

Guided diagnosis of functional failures in cyber-
physical systems

SD2Act 2023

TNO Public TNO 2024 R10833

April 30, 2024

ICT, Strategy & Policy
www.tno.nl
+31 88 866 50 00
info@tno.nl

 TNO Public

TNO 2024 R10833 April 30, 2024

SD2Act 2023

Guided diagnosis of functional failures in cyber-
physical systems

 TNO Public

Author(s) T.C. (Thomas) Nägele, L. (Leonardo) Barbini, R. (Robert) Passmann,

A. (Alvaro) Piedrafita Postigo

Classification report TNO Public

Title TNO Public

Report text TNO Public

Number of pages 66 (excl. front and back cover)

Number of appendices 0

Sponsor ASML

Project name SD2Act 2023

Project number 060.55515/01.01

 TNO Public TNO 2024 R10833

 TNO Public

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,

microfilm or any other means without the previous written consent of TNO.

© 2024 TNO

 TNO Public TNO Public TNO 2024 R10833

 TNO PublicTNO Public 3/66

Contents

Contents .. 3

1 Introduction ... 5

1.1 Project goals and scope .. 5

1.2 Project position in the diagnostic landscape .. 5

1.2.1 Relation to TNO-ESI diagnostic projects .. 6

1.2.2 Relation to off-the-shelf tooling .. 6

1.2.3 Position with respect to academic research ... 7

2 Methodology .. 9

2.1 Overview ... 9

2.2 Methodology implementation ... 10

2.3 Modelling .. 12

2.4 Diagnostic network... 13

2.4.1 Building blocks ... 14

2.4.2 Non-functional dependencies ... 17

2.4.3 From system design to a diagnostic network .. 20

2.5 From a diagnostic network to a reasoning model .. 25

2.5.1 Network transformation ... 25

2.5.2 Candidate reasoning formalisms .. 27

2.5.3 Chosen reasoning formalism ... 40

2.6 Iterative diagnosis .. 41

2.6.1 Operational diagnosis loop ... 41

2.6.2 Recommending the next best service action ... 43

3 Applications ... 49

3.1 CD-radio player.. 49

3.1.1 Functional dependencies .. 52

3.1.2 Diagnostic network... 54

3.1.3 Reasoning model .. 56

3.1.4 Diagnostic scenarios .. 56

4 Future work .. 57

4.1 Dynamic model creation ... 57

4.2 Design for diagnostics ... 59

4.3 Connection to HW models .. 60

5 Conclusions .. 61

5.1 Lessons learnt ... 61

5.2 Recommendations ... 62

5.3 Acknowledgements ... 63

 TNO Public TNO Public TNO 2024 R10833

 TNO PublicTNO Public 4/66

References ... 65

 TNO Public TNO 2024 R10833

 TNO Public 5/66

1 Introduction

1.1 Project goals and scope
The System Design to Service Actions (SD2Act) project is a cooperation between TNO-ESI

and ASML, world leader in developing and manufacturing high-tech lithographic systems for

the semiconductor industry.

The generic goal of the SD2Act project is to develop a methodology that minimizes the

time to diagnose failures occurring in an ASML-like system.

The methodology should be generically applicable to high-tech systems also from

manufacturers other than ASML.

The business driver for this project is that as high-tech systems become more and more

capital intensive there is a strong drive to have no unscheduled down-time achieved

through predictive maintenance. On the long road towards predictive maintenance lie

several milestones, one of which is to keep the amount of unexpected down time of high-

tech systems to a minimum for a fixed number of failures. A large contributor to down-time

is the amount of time needed by the complex diagnostic process. This is the process that

infers the root cause of a failure from its symptoms. Nowadays this diagnostic inference

one.

The specific goal of the SD2Act project is to aid and (when possible) replace the human

diagnostic reasoning with a form of computer reasoning based on design information.

The approach used in this project is to develop such a reasoning system making as much as

possible use of the knowledge on the high- this is described by the

edge create/generate model in Figure 1.1)

For high-tech systems there are both many classes of causes that can lead to a system

failure and many classes of symptoms that could results from these causes. Examples of

classes of causes are: hardware malfunctions, software bugs, operator errors, abnormal

environmental conditions. Examples of classes of symptoms are a system which: stops

production, fails to execute a desired operational function, produces outputs with a quality

lower than desired, requires too much energy to produce the desired outputs. Notice that a

diagnostic problem can be the result of a many-to-many connection among elements of

these two different classes of causes and symptoms.

In the scope of the SD2Act project, failures are caused by hardware malfunctions which

manifest by a system failing to execute one of its operational functions.

Ideally, industry needs a generic diagnostic methodology that infers causes given

symptoms, independently of their membership classes. Research on other aspects of this

methodology is described below.

1.2 Project position in the diagnostic landscape
In this section we position the SD2Act project with respect to other projects done by TNO-ESI

in the diagnostic domain. We give a list of commercially available off-the-shelf tools for

diagnostics . Finally we briefly describe its position with respect to academic research.

 TNO Public TNO 2024 R10833

 TNO Public 6/66

1.2.1 Relation to TNO-ESI diagnostic projects
TNO-ESI had conducted in the past years other projects with high-tech industrial partners in

the domain of diagnostics. Specifically, the CareFree project with Canon Production Printing

and the Assisted Diagnostic in Action (ADiA) project with ASML.

The CareFree and ADiA project have a diagnostic scope different than the one of the SD2Act

project:

- the scope of the CareFree project is on diagnosing down-time situations caused by

HW failures that manifest as a system which stops production (rather than as a

system that does not perform a function). More details on this project can be found

in the TNO report (van Gerwen, 2024).

- the ADiA project also focuses on HW failures, however the scope in ADiA differs as it

assesses the diagnosability level of a system, i.e. the scope is shifted from

diagnostics at operational time to diagnostics at design time. More details on this

project can be found in (Barbini et al., 2021).

Figure 1.1 Overview of TNO-ESI diagnostics projects.

An overview of these projects and their position with respect to the design and operational

diagnostics scopes is given in Figure 1.1.

Despite the different scopes, the approach adopted in the different projects is overlapping.

All the projects implement a model-based approach, with diagnostic computational models

created/generated using knowledge of the system design. Furthermore, as shown in Figure

1.1, in the proposed approach the same diagnostic model is used both at design time and

operational time. This implies that a unification of the approaches, yielding the overall

diagnostic methodology needed by industry, even if not yet achieved, seems reasonably

possible. An overview of this unified diagnostic methodology and its connection to model-

based system engineering approaches is detailed in (van Gerwen et al., 2022).

1.2.2 Relation to off-the-shelf tooling
A non-exhaustive list of off-the-shelf tools that, during the SD2Act project, have been

investigated or have been identified as potentially interesting is given in Table 1.1.

 TNO Public TNO 2024 R10833

 TNO Public 7/66

Table 1.1: Non-exhaustive overview of off-the-shelf diagnostic tools.

Name Website Reference

MADe www.phmtechnology.com (Hess et al., 2008)

TEAMS www.teamqsi.com (Deb et al., 1995)

Kairos Workbench www.kairostech.no (Lind, 2011)

RODON www.combitech.com (Adén & Stjernström, 2013)

The criteria for a tool to be considered were that it must offer a scalable modelling approach,

be already successfully applied in an industrial context, and offer, to some degree, both design

and operational diagnostics support.

Furthermore, the selected tools all implement a model-based diagnostic approach, as in the

SD2Act project. Several tools are nowadays being introduced in the diagnostic landscape that

use a more data-driven approach, these have not been investigated in the SD2Act project. It

is suggested that such tools are investigated in a follow-up project.

The tool that is identified as most promising and as a consequence was in-depth

investigated is MADe. The investigation was carried out by modelling example systems

inspired by the ASML system. The conclusion of the investigation is that the MADe tool does

not yet offer enough diagnostic support to be adopted by ASML. Specifically, high-tech

systems like the ASML one:

- are cyber-physical systems with intertwined HW and SW. However, the MADe tool

does not offer a suitable way to model SW and its role in the propagation of failures

from component to system-level observables;

- span several HW physical domains such as optics, thermal, mechanical and

electromagnetic. All of these should be equally modelled in order to have an

effective diagnosis. However, the MADe tool is focusing on a subset of these physical

domains;

- have a high level of complexity and diagnostic support is needed at operational

time. However, the main goal of MADe is design for diagnostics and hence it offers

limited operational diagnostic support.

Based on these considerations, the conclusion is that the SD2Act and similar research

projects are very much needed by the high-tech sector to solve their diagnostic challenges.

1.2.3 Position with respect to academic research
The SD2Act project provides a clearer picture of the gaps between academic research and

the needs of industry. Yet, the SD2Act does not deliver a full state-of-the-art report on

diagnostic methods for high-tech systems. We suggest this as an activity for a follow-up

project.

The SD2Act project found that academic research in diagnostics is mostly focusing on

component level in the HW domain, with detailed model-based (physics), data-driven, or

hybrid approaches developed to infer the state of a single or a small set of HW components.

These academic approaches usually deal with systems in the order of tens of components.

However, high-tech industrial systems have in the order of thousands of HW components

belonging to different physical domains and, as stated above, intertwined with control and

safety SW. This extension of diagnostic methodologies from component-level to system-

level, defines a gap between the current academic state of the art and the industrial needs.

http://www.phmtechnology.com/
http://www.teamqsi.com/
http://www.kairostech.no/
http://www.combitech.com/

 TNO Public TNO 2024 R10833

 TNO Public 8/66

The issue is not merely one of scalability, understood as the ability to systematically build

models for large systems and have computation on those models take a reasonable

amount of time. But more fundamentally, the issue lies in the emergence of behaviours at

system level which are not derivable from modelling the interactions of single components,

i.e. integration with system properties is needed. Academic research on this last aspect is

needed.

The SD2Act project attempts at filling this gap identified in academic research by focusing

on methods to diagnose functional failures, i.e. failures that manifest by a system failing to

execute one of its operational functions.

 TNO Public TNO 2024 R10833

 TNO Public 9/66

2 Methodology

2.1 Overview
Whereas the ultimate goal of the SD2Act methodology is to both improve the diagnosability

of a system during its design phase (design for diagnostics) as well as to assist service

engineers to come to a diagnosis when the system is deployed (operational diagnostics), the

focus in SD2Act is on the latter. In this light, a diagnostic model is created on the basis of

readily available system design information. This information is incorporated in a diagnostic

assistant that is made available for the service engineer.

Figure 2.1: High-level overview of the SD2Act methodology.

The high-level overview of the SD2Act methodology workflow is depicted in Figure 2.1. On

the left-hand side the design information is shown, which corresponds to the system design

in Figure 1.1. On the right-hand side the operational diagnosis loop is shown, which is

equivalent to the loop in the bottom of Figure 1.1.

The SD2Act methodology follows a top-down approach to enable system-level diagnostics.

In order to deal with the complexity of high-tech systems, the system is usually broken

down into subsystems, which are again broken down into modules, and so forth. Finally,

there are the individual hardware pieces and software components realizing the small

subtasks within the whole system. The breakdown of the system represents a separation of

concerns, where every element is designed to fulfil its own purpose, and the collection of

them all makes the system function as designed.

All levels in the system breakdown have their own concern: to fulfil their designed

function(s). Moving to the diagnostic domain, a starting point for conducting a root cause

analysis is usually something the system does incorrectly or not at all: a high-level function

is not performed as expected. The root cause analysis consists of a drill-down from higher

level observations to the root cause by focussing on the relevant pieces of the system, based

on a set of observations, by inspecting the system step by step. This inspection is often done

 TNO Public TNO 2024 R10833

 TNO Public 10/66

root cause analysis is narrowed.

The SD2Act project aims for this kind of functional drill-down, as it allows for system-level

root-cause analysis and it is a rather natural way of doing exclusion diagnostics. To support

this, we develop a methodology for the creation of functional diagnostic models, which

captures system functions, their dependencies and their hierarchy.

To allow for this, all of these dependencies are captured in a diagnostic network. This

network represents the knowledge about the system while abstracting away from the

reasoning formalism being used to do the diagnostic reasoning. This reasoning model is

created based on the information in the network, after which it can be used for diagnosis by

inserting findings from the system and service engineer into the reasoning model. Step by

step, the reasoning model is capable of suggesting the best next steps to the service

engineer.

2.2 Methodology implementation
To be able to experiment with the proposed methodology and to perform validation, a

proof-of-concept implementation was made in Python. This proof-of-concept Python library

is named MBDlyb and allows to experiment at scale, by easily specifying large networks. The

library also formalizes and consolidates the research done in the project, and is actively

being worked on through the course of the SD2Act project series. The high-level overview of

the SD2Act methodology as implemented in MBDlyb is shown in Figure 2.2. See also Figure

2.1 for comparison.

Figure 2.2: High- as it is implemented in MBDlyb.
Orange edges (currently) require human involvement while green edges represent fully automated
transformations or computations.

 TNO Public TNO 2024 R10833

 TNO Public 11/66

The implementation choices made in MBDlyb result in additional transformation steps

compared to the generic method depicted in Figure 2.1. The system dependencies form the

input to the diagnostic network, and the diagnoser is added as an interface between the

reasoning model and the service engineer or system data. Also, a storage in the form of a

graph database is added. Each of the different stages in the MBDlyb workflow is briefly

described below.

Stages in the workflow
The conceptual meaning of each of the six stages shown in Figure 2.2 is briefly described

below. The following sections elaborate more on the details of each of the stages.

• System descriptions

The system descriptions represents all system design information, both structured

and unstructured, that is relevant for the creation of the diagnostic model.

• System dependencies

This stage represents the manual specification of the (functional) dependencies that

should be in the diagnostic model. This is essentially the entry point of the

methodology that converts design information to a format for which a semi-formal

interpretation is defined.

• Diagnostic network

The diagnostic network represents all the knowledge that was provided for the

creation of the functional diagnostic model. The semantics of the internal format

are defined so that it allows being transformed into a formal reasoning model.

• Graph DB

The diagnostic network itself is instantiated by the library and only lives in memory

for the time the MBDlyb application is running. A graph database provides a

persistent storage space in which all knowledge of the diagnostic can be stored, so

that the diagnostic model can be loaded at a later moment. Currently, Neo4j1 is the

graph database use by MBDlyb to store the information in.

• Reasoning model

The reasoning model is the model that has a formal (mathematical) semantics that

allows for diagnostic reasoning.

• Diagnoser

The diagnoser takes in findings from the system being diagnosed and uses the

reasoning model to compute a diagnosis. It then suggests diagnostic tests to do and

again takes in the findings. These steps are repeated until a final diagnosis is

reached. Hereby the diagnoser implements operational diagnostics as depicted in

the bottom of Figure 1.1.

The remainder of this report considers the implemented methodology as the main

methodology rather than the conceptual one presented in Figure 2.1, as most of the

discussed features have been implemented in the proof-of-concept methodology

implementation.

1 https://neo4j.com/

https://neo4j.com/

 TNO Public TNO 2024 R10833

 TNO Public 12/66

2.3 Modelling

Design information
The design information needed to create the functional diagnostic model mainly consists of

high-level system design information, such as functional breakdowns and system

decompositions.

In addition to those types of design information, also more structured system architectural

models could be used as input. Capella (Roques, 2017) is a modelling workbench supporting

the Arcadia method (Voirin, 2017). This systems engineering approach supports the system

e system needs to

perform. Multiple abstraction levels help in translating those system functions into

subsystems with their own subfunctions, including the relations between these subsystems.

