
iModulaR 2023

Modeling and analyzing
hardware-software
interfaces with ComMA

TNO Public TNO 2024 R10720
15 April 2024

TNO 2024 R10720 – 15 April 2024

Modeling and analyzing
hardware-software interfaces
with ComMA

iModulaR 2023

Author(s) Jozef Hooman, Wouter Tabingh Suermondt
Classification report TNO Public
Number of pages 35 (excl. front and back cover)
Number of appendices 4
Sponsor The research is carried out as part of the iModulaR programunder

the responsibility of TNO-ESIwith Philips as the carrying industrial
partner. The iModulaR research is supported by the Netherlands
Organisation for Applied Scientific Research TNO.

TNO-ESI
www.tno.nl
+31 888665000
info@tno.nl

TNO Public

TNO Public

https://www.tno.nl
mailto:info@tno.nl

TNO Public TNO 2024 R10720

All rights reserved
No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

© 2023 TNO

TNO Public

TNO Public TNO 2024 R10720

Summary

Technical diversity of a complex system can be reduced using modularity and interface man-
agement. At the multi-disciplinary system level, this can be modelled using MBSE (Model-
Based System Engineering) where typically the focus is on the system structure with the com-
ponents and their interfaces. At the mono-disciplinary level this is further refined where each
discipline uses its own tools and techniques to include more behavioural aspects. Frequently
this leads to problems during the integration phase, especially for interfaces where multiple
disciples are involved.

In this report, we address the integration problems of hardware-software interfaces. We
investigate whether the ComMA methodology helps to clarify hardware-software interfaces,
to remove ambiguities, and to detect issueswith such interfaces early during development. As
a case study, ComMA is applied to the interfaces of a component of a Philips MR scanner. For
reasons of confidentiality, the interfaces of the component are described in an abstract way
as a client interface that needs sensor data and a sensor interface to obtain data. The imple-
mentation of the component has been instrumented to obtain logs of component execution
during a few experiments. The main focus is on specifying and analysing two aspects: (1) the
timing behaviour of the interfaces, and (2) the relation between the two interfaces, expressing
that the client receives recent data. We show how the monitoring features of ComMA provide
insight in the implementation of the component and lead to questions about the design.
The experiments also revealed useful information about recently added ComMA features and
wishes for future improvements. Moreover, we briefly address the relation between MBSE and
ComMA.

TNO Public 3/35

TNO Public TNO 2024 R10720

Contents

Summary ... 3

Contents .. 4

1 Introduction... 5

2 System modelling.. 7

3 ComMA models ... 9
3.1 ComMA model SensorComm interface.. 9
3.2 ComMA model SensorDevice interface .. 10
3.3 ComMA model SensorServer Component.. 11

4 Simulation and document generation .. 12
4.1 Simulation .. 12
4.2 Document Generation... 13

5 Experiments performed.. 16

6 Monitoring results ... 17
6.1 Results of Run2 .. 17
6.2 Results of Run4 .. 18

7 Detecting violations of state machine behaviour .. 21

8 Concluding remarks .. 23

References... 25

Appendices

Appendix A: State machine of interface SensorDevice 26

Appendix B: Results of Run2 27

Appendix C: Results of Run4 30

Appendix D: Variations of the component constraint 33

TNO Public 4/35

TNO Public TNO 2024 R10720

1 Introduction

The iModulaR project addresses the reduction of technical diversity by improving modularity,
with a focus on interfacemanagement. The project started in October 2021 and is a cooperation
between TNO-ESI and Philips MR. In 2022, the project investigated improvements at the system
level by means of the reference architecture and interface management. At this level, the
emphasis was on structural improvements. The results have been published in [1].

When proceeding from the system level to a more detailed level where multiple disciplines
realize the system components, oftenmany integration problems are observed. Typically, issues
occur concerning the behaviour of the components, an aspect that has not been addressed at
the system level where the focus is on structure. Issuesmost frequently occur at interfaces that
bridge different engineering silos, such as software engineering and electrical engineering. Since
this is often due to unclear and unspecified behaviour such as the allowed sequences of events
and assumptions about timing behavior. The question is whether the ComMA approach [2] can
help to avoid these integration problems.

