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A B S T R A C T   

With increasing numbers of chemicals used in modern society, assessing human and environmental exposure to them is becoming increasingly difficult. Recent 
advances in wastewater-based epidemiology enable valuable insights into public exposure to data-poor compounds. However, measuring all >26,000 chemicals 
registered under REACH is not just technically unfeasible but would also be incredibly expensive. In this paper, we argue that estimating emissions of chemicals based 
on usage data could offer a more comprehensive, systematic and efficient approach than repeated monitoring. Emissions of 29 active pharmaceutical ingredients 
(APIs) to wastewater were estimated for a medium-sized city in the Netherlands. Usage data was collected both on national and local scale and included prescription 
data, usage in health-care institutions and over-the-counter sales. Different routes of administration were considered as well as the excretion and subsequent in-sewer 
back-transformation of conjugates into respective parent compounds. Results suggest model-based emission estimation on a city-level is feasible and in good 
agreement with wastewater measurements obtained via passive sampling. Results highlight the need to include excretion fractions in the conceptual framework of 
emission estimation but suggest that the choice of an appropriate excretion fraction has a substantial impact on the resulting model performance.   

1. Introduction 

Good water quality is essential to society and ecosystem health. A 
number of ecosystem services are directly linked to surface water 
quality, e.g., drinking water production and recreation. Currently, 
assessment of surface water quality relies heavily on empirical data. 
Within the European Water Framework Directive (WFD, European 
Commission (2000)), Member States monitor the chemical water quality 
of their surface water bodies for a number of reference compounds 
(European Commission, 2022). While this concerted effort offers the 
opportunity to compare the environmental status between different 
European river catchments over time, it is limited in scope as it provides 
retrospective information on a relatively small number of compounds. 
Pollution already occurred and conclusions on the overall risk of 
chemical exposure cannot be drawn as only a limited number of com
pounds are being measured. 

With increasing numbers of chemicals used in modern society, 
assessing human and environmental exposure empirically is becoming 
increasingly challenging. In 2007, the European Union (EU) adopted a 

regulation to register, evaluate, authorize and restrict chemicals 
(REACH). Under REACH, the chemical industry and EU-importers have 
to register any chemicals that are used in quantities larger than one 
tonne per year via the European Chemicals Agency (ECHA). In 2023, the 
REACH database contains entries for >26,000 chemicals (ECHA, 2023). 
Those chemicals are prospectively evaluated regarding ‘safe use’ by 
evaluation of predicted environmental concentrations for a typical Eu
ropean water body and the predicted no-effect concentrations (PNECs). 
Despite technical advances, particularly in the field of non-target 
screening, quantifying all registered chemicals in environmental sam
ples to ascertain ‘safe use’ is both technically and financially unfeasible. 

Empirical monitoring comes with substantial limitations. Besides 
being time- and location-specific, quantification of environmental con
centrations is limited to those compounds for which analytical detection 
techniques are available (target analyses). This is particularly prob
lematic for compounds often occurring in environmental concentrations 
below the analytical detection limits such as natural and synthetic 
hormones (Gunnarsson et al., 2019; Ojoghoro et al., 2021) and for 
chemical structures for which no analytical standards are availabe (e.g., 
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human metabolites and environmental transformation products). While 
non-target screening can identify the presence of any chemical struc
tures in environmental samples, including molecular structures of hy
pothetical tranformation products, quantification is only possible in 
combination with mass-spectrometry equipment. Therefore, analytical 
detection limits represent a major bottleneck in the holistic mapping of 
environmental pollution with chemicals of emerging concern (CECs). 

Instead, databases with usage data, such as the REACH database, can 
in principle be used for prospective, model-based prediction of envi
ronmental quality provided that the pathways between the source and 
the target compartment are known. For example, van de Meent et al. 
(2020) estimated European-wide surface water concentrations of >5000 
organic chemicals following such an approach within the SOLUTIONs 
project. Van Gils et al. (2020) refined this model by applying a more 
detailed hydrological model to derive spatiotemporal-explicit concen
trations for a large number of contaminants of emerging concern (CECs). 
These examples demonstrate that model-based, prospective prediction 
of surface water quality is feasible and could offer an efficient alterna
tive to measuring environment concentrations. 

In this paper, we argue that for some compound groups estimating 
emissions to wastewater based on usage data can be a cheap and 
informative alternative for repeated monitoring. However, such sys
tematic modelling approaches stand and fall with the quality of the input 
data. We hypothesize that due to the lack of sufficiently detailed infor
mation on emission sources and exposure routes, model-based pro
spective prediction of surface water quality is still running behind its full 
potential for the majority of CECs. Compared to other groups of chem
icals, data on the usage of pharmaceuticals are relatively detailed and 
abundant. Particularly, data on prescription drugs used by the general 
public are in many countries accessible via public databases. Usage of 
pharmaceuticals in health care facilities such as hosptials and care 
homes are typically also registered in detail for financial (health insur
ance) reasons. Therefore, the data coverage on pharamceutical usage is 
relatively high for different geographical scales. 

The aim of this study is to develop, validate and explore the potential 
of predicting mass loads of CECs to wastewater based on usage data for 
urban areas. Hereto, we collected monthly prescription and usage data 
of 29 active pharmaceutical ingredients (APIs) for a medium-sized city 
in the Netherlands. Local API data included the clinical use in a hospital 
and several long-term care facilities. City-wide emission estimates to 
wastewater were validated with field measurements obtained through 
passive sampling of the influent at the local wastewater treatment plant 
(WWTP). Our study bridges the gap between emission estimation efforts 
on the continental scale (Van de Meent et al., 2020, Van Gils et al., 2020) 
and studies describing highly granulated source-specific CEC emissions 
(e.g., Zillien et al., 2019), by aiming at refining land-use specific emis
sion estimates on the regional scale. The methods presented in this paper 
can also be developed for other land uses and compound categories, for 
example, API emissions from livestock (Rakonjac et al., 2022), high
lighting the potential of model-based emission estimation for other CECs 
provided that required data are accessible. 