Eventually, a connection to the concrete hardware pieces that need to realize such functions

is made. This type of structured breakdown in the Capella model provides a good starting

point for the creation of the functional diagnostic model. Being a model-based approach as

well, the Capella model could in the future also allow for automatic model-to-model

transformation.

To allow the diagnostic model to estimate the health of individual hardware pieces, or

groups thereof, these hardware pieces and their mapping to the system functions they

realize must be known. For this, a material or part list could be used to add the components

to the model. The functional deployment of the system functions onto those hardware

pieces follows either from the breakdown of the part list or other types of design documents

or models. The mapping of system functions onto hardware pieces can also be provided by a

Capella model, as shown in Figure 2.3.

Figure 2.3: Functional deployment onto hardware pieces as specified in a Capella model. The function

Systems log a lot of data during operation, e.g., timeseries containing sensor data, software

events and errors. Some of these observations provide direct health indicators for hardware

pieces or report on the fulfilment of system functions. For example, software may report an

error when it is unable to fulfil its requested task. If this task represents a system function

that software is controlling, the reporting of this error is a direct indictor for a functional

failure. These observables are all made automatically by the system and can often be

inserted immediately into the diagnostic model, already eliminating many potential root

causes from the diagnosis. Documentation where such information can be found are

event/error lists of software components or Key Performance Indicator (KPI) lists. It is not

always trivial how to map an observable to a function or hardware piece, so an expert in the

loop may sometimes be needed to manually do this at the time of model construction.

Besides the observations made by the system itself, there is a set of diagnostic tests that

can be done to acquire additional information about the state of the system. Such

diagnostic tests are typically documented in a service manual. The diagnostic tests should

be linked to the specific functions or hardware pieces they provide information for regarding

its health status, i.e., whether the function is performed (correctly) or whether the hardware

piece is potentially unhealthy.

 TNO Public TNO 2024 R10833

 TNO Public 13/66

The types of information required to build a diagnostic model according to the presented

methodology include the following:

- Functional breakdown

- Replaceable part/hardware lists and breakdowns

- Functional deployment information onto the hardware

- KPI/observability lists

- (Diagnostic) tests and calibration lists

Functional dependencies
All relations are expressed by means of different types of functional dependencies. If

function A requires function B to be performed, a functional dependency from B to A is

specified. This specification can be done via a dependency matrix, in which all functions are

listed both in the rows as well as in the columns. If the function in the column depends on

the function in the row, the corresponding cell can be marked, as shown in Table 2.1.

Table 2.1: An example dependency matrix.

 Function_A Function_B Function_C Function_D

Function_A X X

Function_B X

Function_C X

Function_D

In this table, Function_B and Function_C both depend on Function_A, and Function_D

depends on Function_B and Function_C. A similar matrix can be made to also express the

dependencies of functions on hardware pieces, or to express the dependencies of

observables and tests to functions or hardware pieces. These dependency matrices

represent the functional dependencies that form the input to the methodology workflow.

2.4 Diagnostic network
From the functional dependency matrices, a diagnostic network is created. The diagnostic

network is essentially a knowledge graph that forms the basis for the transformation to the

reasoning model. This knowledge graph is automatically constructed from dependency

tables, which are the result of a (currently) manual formalization step to capture the

relevant design information. The dependencies from the dependency table are transformed

into types of nodes and relations, representing different types of dependency relations. An

example network is depicted in Figure 2.4. Different colours represent different types of

nodes and the edges represent relations, for which the types are labelled.

Details regarding the semantics of all types and the validity of certain relations are described

in Section 2.4.1. The diagnostic network also provides potential for discovery of new

functional dependencies that have not been documented explicitly by combining the

documented knowledge with basic physics knowledge. This extension is described in Section

2.4.2. An Excel-based approach to specify a basic diagnostic network is explained in Section

2.4.3.

 TNO Public TNO 2024 R10833

 TNO Public 14/66

Figure 2.4: An example diagnostic network consisting of four different functions, four pieces of hardware,

one system observables and two diagnostic tests. The functional dependencies between the functions

(purple) correspond to the functional dependencies shown in Table 2.1.

2.4.1 Building blocks
The diagnostic network is a directed knowledge graph that consists of four types of nodes

and six types of relations. The representation of each node and relation type and its

semantics are explained below. Figure 2.4 shows an example diagnostic network, also

illustrating the colours used to visualize the types. Note that not all types of relations are

shown in the picture.

Types of nodes

Hardware node (orange)

A hardware node represents the health of one or more hardware components in the system.

At a high level in the system hierarchy, e.g., at subsystem-level, a hardware node represents

the health of the collection of hardware pieces within that subsystem.

A hardware node has at least 1 state valuation: Healthy, which represents that there is no

problem with the hardware piece(s). Upon specification of a hardware node, one may

specify the possible hardware faults and their prior probabilities to add more state

valuations to the node. This allows for example for the specification of a hardware part that

is 95% likely to be healthy, 4% likely to be contaminated and 1% likely to be malformed.

These included faults and their likelihoods will d

Function node (purple)

A function node represents a system function and whether this system function is

performed as expected or not. Many system functions break down into lower-level system

functions, which are the subfunctions of such system function. For example, on a high level

a system may have Heat up the house as system function, which usually breaks down into

subfunctions like heating up some water, circulating the water, dissipating the heat towards

the environment, etc. All of these functions are considered system functions and are

expressed by function nodes, though they reflect different levels of the system hierarchy.

 TNO Public TNO 2024 R10833

 TNO Public 15/66

Function nodes have two possible state valuations: Ok and NOk, where the first indicates

that the system function is performed according to expectation and the latter indicates it

does not. A function node cannot be a root node in the network and therefore does not need

any priors to be set, as the function can only be performed if either the realization of the

function is Healthy Ok.

Direct observable node (green)

A direct observable node represents an automatic interpretation of an observation made by

the system itself, e.g., an event in the log, a reported reading from a sensor or a KPI. Key is

that this system observation must be automatically interpretable, which means that no

an error logged by software, for which its presence in the event log can be checked

automatically. An example based on sensor readings is when the reading must be within a

certain predefined range, which can also automatically be checked. While using the

diagnostic model to diagnose, these nodes determine the initial state of the diagnosis.

Direct observable nodes have two possible state valuations: Ok and NOk. The first one

indicates that the reading of this observable is not suspicious, i.e., it does not indicate a

problem. The latter indicates a potential problem. For example, if a node represents the

occurrence of an error in the event log its state should be NOk.

Diagnostic test (blue)

A diagnostic test node represents a diagnostic test that has to be triggered or executed by a

service engineer to acquire additional data from the system. These are manual diagnostic

tests, such as measuring the power in a certain place or testing whether a sensor triggers

upon a manual action. Additionally, many systems have diagnostic self-tests that need to

be started by a service engineer and for which the results need human interpretation.

Another example is a parameter being logged automatically, for which also human

interpretation is needed to assess whether or not the data is as expected. While using the

diagnostic model to diagnose a certain situation, some of the diagnostic tests are executed,

providing additional findings on top of the direct observations to come to a diagnosis.

Identical to the direct observables, diagnostic tests have two state valuations: Ok and NOk,

where the first indicates the diagnostic test result is as expected (according to normal

operation conditions) and the latter does not.

Types of relations
Different types of relations allow for connecting specific types of nodes to each other. All

relations are represented by directed edges from one node to the other. Table 2.2 provides

an overview of the types of relations in the diagnostic network, including the valid source

and target node types for each of the relations.

Table 2.2: An overview of the types of relations in the diagnostic network.

Name Label Color Source node types Target node types

Realizes realizes Orange Hardware Function

Required for required_for Purple Function Function

Affects affects Red Hardware Function

Subfunction subfunction_of Pink Function Function

 TNO Public TNO 2024 R10833

 TNO Public 16/66

Name Label Color Source node types Target node types

Test tested_by Blue Hardware, Function Diagnostic Test

Observable observed_by Green Hardware, Function Direct Observable

Realizes (orange)

The realizes relation represents the deployment of a function onto a hardware piece or

group of hardware pieces. The relation edge direction is from a hardware node to a function

node. The semantics of the relation is such that the function needs its realizing hardware

pieces to be Healthy in order to function according to expectation, i.e., to be Ok. If one of the

hardware pieces that realizes the function is not Healthy, the function will be NOk.

Required for (purple)

on another. Quite literally, the target function of the relation needs the source function to

function properly (to be Ok) in order to function itself. This means that if a function has

multiple incoming required for relations from other functions, it depends on all of them to be

functioning. In logic, this is represented as an AND gate: the function is only Ok if all of its

required functions are also Ok, otherwise it is NOk.

Affects (red)

The affects relation represents the potential disturbance a piece of (malfunctioning)

hardware may pose on the fulfilment of a function. This could be used to represent physical

effects, such as heat generation or vibration that is caused by a broken piece of hardware,

that cause a function to fail, even though all of the functional dependencies of this function

are in order. The main difference with the realizes relation is that this relation represents a

non-functional relation between the hardware and the function.

Subfunction (pink)

higher-level functions into lower-level functions. The relation takes the lower-level function

as a source and the higher-level function as a target. Semantically, this means that the

higher-level function can only be performed as expected once all of its subfunctions are Ok.

Test (blue)

diagnostic test node. It represents the observability of the health of the hardware node or

the capability to fulfil its function of a function node by doing the diagnostic test. A

diagnostic test may be connected to multiple hardware or function nodes by means of

multiple test relations, if the test provides observability on all those connected nodes.

Observable (green)

on correctly by means of a function

node on a direct observable node. Similar to the test relation, multiple observable relations

can connect different observed nodes to a single direct observable if the target observable

provides information on the state of those source nodes.

 TNO Public TNO 2024 R10833

 TNO Public 17/66

2.4.2 Non-functional dependencies
As described in Section 2.4.1, functional dependencies constitute the main source of

information of the proposed diagnostic methodology. For complex systems however there

might be diagnostic problems for which the path from a root cause to the observed

functional symptoms might be via non-functional dependencies.

With non-functional dependencies here we mean failure situations, like a leaking pipe or an

overheating component, for which as a consequence a function impacts other functions.

This is a dependency which in normal conditions is not there, that is such a function does not

have an impact on the other functions. During the design of a system, these dependencies

might be known to designers but likely are left out from the functional models so in a sense

non-functional dependencies can be seen as not documented functional dependencies.

These non-functional dependencies are left out based on implicit assumptions made on the

environment in which the system is deployed and the normal operational status of its

components.

The goal of this section is to introduce an approach to systematically reconstruct these non-

functional dependencies for a system. To do so, we propose the workflow shown in Figure

2.5.

Figure 2.5: SD2Act methodology workflow for inference of non-functional dependencies.

The difference with Figure 2.2 is on the lower left side. In order to reconstruct such non-

functional dependencies, we make use of hardware breakdowns and expert-based inference

rules. The hardware breakdowns are first transferred to the graph DB, then inference rules

are applied on the DB to infer the non-functional relations. In this way, we leverage the DB

technology to quickly perform such an inference, i.e. we do not need to write

specific algorithms to infer these new relations. Based on a single inference rule, many non-

functional relations can be inferred, which minimizes the effort for designers.

In more detail, the hardware breakdowns contain material and proximity information about

parts. This can be gathered from sources like CAD drawings and parts databases. Examples

are shown in Table 2.3 and Table 2.4. Table 2.3 shows the distance information, extracted

from CAD drawings using the built-in clearance analysis functionality resulting in an 𝑀 ×𝑀

 TNO Public TNO 2024 R10833

 TNO Public 18/66

matrix for a system with 𝑀 HW components. Table 2.4 shows the property information for

the parts, where each part can have associated any one of 𝑛 multiple property value.

Examples of properties are the type of material, weight and thermal conductivity.

Table 2.3: Computed distance between hardware components computed from the CAD drawing.

Table 2.4: Property information on each of the hardware components.

This information is then added to the graph DB and combined with the information from the

functional dependencies via the HW nodes. As an example, Figure 2.6 shows the resulting

graph DB after adding the distance information on top of the existing DB of Figure 2.4 from

the Hardware_B node to the other hardware nodes. Not shown in the figure is that

properties from Table 2.4 above have also been added to the Hardware nodes, such as

HeatSource or SensitiveToHeat.

From HW To HW Distance

Hardware_A Hardware_B d_AB

… … …

Hardware_A Hardware_M d_AM

Hardware_B Hardware_C d_BC

HW Property_1 … Property_n

Hardware_A Value_1 … Value_n

Hardware_B Value_2 … …

… … … …

Hardware_M Value_1 … …

 TNO Public TNO 2024 R10833

 TNO Public 19/66

Figure 2.6: Example of graph DB with distance relations.

Once such information is stored in the DB, we can perform expert-based queries that infer

non-functional relations. As an example, to infer heat coupling between components close

in space, one could perform the following query, where we used Neo4j Chyper query

language syntax:

1 MATCH (from_HW_node : Hardware{property : 'HeatSource'})-->

2 (d : DistanceRelation WHERE d.mm < min_distance)-->

3 (to_HW_node:Hardware{property:'SensitiveToHeat'})-->

4 (f:RealizesRelation)-->(to_FN_node)

5 CREATE (from_HW_node)-[:InferredNonFunctionalHeatInfluence]->(to_FN_node)

In lines 1 to 3 we find the HW nodes with a property HeatSource which are closer than

min_distance to HW nodes with a property SensitiveToHeat. In line 4 we then find the

function nodes realized by the latter HW nodes. In line 5, for each of combination of the

above HW and function nodes we add a new relations of type

InferredNonFunctionalHeatInfluence to the DB.

 TNO Public TNO 2024 R10833

 TNO Public 20/66

Executing such a query on the DB will then add the relation shown in Figure 2.7. Following

our workflow, this inferred relations will then be transformed back into a diagnostic network

as an Affects relation to be used in a diagnosis since, in the extended network, a failure of

Hardware_B can become a cause of a malfunctioning of Function_D.

Figure 2.7: Inferred non-functional relation.

Some considerations on this way to infer non-functional relations:

• For large systems, computing the distance between all pairs of HW parts could be

too computationally expensive. A possible solution would be to compute distances

using the hierarchical decomposition. For example in a recursive way one could

compute the distance among any two modules and then among any two sub-

module inside each single module.

• The expert-based inference rules should be collected and maintained in a library.

This library should also specify the way in which the inferred relations have to be

transformed into the diagnostic network.

2.4.3 From system design to a diagnostic network
To express the system dependencies for the creation of the diagnostic models, we propose

to use Excel to collect all the information (nodes and relations) in a structured way that

should be stored in the Graph DB. The proposed template allows for relatively easy

specification of a system at the cost of a number of assumptions, as an Excel template puts

some limits on the expressive freedom of the model creation. This is in principle not a

problem, as the template is merely used to demonstrate the creation of the model, rather

than to provide a fully-fledged tool. An example of the proposed Excel template is shown in

Figure 2.8.

Figure 2.8: Example system specification using the Excel template.

The template consists of an individual sheet per (sub)system to be specified. In Figure 2.8,

-level view of our example system. The

breakdown into smaller parts of our system is done via so-called Clusters. For every cluster,

 TNO Public TNO 2024 R10833

 TNO Public 21/66

one or more main functions and/or hardware pieces need to be specified. All are assigned a

name. These specifications are shown in the first three columns of the template.

The grey column(s) represent the main function(s) of the cluster being specified in the sheet.

