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Abstract
Automation errors may result in human performance issues that are often difficult to grasp. Skraaning and
Jamieson (2023) proposed a taxonomy for classifying automation errors into categories based on the
visible symptoms of design problems, so as to benefit the design of training scenarios. In this paper, we
propose a complementary classification that is based on the mechanisms of human-automation interaction
guided by Rasmussen’s Skill, Rule and Knowledge (SRK) taxonomy. We identified four main failure classes
and expect that this classification can support automation designers.
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Introduction

Failure in safety-critical systems can seldom be as-
signed to an isolated, single initiating event. This in-
herently follows from the design constraints of such
systems; redundancy is often used to reduce risk of
catastrophic failure, operator training, maintenance and
certification systems mitigate effects of component
failure. However, every so oftenwe are reminded of the
fact that our capabilities to foresee failure scenarios are
limited. In Boeing’s design and implementation of the
MCAS system (Republic of Indonesia, 2019), de-
signers and test pilots expected that a fundamental
failure of that system would be handled by pilots with
the runaway trim procedure documented in the
checklists. Instead, the instrument failures that triggered
the MCAS system failure also generated a slew of
alarms and instrument errors, forcing the pilots to be
occupied with diagnosing a multitude of problems by
the time the MCAS failures manifested themselves.

Human operators of automated systems, includ-
ing pilots, are needed at least to handle those cases
where designers fail to accurately foresee the context
in which automation will have to operate. We are
asking operators to handle situations in which
equipment and automation fails in ways that are
unforeseen, and it is therefore appropriate to study
how people react under these circumstances, which
training interventions can support them (Landman
et al., 2017, 2021), and to develop simulation-based
training programs with appropriate automation and
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equipment failures. Such training programs continue
to be needed, even when advanced automation
supported by AI applications are introduced into the
workplace (Endsley, 2023).

Skraaning and Jamieson (2023) have proposed a
taxonomy for automation error and argue its use for
human-automation interaction research. As summar-
ised, this taxonomy classifies automation-induced
human challenges into three categories: (1) elemen-
tary automation failures, which involves isolated
failures of automation (components); (2) systemic
automation failures, which involves failures in the
interplay among automation equipment, logic or
functions, and (3) failures in human-automation in-
teractions. A separate fourth category is described, for
human and organisational slips andmishaps involving
higher-order organisational issues.

Whereas the categories in the taxonomy by
Skraaning and Jamieson (2023) are based on the
visible symptoms of design problems, we propose a
complementary classification that is based on the
mechanism of human-automation interaction. In-
spired by Reason’s work (Reason, 1990), who used
Rasmussen’s Skill, Rule and Knowledge (SRK)
taxonomy (Rasmussen, 1983) as a support in
classifying and understanding human error, we take
a new look at automation which involves a similar
classification using the SRK taxonomy. We hope
that this approach can not only be used in under-
standing and classifying automation failure, but that
it will also give designers of automation a better
understanding of the role of automation in a system
with both human and automated agents, and can
serve as a tool to critically inspect their designs.

In the following, we will discuss in what way a
simple model inspired by the SRK taxonomy can be
used to represent automation, and from there how
failure mechanisms can be identified. Here, ‘failure’
will be both conventional device failure, such as
introduced by faults in sensors, hardware or soft-
ware, as well as the failure of functioning auto-
mation to provide its intended function.

Skill-, Rule-, Knowledge-Based
Behaviour for Automation

The Skill-, Rule- and Knowledge (SRK) taxonomy
(Rasmussen, 1986) has been applied to classify
and understand modes of human behaviour. In this

paper, we consider whether this same structure can
be used to describe processes in typical automation
systems. The SRK taxonomy is used to classify
behaviour, but it also forms the basis of models of
human task execution, such as the well-known
ladder model (Rasmussen, 1986). A simpler
model is used here, depicted on the left-hand side
in Figure 1. At the skill-based level, two blocks or
functions can be distinguished. One of these is
labelled feature formation (S1), and describes the
process of converting perceived signals into
‘features’. These features can be used as signs for
triggering activities, or symbols as input to cog-
nitive evaluation. The second block represents
interaction with the external world (S2).

At the rule-based level, signs, in their form of
recognition of familiar states of the world, from the
feature formation process at the skill level (block
S1), can be recognised as triggers for action (R1),
matched against appropriate actions (R2), and
these actions or tasks can then be initiated (R3), to
be carried out at the skill-based level, as learned,
trained, sensorimotor patterns (S2).