2. Materials and methods 

2.1. Study area 

The city of Nijmegen is located in the southeast of the Netherlands 
and counts approx. 180,000 inhabitants. The city population is 
comparably younger than the national average due to the presence of 
one university (ca. 24,000 students) and two other institutions for 
higher education counting together about 16,700 students in total (ROC, 
2020). People aged 20–29 represent the largest group with 37,000 in
habitants (S1). The city has two hospitals (ca. 600 beds each) and 24 
care homes for elderly and people requiring long-term care. 

The city has one municipal WWTP with a capacity of 400,000 pop
ulation equivalents (p.e.) that also treats wastewater from 11 

neighboring villages which count in total ca. 100,000 inhabitants. 
Treatment steps include primary and secondary treatment using acti
vated sludge. In this particular WWTP, wastewater is heated, resulting in 
relatively constant water temperatures around 15 ◦C in winter and 28 ◦C 
in summer. More details on the treatment steps and the typical waste
water composition can be found in S2. The sewer system is mainly 
composed of gravity sewers with a total length of 595 km, of which 352 
km are combined sewers containing wastewater and surface run-off. 
Following the approach by Kapo et al. (2017), the estimated average 
sewer residence time within the city is approximately 2 h (maximum 4 h, 
S3). 

2.2. Compound selection 

In total, the emissions of 32 CECs to wastewater were estimated 
based on usage data (Table 1). All compounds were selected to cover a 
broad chemical spectrum within our analytical possibilities (for details 
see Section 2.4). Among the selected CECs, 29 APIs were chosen rep
resenting different treatment regimes, that is, to treat acute versus 
chronic illnesses, different routes of administration, different sources, 
that is, hospital-specific APIs, over the counter drugs (OTCs), 
prescription-only APIs and combinations thereof. We also included 3 
human metabolites of selected APIs in the emission estimation and 
chemical analysis. 

2.3. Prescriptions, usage and sales data of APIs 

Efforts were made to create a comprehensive overview of the mass of 
APIs used, by combining data from different sources. For the 
Netherlands, annual prescription data to the general public on a national 
scale were collected for 2020 from the Dutch open-access databank on 
prescription data (www.gipdatabank.nl) for 29 APIs (Table 1). It was 
assumed that prescription data to the general public refers only to 
pharmaceuticals that can be self-administered thus orally or rectally. 
Data reported in GIPdatabank are based on declarations of 19 Dutch 
health insurance companies, covering together almost the entire Dutch 
population. Since data is based on declarations, only those pharma
ceuticals are reported for which health insurances offer reimbursements. 
Furthermore, usage of pharmaceuticals in health care institutions such 
as hospitals or care homes is not registered in GIPdatabank (Zorgin
stituut Nederland, n.d.), neither are OTC sales. This means that data 
reported in GIPdatabank offer an incomplete overview of pharmaceu
tical usage in the Netherlands. 

On a local scale, monthly prescription data of 2020 was purchased 
for 27 APIs for the city of Nijmegen and its surroundings from the Dutch 
Foundation for Pharmaceutical Statistics (Stichting Farmaceutische 
Kengetallen, SFK, www.sfk.nl). SFK collects data on pharmaceutical 
dispense from 97 % of all Dutch community pharmacies, covering 15.8 
million inhabitants (Stichting Farmaceutische Kengetallen, n.d.). This 
dataset reports API usage expressed as total number of DDDs prescribed 
and sold in Nijmegen and the 11 surrounding villages that are connected 
to WWTP Nijmegen. The dataset allowed for further specification be
tween routes of administration and age groups, and included OTC sales 
via pharmacies in the area. Usage of pharmaceuticals in health care 
institutions is not covered by SFK datasets and neither are OTC sales via 
retail. 

To cover API usage by the health care institutions in Nijmegen, 
monthly usage data on all APIs were obtained from one of the two 
hospitals in Nijmegen as well as for 9 care homes in the city. Since no 
data could be obtained for the other hospital, we chose to neglect its 
contribution to the overall API emissions to wastewater. An earlier study 
demonstrated that individual hospitals contribute only very little (1–2 
%) to the overall API load in wastewater in cities of similar size and that 
API usage can vary substantially between hospitals (Zillien et al., 2019). 
For these reasons, also contributions of the remaining care homes were 
neglected. 
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The painkillers diclofenac, naproxen, acetaminophen and ibuprofen 
are also available as OTC drugs in most Dutch supermarkets, drugstores 
and pharmacies. To account for the OTC use of those APIs, a dataset 
covering the total volume of Dutch wholesales via supermarkets, drug
stores and online retail in 2020 for diclofenac, naproxen, acetaminophen 
and ibuprofen was kindly provided by Nielsen (www.nielsen.com) at no 
cost. This dataset included also the sale of APIs via private labels. 

For all APIs, it was assumed that prescription, usage and sale 
together equal consumption, hereafter referred to as ‘consumption’ or 
‘usage’ interchangeably. Consequently, we did not account for unused 
left-over medicines or a delay between purchase and consumption. 

2.4. Estimating API emissions to wastewater 

To calculate national per capita consumption CNL.per.capita based on 
the total number of daily defined doses (DDDs) as reported in GIPda
tabank, API-specific DDDs were collected for the matching ATC codes 
via the WHO ATC index (https://www.whocc.no/atc_ddd_index/). 
Subsequently, the annual per capita prescription (grams per person per 
year) was calculated for each API according to Eq. (1): 

CNL.per.capita =
NDDD × DDD

PNL.2020
(1)  

where NDDD refers to the total number of DDDs prescribed as reported in 
GIPdatabank.nl, DDD refers to the API-specific DDD as reported by the 
WHO (typically grams of milligrams per DDD) and PNL.2020 refers to the 
total population of the Netherlands in 2020 as reported by the CBS (in 
our case 17,407,585 (2020); retrieved October 7th 2021). The same 
equation was used to calculate local per capita consumption using the 
population connected to the local WWTP instead of PNL.2020. 