T and the main function of this

cluster is named

function or hardware piece represented by the row to the function or observable

In the blue columns, only the main functions of the clusters are listed. The second row

represents the cluster of the function, while the third represents the function name. Again,

green cells represent a dependency from the row to the column. Three interpretations of

marked cells are valid:

• Function → Function: this translates to a Required for relation from the first function

to the latter.

• Hardware → Function, within the same cluster: this translates to a Realizes relation

from the hardware node to the function node.

• Hardware → Function, in another cluster: this translates to an Affects relation from

the hardware node to the function node.

his is specified in the second row and ensures the observables to be

translated into the proper node type in our diagnostic model. Whenever a cell is marked

green, the observable in the respective column provides information about the function or

hardware in the respective row. This is translated to an Observed by relation or a Tested by

relation, depending on the observable type. Additionally, one can specify the costs attached

ain header and

each row must have a subheader indicating the name of the costs represented. In this

assigned for each type of cost to distinguish (which may be 0).

Figure 2.9: Color-coded mapping of the cells to the relation it is being translated into if the cell is marked
green in the template. Grey cells are invalid to mark green.

To represent all possible relations and node type being derived from the template, Figure 2.9

shows a color-coded mapping to the different types of nodes and relations. The grey cells

are invalid to mark as a dependency. A visual representation of the model as specified in

Figure 2.8 is shown in Figure 2.10.

 TNO Public TNO 2024 R10833

 TNO Public 22/66

Figure 2.10: A visual representation of the diagnostic model as specified in Figure 2.8.

The Excel template also provides support for hierarchical specification of a model. A cluster

can be further detailed by adding a sheet to the Excel file with the name of the cluster. The

template of the sheet is identical to the one in Figure 2.8. The grey part of the sheet should

reflect the name of the cluster and all of its main functions as specified in the higher-level

Subsystem_3’ in the example has two main functions, thus two grey

columns are needed, as shown in Figure 2.11.

Figure 2.11:

This more detailed model of the cluster adds upon what has already been specified for the

cluster. Apart from making sure the cluster name and main function names correspond to

the upper level, the template works exactly the same. This cluster by itself, without loading it

in the context of the higher-level system, is visualized by Figure 2.12.

Subsystem_31 Subsystem_32 Direct DiagnosticTest

Cluster Type Name Function_31 Function_32 Function_311 Function_321 Function_311_Error Test_Function_321

Subsystem_31 Function Function_311 X X X X

Subsystem_31 Hardware Hardware_311 X

Subsystem_32 Function Function_321 X X

Subsystem_32 Hardware Hardware_321 X

Time 20

Functions Observables

Cost

Subsystem_3

 TNO Public TNO 2024 R10833

 TNO Public 23/66

Figure 2.12: Visual representation of only the specification of Subsystem_3, as specified in Figure 2.11.

By detailing out a cluster, the interfaces from other clusters to the detailed clusters are often

unclear. Originally, functions of the other clusters were connected to the main functions of

the to-be detailed cluster, while these target functions have now gotten one or more

subfunctions, as shown in Figure 2.12. Consequently, it is unclear which subfunctions in the

detailed cluster are the targets of the external functions that pointed to the cluster's main

functions. When loading the model, this will be prompted and a choice should be made by

the user of the library. An example prompt for the above system is shown in Figure 2.13. The

be refined. The user may now chose to either maintain the original main function to be

connected, or to clarify this connection to start from either one of the two subfunctions of

selected function also has a more detailed specification available, a new prompt will appear

to further refine. This does not happen if an explicit choice has been made to maintain the

originally connected function (option 1).

Figure 2.13: Example prompt to clarify the interfaces to a more detailed cluster.

While these interface descriptions should be part of the model, these are not part of the

Excel template. As such, the specification of these interfaces is saved to a separate file in

JSON format to enable reloading of the model without having to answer all questions again.

While it is suboptimal that these interface specifications are not included in a more

structured form and part of the model specification itself, this approach allows the individual

clusters to be specified in full isolation, without knowing in which context these will be

placed. Upon initialization of the model, its placement is known and the further specification

is needed. Future work may come up with a more structured approach that still maintains

this benefit.

 TNO Public TNO 2024 R10833

 TNO Public 24/66

The final model, after detailing out one of the clusters, is shown in Figure 2.14. The four

Required for Required for
relations

functions in Required for relations connected, as these are now

going to subfunctions of those main functions.

Figure 2.14: The visualization of the final example model, including the detailed o

The expressiveness of the current Excel template is limited in some ways to simplify the

model specification. These limitations and the assumptions to deal with them are listed

below.

• The template does not allow for the specification of individual fault modes of the

hardware nodes. Besides the default Healthy state, an Unhealthy state is created for

each hardware node. Since the priors of the individual states cannot be added in the

template either, the prior is set to be 99% Healthy, and 1% Unhealthy.

• Direct observables may sometimes be faulty, being either a false positive or a false

negative, meaning that the observable reports NOk while the function or hardware

does not have a problem, or that it reports Ok while there is a problem respectively.

To provide room for these faulty types of observations, each direct observable node

has a 0.1% chance of being a false positive and a 1% chance of being a false

negative. Rationale for these different values is that it is usually more likely to have

something not being reported while it should than having something reported

mistakenly. In future implementations, these numbers may be changed.

• Like the direct observables, also diagnostic tests may be wrongly interpreted. To

provide room for these manual observations, the diagnostic test nodes have a

0.01% change of being a false positive and a 0.1% chance of being a false negative.

 TNO Public TNO 2024 R10833

 TNO Public 25/66

2.5 From a diagnostic network to a reasoning
model
Before we dive into discussing the different reasoning models, their virtues and challenges,

and our implementation of those, we must discuss what is meant by reasoning in this

context, and why is it necessary to construct a reasoning model on top of a diagnostic

network.

By reasoning we mean the deduction of (true) statements about a subject matter off of a

collection of established (true) statements. These statements can be deterministic (if it rains

the streets are wet) or probabilistic (tomorrow it will rain with 90% probability). An important

caveat here is that the statements need not be true with respect to the real world, but with

respect to a model. If our model is only approximately correct, or the evidence inserted in

the model is incorrect, then its true statements are only approximately true.

As we have discussed in Section 2.4, a diagnostic network is a rich knowledge graph

designed to contain a functional representation of a system. In this representation we

include everything that is relevant for the diagnosability of the system, such as nodes

representing component health, component functions and their relations, abstract

representations of KPIs etc., which allows us to understand how failures propagate through

the system.

As such, there is quite a lot of explanatory power captured within the knowledge graph itself,

reasoning

model.

Through the introduction of rules and queries, one can use a diagnostic network to deduce

that, for example, component A and component B are thermally coupled, since component

A is made out of metal, component B provides active temperature control, and they are

contiguous. This form of rules-based reasoning is possible within the knowledge graph, but is

not the only kind of reasoning that one might want to do on a system.

Most times, the kind of reasoning we are interested in is causal reasoning. We observe

effects (system behaviour) and want to know what the causes are: which system

components function as expected and which ones do not. Then, two problems arise. On the

one hand, one effect can have many causes and we would like to have a way to quantify

the likelihood of each one, particularly so in the complex systems we consider. On the other,

one cause may only cause an effect with a certain probability.

Hence a knowledge based approach is quickly not good enough. That is why we need to add

a probabilistic reasoning framework to our diagnostic network.

2.5.1 Network transformation
While the semantics of all nodes and relations in the diagnostic network are described in

Section 2.4.1 the formalization step to transform a diagnostic network into a probabilistic

network is still missing. This section specifies the rules needed to transform from the first

formalism to the other to allow for reasoning, regardless of which probabilistic formalism is

selected.

Every node in the diagnostic network is transformed to a conceptual equivalent in the

probabilistic network. We shall refer to this conceptual equivalent as the probabilistic node

in the selected reasoning formalism. The exact probabilistic formula embedded in each

probabilistic node depends on all of the incoming relations to the node, as those represent

the dependencies for this node. Essentially, all probabilistic nodes can be seen as AND-gates,

 TNO Public TNO 2024 R10833

 TNO Public 26/66

Hardware

The probabilistic node for a hardware node only represents the prior probability of failure of

the hardware it represents. It does not have any incoming edges, thus has no parents. Table

2.5 shows an example conditional probability table (CPT) for a hardware node with only one

faulty state, being Unhealthy, besides the default state Healthy.

Table 2.5: Example conditional probability table for a probabilistic hardware node with only one faulty state.

P(Healthy) P(Unhealthy)

0.99 0.01

Function

A function node requires all of its parent function nodes, regardless of whether its relation is

of type Subfunction or a Required for, to be Ok and all of its parent hardware nodes (via a

Realizes relation) to be Healthy in order to be Ok. In all other ca

is NOk. Table 2.6 shows an example CPT for a function node with two parents.

Table 2.6: Example CPT for a probabilistic function node with two parent nodes: one function node and one
hardware node.

Parent function node Parent hardware node P(Ok) P(NOk)

Ok Healthy 1.0 0.0

Ok Unhealthy 0.0 1.0

NOk Healthy 0.0 1.0

NOk Unhealthy 0.0 1.0

Direct observable

The probabilistic node for a direct observable is similar to the function node, as it also

requires all of its parents to be Healthy or Ok in order to be Ok. Main difference is the

incorporation of the false positive and false negative rates for the given observable. With

these rates set to their default values for diagnostic networks, the CPT becomes like Table

2.7.

Table 2.7: Example CPT for a probabilistic direct observable node with two parent nodes.

Parent function node Parent hardware node P(Ok) P(NOk)

Ok Healthy 0.99 0.01

Ok Unhealthy 0.001 0.999

NOk Healthy 0.001 0.999

NOk Unhealthy 0.001 0.999

Diagnostic test

The probabilistic node for a diagnostic test is very similar to the direct observable node and

takes false positive and negative rates into account. An example for a diagnostic test with a

single parent is shown in Table 2.8.

 TNO Public TNO 2024 R10833

 TNO Public 27/66

Table 2.8: Example CPT for a probabilistic diagnostic test node with one parent function node.

Parent function node P(Ok) P(NOk)

Ok 0.999 0.001

NOk 0.0001 0.9999

2.5.2 Candidate reasoning formalisms
In the project SD2Act 2023 we have investigated 3 different reasoning formalisms: Bayesian

networks, tensor networks, and probabilistic programming. Dynamic Bayesian networks

were also studied in SD2Act 2022, but have not been further studied and thus will not be

discussed in this report.

The choice of investigated reasoning formalisms was motivated by the form of our

diagnostic networks and the nature of the available data. Our reasoning formalisms should

be discrete and graphical because a diagnostic network captures the structure of a system

in a graph with hardware, function and observable nodes whose states are discrete. Given

the small number of data available, and the probabilistic nature of the fault propagation and

detection in the system, our formalism should also be Bayesian and model-based.

All this considerations point us toward probabilistic graphical models as our best candidate

framework. The most general formalism in this category of mathematical models is Factor

graphs, of which tensor networks are an implementation (Robeva & Seigal, 2019). Bayesian

networks are a subclass of factor graphs and can be implemented separately or as a special

class of tensor networks.

2.5.2.1 Bayesian networks
The first formalism considered is that of Bayesian belief networks, hereafter shortened to

Bayesian networks (BNs).

A Bayesian network is a probabilistic model that uses directed acyclic graphs (DAGs) to

encode joint probability distributions over a set 𝑿 = {𝑋1, … 𝑋𝑛} of discrete random variables.

Every variable 𝑋𝑖 ∈ 𝑿 has associated a set of parents 𝑃𝑎(𝑋𝑖) ⊆ 𝑿\𝑋𝑖 and a conditional

probability table(CPT), 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖)). The children of a node 𝑋𝑖 are the variables that have 𝑋𝑖

as a parent.

The set of random variables, together with their CPTs, define the nodes of a directed graph

whose edges are determined by the dependencies in the CPTs. One edge for each

parent→child relation.

The Bayesian network, in the sense of the DAG with the variables and their CPTs, defines the

joint probability distribution:

𝑃(𝑋1, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))

𝑛

𝑖=1

In this way one can insert evidence by fixing the value of that variable in the factorization.

The Bayesian network encodes the joint probability distribution implicitly and can be used to

(𝑋1, … 𝑋𝑛) =

(𝑥1, … , 𝑥𝑛) 𝑋𝑘
of

𝑃𝑘(𝑋𝑘) = ∑𝑃(𝑋1, … , 𝑋𝑛) = ∑∏𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖)),

𝑛

𝑖=1𝑋𝑘̅𝑋𝑘̅

 TNO Public TNO 2024 R10833

 TNO Public 28/66

Where 𝑋𝑘̅ means that the summation goes over all variable save 𝑋𝑘.

The process of summing over all variables but the target ones is called variable elimination,

and its complexity depends greatly in the order and the intermediate information that is

stored.

In Bayesian networks, the algorithm that performs variable elimination is called message
passing (MP) or belief propagation (BP), and can compute all marginals in time:

𝑂(𝑛 ⋅ max (dim(Xi))max⁡(dim⁡(𝑋𝑖))
max⁡(deg𝑋𝑖)⁡)⁡

where, dim⁡(𝑋𝑖) is the dimension of the variable 𝑋𝑖, deg(𝑋𝑖) is the in-degree of 𝑋𝑖 in the

network, and n is the number of variables.

Observe that for this algorithm to be useful for large networks, the maximum degree of

nodes in the network must be independent of 𝑛, otherwise the exponential factor in the

complexity would quickly take over and make computation impossible. A fully

interconnected network where everything is allowed to directly depend on everything else is

thus a non-starter. Thankfully, the systems we deal with are not fully interconnected but

rather locally connected, they are structured. The point here is that structure is not only

helpful, it is necessary for computation.

 For a more in-depth discussion of Bayesian networks, see (Koller & Friedman, 2009).

2.5.2.1.1 Limitations and challenges of Bayesian networks in the context of SD2Act

In the course of the ADiA and SD2Act projects up to 2022, several limitations and challenges

of Bayesian networks have been identified, namely:

1. Enforcing global constraints: BNs do not allow the user to easily enforce system-

level constraints to, for example, express certain laws of physics and force the

model to adhere to these at all times.

2. Modelling stateful systems: Bayesian networks represent equilibrium states or states

at a single moment of time. Stateful systems, such as state machines, which can

change their state over time must be approached using dynamic/temporal Bayesian

networks, but these cause scalability challenges as the network needs to be copied

an unknown number of times.

3. Reasoning over control and probabilistic loops: Bayesian networks cannot, by

definition, contain loops. Control loops, however, are to be expected in cyber-

physical systems, which will translate into Bayesian networks with cycles.

Probabilistic loops are another name for causal loops and are to be expected in

systems where different components can affect each other in ways that are not

directionally clear or unique.

4. Description of the problem in terms of (probabilistic) relations by design engineers:
Most engineers are not used to express system behaviour in term of probabilistic

relations such as CPTs.

To these limitations we must now add three.

5. Reasoning with continuous variables: System variables may exist that are not well

described by a binary or discrete set of states (e.g. degradation), but rather require

continuous random variables to be described. BN in their current formulation cannot

easily deal with continuous variables. This constitutes a bottleneck to extending the

methodology to performance diagnostics, i.e. the diagnosis of underperforming

systems.

6. Temporal data: The current framework does not allow one to make use of time

series or otherwise ordered data which could resolve some of the diagnostic

ambiguity present in a static model. As discussed before, dynamic Bayesian

networks are a possibility but have been found to have scalability issues.

