘PowerSystem’ component. Because the ‘PowerSystem’ component is in the
‘PowerSystem’ cluster, the function will also be put inside this cluster.

Top-level main functions will be created as function nodes inside the top-level
system.

The functional deployment on components as specified in Capella determines
which hardware-to-function relation is marked green in the Excel table. For
example, the ‘PowerSystem’ component deploys the ‘ProvidePower’ function
(according to Figure 3.1), thus the cell mapping the respective hardware to the
function is marked green.

The functional exchanges shown in the system architecture diagrams indicate the
cells to be marked for function-to-function relations. For example, ‘ProvidePower’
provides its function to all three other main functions, as shown in Figure 3.1, thus
gets those three cells marked in the table.

The same transformations are applied on each level in the hierarchy, where the
respective levels of granularity should also match the diagrams and levels in the
breakdowns in Capella.

Each of the subsystems of the CD-radio player is also detailed out in the Excel template. An
example of one of those subsystem specifications is shown in Figure 3.7.

) TNO Public

53/66

) TNO Public) TNO 2024 R10833

Functions Observables
AudioSystem DAC Amplifier Speaker DiagnosticTest
GenerateAudio TransformDigitalToAnalog ~ AmplifySignal MakeAudio Measure_Raw_Signal ~Measure_Amplified_Signal

Function TransformDigitalToAnalog
Hardware DAC
Function AmplifySignal
Hardware Amplifier
Function MakeAudio
Hardware Speaker

Time 10 10

Figure 3.7: AudioSystem cluster specification in the SD2Act Excel template.

3.1.2 Diagnostic network

With the specification of the system completed in Excel, one can automatically create a
diagnostic network and visualize it as a graph. The parser will ask for some interfaces (as
shown earlier in Figure 2.13) to be specified, as the model combines different granularity
levels. However, note that these questions are asked because the Excel template does not
provide this information. In principle, this interface information is available in Capella at the
lowest levels of granularity. If some model-to-model transformation will be developed in the
future, this might eliminate the need for asking these questions completely. The resulting

model is shown in Figure 3.8.

== =

=
= @ m -
- = ‘m

E’EI — =

Ea | | [| | 5=

0) e
=
= = = =

Figure 3.8: Visualization of the diagnostic network of the CD-radio player.

It is also possible to just load the top-level of the system specification to start out with a
smaller diagnostic network. This is also very useful for visualization purposes. A visualization
of the high-level model, without loading in all the details on the individual subsystems, is
shown in Figure 3.9.

) TNO Public 54/66

) TNO Public) TNO 2024 R10833

CDRadioPlayer

RadioReceiver

AudioSystem
ReceiveRadio ‘ AudioSystem | ‘ ReadCD ‘
.

ofpserved_by

| Radio_Error ‘ |GmeratsAudh| | CD_Ermr‘

Figure 3.9: High-level visualization of the diagnostic network of the CD-radio player.

The diagnostic network can also be written to a Neo4j DB to enable querying and loading the
network from there. A visualization of this model is shown in Figure 3.10.

Figure 3.10: Visualization of the diagnostic network of the CD-radio player in Neo4;.

) TNO Public 55/66

) TNO Public) TNO 2024 R10833

3.1.3 Reasoning model

The diagnostic network can be transformed automatically into a reasoning model, being
either a Bayesian network or a Tensor network, as it does not contain any loops. The
visualization of such a reasoning model is very similar to the pictures in the previous section.

However, the intended functionality of the CD-radio player cannot be captured accurately
given the current modelling approach and extension of the methodology is needed to be
capable of doing so. In the current approach, all parent function or hardware nodes of a
given function node must be Ok or Healthy. The CD-radio player, however, has a physical
switch that selects either the audio to come from the CD or from the radio. Also, there are
two complementary power sources of which only one of them has to work in order to fulfil
the system’s functions. These kind of behaviours require the functional dependencies to be
modelled as OR-gates rather than AND-gates, or may even require more extensive logical
formulae to deal with the intended functional dependencies. Because of this limitation of
the current methodology, the reasoning model that is created does not accurately reflect
the behaviour of the CD-radio player and consequently cannot reliably be used for diagnostic
reasoning.

To overcome this limitation, another type of relation needs to be added to the model to be
able to cope with these more complex dependency relations in the system, as these are not
uncommon in real-life systems. Possible solutions have been proposed, but none of them
has been implemented yet. The plan is to address this limitation in 2024.

3.1.4 Diagnostic scenarios

Since the generated reasoning model currently does not reflect the intended behaviour of
the CD-radio player, example diagnostic scenarios will be added to the report once the
methodology can cope with more complex functional dependencies.