To estimate API emissions to wastewater, predicted emissions loads 
(PEL) were estimated for each API (x) using Eq. (2): 

PELx =
∑

i

(

Mx,i × fexc,x,i

)

(2)  

where Mx,i is the total mass of API x prescribed (grams) for route of 
intake i, and fexc,x,i refers to the excretion fraction for API x and route of 
intake i. 

Excretion fractions for all routes of intake were obtained via public 

Table 1 
Compound selection of this study. o = oral, p = parenteral, r = rectal, d = dermal. PRE = prescription drug, OTC = over-the-counter drug, HC = drug reserved for 
health care, CP = consumer product, n.a. = not applicable.  

Group API Abbreviation CAS-number Route of administration Type 

Analgesic Acetaminophen (Paracetamol) PAR 103-90-2 o, r PRE + OTC  

Angiotensin II receptor blocker Valsartan VAL 137862-53-4 o PRE  

Antibiotic Amoxicillin AMO 26787-78-0 o, p PRE  
Azithromycin AZI 83905-01-5 o PRE  
Cefuroxime CEF 55268-75-2 o, p HC (+PRE)  
Ciprofloxacin CIP 85721-33-1 o, p PRE  
Clarithromycin CLA 81103-11-9 o PRE  
Doxycycline DOX 564-25-0 o, p PRE  
Erythromycin ERY 114-07-8 o PRE  
Levofloxacin LEV 100986-85-4 o, p PRE  
Ofloxacin OFL 82419-36-1 o PRE  
Sulfamethoxazole SUL 723-46-6 o, p PRE  
Tetracycline TET 60-54-8 o PRE  
Trimethoprim TRI 738-70-5 o, p PRE  

Anticonvulsant Carbamazepine CAR 298-46-4 o PRE 
Antidepressant Fluoxetine (Prozac) FLU 54910-89-3 o PRE 
Antilipemic Gemfibrozil GEM 25812-30-0 o PRE  

Beta-blocker Atenolol ATE 29122-68-7 o PRE  
Metoprolol MET 51384-51-1 o, p, r PRE  
Sotalol SOT 3930-20-9 o PRE  

Central nervous system stimulant Methylphenidate (Ritalin) RIT 113-45-1 o PRE  

Contrast agent Iohexol IOH 66108-95-0 p HC  
Iomeprol IOM 78649-41-9 p HC  

Diuretic Hydrochlorothiazide HYD 58-93-5 o PRE  

NSAID Diclofenac DIC 15307-86-5 o, p, r, d PRE + OTC  
Ibuprofen IBU 15687-27-1 o, p, r, d PRE + OTC  
Naproxen NAP 22204-53-1 o, r PRE + OTC  

Opioid Codeine COD 76-57-3 o PRE + OTC  
Oxycodone OXY 76-42-6 o, p PRE  

Human metabolite 4′-Hydroxydiclofenac 4OHD 64118-84-9 n.a. MET  
5-Hydroxydiclofenac 5OHD 69002-84-2 n.a. MET  
Ritalinic acid RITAC 19395-41-6 n.a. MET  
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databases such as Drugbank (drugbank.ca), the ‘summary of product 
characteristics’ (SmPc) available via the Dutch ‘Medicine Information 
Bank’ (www.geneesmiddelinformatiebank.nl) and scientific literature. 
Excretion of the two human metabolites of diclofenac and methylphe
nidate was estimated by using the excretion fractions referring to these 
two specific metabolites as reported in literature (S4). 

Similarly, the excretion of conjugate metabolites was accounted for 
via excretion fractions reported specifically for those metabolites. Back- 
transformation of conjugate metabolites into the respective parent 
compound was considered by adding the excretion fractions reported for 
the conjugated parent compounds to the excretion fractions reported for 
the free parent compound as described earlier in (Delli Compagni et al., 
2020). This was not in all cases unambiguous as reported excretion 
fractions sometimes seemed to refer to all kinds of conjugated metabo
lites but not necessarily exclusively to the conjugated parent compound 
(discussed further in Section 3.2). In the absence of empirical data on the 
kinetics of back-transformation from conjugate metabolites in waste
water, we assume complete back-transformation into the parent com
pound. An overview of the excretion fractions used in this study can be 
found in S4. 

2.5. Field measurements 

Wastewater at the WWTP influent was sampled using passive sam
plers to obtain weekly time-weighted average loads of APIs. Two sam
pling campaigns were conducted in May and September 2020. During 
each sampling campaign, one set of passive samplers (Speedisks©) 
containing DVB-HLB adsorption material was deployed for one week at 
the influent collection basin. To allow direct contact between sampler 
and wastewater, the outer rim of the Speedisk© was removed (S5). The 
samplers were attached to a metal rod to weigh them down and keep 
them submerged (S6). The exposure time was kept relatively short to 
ensure linear uptake of APIs to the sampler. The weather during both 
sampling campaigns was dry, so no dilution by surface run-off was ex
pected. Upon retrieval, samplers were immediately transported in glass 
jars on ice to the laboratory and frozen at − 18 ◦C until further analysis. 

After addition of the internal standards, the extraction was per
formed following a 3-step-approach: during the first step, the passive 
samplers were extracted using 2 mL methanol. In a second step, samplers 
were extracted again using five times 5 mL dichloromethane. Both el
uates were combined, dried with sodium sulphate over a glass frit and 
concentrated to 2–3 mL. In a third step, four times 5 mL of 1 % formic 
acid methanol was used to extract any remaining polar compounds. This 
eluate was then concentrated to 1–2 mL, subsequently completely dried 
under a stream of nitrogen to remove the formic acid and dissolved 
again in methanol. Per sampler, those three methanol fractions were 
combined and vortexed. The resulting extract was concentrated under a 
stream of nitrogen, then brought to a final sample volume of 1 mL and 
stored at − 20 ◦C until the analysis. 