 TNO Public TNO 2024 R10833

 TNO Public 29/66

7. Computation of joint entropies: The assisted diagnostic with hierarchy approach of

section 4 relies on computing the conditional entropy of the hardware nodes with

respect to the possible tests. This is a computationally expensive task that grows

exponentially with the number of health nodes to be considered, and which is now a

bottleneck to computation for the current implementation of Bayesian networks.

Some of these limitations no longer apply in the functional modelling framework of SD2Act.

The nature and importance of these limitations must be reassessed in the new modelling

framework.

Stepping away from modelling physical behaviour and towards functional modelling can

potentially circumvent the need for enforcing global physical constraints (limitation 1),

although non-functional relations can still exist that are best described as constraints

between hardware nodes in the diagnostic network.

Regarding the modelling of stateful systems and the reasoning of control loops (limitations

2 and 3), the functional approach alleviates the limitations of Bayesian networks since the

details of the control loop can now be abstracted away. Controller states no longer need to

be tracked in time and are simply described as either performing their function or not. The

same can be said, up to a point, about state machines. Further research is needed in this

direction.

Limitation number 4, i.e. difficulty of problem description by design engineers still applies but

has now changed in nature. Whereas before the difficulty was in translating physical

interactions into probabilistic variables and CPTs, the difficulty now is in describing a physical

system at the functional level, a problem that has been the subject of much work in the

model-based system engineering community. This is no coincidence, as the functional

approach to diagnostics was conceived with this synergy in mind.

For limitations 5 and 6, reasoning with continuous variables and temporal data, neither

Bayesian networks nor tensor networks provide satisfactory solutions. We are currently

looking into probabilistic programming to tackle these. On the one hand, limiting our scope

to functional behaviour and machine hard-downs reduces the necessity of continuous

, the data from the field oftentimes comes in the form of time-

machine hard-down could be the result of a collection of underperforming factors, none of

which is caused by a broken hardware, but which together compound to an out of spec

functionality. Our current approach is to have service engineers use their field expertise to

interpret the results of tests and KPIs yielding non-binary data and translate them into

prob

Limitation 7 is still under consideration. Possible solutions are a switch to approximate

estimation of entropy via sampling, using computationally less expensive bounds on entropy

as proxy for the real quantity or using the high-parallelization implementation of tensor

networks to reduce computation time of the full conditional entropy.

Let us summarize. The turn to functional modelling has ameliorated but not completely

supressed the limitations of Bayesian networks as a reasoning formalism. We have not yet

encountered the need for global variables, modelling state machines and control loops has

not yet been attempted in a full case-study but we have reason to believe the functional

approach goes a long way towards solving limitations 2 and 3. Functional modelling also

allows us to piggyback on the systems engineering efforts and expertise to tackle limitation

4.

Nevertheless, some difficulties remain. Limitations 5, 6 and 7 are largely unaddressed. The

translation between system behaviour and functional behaviour is far from unique. The

 TNO Public TNO 2024 R10833

 TNO Public 30/66

problem with probabilistic loops still has to be addressed. For this last item, we propose a

work-around that allows us to compute inference in Bayesian networks with loops. This

workaround, described in Section 2.5.2.1.2, comes at a computational cost, and so we later

introduce tensor networks, a generalization of Bayesian networks that can directly deal with

loops while maintaining all the functionalities of Bayesian networks.

2.5.2.1.2 Loop cutting in Bayesian networks. A house heating example

Figure 2.15: A simple example of a loopy system in the form of a house heating control loop.

As was mentioned in the previous section, the issue of directed loops in the causal graph

defined by a Bayesian network remains. Bayesian networks with directed causal loops are

invalid inputs for the inference algorithms for two reasons:

1. Belief propagation relies on locally sending messages along the DAG that flow from

the roots to the leaves of the networks (and then back up). The problem with loops

is that messages are then passed along the loop without ever hitting a leaf node

and the algorithm never halts.

2. A network with causal loops might not define a well-formed joint probability

distribution, meaning that the sum over all variables need not sum up to one. In

other words, if the network contains loops, the factorized joint function that it

encodes via Equation 2.2 need not be a normalized joint probability distribution.

In the following, we describe a procedure that modifies a BN with a loop allowing us to

compute inference in the new network. We illustrate the procedure with an example.

Consider the house heating system in Figure 2.15. Although not in the syntax of diagnostic

networks described in Section 2.1, this is a kind of functional model because the states of

the variables do not track the instantaneous states of the room, hardware components or

settings, but rather their long term behaviour: Is the controller controlling? Is the heater
heating?

Figure 2.16: CPT of Setting

The CPTs of the system are all rather trivial and can be easily deduced from the name of the

states. Only the CPT for setting is non-trivial (see line 2 of Figure 2.16), this is to allow for

combinations where the measured temperature is controlled, but the system is not

controlled, as would be the case with a drifting sensor.

This seemingly sensible Bayesian network is ill-defined, as was explained in the previous

section. The problem lies in the loop, and therefore we must find a way of formally cutting

 TNO Public TNO 2024 R10833

 TNO Public 31/66

the loop (i.e. modifying the network) while preserving the desired correlations in the new

network.

The method for cutting the loop proceeds in four steps.

1. Identify a node in the loop and create a copy of the node, meaning, a new node

with the same states as the original one, severing the connection between Node

and its children

children.

2.

CPT is defined by 𝑃(𝐸𝑞𝑢𝑎𝑙 = ′𝑦𝑒𝑠′|𝑁𝑜𝑑𝑒 = 𝑛, 𝐶𝑜𝑝𝑦 = 𝑚) = {
1, ⁡𝑛 = 𝑚
0, ⁡𝑛 ≠ 𝑚

3. Insert as evi

4.

In the example of the house heating example, the loop is cut by identifying the Node in step

Figure 2.17).

Figure 2.17: Cut loop in a Bayesian network.

This (conditioned) Bayesian network is now well-defined because it contains no direct cycles.

One last observation before we move on is that it is the presence of a virtual Evidence node

in the network here that allows us to cut the loop. If any of the variables of the loop were to

be observed and inserted as evidence there would be no issue in updating the probabilities

of the rest of the variables. In essence, it seems that adding evidence to loops is what makes

them manageable, and this method is a way to insert evidence in the network when there is

none from the field.

This method does not come without drawbacks. We are modifying the network and the

causal flow, and the choice of assigning flat priors to 𝐵′ is somewhat arbitrary, but most

importantly, it requires us to find the loops and decide where to cut them. Loop finding is a

very computationally expensive task that scales badly in the size of the network.

One solution to this problem is to use tensor networks as a reasoning formalism. As

discussed in Section 2.4.2.2, tensor networks generalize Bayesian networks with the added

benefit that they can naturally deal with loops. In Appendix A we prove that this way of

cutting a loop in a BN is equivalent to the way tensor networks naturally compute loops.

 TNO Public TNO 2024 R10833

 TNO Public 32/66

2.5.2.2 Tensor networks
Tensor networks are the second probabilistic reasoning formalism that we study. There are

many ways to define tensors, the easiest one is as multidimensional arrays of numbers.

Every tensor has a set of indices that take values in their respective index domain.

Mathematically a tensor 𝑇 ∈ ℝ𝑑1 × …× ℝ𝑑𝑛 being an array of numbers is denoted as:

𝑇 = [𝑇𝑋1,…,𝑋𝑛]⁡
⁡⁡⁡⁡𝑤ℎ𝑒𝑟𝑒⁡𝑋𝑗 ∈ {1, … , 𝑑𝑗}⁡𝑓𝑜𝑟⁡𝑗 = 1,… , 𝑛, or 𝑇 = 𝑇𝑋1,…,𝑋𝑛 for short. Capital letters

denote the indices (lower-case letters denote values that those indices can take). If the

number of indices is small, lower-case roman letters are often used to denote indices.

The number of indices of an array is called the tensor order, (rank is also used, but should

not be confused with matrix rank). A vector is thus an order-1 tensor, a matrix an order 2

and so on (see Figure 2.18).

Figure 2.18: Examples of tensors of order 1 to 3. The indices of the tensor act as coordinates on the array.

A tensor network is a graphical representation of a product of tensors with (possibly)

overlapping indices.

Equation 2.1

𝑇̃ = [𝑇̃𝑋1,…,𝑋𝑛] = ∏𝑇𝑋𝑠𝑗
(𝑗)

𝑙

𝑗=1

where 𝑆𝑖 is a subset of the set of all indices in the network. For example, let 𝑆𝑖 = {2,3,5} be

the set of indices of a tensor 𝑇(𝑖), then 𝑇𝑋𝑠𝑗
(𝑖)

= 𝑇𝑋2,𝑋3,𝑋5
(𝑖)

In its graphical representation, the network contains one node for each factor in Equation

2.1, and a (hyper-)edge for every index connecting all tensors that share that index (see

Figure 2.19).

Figure 2.19: Tensor network before and after contraction and its graphical representation.

The basic operation on a tensor network is called tensor contraction and consists of

summing over one or more of its indices. Contraction is done locally on the network, and the

result of contracting an index between two or more tensors is a new tensor whose indices

are the indices of the old tensors that were not contracted.

 TNO Public TNO 2024 R10833

 TNO Public 33/66

When several indices are contracted at once, the order of contraction can have a huge

impact in the complexity of the operation. Although finding the optimal order of contraction

is an NP-complete problem for arbitrary networks, there exist many algorithms that can

nd tree-like the network, the

easier it is to contract.

Another way of understanding tensors is as maps from their indices to the real numbers.

𝑇: [𝑑1] × …× [𝑑𝑛] → ℝ⁡

𝑇(𝑋1, … , 𝑋𝑛) = 𝑇𝑋1,…,𝑋𝑛

In this notation, a tensor network is a representation of the map:

Equation 2.2

𝑇: [𝑑1] × …× [𝑑𝑛] → ℝ⁡

𝑇(𝑋1, … , 𝑋𝑛) = ∏𝑇𝑗(𝑋𝑆𝑗)

𝑙

𝑗=1

.⁡

Observe that this notation is reminiscent of that for the joint probability distribution of a

Bayesian network.

For the remainder of this report we will mostly use the second notation, but both are useful.

Thinking of tensors and tensor networks as multivariate functions allows us to equate them

to random variables and probability distributions, while thinking of them as arrays allows us

to express them in terms a computer can better handle.

2.5.2.2.1 Inference in tensor networks

As has already been hinted at, tensor networks can be used to encode factorizations of joint

probability distributions. Just by looking at Equation 2.2, we see that all we really need for

this to be a probability distribution is that the factor tensors be non-negative and that it be

normalized, i.e. contracting all indices equals 1.

Every index thus represents a variable and every tensor a factor in the factorization of the

joint probability distribution.

Tensor contraction is then nothing but marginalization, also known as variable elimination.

Similarly, inserting evidence is the same as fixing an index to a particular value or adding a

delta factor to the factorization and contracting the index away.

Moreover, because of the form of Equation 2.2, multiplication by constants commutes with

the operation of index contraction. This means that we do not need to keep track of

normalization constants, we simply compute them after marginalization (a much easier

task).

This turns out to be quite handy for application of the chain rule of probability, i.e.

𝑃(𝑋|𝑌 = 𝑦) ∝ 𝑃(𝑋, 𝑌 = 𝑦).

Having marginalization, insertion of evidence and the chain rule we have all the ingredients

necessary for Bayesian inference (see Table 2.9). An in-depth analysis of this correspondence

can be found in (Robeva & Seigal, 2019) and (Glasser et al., 2019).

Table 2.9: Conceptual parallels between tensor networks and Bayesian inference.

Joint probability distribution

𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐴, 𝐵)

tensor network

 TNO Public TNO 2024 R10833

 TNO Public 34/66

Marginalization

𝑃(𝐶) =∑𝑃(𝐴, 𝐵, 𝐶)

𝐴,𝐵

Tensor contraction

Insertion of evidence

𝑃(𝐴, 𝐵, 𝐶 = 𝑐) = 𝑃(𝐴, 𝐵, 𝐶) ⋅ 𝛿𝐶=𝑐

addition of delta node

Chain rule

𝑃(𝐴, 𝐵|𝐶 = 𝑐) ∝ 𝑃(𝐴, 𝐵, 𝐶 = 𝑐)

Constant invariance

The current implementation of marginalization on MBDlyb computes all marginals

sequentially. The complexity of this naïve algorithm (if indeed one could call it an algorithm)

is 𝑂(𝑛2), where 𝑛 is the number of variables in the network. This is worse than the 𝑂(𝑛)

algorithm for marginalization in Bayesian networks, but still fast enough for us at this stage

of development.

Further improvements in the algorithm are possible by storing intermediate computations

and fetching their result rather than recomputing them like we do now.

2.5.2.2.2 Bayesian networks as a subclass of tensor networks

In a Bayesian network, we put variables and their CPTs into nodes and connect them

representation of a factorized joint probability distribution of the form:

Equation 2.3

𝑃(𝑋1, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))

𝑛

𝑖=1

This is but a special case of the factorized function in Equation 2.2.

where ⁡𝑆𝑖 = {𝑋𝑖 , 𝑃𝑎(𝑋𝑖)}, 𝑚 = 𝑛, and each 𝑓𝑖 is a conditional probability table.

 But as we have seen, this can be also expressed graphically as a tensor network. In general,

the changes to the graphical representation are that nodes in a BN that were labelled by a

variable name, call it 𝑌, and contained its CPT are replaced by:

a. A tensor with one index per parent of 𝑌 and one for 𝑌 itself, containing the CPT of 𝑌,

b. One edge per variable. If the variable appears multiple times (because it is a parent

to many nodes), this is a hyperedge.

A simple example will illustrate this perfectly. Consider the Bayesian network in Figure 2.20.

 TNO Public TNO 2024 R10833

 TNO Public 35/66

Figure 2.20: Example Bayesian network.

This network is a representation of the joint probability distribution:

𝑃(𝑈,𝑊, 𝑋, 𝑌, 𝑍) = 𝑃𝑈(𝑈) ⋅ 𝑃𝑊(𝑊) ⋅ 𝑃𝑋|𝑈,𝑊(𝑋|𝑈,𝑊) ⋅ 𝑃𝑌|𝑋(𝑌|𝑋) ⋅ 𝑃𝑍|𝑋(𝑍|𝑋)

A visualization of this joint probability distribution as a tensor network looks is shown in

Figure 2.21.

Figure 2.21: Tensor network visualization of the example Bayesian network.

Indeed, we see here that the tensor network contains one tensor per element in the

factorization and one edge for each variable, including a hyperedge for 𝑋 because this

variable appears in the tensors 𝑃(𝑋|𝑈,𝑊), 𝑃(𝑌|𝑋), 𝑃(𝑍|𝑋).

2.5.2.2.3 Loops in tensor networks

Tensor networks can natively deal with both of the issues that make loops incompatible with

Bayesian networks.

On the one hand, tensor contraction, the operation used for variable elimination on tensor

networks, bypasses the problems encountered by message passing in evaluating loops

altogether by not being directional.

On the other hand, the issue of loops of local conditional dependencies that do not amount

to a well-defined joint probability distribution is also not a limitation of tensor networks. That

is because tensor networks are not limited to such functions. As long as we remember to

normalize our results at the end, computation on networks with loops is always possible,

and the result, as we will see at the end of this section, is always proportional to a well-

formed conditional probability distribution on the modified Bayesian network that breaks the

loop (see Section 2.5.2.1.2).