) TNO Public 56/66

) TNO Public) TNO 2024 R10833

4 Future work

In this section we detail future work items that we envision for the proposed methodology.
On top of items introduced in the above sections here we detailed out new items.

In the previous sections we identified the following items for future work:

- Automate the transformation of Capella models into diagnostic models according to
the SD2Act methodology. [Sections 2.4 and 3.1]

- Improve the specification of the interface behaviour (functional) across different
hierarchical levels. [Section 2.4.3]

- Optimize the computation of the conditional entropy for a large number of health
nodes. [Section 2.6.2.1.3]

- Optimize the balance of cost and information gain for computation of best next
service action. [Section 2.6.2.3]

- Specify functional behaviour via (complex) logic formulae, as an extension of the
simple AND gates supported with the current methodology. [Sections 3.1.3 and
3.1.4]

The new items for future work introduced in this section are:

- Dynamic model creation, for scoping of the diagnostic root cause analysis for each
given case.

- Design for diagnostics, for having at design time a functional overview of the
diagnostic coverage of a given system, identification of diagnostic limitations and
consequent improvement of the system design.

- Connection of Hardware and Functional diagnostic models, for having a unified
diagnostic approach for the same system.

These items are described in more detail below.

4.1 Dynamic model creation

In Section 2.4.1 we presented the SD2Act approach to model system’s functional
dependencies for diagnostics. We showed how to create a diagnostic network, Section 2.4.3,
and how to translate this network into a reasoning model, Section 2.5. In the proposed
approach, the diagnostic network is hierarchical, while the reasoning model does not
contain hierarchy, i.e. it is a static and flattened version of the diagnostic network. A large
model is created up to the lowest level of hierarchy for all modules. While this may be a
correct model, it is also sensitive for conflicting findings being inserted as evidence. An
example for this is the situation in which some hardware components report problems in
their KPIs, while the functions realized by these hardware components do not report any
issues, due to for example redundancy. To overcome such issues, we identify two
improvements to the current approach which should allow to dynamically create diagnostic
reasoning models.

Firstly, investigate ways to achieve hierarchical diagnosis in such a way to allow a human-
like reasoning that ‘drills-down’ through the system’s functional hierarchy. In hierarchical

) TNO Public 57/66

) TNO Public) TNO 2024 R10833

diagnosis the reasoning model is dynamic as it grows in size in the direction of the
subsystem of interest. The direction of growth is guided by the evidence gathered from
running diagnostic tests, see Figure 4.1 for a toy example. This approach will decrease
uncertainty in the diagnosis: by excluding from the model (minor) issues reported by low
hierarchical levels, in the figure these are all the orange triangles in the transparent boxes.
These are not relevant for the diagnostic reasoning at the higher hierarchical level.

Furthermore, this will allow for an easier explanation of the diagnostic reasoning executed
by the model, as it resembles the approach adopted by humans and the models are
inherently smaller. In order to achieve this hierarchical diagnosis, we need an approach to
determine which hierarchical level(s) to focus on during the diagnostic process. Similarly to
the selection of the next diagnostic test, determining which level to focus on should be
based both on expected added diagnostic information and cost of this action. First
experiments with an algorithm by Nakakuki et al. (Nakakuki et al., 1992) seem worthy of
further investigation (algorithm for measuring whether and which box to open).

¥

-—!
o
o~
a
=]
=]
o
2

Module 2.2.2

Figure 4.1: Hierarchical diagnosis. Transparent boxes are not detailed out in the hierarchical diagnosis, while
they are considered in a flat reasoning model.

Secondly, investigate ways to dynamically create models ‘traversing’ the hierarchy of the
system as described in the diagnostic network. This is would take hierarchical diagnosis a
step further, as it will lead to reasoning models that are not directly derivable from the
transformation of a diagnostic network at a given hierarchy to a reasoning model. The
advantage of this approach is that the dynamically created reasoning models are even
smaller than in hierarchical diagnosis and more scoped to the diagnostic problem at hand,
to quickly drive the diagnostic process. We propose the architecture shown in Figure 4.2 to
achieve this.

) TNO Public 58/66

) TNO Public) TNO 2024 R10833

4.2

s AT mEmEEEEEEEEEEEEEEm—-- ~
System [system MBDIyb Python library !
descriptions Idependencies 1
N I I
Efp—:: :
ooo 1 @ |
| |
1 1 Operational data
l |
l |
I Diagnostic Reasoning 1
I network model Diagnoser |
1 000 Y :
| _ _
! —_—) o) :
| o) ° [. .
I | Service engineer
l |
Hardware | 1
breakdowns I 1
/ I Diagnosticl
iz \ : Graph DB steps :
I a=| 1
Inference I kel |
rules | 1
- | |
a— | |
I |
| |
| Inferred |
\ relations !
N o o e o e o e e e o o o o — P

Figure 4.2: Architecture for the dynamic creation of reasoning models. In blue the difference with the current
SD2Act architecture: a graph DB is used to store and query, based on diagnostic evidence, the diagnostic
network.