With ComMA (Component Modeling and Analysis), digital interfaces of components can be
specified including a state machine of the interface protocol, constraints on timing and data,
and constraints on the relations between interfaces. Based on a trace of observed component
behaviour, the ComMA tooling can monitor whether this trace conforms to the specification.
For timing constraints, the observed data is recorded and presented in a graphical form. More
information about ComMA, related work, and industrial applications can be found in scientific
publications [3, 4, 5] and other articles [6, 7].

As a case study, the modelling of a hardware-software interface has been studied. For reasons
of confidentiality, we describe the application in a very generic way and call it a sensor server.
This server provides a basic interface to client applications using the sensor and hides the
details of the specific server used. It this way it is possible to change the physical sensor to
other versions or devices of other vendors without affecting client applications using the sensor.
Besides state machine behaviour, timing aspects are very relevant for this interface. Moreover,
it is important that a client application receives recent sensor data.

First the relevant components and their interfaces specified using Model-Based System En-
gineering (MBSE) techniques where we investigate the possibility to express more detailed
interface behaviour. Next a manual transformation to ComMA has been made.

To enable ComMA-based monitoring, the server implementation has been instrumented with
logging statements to obtain traces of a few experiments with the system. Analysis of these
traces using the monitoring functionality of ComMA led to interesting insights and questions
about the timing behaviour of the server and the data obtained by a client application. In
a meeting with a number of hardware and software engineers it was confirmed that it is
important to clarify these questions early in the development phases to avoid integration
problems later. The potential of ComMA to prevent these issues was recognized.

This report is structured as follows:

Chapter 2 presents an MBSE model of the sensor server case study.

Chapter 3 describes the ComMA models of the case study.

TNO Public 5/35

TNO Public TNO 2024 R10720

Chapter 4 shows the possibilities to simulate ComMA models and generate documentation.

Chapter 5 describes the used setup and two of the experiments that have been performed.

Chapter 6 summarizes the results of monitoring the traces obtained in both experiments,
with a focus on timing constraints and component constraints.

Chapter 7 illustrates the use ofmonitoring to detect violations of the specified statemachine
behaviour.

Chapter 8 contains concluding remarks.

Details can be found in the appendices.

TNO Public 6/35

TNO Public TNO 2024 R10720

2 Systemmodelling

For the sensor server case study we used the SysML language [8] to construct an MBSE model.
In this case study, there is a SensorClient component that needs certain censor data. The
SensorServer component provides an abstraction of the particular sensor used. In this way,
changes of the sensor are transparent for the client. A block diagram of this solution is shown
in Figure 2.1.

Figure 2.1: Block definition diagram of the sensor abstraction solution

Figure 2.2 depicts how instances of the components are connected.

Observe that the components have ports with a name and an interface type, here called
SensorComm and SensorDevice.

The commands of these interfaces are defined as shown in Figure 2.3.

TNO Public 7/35

TNO Public TNO 2024 R10720

Figure 2.2: Instances of the components and their connection

Figure 2.3: Definition of interfaces

TNO Public 8/35

TNO Public TNO 2024 R10720

3 ComMAmodels

In this chapter, the definition of the interfaces is refined using the ComMA approach. Interfaces
SensorCom and SensorDevice are modelled in Sections 3.1 and 3.2, respectively. Section 3.3
contains the model of the SensorServer component.

3.1 ComMA model SensorComm interface
The signature of the SensorComm interface is defined in file SensorComm.signature, see
Figure 3.1. The allowed order of the commands is specified in file SensorComm.interface by
means of a state machine as shown in Figure 3.2.

Figure 3.1: The signature of interface SensorComm

Figure 3.2: The state machine of interface SensorComm

TNO Public 9/35

TNO Public TNO 2024 R10720

The state machine describes the interface from the viewpoint of the server, that is, it specifies
the response of the server to calls of the client. These client calls are the triggers of the
transitions. Statement Reply(*) denotes that the return value is not specified by the state
machine.

Also two time constraints, called GetData_reply and GetData_GetData, are specified as shown
in Figure 3.3, expressing that after a GetData command we expect a reply to this command
within 100 ms and a next call within 100 ms.