2.5.2.2.4 Example of a loop in a functional diagnostic network

Let us illustrate how tensor networks deal with loops with the simple case of two functions,

𝐹1, 𝐹2, each with their own hardware and KPI nodes, and each dependent on the other (see

Figure 2.22).

 TNO Public TNO 2024 R10833

 TNO Public 36/66

In order to fully describe this system we need to specify the hardware priors, conditional

probability tables of the function nodes and CPTs of the observable nodes. For the prior

probabilities of 𝐻1 and 𝐻2 we choose [𝑃(𝐻𝑖 = 𝑂𝑘) = 0.95; ⁡𝑃(𝐻𝑖 = 𝑁𝑂𝑘) = 0.05], while for the

KPIs we choose a false positive and false negative rate of 0.01.

Special care must be taken when choosing the CPTs of 𝐹1 and 𝐹2. By default, in MBDlyb we

define the CPT of a node to be the logical 𝐴𝑁𝐷 of its parent nodes (Section 2.5.1). If we were

to apply the default in this case, our variables 𝐹1 and 𝐹2 would become perfectly correlated.

We would not have a loop but rather the same variable twice. In principle, it could happen

that a system has a set of function variables that form a loop where each one is strictly

Normal N . In that case, the tensor network

would (correctly) make all variables in the loop perfectly correlated. For our purposes now,

however, this is not insightful enough. We would still like the hardware nodes to be

necessary for their functions to be performed, but will relax the assumption that an

abnormal function necessarily makes its functional children perform abnormally. Moreover,

we will make it such that an A 𝐹1 is unlikely to make 𝐹2 abnormal, while an

abnormal 𝐹2 is very likely to make 𝐹1 malfunction. This is made manually, but a working

solution is part of the library. The resulting tensor arrays are those in Figure 2.23.

Figure 2.23: Tensor network with tensor arrays fully specified. Observe the difference in the second lines of
both middle arrays. These different values make for a weak influence from right to left and a strong
influence from left to right.

Figure 2.22: A simple functional network containing two function nodes forming a probabilistic loop. The left
diagram represents the diagnostic network, while the right one is the resulting tensor network. This is not a
complete characterization because the priors and CPTs are yet to be specified.

 TNO Public TNO 2024 R10833

 TNO Public 37/66

The first question one might have is what are the posterior probabilities of all nodes prior to

inserting evidence. These correspond to rows 1 and 2 of Table 2.10. If we now insert as

evidence 𝐾𝑃𝐼1 = 𝑁𝑂𝑘, or alternatively 𝐾𝑃𝐼2 = 𝑁𝑂𝑘, the resulting posteriors are those in rows

3-4 and 5-6 of Table 2.10, respectively.

These are the same numbers one obtains if one uses a Bayesian network with the loop cut

according to the procedure in Section 2.5.2.1.2.

What transpires from looking at these numbers, especially the cases where we insert

evidence, is the asymmetry in the cross-influence between 𝐹1 and 𝐹2. When the evidence is

𝐾𝑃𝐼1 = 𝑁𝑂𝑘, the posterior probability of 𝐻1 being broken jumps considerably, while that for

𝐻2 stays nearly constant, at the same time, the probability of 𝐹2 = 𝑁𝑂𝑘 is very high (which is

attributed to the strong influence of 𝐹1 on 𝐹2 rather than to 𝐻2 being broken).

In contrast, when 𝐾𝑃𝐼2 = 𝑁𝑂𝑘, both hardware nodes are considerably more likely to be

broken than before in roughly equal ways. What is happening here is that, because of the

strong influence of 𝐹1 on 𝐹2, the latter is an indicator for the former, so when strong

evidence comes for 𝐹2 = 𝑁𝑂𝑘, one possibility is 𝐻2 = 𝐵𝑟𝑜𝑘𝑒𝑛, but another one is that 𝐹1 =

𝑁𝑂𝑘, which, if true, would be caused by 𝐻1 = 𝐵𝑟𝑜𝑘𝑒𝑛. We will have another look at these

numbers in Section 2.5.2.2.5.

Table 2.10: Posterior probabilities for the system with no evidence inserted, after inserting evidence for 𝐾𝑃𝐼1
and after inserting evidence for 𝐾𝑃𝐼2.

Case State/variable 𝐻1 𝐻2 𝐹1 𝐹2 𝐾𝑃𝐼1 𝐾𝑃𝐼2

No evidence Healthy/Ok 0.956 0.956 0.822 0.797 0.815 0.791

Broken/NOk 0.044 0.044 0.178 0.203 0.185 0.209

𝐾𝑃𝐼1 = 𝑁𝑂𝑘 Healthy/Ok 0.766 0.942 0.044 0.087 0 0.095

Broken/NOk 0.234 0.058 0.956 0.913 1 0.905

𝐾𝑃𝐼2 = 𝑁𝑂𝑘 Healthy/Ok 0.832 0.793 0.195 0.038 0.201 0

Broken/NOk 0.168 0.207 0.805 0.962 0.799 1

2.5.2.2.5 Advantages and Challenges in tensor networks

Although tensor networks are a strict generalization of Bayesian networks, in SD2Act we do

not make use of their superior expressive power to create models, meaning that the

diagnostic models described in section 2 are very BN-like. The use of TNs has therefore no

effect on the kinds of models we create, and their impact is felt on the computational back-

end of things. In particular, using TNs allows us to easily deal with loops and has

implications (both positive and negative) on the computation complexity of marginalization

and entropy calculations, and the interpretation of results in the presence of loops. We

would be remiss if we did not mention too any of the features of tensor networks not

explored in SD2Act, so we close this section with a brief discussion of those.

• Loops
The computation of marginals (and therefore entropies) on networks with loops is

possible on the TN without workarounds or additional steps.

• Computation of marginals
Our benchmarking experiments show that the basic contraction of edges (the TN

version of variable elimination) on the chosen TN library Quimb (see quimb

 TNO Public TNO 2024 R10833

 TNO Public 38/66

documentation2) is much faster than the equivalent computation of messages on

the BN library PyAgrum (see PyAgrum documentation3).

However, this advantage is cancelled by the fact that our algorithm for computing

all marginals is very primitive, requiring 𝑂(𝑛2) operations, rather than the 𝑂(𝑛)

required for belief propagation in the BN.

Our results show that belief propagation on a BN takes ~⁡𝐾1 ⋅ 𝑛 steps, where 𝑛 is the

number of nodes in the network, whereas the naïve algorithm for computation of

marginals on the corresponding TN takes ~⁡𝐾2 ⋅ 𝑛
2 steps, where 𝐾1 ≈ 10−3⁡ and 𝐾2 ≈

10−4.

This means that there is both need and room for improvement in the TN algorithm

for computing marginals.

The main reason sequential marginalization of the TN has worse scaling than belief

propagation on a BN is redundant computation. BP manages to avoid redundant

computation by storing the result of all intermediate computations and fetching it

every time the algorithm calls for a computation it has already performed.

At the moment we do no such thing in the TN algorithm.

Additionally, we are not making use of the parallelization and GPU acceleration that

is supported by Quimb because of the need to run the computation on a Linux

environment.

• Computation of joint entropies

Our chosen TN implementation allows for the in-situ computation of functions like

the joint entropy of a subset of nodes, whose joint probability would be too large to

store in memory (and too costly to compute).

In the example given in a tutorial4 for entropy calculations, one can compute the

joint entropy of 27 variables (without GPU acceleration) in a network with 304 nodes

in under 90 seconds. The computation time is reduced to 13 seconds if one

considers only 18 variables.

Further reductions would follow for less complicated networks (this one is an

extreme case) and if one were to use GPU acceleration.

simply out of reach in the Bayesian network formalism.

2 https://quimb.readthedocs.io/en/latest/index.html
3 https://pyagrum.readthedocs.io/en/1.11.0/
4 https://cotengra.readthedocs.io/en/main/examples/ex_large_output_lazy.html

Figure 2.24: [Left] TN with 304 nodes and 18 output indices in red. [Right] Code computing the
contraction tree and the joint entropy of all 18 output indices. Observe that most of the computation
time is in computing the contraction tree. For very hierarchical and tree-like networks this would be
much faster.

https://quimb.readthedocs.io/en/latest/index.html
https://pyagrum.readthedocs.io/en/1.11.0/
https://cotengra.readthedocs.io/en/main/examples/ex_large_output_lazy.html

 TNO Public TNO 2024 R10833

 TNO Public 39/66

• Interpretation of results in networks with loops

In the example detailed in Section 2.5.2.2.4 we have a TN with a loop between

𝐹1and 𝐹2. In this network, we set the influence of 𝐹1 = 𝑁𝑂𝑘 on 𝐹2 much bigger than

the influence of 𝐹2 = 𝑁𝑂𝑘 on 𝐹1. As we already discussed, this leads us to reasonable

diagnostics in the sense that 𝐾𝑃𝐼1 = 𝑁𝑂𝑘 makes both 𝐹1 and 𝐹2 very likely 𝑁𝑂𝑘 but

only suspects 𝐻1 of being broken. However, the actual numbers for the posterior

probabilities of 𝐻1 and 𝐻2 vary quite a lot with the strength of the mutual influence

between 𝐹1 and 𝐹2

While it seems that the diagnostic result is quite robust to the choice of influence

strength, it remains an open question what are the right values for these influences.

We have already encountered some non-trivial behaviour on an ASML-specific case

whose simplified structure is that of

Figure 2.25.

Figure 2.25: A likely false positive that shows the ability of these models to create causal artifacts.

In this network, 𝐾𝑃𝐼2 and 𝐾𝑃𝐼3 suggest that both components in the loop are

healthy while, at the same time, 𝐾𝑃𝐼1 reports NOk. This is very likely a false positive

of 𝐾𝑃𝐼1, which the tensor network detects because the posteriors of both health

nodes report Healthy with very high probability. However, depending on the strength

of the influence between 𝐹1 and 𝐹2, the network reports a substantial probability

that they are both NOk. For cross-influences that are both 0.75, the model reports a

33% and 29% chance of 𝐹1 and 𝐹2 being NOk, respectively. But this happens at the

same time that both 𝐻1 and ⁡𝐻2 are very likely Healthy. The functions are making

each other malfunction. When the coupling between function nodes is weakened to

0.75 on one direction and 0.05 in the other, the causality loop (predictably)

disappears.

What we have here are malfunctioning functions that are not caused by any

malfunctioning hardware. This is an artifact of the model, but one that does not

seem to lead to a misdiagnosis. More investigation is required.

• Features of tensor networks identified but not realized in MBDlyb
o Hyperedges as global variables and constraints. We consider this not

necessary at this stage (see Section 2.5.2.1.1).

o Non-causal relations. The biggest unused feature of tensor networks is their

ability to encode non-causal relations through the use of tensors whose

rows (or columns) do not sum up to one, i.e. tensors that are not conditional

probability tables.
For example, consider two Boolean variables, 𝑋1 and 𝑋2. If we want to

enforce that 𝑋1 = 𝑋2 (no causality here, just a constraint), one can introduce

in the network a tensor 𝛿 whose array is simply a 2x2 identity matrix. One

could go further and enforce any equation on a group of variables of the

form 𝑓(𝑋1, … , 𝑋𝑘) = 0 by introducing a tensor 𝑇 whose array is defined by:

 TNO Public TNO 2024 R10833

 TNO Public 40/66

𝑇𝑋1…𝑋𝑘 {
1⁡⁡⁡⁡𝑖𝑓⁡𝑓(𝑋1, … , 𝑋𝑘) = 0⁡
0⁡⁡⁡⁡𝑒𝑙𝑠𝑒.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

In physics, when two particles affect each other we do not use the concept

of causality, but rather, we say that they interact. This is then translated into

an interaction term in the equations of motion of the system.

One could attempt the same in diagnostic networks where we have two

functions that directly affect each other, translating a loop into an

interaction tensor (see Figure 2.26). As long as it is a non-negative tensor,
any interaction tensor 𝐺𝑋1,𝑋2 is allowed.

Figure 2.26: [Left] Interaction between variables expressed as a bidirectional causal

relation. [Right] Interaction expresses as a non-causal factor.

o Correspondence to other computational formalisms:
It is known in the tensor network community that tensor networks can be

used to encode a few other computational formalisms. While here we have

used the correspondence between tensor networks and factor graphs, the

former can also be used to encode, among others, Hidden Markov Chains

(HMC), Borne machines, quantum circuits or satisfiability formulas. In many

of these there exist algorithms for computing various quantities of interest,

sampling, parameter learning and approximating probability distributions,

see (Glasser et al., 2018), (Rams et al., 2021) and (Bañuls, 2023).

o Modelling with continuous variables:
It is possible to generalize tensor networks to the setting where the

variables are continuous variables described by exponential probability

density functions (like Gaussian, Exponential, Beta, etc.) and the factors are

no longer arrays of numbers but functions, or rather transformations on the

random variables. This is known in the literature as factor graphs (tensor

networks and discrete factor graphs are the same thing). While continuous

factor graphs are much more expressive probabilistic models than tensor

networks or Bayesian networks, inference on FG is much more complicated.

There exist several implementations of continuous factor graphs, such as

the Julia-based library RxInfer5, or the C++-based GTSAM6.

2.5.3 Chosen reasoning formalism
In this section we have considered two reasoning formalisms for diagnostics, Bayesian

networks and tensor networks. We have seen that the latter include the former and that,

although many of the limitations of Bayesian networks identified in the ADiA project have

changed (see Section 2.5.2.1.1) some challenges remain for which tensor networks are the

more appropriate formalism. We have also discussed the unique features of tensor networks

and their limitations. In light of this discussion, we have decided to use tensor networks as

our primary reasoning formalism, using the python library Quimb as our implementation of

tensor networks. Nonetheless, we have decided to continue supporting Bayesian networks

5 https://github.com/ReactiveBayes/RxInfer.jl
6 https://gtsam.org/

https://github.com/ReactiveBayes/RxInfer.jl
https://gtsam.org/

 TNO Public TNO 2024 R10833

 TNO Public 41/66

for the time being, implemented using the python library PyAgrum, given the familiarity of

some of the authors with the software and the minimal overhead that this incurs.

2.6 Iterative diagnosis
In this section, we will describe the iterative diagnostic process that forms a core part of our

methodology as well as theoretical learnings about the diagnostic process. In a nutshell: by

performing service actions on the system and feeding their results back into the diagnostic

system, we can recommend service actions that are perfectly aligned with the needs of the

diagnoser.

The following will be our running example:

Your cherished CD Radio player, a relic from the golden 90s, suddenly falls silent. The

th
turning knobs in hopes of hitting the right combination? Or do you opt for a fresh power
source, replacing the old battery with a new surge of energy?

Approaching this conundrum systematically, you might be tempted to take the most
insightful service action, assuming, of course, you have a measure for that. After all, the

more insights you have on the status of the system, the quicker you can make it work again.

But what if it turns out that the most insightful diagnostic action you could take on the CD

Radio player is a comprehensive measurement of its main board? For this task you would

need a specialist measuring device that costs a significant amount of money and will also

take a few days to be shipped to you. So, before going down that road, it may be much more

sensible to consider a less insightful but more affordable diagnostic test, such as trying

opped working or also the

radio receiver.

This example illustrates the common thread of this section: striking the right balance

between diagnostic insight and diagnostic cost to find the best next diagnostic action. To get

there, we need to take a few steps. First, we will discuss the operational diagnosis loop in

more detail. We then move towards the workings of the diagnoser and discuss both criteria

 diagnostic information gain and cost of diagnostic actions in isolation. Finally, we will

describe our methodology for combining those criteria into a single value that expresses the

value of the diagnostic action in the current context.