Input to the knowledge-based level relies on
symbols, meaningful information received and
parsed in the skill-based feature extraction process
(S1), that must be interpreted using knowledge about
the work domain (K1), resulting in an updated image
of that work domain. Comparison with selected goal
states may result in decisions to influence the work
domain (K2), leading to action plans (K3), that are,
once formulated, executed as rule-based tasks.

This simple, three-level taxonomy has been
used in interface design approaches (Vicente,
1999), or in error analysis (Reason, 1990). Nat-
urally, engineered automation and control systems
have their respective engineering descriptions,
such as block diagrams and various response di-
agrams in control engineering (Nise, 2019; Ogata,
1997), or UML diagrams in software engineering
(Object Management Group, 2024). In this paper,
we propose a model for automation shaped after
the SRK model, not as a replacement of engi-
neering design tools and representations, but as a
means to understand how human performance
challenges may arise from automation. We will
investigate how representing automation in terms
of the SRK taxonomy may guide a search for
mechanisms that may create human performance
challenges.
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Continuous Action: Control

The SRK-based taxonomy of automation (right-
hand side of Figure 1) interacts with the work
domain or external world at two locations; signals
enter the ‘feature formation’ block (AS1), and
signals and actions enter and exit the automated
sensorimotor patterns block (AS2). In automation,
such continuous interaction between the external
world and the automation is characteristic for
automated controllers, such as autopilots, and
control augmentation systems, which intend to
improve control properties of devices, as applied in
military aircraft (e.g. F16 and F35), most Airbus
aircraft and recent Boeing aircraft (B777 and
B787). Analogous with applying the SRK tax-
onomy to human behaviour, continuous control by
automation will be classified as a ‘skill’.

There is a multitude of control system design
tools available for designing and tuning automatic
controllers. The advantage of these tools, and their
accompanying concepts, is that description of
performance criteria for the controller, and the
conditions under which it should be functioning,
do not need to be specified in terms of episodic
knowledge, that is, time histories. Controllers can
be designed to criteria such as bandwidth, ro-
bustness, disturbance rejection and the like. To a
human user, a vehicle with control augmentation
presents a new set of dynamic properties, in most
cases better damped, less sensitive to external
disturbances such as turbulence, or wind gusts, and
easier to control. It can also protect a vehicle from
unwanted inputs; traction control, anti-lock brakes

and stability control in cars are examples of such
control augmentation systems (SWOV, 2019).

Sensing: Feature Formation

One part of the human skill-based level is the
feature formation. In addition to learning how to
control systems, humans need to learn how to
perceive and detect relevant data from the sensory
input array. The equivalent process for automation
would be the behaviour of sensors that convert
physical quantities into signals, such as analogue
voltages, or into discretized data, creating
computer-transmittable information, with the as-
sociated signal conditioning, filtering and appli-
cation of alarm thresholds. In the diagram on the
right side of Figure 1, this is labelled as sensing and
detecting (AS1). Newer automation, particularly in
automotive, increasingly uses machine learning to
process sensor information into signs and possibly
symbols (Bachute & Subhedar, 2021).

Discrete Action

To describe how automation can be compared to
rule-based behaviour, we will use the MCAS
system developed for the Boeing 737 MAX as an
example. This system was designed to compensate
for stability deficiencies in this generation of
Boeing 737 aeroplanes by initiating a pitch-down
trim action when the aircraft is in or close to a stall.
We can assume that this was the intent of its de-
signers. For implementing the MCAS system
automation, this intent was converted into a

Figure 1. Rasmussen’s SRK taxonomy for human cognitive control and automation behaviour.
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number of actions and conditions. The signs for
MCAS activation are threefold; first, the Angle of
Attack (AoA) value exceeds a certain threshold;
second, the autopilot is switched off; and third, the
flaps are fully retracted. The original MCAS im-
plementation would generate 8.5 s of nose-down
trim in these conditions, and continue to repeat this
while these conditions remain true. The updated
implementation now adds the condition that there
is no disagreement between the two AoA sensors
(difference smaller than 5.5°), and that it has not
previously activated during the same high AoA
event, as Boeing’s description suggests that the
system resets and can only be re-activated once a
high AoA alert has been cleared. The new im-
plementation is thus more complex, and requires
five signs for activation; high AoA, no AoA dis-
agreement, no previous activation, flaps zero and
autopilot off.