Figure 3.3: Time constraints of interface SensorComm

3.2 ComMA model SensorDevice interface
In the signature of the SensorDevice interface we ignored the parameters and only model the
return value of the abstract command SensorGetData. This command is an abstraction of
three commands as explained in Chapter 5. The signature is shown in Figure 3.4.

Figure 3.4: The signature of interface SensorDevice

The state machine of this interface can be found in Appendix A. It is based on the events
that were observed during the experiments described in Chapter 5. Moreover, two time
constraints with names SensorGetData_reply and SensorGetData_SensorGetData on command
SensorGetData have been defined, as shown in Figure 3.5.

Figure 3.5: Time constraints of interface SensorDevice

TNO Public 10/35

TNO Public TNO 2024 R10720

3.3 ComMA model SensorServer Component
The ComMA specification of the SensorServer component, as shown in Figure 3.6, expresses
that it provides interface SensorCom and requires interface SensorDevice.

Figure 3.6: ComMA definition of the SensorServer component

For the SensorServer component, time constraints can be defined, e.g., between events of the
two interfaces. For the moment, the focus is on formulating a data constraint called LastData,
shown in Figure 3.7, which expresses that GetData uses the data that was last obtained by
SensorGetData. This constraint describes a pattern of events and then requires certain reply
values to be equal.

Figure 3.7: Constraint LastData of the SensorServer component

The “observe” part declares an expression; the values of this expression will be recorded during
the check of the property to obtain a graphical representation of the differences between the
values.

TNO Public 11/35

TNO Public TNO 2024 R10720

4 Simulation and document
generation

In this chapter we describe the simulation of a ComMA model (Section 4.1) and document
generation (Section 4.2).

4.1 Simulation
Based on a ComMA model, a simulation can be generated, given a so-called parameters file
which describes the values of input parameters for provided interfaces and the values of replies
for required interfaces. For the SensorServer, this leads to the user interface of the simulation
shown in Figure 4.1. The left part shows the possible actions in the current state. The simulation
steps are shown on the right.

Figure 4.1: Simulation of the SensorServer component

Observe that in this simulation we get a reply to command GetData without having done
any call on the DevicePort to the SensorDevice interface. To avoid this scenario, we require
that a reply to GetData can only occur after a reply to command SensorGetData has been

TNO Public 12/35

TNO Public TNO 2024 R10720

obtained. This is expressed by the functional constraint of the SensorServer component shown
in Figure 4.2.

Figure 4.2: Functional constraint of the SensorServer component to obtain sensor data first

Then the simulation shows the expected behaviour.

4.2 Document Generation
For each ComMA interface a Word document can be generated based on a template and a few
input parameters. The specification of the generation task for interface SensorDevice is shown
in Figure 4.3.

This leads to Word document; the first part of the title page is shown in Figure 4.4.

The document contains all details of the model such as the list of commands and the state
machine which is represented in tabular form and as a figure, see the snapshot in Figure 4.5.

Timing constraints are represented as sequence diagrams, see Figure 4.6.

TNO Public 13/35

TNO Public TNO 2024 R10720

Figure 4.3: Specification of document generation

Figure 4.4: First part of the title page of the generated document

Figure 4.5: State machine representations in the generated document

TNO Public 14/35

TNO Public TNO 2024 R10720

Figure 4.6: Sequence diagram representation of timing constraints in the generated document

TNO Public 15/35

TNO Public TNO 2024 R10720

5 Experiments performed

A number of experiments have been done where a client performs calls to interface Sensor-
Comm of the SensorServer and the SensorServer performs calls to the SensorDevice interface.
We present the results of 2 runs: run2 and run4.

Run2: start with lowest possible load, starting and stopping a client application a few times.
With this client application off there is 5% CPU usage, with the application on the CPU usage
is 26%. The load was measured by the Microsoft tool Resource Monitor which is standard
available on any MS Windows computer

Run 4: first all applications are off, next all applications are on. Additional CPU stress is
created by applying the tool CPUSTRESS, see Figure 5.1, to be downloaded from the Microsoft
Sysinternals. We created such an amount that the cpuload is almost 100%.