Analysis was performed following the same protocol as described in 
Zillien et al. (2019). In short, samples and internal standards were 
analyzed using Agilent 1260 series high-performance liquid chroma
tography coupled with an Agilent 6460 triple quadrupole LC/MS with 
Jetstream Electron Spray Ionisation (ESI) and multiple reaction moni
toring (MRM). The target compounds were determined with one pre
cursor ion and two product ions. Calibration was done before measuring 
the samples with known amounts of the analytes in nine steps with 
concentrations ranging between 0 and 50 ng mL− 1. The limit of detec
tion (LOD) and limit of quantification (LOQ) of the analytes were 
determined with signal-to-noise ratios of 1:3 and 1:10, respectively. 
Average analytical recoveries, calculated water concentrations and in
formation on the LOD and LOQ are given in S7. The method resulted in 
LOQ values ranging between 0.5 and 1 ng mL− 1 of extract. Given that 
the volume of the final extract was 1 mL, results were reported as load 
(ng) of APIs per set of samplers. 

Measured loads of APIs per set of samplers were extrapolated to 

weekly emission loads MEL per API x according to Eq. (3) as described in 
Zillien et al. (2019): 

MELx =
Lx × QWWTP

Rs × Tsampling
(3)  

where Lx is the measured load (grams per week) of API x on the samplers 
per week at the WWTP influent; QWWTP is the total weekly discharge 
(liter per 7 days); Rs is the sampling rate per sampler (liter per day) and 
Tsampling refers to the sampling duration (7 days). QWWTP was based on 
daily influent discharge measurements at the WWTP. To derive time- 
weighted average concentrations in WWTP influent, we assumed an 
average sampling rate of 50 mL per sampler per day (Smedes et al., 
2013; Zillien et al., 2019). 

2.6. Evaluation of model performance 

Emission estimates were compared to field measurements obtained 
through passive sampling. To compare model performance when using 
different levels of detail in input data, two model performance indicators 
defined by Morley et al. (2018) were used: To assess the overall model 
spread (i.e., deviation from the 1:1 line), the Median Symmetric Accu
racy was calculated. Applied to the context of our study, the Median 
Symmetric Accuracy (Xi) was calculated according to Equation (4): 

Xi = 100% ×
(
e

(

median

(⃒
⃒
⃒
⃒ln

(
PELx
MELx

)⃒
⃒
⃒
⃒

))

− 1
)

(4)  

where PELx is the predicted environmental load of API x in wastewater, 
and MELx is the measured environmental load of API x in wastewater. 
The Median Symmetric Accuracy can be interpreted as the unsigned 
percentage of error in which both under- and overestimations are 
penalized equally (Morley et al., 2018). The smaller Xi the better the 
predicted loads coincide with measured loads and therefore, Xi gives an 
indication of overall model spread. As indication, a factor of 10 devia
tion results in an Xi value of 900 %. 

To assess whether the predicted loads are systematically over- or 
underestimating measured loads, the Symmetric Signed Percentage Bias 
(SSPB) was calculated based on Morley et al. (2018). SSPB in our context 
was calculated according to Eq. (5): 

SSPB = 100% × signum
(

median
(

ln
(

PELx

MELx

)))

×
(
e

(⃒
⃒
⃒
⃒median

(

ln

(
PELx
MELx

))⃒
⃒
⃒
⃒

)

− 1
)

(5)  

A positive value for SSPB indicates a systematic overestimation, mean
ing that predicted loads are generally larger than measured loads 
whereas a negative value suggests predicted loads being smaller than 
measured loads and therefore indicate a systematic underestimation. 

3. Results and discussion 

In this section, we first present the comparison of modelled and 
measured API loads in wastewater using different input data (3.1), then 
showcase the utility of model-based emission estimation (3.2). Subse
quently, we discuss in more detail the factors causing variability in 
emission estimates (3.3) and assess if accounting for in-sewer trans
formation via re-transformation of conjugated metabolites into their 
respective parent compounds improves emission estimates (3.4). 

3.1. Estimating API emissions on city-scale: Proof of principle 

Of the compounds selected for this study, mean annual emission 
estimates of 20 compounds were within a factor of 10 from mean 
wastewater measurements (Fig. 2). For 9 of the remaining 12 
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compounds, deviation between estimates and measurements were larger 
than a factor of 10. For cefuroxime (29.7); diclofenac (11.6); erythro
mycin (25.7); fluoxetine (26.8); iohexol (25.1); iomeprol (3877.9) and 
valsartan (15.8) estimated emission loads were higher than wastewater 
measurements. Of those, 4 compounds (iomeprol, iohexol, fluoxetine, 
and erythromycin) were measured below the LOQ (Fig. 2). In contrast, 
for gemfibrozil (62.2) and ibuprofen (22.2) estimated loads were lower 
compared to measured loads. Emission estimates agreed particularly 
well with sewer measurements for compounds showing good average 
analytical recoveries (>60 %, i.e., trimethoprim, sulfamethoxazole, co
deine, oxycodone, atenolol, methylphenidate). 