Analogous to human rule-level processes, the
processes for automation (right, Figure 1) could be
labelled as ‘condition logic’, ‘task initiation’ and
‘program execution’. In the case of the MCAS, the
condition logic would entail checking of the trig-
gering conditions for MCAS activation (AR1), the
task initiation would be activating the MCAS and
initialising its timer (AR2) and program execution
would provide a command for nose-down trim
input for a given duration (AR3). Like the Boeing
737, operators of many advanced systems have to
interact with multiple, more or less independent,
automation systems. Even when implemented in a
single hardware system, automation presents itself
commonly as running all in parallel to human users.
To illustrate that, the AR1 to AR3 blocks are de-
picted as a multitude of blocks. The resulting output
of the rule level is sent to the control and actuation
block (AS2), and consists of set-points and control
modes for the automatic controllers.

Cognition and Reflection

One may wonder whether intelligent automation
exists that should be modelled with the equivalent
of (human) knowledge-based reasoning. This
would involve maintaining a usable model for the
state of the world and updating this model with
incoming perceived data (Symbols). In a second
step, it is checked whether this perceived state of
the world is compatible with the set goals for the

system or agent. If not, action is required, and
based on (hypothesised) effects of possible actions
on the world, and cost and compatibility of the
actions with the user’s goals, an action plan is then
developed. Even descriptions of advanced self-
driving systems do not indicate that this level of
awareness and reasoning is implemented or
achieved (Zhao et al., 2024).

As a hypothetical exercise, let’s assume that a
human had been observing the input signals to the
MCAS system as it failed in the Lion Air and
Ethiopian crashes. The AoA signal would have
indicated a high AoA (note that this signal was not
included in the pilot’s instruments) from the start of
the flight, and all while the flight progressed, the
aircraft accelerated and climbed normally. Only
when the autopilot is switched off, and the flaps are
fully retracted, the condition for MCAS activation
becomes true. However, in the context of the
designer’s goal, namely, correcting for stalls, and
with knowledge of how an aircraft functions,
having a continuous indication of stall during an
otherwise successful take-off and climb out, would
lead the human to conclude that there is a failure in
the sensor rather than an actual stall. This
knowledge-based reasoning component allows the
human to reach this conclusion and prevent an
MCAS action.

Current automation is designed with the de-
signers’ interpretation of the system’s goal in
mind, and with an imagined set of conditions or
scenario which the designer considers as the
possible context in which the automation should
work. It can be safely said that, currently, Artificial
Intelligence is by no means really ‘aware’ of the
context, environment and goals, and for current
applications, we thus need to only consider skill-
based and rule-based aspects of the automation.

A knowledge-based level of control over the
automation has to be assumed by human users or
operators of a system, or it takes place in a largely
open-loop fashion, with designers setting the goals
for the automation, and implementing it to achieve
these goals, possibly with slower updates, much
akin to software updates.

Meaningful Control

In his book, Vicente uses the concept of open and
closed system (Vicente, 1999). An open system

van Paassen et al. 321



has a variety of interaction with the external world,
and in many cases this interaction cannot be easily
defined or measured. In contrast, a more closed
system has limited interaction with the external
world, and its interaction can be defined and
measured. An elevator in a building is an example
of a relatively closed system. It has an elevator
shaft that is kept free of other objects, and can only
open its doors at a defined number of floors. Since
their interaction with the external world can be
well-defined and measured, closed systems are
good candidates for automation, resulting in low-
risk, reliable automated operation. On the other
hand, participating in street traffic for surface
vehicles (cars), for example, requires interaction
with an ever-changing and often poorly defined
external world, making full automation extremely
difficult.

Another factor that determines whether auto-
mation is acceptable is the risk that a system poses
to its environment or users. Automated parts
manufacturing, whether with 3D printing or in
milling/machining shops, is an example of such an
activity. A failure typically results in only a failed
part, or in rare cases damage to the equipment. A
failure in autonomous vehicles can hurt or kill
passengers and other road users.