2.6.1 Operational diagnosis loop

Figure 2.27: The operational diagnosis loop consists of a realized system, observations, a diagnostic
computational model and service actions.

The operational diagnosis loop, as depicted in Figure 2.27, is an iterative process for root

cause analysis in malfunctioning high-tech systems. This loop consists of four essential

components:

• the realized system,

 TNO Public TNO 2024 R10833

 TNO Public 42/66

• a diagnostic computational model,

• timeseries and other observations,

• service actions.

The operational diagnosis loop starts from a realized system in its operational context, i.e.

the system is already built and running in its environment.

The design process of the system is (usually) concluded. Hence, a diagnostic action may help

us find the problem but will not change the system design to make it easier to find the

problem.7

The realized system produces operational data in the form of timeseries and observations.

For example, this could be error or event logs, logs of measurements that the system

collects during operation, or observations such as a warning indicators. In the context of the

SD2Act project, we also call these direct observables as the information can be obtained

from the system directly, without any additional means (see also Section 2.4.1).

The direct observables (timeseries and other observations) are then fed into the diagnostic

computational model. For details about the computational model, we refer to the previous

chapter. Crucial for the operational diagnosis loop is that the diagnostic computational

model calculates an optimal next service action that can be performed on the system.

Finally, the best next service actions are performed on the realized system and their results

are fed back into the diagnostic computational model. This closes the diagnosis loop. Note

that service actions in the context of SD2Act are usually considered to be measuring KPIs or

indirect observables. They provide measurements or insight into system components for

which as opposed to direct observables some effort has to be taken. The results of these

efforts are entered as evidence into the reasoning model. We do not consider replacements

of parts or trying alternative settings as service actions in the context of SD2Act, for these

types of service actions see (van Gerwen et al., 2023). See Figure 2.28 for an illustration of

the goal of assisted, iterative diagnostics as opposed to conventional diagnostics.

Figure 2.28: This graphic illustrates the goal of iterated diagnostics: reducing the number of service actions
(the dots) as well as the total cost of the diagnostic procedure. Through iterated diagnostics we aim to push
the graph from right to left.

7 One can also consider a diagnosis loop in the context of designing systems. The goal there is to improve system
design in order to facilitate diagnostics in the operational context.

 TNO Public TNO 2024 R10833

 TNO Public 43/66

2.6.2 Recommending the next best service action
In this section and its subsections, we will describe our methodology for recommending the

next best service action. To begin with, there are two main criteria for choosing a service

action:

• The (expected) information gain of a service action, i.e., insight the service action

promises to provide on the status of the system.

• The (expected) cost of performing said service action. Cost may depend dynamically on

If one considers only cost, then one might end up performing many affordable but useless

tests. On the other hand, if one considers only information gain, then one might recommend

tests that are so expensive that they are not considered cost-effective to carry out.

Potentially, the same information gain could be achieved by combining a few less

informative tests that are jointly less expensive. These considerations illustrate that both

cost and information gain should be considered when choosing the next service action.

We will now discuss both criteria in isolation and then move on to approaches for combining

them.

2.6.2.1 Diagnostic information gain
The first criterion for recommending service actions is diagnostic information gain, i.e., we

will now discuss a measure for how much we learn about the health of the system by

performing a service action.

2.6.2.1.1 Technical preliminaries and scope of the methodology.

The minimal assumptions for applying the techniques discussed in this section are the

existence of a diagnostic model for a complex system satisfying the following assumptions:

A random variable 𝑇𝑗 is associated to every test 𝑗 of the system.

A random variable 𝑋𝑖 is associated to every hardware component 𝑖 of the system such that

we can retrieve the probability 𝑃𝐸(𝑋𝑖 = "), potentially dependent on some evidence 𝐸, i.e.

a set of observed variables with the corresponding observations.

Given sets of random variables 𝑋 and 𝑌, we can retrieve the entropy of 𝑋, 𝐻(𝑋), and the

entropy of 𝑋 conditioned on 𝑌, 𝐻(𝑋|𝑌).

Note that we need not assume the random variables to be discrete: the assumptions above

allow for reformulations in the continuous setting.

2.6.2.1.2 Methodology

Our methodology for recommending a diagnostic test solely based on information gain is to

perform the diagnostic test 𝑇𝑖 that minimizes the conditional entropy of the set of hardware

nodes 𝑋 = {𝑋0, … , 𝑋𝑛}, given some evidence E:

argmin𝑖 ⁡H𝐸(𝑋|𝑇𝑖) ⁡= ⁡argmin𝑖 ⁡H𝐸(𝑋0, … , 𝑋𝑛|𝑇𝑖).

The rationale behind this methodology is to select the diagnostic test that is expected to

2.6.2.1.3 Scalability of the methodology

Calculating conditional entropy is an extremely expensive operation because it requires the

computation of a joint probability table involving all variables involved. For example,

calculating the conditional entropy for a test in a system with just 100 relevant hardware

components with 2 states will be practically unfeasible as it requires computing a joint

 TNO Public TNO 2024 R10833

 TNO Public 44/66

probability table with 2101 rows. In practice, we therefore limit the entropy calculation to

approximately 10 hardware components that are most likely to be faulty. We will now

describe this approach formally.

Let the ranking 𝑟: {0, … , 𝑛} → {0, … , n} be a bijection such that 𝑖⁡ < ⁡𝑗 implies

𝑃(𝑋𝑟(𝑖) = 𝑂𝑘|𝐸) ≤ 𝑃(𝑋𝑟(𝑗) = 𝑂𝑘|𝐸),

where 𝐸 is some evidence consisting of the measuring results of our direct and indirect

observables. Our recommendation is to minimize HE(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑖) for a computationally

feasible 𝑚⁡ ≤ 𝑛. In other words, the next recommended diagnostic test is:

argmin𝑖 ⁡HE(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑖).

While this approach makes the computations tractable, it has two main drawbacks. To avoid

cumbersome notation, we will now write 𝐻 when also 𝐻𝐸 could apply.

First, given our current approach for scalability of the methodology, it is possible that we

undervalue the information gain of diagnostic tests by ignoring their impact on lesser

suspected hardware components. A test 𝑇𝑖 that does not influence the probability

𝑃(𝑋𝑟(𝑘) = 𝑂𝑘|𝐸) for 𝑘⁡ ≤ 𝑚,8 will have worst-case conditional entropy in that

H(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑖) ≥ H(𝑋𝑟(0), … , 𝑋𝑟(𝑚)|𝑇𝑗) for every diagnostic test 𝑇𝑗. This is problematic as

it is simultaneously possible that H(𝑋|𝑇𝑖) ≤ H(𝑋|𝑇𝑗) for some diagnostic test 𝑇𝑗.

A second, less significant drawback is that the recommendation of diagnostic tests at the

beginning of the process may happen at random. This happens, in particular, when there are

more than 𝑚 hardware components with equal least priors9 and corresponding diagnostic

tests with equal rates for false positive and false negative. In such situations, all these

diagnostic tests will receive the same conditional entropy value with respect to the
hardware components 𝑋𝑗(0), … , 𝑋𝑗(𝑚) selected as relevant.

Despite these drawbacks, our approach for scalability works sufficiently well across our test

cases. Further investigation of other approaches for scalability may still be fruitful. One may

consider, for example:

1. Recommend the diagnostic test 𝑇𝑗 that minimizes the average entropy H(𝑋𝑖|𝑇𝑗) for

all 𝑖.

2. Partition the set of diagnostic tests 𝑋 into 𝑙 buckets of maximal size 𝑚, 𝑋𝑘, such that

H(𝑋𝑘|𝑇𝑗) becomes computationally feasible. Then minimize the average of all these

bucket entropies. Note that the buckets could be randomly generated as well as cre-

ated according to some heuristic, e.g., by bucketing functionally related compo-

nents.

Another way to achieve above points is to

inequality and work generalizing it, see (Madiman & Tetali, 2007).

It is crucial to note that every such approach will make slightly different selections and

optimizes for slightly different goals. Therefore, extensive testing on practical examples is

unavoidable.

An alternative approach might be to investigate efficient algorithms for calculating

(approximate) entropy when large numbers of random variables are involved.

8 For example, this may happen in a Bayesian Network if 𝑋𝑗(𝑘) and 𝑇𝑖 are d-separated for all 𝑘 ≤ 𝑚 given the

evidence 𝐸.
9 Mathematically speaking, in this case there are several maps 𝑗, 𝑘, 𝑙, … satisfying the conditions of the second

paragraph of this section such that 𝑗(𝑖) ≠ 𝑘(𝑖) ≠ 𝑙(𝑖) ≠ 𝑗(𝑖), for all 𝑖 < 𝑖0 < 𝑚, where 𝑖0 is large enough.

 TNO Public TNO 2024 R10833

 TNO Public 45/66

2.6.2.1.4 The effect of prior probabilities

Figure 2.29: A toy example illustrating the dependence of entropy-based recommendations of next
diagnostic actions on prior probabilities on the health of the corresponding hardware nodes. The model has

ph, we vary the prior for health H1 between
0.00 and 0.10 while keeping everything else fixed (failure probabilities of H2 and H3 are 0.01). We can see
that there is a clear dependence on the failure prior in H1 on whether test T1 or test T3 has lower entropy (on
the y-axis) and is, therefore, recommended.

As a final remark on diagnostic information gain, we would like to point out that the prior

probabilities for failures of hardware component crucially impact which diagnostic test will

be recommended. For illustration, consider Figure 2.29 where we compare the conditional

entropy of all hardware components with respect to two different diagnostic tests. We vary

the prior failure probability of one test and keep everything else fixed. In conclusion, it

crucially depends on the prior probabilities which diagnostic test is expected to decrease

entropy the most. In other words: the order in which tests are recommended depends on

the prior probabilities (among other things). Hence, choosing at least approximately correct

prior probabilities is crucial in the process of diagnostic modelling.

2.6.2.2 Cost of diagnostic actions
We will now move on towards our modelling of costs of diagnostic actions. Returning to our

CD radio player example, recall the diagnostic test of performing a comprehensive analysis

depends not only on the time it takes the engineer to perform the measurement (and

potentially their salary, etc.) but also on whether or not the measuring device is available,

whether or not the CD radio player has already been disassembled, and so on. To model the

cost of a diagnostic test, we therefore consider fixed costs and dynamic cost that depend on

the state of the system that is currently being diagnosed. We will now describe our

methodology of dynamically computing cost of diagnostic tests.

2.6.2.2.1 Types of costs and fixed costs

To allow for insightful information as well as potential optimization later, we assume costs

to be broken down into various types that are fixed for each test 𝑇𝑖 . These fixed cost in

various types are not dependent on the overall state of the system to be diagnosed. This

breakdown in types is particularly helpful when the decision about the next diagnostic action

depends not only on its total cost but must also be optimised with respect to other

constraints, such as time, workforce available, or similar.

For improved readability, we restrict ourselves to diagnostic costs of a single type in this

report. An adaptation to multiple types of cost is straightforward.

 TNO Public TNO 2024 R10833

 TNO Public 46/66

2.6.2.2.2 System state and dynamic costs

Informally, we can think of the system state as a finite collection of Boolean conditions,

𝑐0, … , 𝑐𝑛, describing a set of changing properties of the system that are relevant for the costs

of diagnostic tests. In our CD radio play example, such a condition could encode, for

example, whether the case of the CD Radio player is open (𝑐0 = 1) or closed (𝑐0 = 0), or

whether the measuring device is directly available for inspection (𝑐1 = 1) or not (𝑐1 = 0).

Dynamic costs are accrued whenever these conditions must be changed for a diagnostic

ently

closed, or a measuring device to be ordered that is not locally available.

Formally, a system state is a function 𝑠:⁡{0, … , 𝑛} ⁡→ {0, 1}. We will also use the notation 𝑐𝑖
𝑠 =

𝑠(𝑖) to denote the value of system condition 𝑖 in state 𝑠. Informally, 𝑐𝑖
𝑠 = 𝑠(𝑖) = 1 means

that condition 𝑖⁡is true in state 𝑠, and 𝑐𝑖
𝑠 = 𝑠(𝑖) = 0 means that condition 𝑖 is false in state 𝑠.

A dynamic cost function is a map 𝑐: {0, … , 𝑛} × {0,1} → ℝ>0 where 𝑐(𝑖, 0) is the cost of setting

condition i to 0, and 𝑐(𝑖, 1) is the cost of setting condition i to 1.

To every diagnostic test 𝑇𝑖 , we assign a (potentially empty) set 𝐶𝑖 of tuples (𝑗, 𝑏), where 𝑗 ≤

𝑛, and 𝑏⁡ ∈ {0, 1}. The intended meaning is that (𝑗, 0) ∈ 𝐶𝑖 if and only if test 𝑖 requires

condition 𝑗 to be false, and (𝑗, 1) ∈ 𝐶𝑖 if and only if test 𝑖 requires condition 𝑗 to be true. If a

condition 𝑗 does not occur in any tuple in 𝐶𝑖, then the intended meaning is that test 𝑖
depends neither on 𝑐𝑗 being true nor on 𝑐𝑗 being false.10

Finally, given a system state 𝑠, a dynamic cost function 𝑐, and a set of conditions 𝐶𝑖 for a

diagnostic test 𝑇𝑖 , we can compute its dynamic cost as follows:

𝑐𝑑𝑦𝑛
𝑠 (𝑇𝑖) ⁡= ⁡ ∑ 𝑐(𝑗, 𝑏)

(𝑗,𝑏)∈𝐶𝑖⁡with⁡𝑐𝑗
𝑠≠𝑏

The total cost of performing a diagnostic test consists of (the sum of) its fixed costs, denoted

by 𝑐fix(𝑇𝑖), as well as its dynamic costs:

𝑐𝑡𝑜𝑡𝑎𝑙
𝑠 (𝑇𝑖) = ⁡ 𝑐𝑓𝑖𝑥(𝑇𝑖) ⁡+ 𝑐𝑑𝑦𝑛

𝑠 (𝑇𝑖)⁡

Note that we left the system state implicit in the previous equation; if necessary, it may be

denoted by adding a superscript 𝑠 to any of the cost functions that depend on it. When a

diagnostic test 𝑇𝑖 is performed, the system state 𝑠 is updated to 𝑠𝑛𝑒𝑤 according to the

conditions required by the diagnostic test:

𝑠𝑛𝑒𝑤(𝑗) ⁡= ⁡ {
𝑏, if⁡(𝑗, 𝑏)⁡in⁡𝐶𝑖 ,

𝑠(𝑗), otherwise.

2.6.2.3 Combination of information gain an cost
Our approach for combining information gain and cost is to combine them into a single loss
value for aggregating recommendations that take both criteria into account.

Recall from previous section that we want to minimise the conditional entropy H(𝑋|𝑇𝑖),

where X is a suitable set of random variables describing the system health, and 𝑇𝑖 is the

diagnostic test under consideration. Moreover, we denote the total cost of performing test 𝑇𝑖

by 𝑐𝑡𝑜𝑡𝑎𝑙(𝑇𝑖).
11

10 In this situation the test can thus be performed independently of the value of 𝑐𝑖. If, however, the costs of
performing the test are different depending on values of 𝑐𝑖, then one may need to introduce a helper condition 𝑐𝑗

that models those costs. If required by the diagnostic context, one could, of course, make an easy modification to
move the dynamic costs per condition from system-wide to test-specific (or add an option for test-specific costs).