While the parent compound diclofenac was overestimated, emission 
estimates for both its hydroxy metabolites 4OHD and 5OHD match well 
with wastewater measurements. This overestimation of DCF as parent 
compound suggests that either the excretion fractions used for the 
parent compound and diclofenac-glucuronide are higher than in reality; 
or less dermal DCF is used than is sold; or that the wash-off fraction of 

dermally applied DCF is estimated too high. On the contrary, the good 
match between prediction and measurements of 4OHD and 5OHD sug
gests that usage data seems rather accurate (further discussed in Sections 
3.2 and 3.3). In comparison, methylphenidate (RIT), which is in the 
Netherlands only available upon prescription, and its metabolite rita
linic acid (RITAC) agree well with wastewater measurements. This 
observation highlights the utility of focusing not just on individual 
parent compounds but also on related human metabolites for model 
validation (Bakker-’t Hart et al., 2023). 

Three of the remaining compounds were not detected (amoxicillin, 
doxycycline, tetracycline) despite being predicted above the LOQ. In the 
case of amoxicillin, this is surprising as it is by far (by mass) the most 
consumed antibiotic in this study and shows little variation in pre
scription over the year (S8). However, a laboratory study conducted by 
Hirte et al. (2016) demonstrated that amoxicillin undergoes abiotic 
hydrolysis via cleavage of the beta-lactam ring resulting in the formation 
of amoxicillin penicilloic acid. Additionally, subsequent condensation 
and decarboxylation result in two more transformation products (Hirte 
et al., 2016). When analyzing influent samples from different WWTPs, 
the authors detected the transformation products in all samples while 
amoxicillin was detected in only one of the five samples. Among the 
transformation products, amoxicillin penicilloic acid showed much 
higher peaks than the parent compound amoxicillin. The authors attri
bute this to accelerated hydrolysis due to microbial activity in waste
water (Hirte et al., 2016). Hence, formation of amoxicillin penicilloic 
acid due to hydrolysis within the sewer system could offer an explana
tion for not detecting amoxicillin in our study. 

Tetracycline and doxycycline in their neutral forms are both lipo
philic due to the benzene rings in their molecules. Furthermore, both 
compounds are zwitterions having an acidic group (OH) as well as a 
basic group (N). This means that both compounds can be charged either 
positively or negatively depending on the pH of wastewater. Given the 
pH of wastewater typically varies between 6.5 and 8 (Zillien et al., 
2022), the basic groups of both compounds would mainly be present as 
deprotonated cation due to their pKa values of 7.68 (tetracycline) and 
8.33 (doxycycline). Consequently, both compounds could be electro
statically sorbed to negatively charged organic matter present in 
wastewater. This could explain why we were not able to detect both 
antibiotics in the water phase. Overall, this discussion highlights that 
compound properties like lipophilicity and the degree of ionization 
could affect the measured emission loads as, like most sampling 
methods, passive sampling only samples compounds present in the 
water phase. In contrast, predicted emission loads in this study refer to 
total emissions (i.e., dissolved and sorbed) and could therefore result in 
a mismatch between predicted and measured emission loads. 

Emission estimation was performed using two different sources of 
input data: a national dataset and a local dataset (see Section 2.3 for 

Fig. 1. Conceptual framework of this study.  

Fig. 2. Comparison of measured weekly load of 32 APIs at WWTP Nijmegen 
(influent) with estimated weekly loads. Measurements represent the average of 
2 sampling campaigns, error-bars in measurements indicate min and max 
values. Estimates are based on local data and account for back-transformation 
of conjugate metabolites. Xi = 256 %, SSPB = 60 %. Vertical dotted line rep
resents the limit of detection (LOD) and vertical dashed line represents the limit 
of quantification (LOQ). Black solid line represents ideal ratio of 1 (predicted 
emission equals measured emission), blue solid lines indicate a 10-fold devia
tion from it. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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details on data coverage). Model performance, assessed via SSPB and Xi, 
was generally better when the national dataset was used compared to 
the local dataset (Table 2). Furthermore, we assessed model perfor
mance for three different excretion scenarios (Table 2): Following the 
EMA-guideline for environmental risk assessment, a default excretion 
fraction of 1 was applied, meaning that the entire consumed dose is 
excreted as parent compound. This scenario led to the worst model 
performance as estimations deviated on average a factor of 5 to 6 from 
measurements (Xi) and resulted in a substantial overestimation (SSPB). 
Model performance consistently improved if excretion fractions for 
parent compounds were taken into account. For both datasets, model 
spread reduced to an average factor of 2.5–3.5 (Xi) while overall pre
dictions were underestimating field measurements (negative SSPB). 
When in addition to excretion of the parent compounds also the excre
tion of conjugate metabolites was taken into account, the model spread 
remained unchanged, but resulted again in a slight overestimation 
compared to measurements (positive SSPB). This underlines the 
importance of considering excretion of parent compounds and conju
gated parent compounds within prospective emission modelling. 

3.2. Showcasing the utility of emission modelling 

In this section, we illustrate the added practical value and flexibility 
of a model-based approach by showcasing the results of two simple 
analyses that can follow an emission estimation as presented in this 
study. 

First, a reliable and comprehensive dataset on API usage and emis
sion sources offers the possibility to assess the origin of APIs that 
cumulatively result in the predicted load at the WWTP influent. This 
‘source-tracking’ enables the identification of the largest contributors, 
which represents valuable information regarding possible emission 
reduction targets. Fig. 3 displays the origin of the predicted influent load 
of WWTP Nijmegen in 2020. It becomes clear that at-home consumption 
of prescribed APIs accounts for the largest share of estimated loads to 
WWTP influent (42 %), followed by APIs originating from OTC sales via 
pharmacies and wholesales (together 29 %). The hospital included in 
this study contributed 27 % of the total influent load, while care homes 
contributed the least (2 %). 

When taking a closer look at the contribution of the hospital to the 
predicted load, the two contrast agents iomeprol and iohexol stand out 
since together accounting for 75 % of the total hospital contribution. 
This can be explained by high excretion fractions in combination with 
the comparatively high molecular mass of contrast agents (IOM: 777.1 
g/mol; IOH: 821.1 g/mol) and high usage volumes. When excluding 
contrast agents from the analysis, the hospital contribution decreases to 
8 % to the overall PEL. This is still higher than reported in our previous 
study (Zillien et al., 2019) when measured loads in hospital wastewater 

were compared to measured WWTP influent loads. While it is difficult to 
pinpoint the exact reason for this, several factors could play a role, 
including differences in compound selection between both studies or 
analytical constraints regarding limits of detection and quantification in 
the previous study. 