The difference with the current SD2Act architecture of Figure 2.5 is the presence of a an
edge between the Graph DB and the Diagnoser. The meaning of this edge is to query the DB
to return the relevant subgraphs for the given diagnostic problem.

The central idea is that these queries, based on the evidence gathered by performing
diagnostics tests, will return the most relevant diagnostic network for the given diagnostic
problem. This diagnostic network will then be transformed into a reasoning model on which
diagnostic inference can be performed, in such a way to have a reasoning model scoped to
the diagnostic problem at hand.

Design for diagnostics

In Section 1.2.1 we detailed the relation of SD2Act with the ADIA project, the scope of the
latter being design for diagnostics based on HW diagnostic models. Future investigations
should allow for design for diagnostic for functional diagnostic models, as developed in
SD2Act.

Such design for diagnostic analysis should compute which functions, at different hierarchical
levels, cannot be performed as a consequence of HW failures. This information can then be
used to spot observability limitations, i.e. different functions cannot be performed if the
same HW is failing. Subsequently, to mitigate such observability gaps designers can decide
to add additional tests to the system. Interestingly, these tests could require the attempt to
execute a different function with the system, thus connecting to the work done with

) TNO Public 59/66

) TNO Public) TNO 2024 R10833

4.3

) TNO Public

reasoning with interventions in the Carefree project, see (van Gerwen et al., 2023) for more
details.

Connection to HW models

The diagnostic models created with the SD2Act approach and those created with the
CareFree and ADIA ones, see Section 1.2.1, contain the concept of HW components. In the
diagnostic models these are represented as hidden random variables with discrete states,
e.g. Broken, Healthy,. Despite the HW node being a shared type among these different
models, there is a conceptual difference.

Specifically, in the functional models of SD2Act HW nodes determine the possibility of a
function to be fulfilled or not; while in the physics based models of ADIA and CareFree HW
nodes are related to the correct or incorrect propagation of physical quantities through the
system. Therefore, further investigations are needed to fully understand if and how these
models can be related to each other, or even integrated into a single model. Possibly, the
HW nodes represent the linking pin of these two fundamentally different type of modelling.

60/66

) TNO Public) TNO 2024 R10833

S

51

Conclusions

The goal of the SD2Act project is to aid in failure analysis by computer-based diagnostic
reasoning. First, system design information is transformed into a diagnostic network. This
network can be seen as a graph with clearly defined types of nodes and types of relations
between the nodes. The transformation can be done in two ways. Firstly, it can be done
(fully) automatic if the design is documented in a (highly) structured manner, e.g. as part of
a MBSE design approach. Secondly, it can be done manually, possibly assisted by tools, for
example by using the Excel templated presented in this report. Next, a reasoning model can
be generated from the diagnostic network. Bayesian Networks and Tensor Networks are
evaluated in this report as potential reasoning formalisms on which the reasoning model
can be based. Based on both system and human observations, the reasoning model
iteratively suggests the next diagnostic test to execute to a service engineer, to efficiently
come to the fault in the system.

Lessons learnt

Below we discuss the lesson learnt by developing the described methodology and applying it
to the high-tech domain, like an ASML system in scope of the SD2Act project. We present the
lessons learnt by splitting them up in a number of categories.

1. Transforming functional design information into a diagnostic model

a. Functional breakdowns at the level of detail that is needed to create diagnostic
models are hard to find. Most of the time, parts of relevant information need to
be identified manually in a large set of unstructured or semi-structured
documents and diagrams.

b. Even though itis hard to find the necessary information, the information is
available in the organization, documented or not. Once the information is found,
a structured approach like the proposed Excel template proves to be a useful
method to store this information.

¢c. The main advantage of the approach based on an Excel template is its
simplicity, as it was pointed out to those we presented the approach to. Most
people would be able to grasp the concept and start discussing within minutes.
Another advantage is the flexibility of not having to define the system to the
fullest detail, as it allows for a relatively light-weight start of using the proposed
methodology.