Figure 5.1: Screenshot of the Microsoft CPUSTRESS tool

We instrumented the source code of the SensorServer to log all calls and replies of the two
SensorServer interfaces. For each interface, the information is written to a separate output
file. After the run, the output files are merged into one file where all timestamps are placed in
chronological order.

We have abstracted from the details of getting data from the device by combining a number
of calls to the device into a single ComMA command called GetSensorData. This command
represents three sensor calls to obtain subsamples and construct a combined sensor data
sample.

For both runs a trace has been obtained in the ComMA JSON format. These traces aremonitored
with ComMA, which includes

Checking if the traces conform to the interface models, i.e. the state machine and the
timing constraints

Checking the component constraints

For both runs there are no issues with the state machines, so the description of the monitoring
results in the next two chapters concentrates on the constraints. The reporting of violations of
state machine behaviour is explained in Chapter 7.

TNO Public 16/35

TNO Public TNO 2024 R10720

6 Monitoring results

In this section we briefly summarize the results of monitoring the traces of run2 and run4 in
Sections 6.1 and 6.2, respectively. For each trace, we list the results of the ComMA monitoring
for the two interfaces and the component constraint.

All details can be found in Appendices B and C.

6.1 Results of Run2
Run2 is the initial experiment to set a baseline for further referencing. We executed the setup
with minimal CPU load. We started the SensorServer and afterwards the client application. We
noticed that the reported data rate is between 6.6 and 7.1 data samples per second. The full
run was completely error free.

6.1.1 Interface SensorComm
Constraint GetData_reply is always satisfied. There are 6 warning that constraint GetData_Get-
Data is violated; observe that the graph of Figure B.3 shows a few very large values. Zooming
in shows an alternation of high and low values, see Figure B.4. The large variation in the timing
of the last constraint is also visible in the generated statistics, see Figure 6.1.

Figure 6.1: Run2: statistics time constraints SensorComm interface

6.1.2 Interface SensorDevice
Property SensorGetData_reply is always satisfied; there are a few violations of property Sensor-
GetData_SensorGetData. The statistics can be found in Figure 6.2. Observe that the number of
SensorGetData calls is much higher than the number of GetData calls.

TNO Public 17/35

TNO Public TNO 2024 R10720

Figure 6.2: Run2: statistics time constraints SensorDevice interface

6.1.3 Component constraint
Component constraint LastData is violated 32 times. Looking at the violations, this is due to a
SensorGetData call and reply between the GetData call and its reply:

command SensorGetData

reply(v1) to command SensorGetData

command GetData

command SensorGetData

reply(v2) to command SensorGetData

reply(v1) to command GetData

In this case, the trace shows that the last value before the call is returned and not the last
value before the reply. In Appendix D we will discuss alternative formulations of the constraint.

6.2 Results of Run4
The experiment of Run4 is similar to Run2, except that it is under full load conditions; all client
applications are enabled and CPUSTRESS adds about 82% of additional load. The reported
data rate is now recorded to less than 1.5 data samples per second. Furthermore we noticed
timeout errors on the USB interface (libusb). The SensorServer also reports “device not available”
warnings, but was always able to reconnect.

6.2.1 Interface SensorComm
Constraint GetData_reply is always satisfied, but shows a few higher peaks compared to Run2.
Constraint GetData_GetData is violated very often; the graph of Figure 6.3 shows a period with
very large values (probably the period where the CPU stress has been added).

Also here zooming in shows an alternation of high and low values, see Figure 6.4.

TNO Public 18/35

TNO Public TNO 2024 R10720

Figure 6.3: Run4: time between two consecutive GetData calls

Figure 6.4: Run4: detailed view of time between consecutive GetData calls

The statistics are shown in Figure 6.5. Note that the mean value of GetData_GetData (approxi-
mately 418) is much higher than the value for Run2 (approximately 160).

Figure 6.5: Run4: statistics time constraints SensorComm interface

6.2.2 Interface SensorDevice
There are a number of violations of constraint SensorGetData_reply and also of property
SensorGetData_SensorGetData.

TNO Public 19/35

TNO Public TNO 2024 R10720

Figure 6.6 shows the statistics. Note again that there many more calls of SensorGetData than
GetData calls.