Second, besides general source-tracking as described above, a 
modelling approach to emission quantification can also shed light on 
temporal trends in consumption and hence excretion. Fig. 4 depicts the 
predicted load per capita to the WWTP, accounting for the different 
compound groups and emission sources on a monthly basis in 2020. It 
becomes clear that for most compound groups variation between 
months is relatively small. One exception here are substantially higher 
predicted loads of OTC drugs in March 2020, which are mainly attrib
uted to higher OTC sales via pharmacies as well as higher prescriptions. 
An opposite trend can be observed for contrast agents that depict a 
declined use during March, April and May 2020 as compared to the rest 
of the year. Both observations are likely linked to the onset of the Covid- 
19 pandemic. For antibiotics, a substantially higher usage was observed 
during the first three months of 2020 as compared to the rest of the year. 
This is likely related to the lock-downs and social distancing measures 
that were in place to limit the Covid-19 outbreak (Zorginstituut 
Nederland, 2022) and is mainly attributed the usage pattern of amoxi
cillin (S8). Similarly, lower quantities of contrast agents were used 
during spring 2020 as clinical care focused mainly on Covid-19 patients 
at that time. Overall, the compounds selected in this study resulted in an 
estimated per capita excretion of 17.4 g per person in 2020. Of this, OTC 
drugs represent the major share (62.4 %) followed by contrast agents 
(20.3 %) and antibiotics (7.6 %). Although not the point of this study, 
caution is advised when generalizing the API-related results presented in 
this section as 2020 was anything but a ‘normal year’. The purpose of 
this exercise was to showcase the utility of the modelling approach. The 
aim of this study was to develop a validated, generalizable modelling 
approach to quantify CEC emissions to wastewater. 

While we only present the estimated mass loads for a selected 
number of APIs, we also highlight the utility of such simple analyses. The 
approach presented in this paper is easily transferrable to any API pro
vided that a comprehensive and reliable consumption or usage dataset is 
available for a given study area. Combining the outcomes of such 
modelling exercises with ecotoxicity data enables prioritization of 
emission reduction measures on various spatial scales ranging from 
single hospitals (e.g., Zillien et al., 2019) to individual districts or cities 
to entire regions or countries. Furthermore, if comparable data were 
available for other groups of CECs, a similar conceptual framework 
could be developed to assess the emissions of other land uses. Similar 
approaches were followed to develop risk-based tools, for example, to 
assess emissions of veterinary pharmaceuticals via manure application 
(Rakonjac et al., 2022) or the environmental impact of pesticide use on a 
river catchments in Indonesia (Utami et al., 2020) and California (Parker 
and Keller, 2021). Furthermore, this type of analysis could help to assess 
trends in API usage if comparable datasets are available for several years 
and could help to forecast emissions, e.g. in relation to ageing societies. 
Additionally, source tracking of API emissions within urban areas could 
present a valuable tool to increase stakeholder interaction and could 
serve as basis to discuss and prioritize local emission reduction strategies 
(Moermond and de Rooy, 2022). 

3.3. Variability in emission estimates 

Variability and uncertainties are not unique to modelling emissions 
but also inherent to field measurements. While analytical variability can 
be assessed through stringent lab procedures (Section 2.5), quantifying 
uncertainties introduced during exposure of the samplers in the field is 
very difficult. Practical issues include the effect of toilet paper and other 
sanitary items wrapped around samplers or the impact of varying flow 
velocities on the uptake rate. These factors require more research in the 
future. Based on our results, substantial variation was observed in field 

Table 2 
Comparison of model performance for different scenarios assessed using either 
national or local dataset. Only those APIs were assessed that were present in both 
datasets (so acetaminophen, iohexol and iomeprol were excluded from local 
dataset).  

Scenario Dataset Xi SSPB Remarks   
[%] [%]  

Consumption     
fex = 1, ex metabolites National 370 245 nAPI = 23  

Local 555 497 nAPI = 23      

Excretion parent compounds     
fex = parent National 157 − 40 nAPI = 26  

Local 245 − 6 nAPI = 26      

Total excretion     
fex = parent + conjugate National 157 15 nAPI = 26  

Local 245 24 nAPI = 26  
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data obtained via passive sampling. For many compounds, variation in 
measured loads was larger than the variation in estimated loads (Fig. 2). 
This could be partially due to different temporal data resolution since 
monthly usage data was compared to weekly time-weighted average 
measurements but suggests overall that also measured loads derived 
from passive sampling comes with limitations. In this section, we discuss 
the factors causing variability in emission estimates in more detail, 
particularly regarding uncertainties around usage and consumption data 
and excretion fractions. 

3.3.1. Usage equals consumption? 
Following the conceptual framework of emission estimation (Fig. 1), 

several factors can introduce uncertainty in the modelling steps and 
potentially cause over- or underestimation of predicted API emissions to 
wastewater. Starting with the prescription and sales data, it remains 
unclear if all medication prescribed or sold is actually being consumed. 
Furthermore, private import of pharmaceutical products from other 
countries could result in higher measured loads compared to estimated 
loads. For example, Vogler and de Rooij (2018) found that around 7 % of 
the medication found in municipal waste in Vienna was of foreign 
origin. Overall, several studies point to the fact that the general public 
accumulates substantial amounts of unused medication at home, which 
raises questions about what disposal routes people chose to dispose of 
the unused products and what types of medication the leftover consist 
of. 