‘Meaningful human control’ is a concept
originating in the application of ethics to largely
automated weapons systems, extended to con-
sider the application of Artificial Intelligence
to other safety-critical domains. Cavalcante
Siebert et al. (2023) state that human users
should be able to act on their responsibility
(property 3). In other words, automation fails if
it prevents operators from achieving their (as-
signed) goals. In the following, we will use
enabling meaningful control as a condition for
automation success.

Automation Function and Failure

In this section, we will use a pair of SR(K) tax-
onomy models to inspect in what ways automation
can achieve its intended functions, and in what
ways it can fail at the sharp end, creating
automation-induced human performance chal-
lenges (Skraaning & Jamieson, 2023).

In analysing the combination of human oper-
ators and automation, we will use the criterion

whether meaningful control can be achieved. In
other words, do human users/operators have a real
possibility to control the system outcome and
achievement of their goals?

Associated with that, for those tasks that are
fully assigned to the automation, are the stakes of
those tasks compatible with meaningful human
control? That means that either the stakes are not
critical, or the section of the work domain con-
trolled by the automation has a sufficiently closed
nature, and the automation is sufficiently reliable,
so that failure risks are acceptable. To clarify, an
example of the first might be the operation of the
entertainment system on board of an airliner;
failures might disappoint the passengers, but not
threaten life or limb. An example of the second
case is the common application of FADEC; Fully
Automated Digital Engine Control, a control
system for aircraft engines that keeps the engine
within operating parameters. The reliability of
these systems is such that there is no meaningful
way by which manual direct control by the pilots
(in which also risks of overspeed or excessive
temperature of the engine need to be avoided)
might improve the safety of operation.

Basic Function and Failure

In its most basic form, failure by an automation
system, for example, through wear, breakage,
external causes or errors in maintenance or in-
stallation, is comparable to the concept of skill-
based error in human operators. Skill-based errors
occur when an activity is attempted, but not suc-
cessfully completed. In automation, that means
that there is a failure in either data acquisition, data
transformation, data transmission or in actuation.
The most common problems arise through failing
sensors, cameras, and the like, and in actuation
through failing actuators or motors.

Compared to this, actual failures in calculation
are rare, although they do occur, for example, in
Qantas flight 72 (Australian Transportation Safety
Board, 2011). Here, some data points were sent
with the wrong data label in the communication
within the electronics, resulting in transient fail-
ures in interpreting AoA data that, through their
transient nature, could bypass data validation. This
essentially combined a failure in algorithm design
with a basic error.
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Basic failure may also be introduced by failure
of a support system, such as a failure of electrical,
pneumatic or hydraulic power. From a technical
point of view, it may be argued that sensors or
actuators are not part of the automation proper.
However, to operators, it is mainly the functional
aspects of automation that matter, and any failure
leading to loss of automation support or even
erroneous behaviour is relevant and seen by them
as ‘failure of the automation’.

Design-Induced Failure

In a next step, the automation hardware may
function as programmed and wired, but still fail to
support the operators. This failure may be seen as
analogous to rule-based error conditions, in which
an automation action intended to support operation
now counters the users’ or even the designers’
goals. One of the causes is a failure by designers to
correctly foresee the context in which an auto-
mated systemmay operate. In the recent incident in
which a door plug of a Boeing 737 MAX failed
(Negroni, 2024), it also appeared that designers
had installed a device to automatically open the
flight deck access door in case of cabin pressure
failure. As an unintended side effect, the door
slammed into and blocked a lavatory door. The
basic challenge is correctly foreseeing all possible
situations under which automation may be active,
as we tend to rely on narratives and envisioned
scenarios. For open systems, that is a daunting
challenge indeed.

Coordination Failure

Automation may also create undesired or dan-
gerous situations when coordination with human
operators or other automated agents is poor. A
fundamental issue can arise when the information
used by automation is not the same as information
available to operators, for example, driving as-
sistance based on radar information uses a different
perspective than that of the human driver, poten-
tially leading to poor understanding of automation
actions.

Another issue may be that automation can be
faster than human operators, leading it to operate in
ways that are poorly observable by humans. This is
acceptable, as long as no high stakes are involved,

the automation is very reliable (by operating in a
‘closed’ part of the work domain), and is perfectly
aligned with the human operator’s goals. Phantom
braking incidents in autonomous cars are an ex-
ample of this issue. The basic failure in such in-
cidents is often in the sensors or in the machine
learning algorithm interpreting camera images. At
the current level of autonomy (Level 2), the driver
is assumed to intervene when automation is not
successful (Myhre et al., 2019), although with
phantom braking there is no quick way to override
the car’s inputs.