11 While the total cost may depend on system state 𝑠 if the cost of the diagnostic test has a dynamic component,
we usually leave it implicit to avoid cumbersome notation.

 TNO Public TNO 2024 R10833

 TNO Public 47/66

To start our discussion, it is helpful to consider the following informal formulations of our

two minimalization criteria: by minimising the conditional entropy H(𝑋|𝑇𝑖), we minimise the
total number of diagnostic steps. On the other hand, by minimising the cost 𝑐𝑡𝑜𝑡𝑎𝑙(𝑇𝑖), we
minimise the cost of the next diagnostic action. We would like to minimise both at the same

time. Of course, this is not always possible as sometimes the most insightful diagnostic

action will also be the most expensive (see the CD radio player example from the

introduction of this chapter). Hence, we need to balance the two appropriately to achieve a

reduction of total diagnostic costs by aiming for a balanced reduction of both the total

number of steps as well as the cost of the next action.

Formally, we propose the following formula for aggregating the loss 𝑙(𝑇𝑖) of a diagnostic

action 𝑇𝑖 :

𝑙𝑏(𝑇𝑖) = 𝑏
H(𝑋|𝑇𝑖)

𝑚𝑎𝑥
𝑖

H(𝑋|𝑇𝑖)
+ (1 − 𝑏)

𝑐total(𝑇𝑖)

𝑚𝑎𝑥
𝑖

𝑐total(𝑇𝑖)
,

where the balance 𝑏 ∈ [0,1]. It is easy to see that minimising 𝑙0 is equivalent to minimising

𝑐total and minimising 𝑙1 is equivalent to minimising H(𝑋|𝑇𝑖). Any value strictly between 0 and

1 minimises a combination of cost and entropy. Note that we normalise both entropy and

cost with respect to their maximal values (at the current stage); the range of 𝑙𝑏 is thus

contained in [0,1]. Normalisation is necessary to overcome imbalances resulting from the

very different scales of entropy and cost (the difference can easily span several orders of

magnitude). The latter point is also an advantage we see of our loss function over other

approaches, such as minimising the information gain per cost.

The recommended next service action is the one that has least loss value. The results of

simulations, see Figure 2.30, show that choosing a good balance value 𝑏 can dramatically

decrease the overall diagnostic costs. The simulation also shows that the optimal balance

value depends not only on the structure of the diagnostic model but also on how the costs

are distributed. It is therefore vital future work to develop an optimisation method for

balance values. Brute forcing the balance value might be feasible if the models are not too

big and do not change too often but other means of optimisation are worthy of

investigation. First experiments with reinforcement learning seem promising12.

12 Reinforcement learning for this optimisation process is expected to be further investigated through a student
internship in 2024.

 TNO Public TNO 2024 R10833

 TNO Public 48/66

Figure 2.30: Results of simulating the diagnostic process in the diagnostic model shown in the upper left
corner. The balance values 𝑏 were simulated in steps of 0.05 between 0 and 1, and at each step the
diagnostic test with the least loss value is chosen. The costs mentioned at the top of each graph are
assigned, in order, as the costs of measuring the corresponding OutputKPI. We worked with the single fault
assumption (i.e. we inserted only one fault in the system) and the procedure stops once the faulty
component is identified with a probability of half the second least healthy component.

 TNO Public TNO 2024 R10833

 TNO Public 49/66

3 Applications

This section describes applications of the methodology on case studies. Each case study

serves one or more purposes, which are highlighted in the introduction of the case.

3.1 CD-radio player
A CD-radio player is selected as toy example for experimenting with the methodology. The

system is inspired on a semi-portable CD player that also has a radio receiver to play radio.

The system can thus play audio received by either the CD reader, or the radio receiver. Only

one source can be selected by switching a mechanical switch. The system is powered by

connecting a cable to an AC power socket, or by a set of batteries. The CD-radio player

consists of four main modules

1. The power system, which provides power to the other modules. The main power

comes from either an AC wall socket or inserted batteries.

2. The CD reader module, which reads audio from the CD and transforms it into a

digital audio signal.

3. The radio receiver, which transforms radio waves to a digital audio stream.

4. The audio system, which transforms an incoming digital audio stream into sound

waves.

The CD-radio player is modelled according to the Arcadia methodology (Voirin, 2017) as a

Capella model. On the highest level, two main functions are fulfilled by the system, being

PlayCD and PlayRadio. To achieve this, the four subsystems as described above are included.

These four subsystems as well as their main functions are shown in Figure 3.1. For each of

these subsystems main functions, a functional breakdown can be made. These functional

breakdowns are shown in Figure 3.2. Also, a physical breakdown of the system in different

modules or components is created, which is shown in Figure 3.3. The deployment of the

functions on the components is shown in Figure 3.4.

 TNO Public TNO 2024 R10833

 TNO Public 50/66

Figure 3.1: High-level functional flow of the CD-radio player. Functions are shown in green boxes and their
deployment on components is represented by the blue box in which the functions are located. For example,
ProvidePower is a function deployed on the PowerSystem.

Figure 3.2: Functional breakdowns of the main functions of the four subsystems: ProvidePower, ReadCD,
ReceiveRadio and GenerateAudio.

 TNO Public TNO 2024 R10833

 TNO Public 51/66

Figure 3.3: Physical breakdown of the system, down to the lowest level for which the Capella model of the
CD-radio player was created.

Figure 3.4: The physical architecture includes the deployed functions and the functional exchanges between
all functions.

 TNO Public TNO 2024 R10833

 TNO Public 52/66

Finally, functional chains can be specified in Capella to indicate specific uses of series of

functional exchanges, tying together different functions needed to fulfil a specific task. For

every task, one may create a specific functional chain. Figure 3.5 shows four functional

chains representing different uses, though partly overlapping, of the CD-radio player. The

following functional chains are created:

- Power provision from AC power.

- Power provision from batteries.

- Functional exchanges for playing a CD, without power provision.

- Functional exchanges for playing radio, without power provision.

The rationale for adding these four functional chains is that in order to have a functioning

CD-radio player, one of the two power provisioning chains and one of the two functional

exchanges regarding information flow should be selected. One of the first group and one of

the second group together to form a good combined functional chain for fulfilling one of the

two main functions of the system.

Figure 3.5: Physical architecture showing also four functional chains: power provision via either battery or AC
socket, and the information exchange to play either CD or radio.

Note that the CD-radio player is just an example system used for illustration purposes. There

are many more ways in which a similar system can be split up into subsystems and in which

the functional breakdown can be done.

3.1.1 Functional dependencies
Based on the specification of the CD-radio player in Capella, one can put the same

information in the Excel template as introduced in Section 2.4. To do this, the functions and

components are transformed into functions and hardware pieces in the template. The

component breakdown shown in Figure 3.3 serves as a basis for the clusters to be created:

 TNO Public TNO 2024 R10833

 TNO Public 53/66

Figure 3.6: Specification of the CD-radio player in the SD2Act Excel template.

as the main functions of each of the contained clusters. Figure 3.6 shows the Excel table as

it is manually defined based on the Capella model. Note that this table contains the

abstraction of what is shown in Figure 3.5. Since the observables are not specified in the

Capella model, these were added based on a less formal description of the system. While

this first step is a manual one, the Capella model itself is formally specified and would allow

for potential automatic model-to-model transformation to ensure future scalability of the

method. For this, the formal semantics of, for example, a functional chain need to be

specified properly, as this is now subject to interpretation from the modeler. The following

transformations are now applied to the Capella model to come to the Excel-based models:

- Every component in the component breakdown, except for the top-level one, is

transformed into a hardware components. The top-level component is transformed

into the main cluster.

- If the component has subcomponents according to the component breakdown, a

cluster will be created for the component. The hardware node created will be put

inside the cluster, if applicable.

thus will be a cluster. However, it will also be a hardware type that is put inside the

cluster.

- Every function is transformed into a function in the Excel template. The function

will be put in the same cluster as where the component on which the function is

- Top-level main functions will be created as function nodes inside the top-level

system.

- The functional deployment on components as specified in Capella determines

which hardware-to-function relation is marked green in the Excel table. For

(according to Figure 3.1), thus the cell mapping the respective hardware to the

function is marked green.

- The functional exchanges shown in the system architecture diagrams indicate the

cells to be marked for function-to-

provides its function to all three other main functions, as shown in Figure 3.1, thus

gets those three cells marked in the table.

- The same transformations are applied on each level in the hierarchy, where the

respective levels of granularity should also match the diagrams and levels in the

breakdowns in Capella.

Each of the subsystems of the CD-radio player is also detailed out in the Excel template. An

example of one of those subsystem specifications is shown in Figure 3.7.

PowerSystem CDReader RadioReceiver AudioSystem Direct Direct

Cluster Type Name PlayCD PlayRadio ProvidePower ReadCD ReceiveRadio GenerateAudio CD_Error Radio_Error ListenRadio ListenCD

PowerSystem Function ProvidePower X X X

PowerSystem Hardware PowerSystem X

CDReader Function ReadCD X X X X

CDReader Hardware CDReader X

RadioReceiver Function ReceiveRadio X X X X

RadioReceiver Hardware RadioReceiver X

AudioSystem Function GenerateAudio X X X X

AudioSystem Hardware AudioSystem X

Time 5 5

Functions

CDRadioPlayer

Cost

Observables

DiagnosticTest

 TNO Public TNO 2024 R10833

 TNO Public 54/66

Figure 3.7: AudioSystem cluster specification in the SD2Act Excel template.

3.1.2 Diagnostic network
With the specification of the system completed in Excel, one can automatically create a

diagnostic network and visualize it as a graph. The parser will ask for some interfaces (as

shown earlier in Figure 2.13) to be specified, as the model combines different granularity

levels. However, note that these questions are asked because the Excel template does not

provide this information. In principle, this interface information is available in Capella at the

lowest levels of granularity. If some model-to-model transformation will be developed in the

future, this might eliminate the need for asking these questions completely. The resulting

model is shown in Figure 3.8.

Figure 3.8: Visualization of the diagnostic network of the CD-radio player.

It is also possible to just load the top-level of the system specification to start out with a

smaller diagnostic network. This is also very useful for visualization purposes. A visualization

of the high-level model, without loading in all the details on the individual subsystems, is

shown in Figure 3.9.

AudioSystem DAC Amplifier Speaker

Cluster Type Name GenerateAudio TransformDigitalToAnalog AmplifySignal MakeAudio Measure_Raw_Signal Measure_Amplified_Signal

DAC Function TransformDigitalToAnalog X X X

DAC Hardware DAC X

Amplifier Function AmplifySignal X X X

Amplifier Hardware Amplifier X

Speaker Function MakeAudio X

Speaker Hardware Speaker X

Time 10 10

ObservablesFunctions

Cost

DiagnosticTest

 TNO Public TNO 2024 R10833

 TNO Public 55/66

Figure 3.9: High-level visualization of the diagnostic network of the CD-radio player.

The diagnostic network can also be written to a Neo4j DB to enable querying and loading the

network from there. A visualization of this model is shown in Figure 3.10.

Figure 3.10: Visualization of the diagnostic network of the CD-radio player in Neo4j.

 TNO Public TNO 2024 R10833

 TNO Public 56/66

3.1.3 Reasoning model
The diagnostic network can be transformed automatically into a reasoning model, being

either a Bayesian network or a Tensor network, as it does not contain any loops. The

visualization of such a reasoning model is very similar to the pictures in the previous section.

However, the intended functionality of the CD-radio player cannot be captured accurately

given the current modelling approach and extension of the methodology is needed to be

capable of doing so. In the current approach, all parent function or hardware nodes of a

given function node must be Ok or Healthy. The CD-radio player, however, has a physical

switch that selects either the audio to come from the CD or from the radio. Also, there are

two complementary power sources of which only one of them has to work in order to fulfil

modelled as OR-gates rather than AND-gates, or may even require more extensive logical

formulae to deal with the intended functional dependencies. Because of this limitation of

the current methodology, the reasoning model that is created does not accurately reflect

the behaviour of the CD-radio player and consequently cannot reliably be used for diagnostic

reasoning.

To overcome this limitation, another type of relation needs to be added to the model to be

able to cope with these more complex dependency relations in the system, as these are not

uncommon in real-life systems. Possible solutions have been proposed, but none of them

has been implemented yet. The plan is to address this limitation in 2024.

3.1.4 Diagnostic scenarios
Since the generated reasoning model currently does not reflect the intended behaviour of

the CD-radio player, example diagnostic scenarios will be added to the report once the

methodology can cope with more complex functional dependencies.

 TNO Public TNO 2024 R10833

 TNO Public 57/66

4 Future work

In this section we detail future work items that we envision for the proposed methodology.

On top of items introduced in the above sections here we detailed out new items.

In the previous sections we identified the following items for future work:

- Automate the transformation of Capella models into diagnostic models according to

the SD2Act methodology. [Sections 2.4 and 3.1]

- Improve the specification of the interface behaviour (functional) across different

hierarchical levels. [Section 2.4.3]

- Optimize the computation of the conditional entropy for a large number of health

nodes. [Section 2.6.2.1.3]

- Optimize the balance of cost and information gain for computation of best next

service action. [Section 2.6.2.3]

- Specify functional behaviour via (complex) logic formulae, as an extension of the

simple AND gates supported with the current methodology. [Sections 3.1.3 and

3.1.4]

The new items for future work introduced in this section are:

- Dynamic model creation, for scoping of the diagnostic root cause analysis for each

given case.

- Design for diagnostics, for having at design time a functional overview of the

diagnostic coverage of a given system, identification of diagnostic limitations and

consequent improvement of the system design.

- Connection of Hardware and Functional diagnostic models, for having a unified

diagnostic approach for the same system.

These items are described in more detail below.

4.1 Dynamic model creation
In Section 2.4.1

dependencies for diagnostics. We showed how to create a diagnostic network, Section 2.4.3,

and how to translate this network into a reasoning model, Section 2.5. In the proposed

approach, the diagnostic network is hierarchical, while the reasoning model does not

contain hierarchy, i.e. it is a static and flattened version of the diagnostic network. A large

model is created up to the lowest level of hierarchy for all modules. While this may be a

correct model, it is also sensitive for conflicting findings being inserted as evidence. An

example for this is the situation in which some hardware components report problems in

their KPIs, while the functions realized by these hardware components do not report any

issues, due to for example redundancy. To overcome such issues, we identify two

improvements to the current approach which should allow to dynamically create diagnostic

reasoning models.

Firstly, investigate ways to achieve hierarchical diagnosis in such a way to allow a human-

- functional hierarchy. In hierarchical

 TNO Public TNO 2024 R10833

 TNO Public 58/66

diagnosis the reasoning model is dynamic as it grows in size in the direction of the

subsystem of interest. The direction of growth is guided by the evidence gathered from

running diagnostic tests, see Figure 4.1 for a toy example. This approach will decrease

uncertainty in the diagnosis: by excluding from the model (minor) issues reported by low

hierarchical levels, in the figure these are all the orange triangles in the transparent boxes.

These are not relevant for the diagnostic reasoning at the higher hierarchical level.