From a consumers’ perspective, three main routes of disposal are 
available for unused medication: return to pharmacy or healthcare 
providers; disposal via household garbage; or disposal via toilets/sinks. 
Several studies investigated the behavior of the general public towards 
pharmaceutical waste (e.g., Coma et al., 2008; Fenech et al., 2013; Stone 
et al., 2022; Veiga et al., 2023; Vogler and de Rooij, 2018). For example, 
Veiga et al. (2023) assessed disposal routes of unused medication in 
Portugal via an online questionnaire and found that around 70 % of the 
450 participants would return unused medicines to the pharmacy while 
30 % would dispose them via the household garbage. In their study, 
mainly painkillers and antihistamines remained unused. Similarly, a 
study by Coma et al. (2008) analyzed pharmaceutical products returned 

to pharmacies in Barcelona (Spain) and found that returned products 
mainly belonged to ATC classes A (alimentary tract and metabolism) and 
N (nervous system) (18 % each), followed by class C (cardiovascular 
system, 11 %). Vogler and de Rooij (2018) studied pharmaceutical 
products in the municipal waste of Vienna (Austria) and found that 42 % 
of collected items were not identifiable and most identifiable products 
belonged to ATC classes A, N or R (respiratory system). In the 
Netherlands, initiatives to reduce pharmaceutical waste include trials to 
re-dispense unused medicines that have been returned to pharmacies 
(Bekker et al., 2019a; Bekker et al., 2019b). From a modelers’ 
perspective, these factors can complicate the emission estimation unless 
detailed data is available. 

To assess whether variability in consumption pattern could affect the 
model performance, we classified all APIs into two categories: APIs 
predominantly used against acute health issues (antibiotics, painkillers, 
contrast agents) and APIs that are mainly used to treat chronic diseases 
(beta-blockers, other prescription drugs). This distinction was made 
based on pharmacotherapeutic information available via www. 
farmacotherapeutischkompas.nl. Indeed, the model spread (Xi) was in 
both excretion scenarios smaller for the group of APIs used against 
chronic diseases than for the ones against acute health issues (Table 3). 
This seems logical as APIs used against chronic diseases are consumed 
on a regular basis over an extended period of time resulting in rather 
constant emissions to wastewater. The use of APIs against acute issues is 
likely incidental and therefore more variation can be expected. Note
worthy, however, the data used in this study is for 2020, which cannot 
be considered a ‘normal’ year due to the onset of the global Covid-19 
pandemic. It has been demonstrated that measures to restrict the 
spread of Covid-19 reduced the prevalence of other infectious diseases 
affecting in turn the usage of APIs, especially antibiotics, used against 
acute health issues (Zorginstituut Nederland, 2022). This suggests that 
the differences in consumption between chronically and acutely used 
APIs will be larger in ‘normal’ years. 

The assumption that prescription and sales equal consumption can 
introduce uncertainty in the modelling framework. While considering 
unused medication as being consumed and causes overestimation of API 
emissions to wastewater, unjust neglect of import of pharmaceuticals 

Fig. 3. Assessment of relative contribution per emission source to overall estimated API load at WWTP influent in Nijmegen for 2020. Color scheme: ColorB 
rewer.org. 
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from abroad can result in underestimation. Similarly, disposal of unused 
medication via toilets and sinks can result in higher wastewater loads 
than expected based on emission estimation. Pinpointing the contribu
tion of single factors to the overall uncertainty remains difficult as 
specific information is lacking. While consumer surveys provide insights 
into common practices of the general public, these surveys often sample 
only a small group of individuals that are not necessarily representative 
for the entire population. However, despite the variability around usage 
data, the associated uncertainty seems to have a smaller effect on the 
emission estimation compared to the choice of the excretion fraction. 

3.3.2. Selecting ‘the right’ excretion fraction 
The choice of the excretion fraction is a crucial step in estimating API 

emissions to wastewater. Generally, when working with pharmacoki
netic data, it is important to keep in mind that reported excretion data 
are often based on a relatively small group of study subjects who do not 
necessarily reflect the general population. While especially older studies 
focused mainly on healthy males (Beery and Zucker, 2011) or ‘normal 
volunteers’ (e.g., Bodey and Nance, 1972), more recent research led to 
increasing evidence that factors like sex, age and ethnicity can cause 
substantial interindividual variability in toxicokinetic processes (Soldin 
and Mattison, 2009). 

Physiological and hormonal differences between men and women 
have been shown to affect the activity of enzymes involved in drug 
metabolism and thus urinary excretion (Joseph et al., 2015; Scandlyn 
et al., 2008; Sinués et al., 2008; Tomicic et al., 2011). For example, the 
use of hormonal birth control medication and pregnancy increase 
metabolic activity in women affecting particularly glucuronidation of 
parent compounds (Scandlyn et al., 2008; Sinués et al., 2008; Tomicic 
and Vernez, 2014). Tomicic et al. (2011) observed that women not using 
hormonal contraceptives excreted significantly higher fractions for 
parent compounds than men or women who are using hormonal con
traceptives after exposure to different solvents via inhalation. The use of 
hormonal contraceptives lead to a shift of 50 % in excretion ratio be
tween parent compounds and metabolites (Tomicic et al., 2011). Other 
studies report that besides sex also age is an important factor to explain 
differences in the expression of human drug transporter genes affecting 

Fig. 4. Monthly contribution of compound groups per emission source to WWTP influent (predicted environmental concentration, PEC) in Nijmegen in 2020. *Other 
prescription drugs refer to carbamazepine, fluoxetine, gemfibrozil, hydrochlorothiazide, methylphenidate and valsartan. **OTC wholesales was provided on an 
annual scale and subsequently evenly distributed over the individual months for this graphic. Color scheme: ColorBrewer.org. 

Table 3 
Assessing model performance for APIs used against chronic vs acute health is
sues. For the classification of APIs according to group, see S9.  