Figure 6.6: Run4: statistics time constraints SensorDevice interface

6.2.2.1 Component constraint
Component constraint LastData is violated 88 times. Similar to Run2, we observe SensorGetData
calls and replies between the GetData call and its reply.

TNO Public 20/35

TNO Public TNO 2024 R10720

7 Detecting violations of
state machine behaviour

The state machines described in Chapter 3 have been constructed such that they match the
observed behaviour in the traces. To illustrate the detection of state machine violations, we
change the state machine of the SensorDevice interface (see Figure A.1) by commenting out a
transition as shown in Figure 7.1.

Figure 7.1: Changing the SensorDevice interface

Monitoring the trace of run2 then shows an interface monitoring error since the trace contains
a SensorGetData event in state ObtainedSerialNum which is not allowed by the modified state
machine. In the monitoring dashboard, the error is shown by a sequence diagram, as depicted
in Figure 7.2.

TNO Public 21/35

TNO Public TNO 2024 R10720

Figure 7.2: Monitoring detects an event in the trace that does conform to the state machine

TNO Public 22/35

TNO Public TNO 2024 R10720

8 Concluding remarks

Summarizing the iModulaR research, we observe the value of a three layer approach to relate
software, electrical and mechanical component modelling to the MBSE system level models.
This layering is depicted in Figure 8.1.

Figure 8.1: Three layer approach in component specification

The lowest, implementation, layer always exists and can act as a reference. The implementation
contains structure while the behaviour can be observed when executing it. The implementation
layer is connected to the MBSE layer by means of a bridging layer.

We distinguish twomajor domains: the continuous time domain and the discrete event domain.
The continuous time domain is mostly analogue while the discrete event domain is digital.
Both domains have their own formalisms and their own methods and tools. ComMA is an
example from the discrete event domain while Modelica is an example from the continuous
time domain.

In general, we see that both the MBSE as well as the bridging layer share the capabilities to
model exactly the same structure. Hence, it is possible to generate the one from the other and
vice versa. With respect to the behaviour, however, it is unclear how the bridging and MBSE
layers relate.

For example, ComMA has a rich language to express many behavioural details. We have seen
similar capabilities with Modelica. Currently, it is not clear how this connects to the modelling of
behaviour in SysML. In practice, system models are often incomplete and focus mostly on the
structural part because their purpose is often to support managerial and organization aspects
of the system reasoning. On the other hand, the modelling methods in the bridging layer can
be tightly connected to the implementation due to their rich modelling expressiveness and
analysis of behaviour. For example ComMA can do detailed behavioural analysis by monitoring
traces of code execution. We expect that Modelica can do similar analysis in the continuous
time domains. However, further research on these topics is required.

TNO Public 23/35

TNO Public TNO 2024 R10720

We extensively studied the monitoring capabilities of ComMA in the sensor server case study.
It raised a number of questions about the implementation of the component. A few examples:

The number of calls to the device to retrieve data is much higher than the number of
GetData calls (a factor 5 in Run2 and a factor 12 in Run4). This implies that most retrieved
data is not used and, given the long time between GetData calls (especially in Run4), the
question is whether this can be avoided.

Why is there an alternation in the time between GetData calls, see for instance Figure 6.4.

Is possible to specify more precisely which sensor data should be used for a GetData call?
How recent should it be?

Observing run4, it seems the GetData calls are much more delayed than calls to the device.
Can this be explained? Would also be interesting to understand the reason for the connection
loss in run4.

The case study was a good test of new ComMA features such as the improved notation for
component constraints and the possibilities to simulate a component. Logging and monitoring
long traces in JSON format showed a few issues with the ISO 8601 format for time stamps.
The use of generic component constraints to express the relation between values and time
stamps of events of different interfaces revealed a bug in monitoring such constraints. We also
observed that the formulation of such constraints may have a large impact on time needed for
monitoring.

The case study lead to a few wishes for improvements of the ComMA tooling. This includes the
generation of a graph for generic constraints, the improvement of the sequence diagram for
component simulation, and the generation of a diagram for components.

The relation between MBSE and more detailed techniques like ComMA requires further study.
The main question is how to transition gradually from a structural descriptions at system level
to more detailed models that include behaviour. Since ComMA is suitable for digital interfaces
only, the study of continuous interfaces is also a relevant topic for future work.