Furthermore, this will allow for an easier explanation of the diagnostic reasoning executed

by the model, as it resembles the approach adopted by humans and the models are

inherently smaller. In order to achieve this hierarchical diagnosis, we need an approach to

determine which hierarchical level(s) to focus on during the diagnostic process. Similarly to

the selection of the next diagnostic test, determining which level to focus on should be

based both on expected added diagnostic information and cost of this action. First

experiments with an algorithm by Nakakuki et al. (Nakakuki et al., 1992) seem worthy of

further investigation (algorithm for measuring whether and which box to open).

Figure 4.1: Hierarchical diagnosis. Transparent boxes are not detailed out in the hierarchical diagnosis, while
they are considered in a flat reasoning model.

system as described in the diagnostic network. This is would take hierarchical diagnosis a

step further, as it will lead to reasoning models that are not directly derivable from the

transformation of a diagnostic network at a given hierarchy to a reasoning model. The

advantage of this approach is that the dynamically created reasoning models are even

smaller than in hierarchical diagnosis and more scoped to the diagnostic problem at hand,

to quickly drive the diagnostic process. We propose the architecture shown in Figure 4.2 to

achieve this.

 TNO Public TNO 2024 R10833

 TNO Public 59/66

Figure 4.2: Architecture for the dynamic creation of reasoning models. In blue the difference with the current
SD2Act architecture: a graph DB is used to store and query, based on diagnostic evidence, the diagnostic
network.

The difference with the current SD2Act architecture of Figure 2.5 is the presence of a an

edge between the Graph DB and the Diagnoser. The meaning of this edge is to query the DB

to return the relevant subgraphs for the given diagnostic problem.

The central idea is that these queries, based on the evidence gathered by performing

diagnostics tests, will return the most relevant diagnostic network for the given diagnostic

problem. This diagnostic network will then be transformed into a reasoning model on which

diagnostic inference can be performed, in such a way to have a reasoning model scoped to

the diagnostic problem at hand.

4.2 Design for diagnostics
In Section 1.2.1 we detailed the relation of SD2Act with the ADiA project, the scope of the

latter being design for diagnostics based on HW diagnostic models. Future investigations

should allow for design for diagnostic for functional diagnostic models, as developed in

SD2Act.

Such design for diagnostic analysis should compute which functions, at different hierarchical

levels, cannot be performed as a consequence of HW failures. This information can then be

used to spot observability limitations, i.e. different functions cannot be performed if the

same HW is failing. Subsequently, to mitigate such observability gaps designers can decide

to add additional tests to the system. Interestingly, these tests could require the attempt to

execute a different function with the system, thus connecting to the work done with

 TNO Public TNO 2024 R10833

 TNO Public 60/66

reasoning with interventions in the Carefree project, see (van Gerwen et al., 2023) for more

details.

4.3 Connection to HW models
The diagnostic models created with the SD2Act approach and those created with the

CareFree and ADiA ones, see Section 1.2.1, contain the concept of HW components. In the

diagnostic models these are represented as hidden random variables with discrete states,

e.g. Broken, Healthy,. Despite the HW node being a shared type among these different

models, there is a conceptual difference.

Specifically, in the functional models of SD2Act HW nodes determine the possibility of a

function to be fulfilled or not; while in the physics based models of ADiA and CareFree HW

nodes are related to the correct or incorrect propagation of physical quantities through the

system. Therefore, further investigations are needed to fully understand if and how these

models can be related to each other, or even integrated into a single model. Possibly, the

HW nodes represent the linking pin of these two fundamentally different type of modelling.

 TNO Public TNO 2024 R10833

 TNO Public 61/66

5 Conclusions

The goal of the SD2Act project is to aid in failure analysis by computer-based diagnostic

reasoning. First, system design information is transformed into a diagnostic network. This

network can be seen as a graph with clearly defined types of nodes and types of relations

between the nodes. The transformation can be done in two ways. Firstly, it can be done

(fully) automatic if the design is documented in a (highly) structured manner, e.g. as part of

a MBSE design approach. Secondly, it can be done manually, possibly assisted by tools, for

example by using the Excel templated presented in this report. Next, a reasoning model can

be generated from the diagnostic network. Bayesian Networks and Tensor Networks are

evaluated in this report as potential reasoning formalisms on which the reasoning model

can be based. Based on both system and human observations, the reasoning model

iteratively suggests the next diagnostic test to execute to a service engineer, to efficiently

come to the fault in the system.

5.1 Lessons learnt
Below we discuss the lesson learnt by developing the described methodology and applying it

to the high-tech domain, like an ASML system in scope of the SD2Act project. We present the

lessons learnt by splitting them up in a number of categories.

1. Transforming functional design information into a diagnostic model

a. Functional breakdowns at the level of detail that is needed to create diagnostic

models are hard to find. Most of the time, parts of relevant information need to

be identified manually in a large set of unstructured or semi-structured

documents and diagrams.

b. Even though it is hard to find the necessary information, the information is

available in the organization, documented or not. Once the information is found,

a structured approach like the proposed Excel template proves to be a useful

method to store this information.

c. The main advantage of the approach based on an Excel template is its

simplicity, as it was pointed out to those we presented the approach to. Most

people would be able to grasp the concept and start discussing within minutes.

Another advantage is the flexibility of not having to define the system to the

fullest detail, as it allows for a relatively light-weight start of using the proposed

methodology.

2. Recommending diagnostic tests and service actions

a. It is possible to incorporate costs of performing diagnostic tests into the

diagnostic model and combine it with the expected information gain to come to

a recommended diagnostic test. Combining these two potentially brings an

advantage in making decisions in the diagnostic process.

b. Case studies show potential for selecting more cost-efficient paths by taking test

costs into account compared to only considering the expected information gain

when selecting a test. Comparing this to solved cases reveals that there is also

potential for eliminating some of the conducted tests while using the model. It

must be noted, however, that the model does not cover the full system and

 TNO Public TNO 2024 R10833

 TNO Public 62/66

may be biased because of that. More case studies need to be conducted to

confirm it is really more cost-efficient.

c. Balancing cost and expected information gain throughout the diagnosis is not

trivial. Depending on many non-technicalities, such as contractual obligations or

agreements, severity of the escalation, warranty or duration of the escalation, a

different balance between the properties may be desired. Optimizing this is not

trivial and requires additional research. It may also be left unoptimized, in which

the freedom of choice is left with the organization.

3. Inference of non-functional dependencies

a. It is possible to derive undocumented dependency relations by applying physics

laws onto design knowledge as inference rules on a knowledge graph. This

approach requires rather specific design information to be stored in the

knowledge graph for the inference to work.

b. While the concept of deriving new dependencies from a knowledge base via

rule-based querying is relatively straight-forward, it can be quite challenging to

ensure the necessary information is in the knowledge base. In our case study,

temperature and the distances between hardware components must be known.

Gathering or deriving all such information turned out to be a major endeavour.

This can be solved by having all knowledge sources be connected (or

connectable) to each other, for example by using extensive model-based

approaches.

4. Reasoning formalism

a. The tensor network formalism replaces the Bayesian networks as reasoning

formalism. Tensor networks offer identical functionality and provide

opportunities Bayesian networks do not. They can deal with cyclic networks,

which will quickly be found at higher levels of abstraction of the proposed

functional modelling.

b. While tensor networks are somewhat slower than Bayesian networks for

computing posterior probabilities, this reduction of computation speed does not

seem to be a problem for the size of networks currently being built. Additionally,

there are still some improvements that can be done on the tensor network

algorithms to speed up computation.

5.2 Recommendations
1. As long as the required information for the diagnostic models is not captured in a single

model, the information needs to be acquired from other documents and models. While

there may be many (semi-)structured sources available from which one may extract bits

and pieces of information needed for the diagnostic models, it turned out to be a

challenging task to bring all information together. To facilitate this it is recommended to

assign an identifier to every instance of every component and to ensure all references

and mentions of this instance use the same identifier. This would greatly benefit the

construction of a model even in the absence of a full-fledged model based engineering

approach. Note that this identifier goes a step further compared to being able to identify

spare parts, as the unique location of the part should also be included.

2. Extending upon recommendation 1, it would be good to use well-structured formats to

store knowledge. This would benefit not only the creation of diagnostic models, but also

 TNO Public TNO 2024 R10833

 TNO Public 63/66

the capability of retrieving information from the knowledge base (traceability) and

reusability of the information. While models are very much suited for this task, following

up upon recommendation 1 together with using well-defined spreadsheets or databases

may also improve upon the current situation.

5.3 Acknowledgements
The research is carried out as part of the SD2Act program under the responsibility of TNO-ESI

in cooperation with ASML. The research activities are supported by the Netherlands Ministry

of Economic Affairs and Climate, and TKI-HTSM.

 TNO Public TNO 2024 R10833

 TNO Public 64/66

Appendix A
In Section 2.5.2.1.2 we described a procedure for computing inference in Bayesian networks

with loops. We will prove now that simple tensor contraction in tensor networks with loops is

equivalent to that procedure.

Consider the simple Bayesian Network above, and let 𝑃1(𝐴|𝐵)⁡and

𝑃1(𝐵|𝐴) be the conditional probability tables defining A and B

according to this causality structure. The joint probability distribution

implied by this network, 𝑃1(𝐴, 𝐵) = 𝑃1(𝐴|𝐵) ⋅ 𝑃1(𝐵|𝐴) is not well

defined according to standard rules of BN construction because it need not sum up to one,

although one could normalize it. Moreover, belief propagation could not be used in this

by translating this BN into a TN. And therefore, we can use all the TN tools introduced before.

Consider now the modified BN one obtains by applying the

procedure of Section 2.5.2.1.2. where the CPT 𝑃2(𝐵|𝐴) is the same

as before, i.e. 𝑃2(𝐵|𝐴) = 𝑃1(𝐵|𝐴), the CPT for 𝐴 in this network is the

same as that for 𝐴 in the previous network just swapping ⁡𝐵 for 𝐵′,

i.e. 𝑃2(𝐴|𝐵
′) = 𝑃1(𝐴|𝐵), 𝐵

′ has uniform priors and 𝐸 is the equality
node whose CPT is 𝑃2(𝐸 = 𝑇𝑟𝑢𝑒|𝐵, 𝐵′ = 𝑏, 𝑏′) = 𝛿𝑏,𝑏′ and

𝑃2(𝐸 = 𝐹𝑎𝑙𝑠𝑒|𝐵, 𝐵′ = 𝑏, 𝑏′) = 1 − 𝛿𝑏,𝑏′.

This is now a well-formed Bayesian network whose joint probability distribution is:

⁡𝑃2(𝐴, 𝐵, 𝐵
′, 𝐸) = 𝑃2(𝐴|𝐵

′) ⋅ 𝑃2(𝐵|𝐴) ⋅ 𝑃2(𝐵
′)𝑃2(𝐸|𝐵, 𝐵

′).

Using Bayes rule after conditioning on⁡𝐸 = 𝑇𝑟𝑢𝑒 we obtain:

𝑃2(𝐴, 𝐵, 𝐵′|𝐸 = 𝑇𝑟𝑢𝑒) ∝ 𝑃2(𝐸 = 𝑇𝑟𝑢𝑒|𝐴, 𝐵, 𝐵′) ⋅ 𝑃2(𝐴, 𝐵, 𝐵
′)

And marginalizing over 𝐵′ yields:

𝑃2(𝐴, 𝐵 = 𝑎, 𝑏|𝐸 = 𝑇𝑟𝑢𝑒) ∝∑𝑃2(𝐴 = 𝑎|𝐵′ = 𝑏) ⋅ 𝑃2(𝐵 = 𝑏|𝐴 = 𝑎) ⋅
1

dim(𝐵′)
⋅ 𝛿𝑏,𝑏′

𝑏′

∝ 𝑃2(𝐴 = 𝑎|𝐵′ = 𝑏) ⋅ 𝑃2(𝐵 = 𝑏|𝐴 = 𝑎) = 𝑃1(𝐴, 𝐵 = 𝑎, 𝑏)

Extending this proof to loops with three or more variables is a straightforward exercise, all

one needs to do is define a partition a network with a loop into two sets that cut across the

loop and consider the Cartesian product of all variables in each set as a new variable, after

which the argument above would apply.

 TNO Public TNO 2024 R10833

 TNO Public 65/66

References

Adén, S., & Stjernström, K. (2013). Guidelines for modeling hydraulic components and model
based diagnostics of hydraulic applications.

Bañuls, M. C. (2023). Tensor network algorithms: A route map. Annual Review of Condensed
Matter Physics, 14, 173 191.

Barbini, L., Bratosin, C., & Nägele, T. (2021). Embedding Diagnosability of Complex Industrial
Systems Into the Design Process Using a Model-Based Methodology. PHM Society
European Conference, 6(1), 9.

Deb, S., Pattipati, K. R., Raghavan, V., Shakeri, M., & Shrestha, R. (1995). Multi-Signal Flow
Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis. IEEE
Aerospace and Electronic Systems Magazine, 10(5), 14 25.
https://doi.org/10.1109/62.373993

Glasser, I., Pancotti, N., & Cirac, J. I. (2018). Supervised learning with generalized tensor
networks. ArXiv Preprint ArXiv:1806.05964, 50.

Glasser, I., Sweke, R., Pancotti, N., Eisert, J., & Cirac, I. (2019). Expressive power of tensor-
network factorizations for probabilistic modeling. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information
Processing Systems (Vol. 32). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2019/file/b86e8d03fe992d1b0e19656
875ee557c-Paper.pdf

Hess, A., Stecki, J. S., & Rudov-Clark, S. D. (2008). The Maintenance Aware Design
environment: Development of an Aerospace PHM Software Tool. Proc. PHM08, 16, 17.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques.
MIT press.

Lind, M. (2011). An introduction to multilevel flow modeling. Nuclear Safety and Simulation,
2(1), 22 32.

Madiman, M., & Tetali, P. (2007). Sandwich bounds for joint entropy. 2007 IEEE International
Symposium on Information Theory, 511 515.

Nakakuki, Y., Koseki, Y., & Tanaka, M. (1992). Adaptive model-based diagnostic mechanism
using a hierarchical model scheme. Proceedings of the Tenth National Conference on
Artificial Intelligence, 564 569.

, & Gardas, B. (2021). Approximate
optimization, sampling, and spin-glass droplet discovery with tensor networks. Physical
Review E, 104(2), 25308.

Robeva, E., & Seigal, A. (2019). Duality of graphical models and tensor networks. Information
and Inference, 8(2), 273 288. https://doi.org/10.1093/imaiai/iay009

Roques, P. (2017). Systems Architecture Modeling with the Arcadia Method: A Practical Guide
to Capella. In Systems Architecture Modeling with the Arcadia Method: A Practical
Guide to Capella. https://doi.org/10.1016/C2016-0-00854-9

van Gerwen, E. (2024). Guided root cause analysis of machine failures - Status 2023.
https://repository.tno.nl/SingleDoc?docId=58178

van Gerwen, E., Barbini, L., & Borth, M. (2023). Differential Diagnosis with Active Testing. PHM
Society Asia-Pacific Conference, 4(1).

van Gerwen, E., Barbini, L., & Nägele, T. (2022). Integrating System Failure Diagnostics Into
Model-based System Engineering. INSIGHT, 25(4), 51 57.

 TNO Public TNO 2024 R10833

 TNO Public 66/66

Voirin, J. L. (2017). Model-based system and architecture engineering with the Arcadia
method. In Model-based System and Architecture Engineering with the Arcadia
Method. https://doi.org/10.1016/c2016-0-00862-8

ICT, Strategy & Policy

High Tech Campus 25

5656 AE Eindhoven

www.tno.nl