2. Recommending diagnostic tests and service actions

a. Itis possible to incorporate costs of performing diagnostic tests into the
diagnostic model and combine it with the expected information gain to come to
a recommended diagnostic test. Combining these two potentially brings an
advantage in making decisions in the diagnostic process.

b. Case studies show potential for selecting more cost-efficient paths by taking test
costs into account compared to only considering the expected information gain
when selecting a test. Comparing this to solved cases reveals that there is also
potential for eliminating some of the conducted tests while using the model. It
must be noted, however, that the model does not cover the full system and

) TNO Public 61/66

) TNO Public) TNO 2024 R10833

3.

4.

may be biased because of that. More case studies need to be conducted to
confirm it is really more cost-efficient.

c. Balancing cost and expected information gain throughout the diagnosis is not
trivial. Depending on many non-technicalities, such as contractual obligations or
agreements, severity of the escalation, warranty or duration of the escalation, a
different balance between the properties may be desired. Optimizing this is not
trivial and requires additional research. It may also be left unoptimized, in which
the freedom of choice is left with the organization.

Inference of non-functional dependencies

a. Itis possible to derive undocumented dependency relations by applying physics
laws onto design knowledge as inference rules on a knowledge graph. This
approach requires rather specific design information to be stored in the
knowledge graph for the inference to work.

b. While the concept of deriving new dependencies from a knowledge base via
rule-based querying is relatively straight-forward, it can be quite challenging to
ensure the necessary information is in the knowledge base. In our case study,
the notion of materials of hardware components, the material’s sensitivity to
temperature and the distances between hardware components must be known.
Gathering or deriving all such information turned out to be a major endeavour.
This can be solved by having all knowledge sources be connected (or
connectable) to each other, for example by using extensive model-based
approaches.

Reasoning formalism

a. The tensor network formalism replaces the Bayesian networks as reasoning
formalism. Tensor networks offer identical functionality and provide
opportunities Bayesian networks do not. They can deal with cyclic networks,
which will quickly be found at higher levels of abstraction of the proposed
functional modelling.

b. While tensor networks are somewhat slower than Bayesian networks for
computing posterior probabilities, this reduction of computation speed does not
seem to be a problem for the size of networks currently being built. Additionally,
there are still some improvements that can be done on the tensor network
algorithms to speed up computation.

5.2 Recommendations

1.

) TNO Public

As long as the required information for the diagnostic models is not captured in a single
model, the information needs to be acquired from other documents and models. While
there may be many (semi-)structured sources available from which one may extract bits
and pieces of information needed for the diagnostic models, it turned out to be a
challenging task to bring all information together. To facilitate this it is recommended to
assign an identifier to every instance of every component and to ensure all references
and mentions of this instance use the same identifier. This would greatly benefit the
construction of a model even in the absence of a full-fledged model based engineering
approach. Note that this identifier goes a step further compared to being able to identify
spare parts, as the unique location of the part should also be included.

Extending upon recommendation 1, it would be good to use well-structured formats to
store knowledge. This would benefit not only the creation of diagnostic models, but also

62/66

) TNO Public) TNO 2024 R10833

5.3

) TNO Public

the capability of retrieving information from the knowledge base (traceability) and
reusability of the information. While models are very much suited for this task, following

up upon recommendation 1 together with using well-defined spreadsheets or databases
may also improve upon the current situation.

Acknowledgements

The research is carried out as part of the SD2Act program under the responsibility of TNO-ESI
in cooperation with ASML. The research activities are supported by the Netherlands Ministry
of Economic Affairs and Climate, and TKI-HTSM.

63/66

) TNO Public) TNO 2024 R10833

Appendix A

In Section 2.5.2.1.2 we described a procedure for computing inference in Bayesian networks
with loops. We will prove now that simple tensor contraction in tensor networks with loops is
equivalent to that procedure.

Consider the simple Bayesian Network above, and let P, (A4|B) and
A D B P; (B|A) be the conditional probability tables defining A and B
t according to this causality structure. The joint probability distribution
implied by this network, P; (4, B) = P, (A|B) - P;(B|A) is not well
defined according to standard rules of BN construction because it need not sum up to one,
although one could normalize it. Moreover, belief propagation could not be used in this
network. This joint unnormalized “probability distribution” is the same that one would obtain
by translating this BN into a TN. And therefore, we can use all the TN tools introduced before.