TNO Public 24/35

TNO Public TNO 2024 R10720

References

[1] A. Vasenev, W. Tabingh Suermondt, A. Behl, and J. Lukkien. “Step-Wise MBSE Introduction
into a Company: An Interface-Centric Case Study”. In: 2023 18th Annual Systemof Systems
Engineering Conference (SoSe). 2023, pp. 1–6.

[2] Eclipse CommaSuite. https://eclipse.dev/comma. 2023.
[3] I. Kurtev, M. Schuts, J. Hooman, and D.-J. Swagerman. “Integrating Interface Modeling

and Analysis in an Industrial Setting”. In: Proc. 5th Int. Conf. on Model-Driven Engineering
and Software Development (MODELSWARD 2017). 2017, pp. 345–352.

[4] I. Kurtev and J. Hooman. “Runtime Verification of Compound Components with ComMA”.
In: A Journey from Process Algebra via Timed Automata to Model Learning - Essays
Dedicated to Frits Vaandrager on the Occasion of His 60th Birthday. Ed. by N. Jansen,
M. Stoelinga, and P. van den Bos. Vol. 13560. Lecture Notes in Computer Science. Springer,
2022, pp. 382–402.

[5] I. Kurtev, J. Hooman, M. Schuts, and D. v. d. Munnik. “Model based component development
and analysis with ComMA”. In: Science of Computer Programming, special issue on Success
Stories in Model-Driven Engineering 233 (2024), p. 103067.

[6] M. Schuts, D.-J. Swagerman, I. Kurtev, and J. Hooman. “Improving Interface Specifications
with ComMA”. In: Bits & Chips (14 September 2017).

[7] N. Roos. “ComMA interfaces open the door to reliable high-tech systems”. In: Bits & Chips
(8 September 2020).

[8] SysML. https://www.omgsysml.org/. 2023.

TNO Public 25/35

https://eclipse.dev/comma
https://www.omgsysml.org/

TNO Public TNO 2024 R10720

Appendix A

State machine of interface
SensorDevice

The statemachinewhich specifies the behaviour of interface SensorDevice is shown in Figure A.1.

Figure A.1: The state machine of interface SensorDevice

TNO Public 26/35

TNO Public TNO 2024 R10720

Appendix B

Results of Run2

B.1 Interface SensorComm
B.1.1 Timing constraint GetData_reply

Figure B.1 shows that Constraint GetData_reply is always satisfied.

Figure B.1: Run2: time between a GetData call and its reply

Zooming in shows small values, see Figure B.2.

B.1.2 Timing constraint GetData_GetData
There are 6 warning that constraint GetData_GetData is violated; observe that the graph of
Figure B.3 shows a few very large values. Zooming in shows an alternation of high and low
values, see Figure B.4.

B.2 Interface SensorDevice
B.2.1 Timing constraint SensorGetData_reply

The graph of the SensorGetData_reply property shows small values, see Figure B.5.

TNO Public 27/35

TNO Public TNO 2024 R10720

Figure B.2: Run2: detailed view of time between GetData call and its reply

Figure B.3: Run2: time between two consecutive GetData calls

B.2.2 Timing constraint SensorGetData_SensorGetData
The graph of property SensorGetData_SensorGetData in Figure B.6 shows a few violations.

B.3 Component constraint
Figure B.7 of observed differences shows that component constraint LastData is violated 32
times. Note that a positive value indicates that an older message is used.

TNO Public 28/35

TNO Public TNO 2024 R10720

Figure B.4: Run2: detailed view of time between consecutive GetData calls

Figure B.5: Run2: time between a SensorGetData call and its reply

Figure B.6: Run2: time between two consecutive SensorGetData calls

Figure B.7: Run2: time difference between reply of SensorGetData and corresponding reply of GetData

TNO Public 29/35

TNO Public TNO 2024 R10720

Appendix C

Results of Run4

The experiment of Run4 is similar to Run2, except that it is under full load conditions; all client
applications are enabled and CPUSTRESS adds about 82% of additional load.

In de next sections we describe for Run4 the results of the ComMA monitoring for the two
interfaces and the component constraint.