Poor observability of input signals and condi-
tions to automation, and a complex logic to acti-
vation of automation, can also provide situations
where human users can be surprised by automation
actions. Mode confusion with autopilot and flight
management systems is common (Albano et al.,
2022), caused by the fact that many autopilot
system modes are possible, and complex condi-
tions guard the (often automated) transition be-
tween different modes.

Systemic Failure

In the previous sections, we discussed automation
failures in isolation, and breakdown in the coor-
dination between automation and human operators
for single automation functions. However, in a
typical case multiple automated functions vie for a
human operator’s attention, and may even interfere
with each other. Older generation aircraft, such as
the B737, are supported by notoriously fragmented
automation. In a fatal accident with a Turkish
Airlines flight (Onderzoeksraad voor de
Veiligheid, 2010; Silva & Hansman, 2015), the
auto throttle reduced power due to incorrect ac-
tivation of the flare mode, while the autopilot
system kept the aircraft on a vertical flight path,
leading to a stall.

The two MCAS accident scenarios also have
systemic failure effects. In these aircraft the angle
sensed by the AoA sensor is used for the correction
of aerodynamic pressure data, leading to a de-
creased altitude indication (by over 200 ft), and
decreased speed indication (by 13 kts) on the
captain’s side. The speed indication on each side is
also used to scale the stiffness in the pilot control
manipulators through the feel system, and the
differing speed inputs lead to a ‘feel differential’
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warning message. The indication from the AoA
indicator on the captain’s side also leads to a low
airspeed warning, and to activation of the captain’s
stick shaker. Even though intended to be infor-
mation displays to the pilot, one can also interpret
this data processing as automation (Sheridan &
Parasuraman, 2005). Feeding a wide range of
automation and information functions with data
from a single sensor introduces a common point of
failure, leading to not only an erroneous MCAS
activation, but to a challenging flight scenario in
which different alarms and instrument discrep-
ancies all compete for the pilots’ attention, forcing
them to prioritise between multiple checklists and
procedures.

Each automation function, whether im-
plemented separately in hardware, or implemented
along with many others in a software program,
must therefore be seen as an additional agent
acting on the flight deck. Automation and infor-
mation functions feed on thousands of input data
points, and each piece of automation may combine
multiple input data points as condition for acti-
vation. In general, pilots will not know the exact
implementation of each automation function, and
even for pilots with an engineering background
and inquisitive minds, decoding surprising indi-
cations is more a debugging exercise than a result
of finding the correct page in the manual
(Huijbrechts & Van Paassen, 2023).

In older systems, or newer systems like the
Boeing 737 Max that try to maintain compatibility
with older generations, all these functions are
independent, forcing a high workload on operators
or pilots when a common failure occurs. In sys-
tems that have integrated automation, workload
may be reduced because redundancy of input
ensures that they are immune to single sensor
failure that can carry over into multiple alarms, but
the increased degree of integration also makes it
more difficult to understand the automation’s ac-
tions. For instance, in modern aircraft, typically the
‘electronic checklist’ will use pre-programmed
rules to prioritise certain items, and the check-
lists will use a mix of ‘sensed’ items, that will
automatically be updated in response to changes in
input data points, and non-sensed items. Pilots will
then need to understand both the behaviour of the
aircraft, and integrated automation, but also of the
actions of the automated checklists.

Conclusion

This paper presents a classification for automation
error that can be seen as complementary to the work
of Skraaning and Jamieson (2023). Using the Skill,
Rule and Knowledge taxonomy (Rasmussen, 1983)
as a template, automation processes can be iden-
tified analogous to human task performance. Four
failure classes can be identified; 1. basic failures,
that is, failures in the hardware implementation of
the automation; 2. design failures, either because the
automation was designed to fulfil a different goal
than the user’s goal, or due to the designer (team)
limitations in predicting the future environment; 3.
coordination failures, with issues in observability,
understandability and controllability of the auto-
mation; and 4. systemic failure, typically due to
complex interplay between the environment, mul-
tiple automation systems or multiple parts of the
same automation, and the operators. Skraaning and
Jamieson (2023) proposed the uses of their auto-
mation failure classification for the design of
training scenarios. We expect that this comple-
mentary classification of automation failures can
also support automation designers.
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