A B Consider now the'modified BN one obtains by applying the
procedure of Section 2.5.2.1.2. where the CPT P,(B|A) is the same
as before, i.e. P,(B|A) = P,;(B|A), the CPT for A in this network is the
same as that for A4 in the previous network just swapping B for B’,
i.e. P,(A|B") = P,(A|B), B’ has uniform priors and E is the equality

B — FE node whose CPT is P,(E = True|B,B’ = b,b") = §,,» and
P,(E = False|B,B' = b,b') =1 -6,

This is now a well-formed Bayesian network whose joint probability distribution is:
P,(A,B,B',E) = P,(A|B’) - P(B|A) - P,(B")P,(E|B, B).
Using Bayes rule after conditioning on E = True we obtain:
P,(A,B,B'|E = True) « P,(E = True|A,B,B") - P,(A,B,B")
And marginalizing over B’ yields:
P,(A,B = a,b|E = True) « ZPZ(A —a|B' = b)-P,(B = blA =a) 'ﬁ(B')' 5y
x P,(A = aII;B’ =b) -P,(B=bl|A=a)=P,(A,B=ab)
Extending this proof to loops with three or more variables is a straightforward exercise, all
one needs to do is define a partition a network with a loop into two sets that cut across the

loop and consider the Cartesian product of all variables in each set as a new variable, after
which the argument above would apply.

) TNO Public 64/66

) TNO Public) TNO 2024 R10833

References

Adén, S., & Stjernstrom, K. (2013). Guidelines for modeling hydraulic components and model
based diagnostics of hydraulic applications.

Bafiuls, M. C. (2023). Tensor network algorithms: A route map. Annual Review of Condensed
Matter Physics, 14, 173-191.

Barbini, L., Bratosin, C., & N&agele, T. (2021). Embedding Diagnosability of Complex Industrial
Systems Into the Design Process Using a Model-Based Methodology. PHM Society
European Conference, 6(1), 9.

Deb, S., Pattipati, K. R., Raghavan, V., Shakeri, M., & Shrestha, R. (1995). Multi-Signal Flow
Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis. /EEE
Aerospace and Electronic Systems Magazine, 10(5), 14-25.
https://doi.org/10.1109/62.373993

Glasser, 1., Pancotti, N., & Cirac, J. I. (2018). Supervised learning with generalized tensor
networks. ArXiv Preprint ArXiv:1806.05964, 50.

Glasser, 1., Sweke, R., Pancotti, N., Eisert, J., & Cirac, I. (2019). Expressive power of tensor-
network factorizations for probabilistic modeling. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), Advarnices in Neural Information
Processing Systems (Vol. 32). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2019/file/b86e8d03fe992d1b0e19656
875ee557c-Paper.pdf

Hess, A., Stecki, J. S., & Rudov-Clark, S. D. (2008). The Maintenance Aware Design
environment: Development of an Aerospace PHM Software Tool. Proc. PHMOS, 16, 17.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models. principles and techniques.
MIT press.

Lind, M. (2011). An introduction to multilevel flow modeling. Nuclear Safety and Simulation,
A1), 22-32.

Madiman, M., & Tetali, P. (2007). Sandwich bounds for joint entropy. 2007 IEEE International
Symposium on Information Theory, 511-515.

Nakakuki, Y., Koseki, Y., & Tanaka, M. (1992). Adaptive model-based diagnostic mechanism
using a hierarchical model scheme. Proceedings of the Tenth National Conference on
Artificial Intelligence, 564-569.

Rams, M. M., Mohseni, M., Eppens, D., Jatowiecki, K., & Gardas, B. (2021). Approximate
optimization, sampling, and spin-glass droplet discovery with tensor networks. Physical
Review E, 104(2), 25308.

Robeva, E., & Seigal, A. (2019). Duality of graphical models and tensor networks. /nformation
and Inference, 82), 273-288. https://doi.org/10.1093/imaiai/iay009

Roques, P. (2017). Systems Architecture Modeling with the Arcadia Method: A Practical Guide
to Capella. In Systems Architecture Modeling with the Arcadia Method: A Practical
Guide to Capella. https://doi.org/10.1016/C2016-0-00854-9

van Gerwen, E. (2024). Guided root cause analysis of machine failures - Status 2023.
https://repository.tno.nl/SingleDoc?docld=58178

van Gerwen, E., Barbini, L., & Borth, M. (2023). Differential Diagnosis with Active Testing. PHM
Society Asia-Pacific Conference, 4(1).

van Gerwen, E., Barbini, L., & Nagele, T. (2022). Integrating System Failure Diagnostics Into
Model-based System Engineering. /NSIGHT, 25(4), 51-57.

) TNO Public 65/66

) TNO Public) TNO 2024 R10833

Voirin, J. L. (2017). Model-based system and architecture engineering with the Arcadia
method. In Model-based System and Architecture Engineering with the Arcadia
Method. https://doi.org/10.1016/c2016-0-00862-8

) TNO Public 66/66

ICT, Strategy & Policy

High Tech Campus 25
5656 AE Eindhoven

www.tno.nl

m innovation
for life