C.1 Interface SensorComm
C.1.1 Timing constraint GetData_reply

Constraint GetData_reply is always satisfied, but shows a few higher peaks compared to Run2,
as shown in Figure C.1.

Figure C.1: Run4: time between a GetData call and its reply

C.1.2 Timing constraint GetData_GetData
See Section 6.2 for the graphs of constraint GetData_GetData.

C.2 Interface SensorDevice
C.2.1 Timing constraint SensorGetData_reply

There are a number of violations of constraint SensorGetData_reply, see Figure C.2.

C.2.2 Timing constraint SensorGetData_SensorGetData
Figure C.3 shows a number of violations of property SensorGetData_SensorGetData.

TNO Public 30/35

TNO Public TNO 2024 R10720

Figure C.2: Run4: time between a SensorGetData call and its reply

Figure C.3: Run4: time between two consecutive SensorGetData calls

Zooming in shows high and low values, see Figure C.4.

Figure C.4: Run4: detailed view of time between two consecutive SensorGetData calls

C.3 Component constraint
Component constraint LastData is violated 88 times, see the graph of Figure C.5.

TNO Public 31/35

TNO Public TNO 2024 R10720

Figure C.5: Run4: time difference between reply of SensorGetData and corresponding reply of GetData

TNO Public 32/35

TNO Public TNO 2024 R10720

Appendix D

Variations of the
component constraint

Given the violations of component constraint LastData, we experimented with a constraint
which expresses that the value of the last SensorGetData reply before a GetData call should be
used. This is expressed in Figure D.1,

Figure D.1: Constraint LastDataBeforeGetData of the SensorServer component

This property holds for Run2, but for Run4 we see a violation as shown in Figure D.2.

Figure D.2: Run4: time difference corresponding to property LastDataBeforeGetData

Note that the difference is negative, because a value is used that is more recent than the
specified one. In this case not the value of the reply to SensorGetData before the GetData is
used, but a value after GetData (and before the reply to GetData).

So we might want a combination of the constraints LastData and LastDataBeforeGetData. To
express this we experimented with the addition of a functional constraint called RecentData to
the component, which can be expressed as a state machine as shown in Figure D.3. In such a
constraint we first express the events that are used in the state machine and next defined the
allowed transitions. Note that in state AwaitReplyGetData we specify two possible reply values
to command GetData.

TNO Public 33/35

TNO Public TNO 2024 R10720

Figure D.3: Functional constraint of the SensorServer component to express that recent data is returned

Run4 satisfies this constraint, but a violation is observed when monitoring Run2. The ComMA
tooling provides the information shown in Figure D.4 about the error.

Observe that in this case the reply to GetData uses the return value of another SensorGetData
call between the GetData call and its reply.

Finally, we experimented with the generic component constraint shown in Figure D.5 which
expresses that if we observe a reply to command SensorGetData at time t1 with value v1 and
next, after an arbitrary number of other events, we observe a reply to command GetData at
time t2 with value v2 where v2 is greater than v1, then either v1 and v2 are different or t2 –
t1 is less than 100. This expresses that command GetData returns a recently obtained value.
Note that we assume that the return values are increasing to obtain an efficient check.

TNO Public 34/35

TNO Public TNO 2024 R10720

Figure D.4: Sequence diagram showing violation of the RecentData property in Run2

Figure D.5: Generic constraint of the SensorServer component to the maximum distance in time between equal
reply values

Monitoring detects 18 violations of this constraint for Run2 and 24 violations for Run4. Note
that this rule does not check a second reply to GetData with the same value. It might be
interesting to check that all replies to GetData have different values.

TNO Public 35/35

TNO-ESI

High Tech Campus 25
5656AE Eindhoven
www.tno.nl

https://www.tno.nl

	Summary
	Contents
	Introduction
	System modelling
	ComMA models
	ComMA model SensorComm interface
	ComMA model SensorDevice interface
	ComMA model SensorServer Component

	Simulation and document generation
	Simulation
	Document Generation

	Experiments performed
	Monitoring results
	Results of Run2
	Results of Run4

	Detecting violations of state machine behaviour
	Concluding remarks
	References
	State machine of interface SensorDevice
	Results of Run2
	Results of Run4
	Variations of the component constraint