Scenario Dataset API group Xi SSPB remarks       

Total excretion      

fex = parent + conjugate Local Acute 471 151 nAPI = 18         

Chronic 110 − 2 nAPI = 11        

National Acute 228 25 nAPI = 15         

Chronic 123 − 51 nAPI = 11  
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urinary excretion fractions (Joseph et al., 2015; Sinués et al., 2008). In 
comparison, the effect of ethnicity on the metabolism and excretion of 
drugs appears less pronounced (Darney et al., 2020; Kasteel et al., 2020). 
However, single studies did observe differences between ethnic groups. 
Critchley et al. (2005), for example, observed differences in the excre
tion of conjugate metabolites between Hong Kong Chinese and Cauca
sians after administration of a single oral dose of paracetamol. More 
research is required to accommodate socio-demographic diversity in 
toxicokinetics and to improve the mechanistic understanding of con
founding factors. Altogether, those factors could explain the large ranges 
in excretion fractions reported for many APIs. 

Due to the large ranges in excretion fractions, selecting appropriate 
excretion fractions for the emission modeling based on literature was in 
many cases challenging. For example, the American Food and Drug 
Administration (FDA) reports for orally administered gemfibrozil, 
marketed under the tradename ‘LOPID’: ‘LOPID mainly undergoes 
oxidation of a ring methyl group to successively form a hydroxymethyl and a 
carboxyl metabolite. Approximately seventy percent of the administered 
human dose is excreted in the urine, mostly as the glucuronide conjugate, with 
less than 2 % excreted as unchanged gemfibrozil. Six percent of the dose is 
accounted for in the feces.’ (Kimoto et al., 2015; US FDA, 2020). In 
contrast, Knauf et al. (1990) report: ‘In healthy volunteers, only 0.02 to 
0.15 % of the given dose was recovered in the urine as parent gemfibrozil [as 
the urine concentrations were close to the detection limit of the assay method, 
these values can be regarded only as rough estimates], while conjugates made 
up 7–14 %’. Additionally, for conjugated metabolites, reported excretion 
fractions sometimes seemed to refer to all kinds of conjugated metabo
lites but not necessarily to the conjugated parent compound. Excretion 
fractions selected for this study are reported in S4. 

The variation in reported excretion fractions can affect the estima
tion of API emissions to wastewater. Small deviations between assumed 
and actual excretion fractions have a substantially larger effect on small 
excretion fractions than on large ones. As for gemfibrozil, choosing an 
excretion fraction of 2 % or 0.02 % results in a factor of 100 difference in 
estimated emissions for the parent compound. Similarly, a 1 %-point 
deviation does not really affect the estimated emission if the excretion 
fraction of an API is above 90 % (e.g., fex clarithromycin: 0.95, fex 
atenolol: 0.93). However, it will result in double or nil estimations for 
the parent compounds of diclofenac of naproxen (both fex = 0.01). 
Selecting an appropriate excretion fraction is therefore the major chal
lenge when estimating API emissions. For some APIs, it is recommended 
to also include excretion of conjugate metabolites as some conjugate 
metabolites can back-transform into their respective parent compounds 
via biological or abiotic fate processes. 

3.4. In-sewer fate: Accounting for back-transformation of conjugate 
metabolites 

Deconjugation of conjugated metabolites can lead to back- 
transformation into the respective parent compound. D’Ascenzo et al. 
(2003) suggested that deconjugation of glucuronide metabolites could 
be the result of enzymatic cleavage by β-glucuronidase secreted by E.coli 
bacteria present in wastewater. After cleavage, the unconjugated parent 
compound can be released into the water phase, which is also believed 
to offer an explanation for negative removal efficiencies observed for 
some pharmaceuticals, including diclofenac (Clara et al., 2005; Lee 
et al., 2012; Vieno and Sillanpää, 2014; Zorita et al., 2009). Since 
conjugation is an important phase II elimination process relevant to 
many orally consumed pharmaceuticals (Ge et al., 2016; Järvinen et al., 
2022), this could also affect emission estimates of APIs to wastewater. 

Based on the compound selection for this study, excretion of conju
gated parent compounds is relevant for five APIs: diclofenac, naproxen, 
acetaminophen, codeine and gemfibrozil. Respective excretion fractions 
were collected from literature and subsequently added to the excretion 
fractions reported for the parent compounds (Delli Compagni et al., 
2020). In the absence of empirical data on the kinetics of back- 

transformation in wastewater, we assumed complete and instant back- 
transformation into the respective parent compound. 

For three of the five APIs (diclofenac, naproxen, acetaminophen), 
accounting for complete and instant back-transformation into the parent 
compound led to overestimations as compared to measured loads (Fig. 5, 
S10). However, precisely these APIs are available as OTC drugs for self- 
medication in the Netherlands. Hence, overestimation of those APIs 
could also suggest that some share of sold products remains unused. In 
contrast, gemfibrozil is only available upon prescription. While excre
tion of the parent compound of gemfibrozil resulted in a factor of 164 
underestimation compared to measurements, including the excretion of 
the conjugated parent compound resulted in only a factor of 9 under
estimation. In the case of codeine, accounting for deconjugation of co
deine conjugates resulted in a factor of 1.8 underestimation. However, 
after completion of this research we found out that one codeine- 
containing cough syrup is available as OTC medication which we 
missed during data collection. Therefore, we cannot say with certainty 
whether the improved fit between emission estimates and sewer mea
surements is solely attributed to the effect of deconjugation or also 
partially to the missed OTC formulation. While only indicative due to 
the small sample size, our results suggest that back-transformation of 
conjugated parent compounds is likely a relevant fate process within the 
sewer system and therefore needs to be considered when estimating API 
emissions to WWTP influent. 

4. Conclusions and recommendations 

4.1. Conclusions from this study 

Estimating API emissions to wastewater based on usage and con
sumption data is feasible on a city-scale. For most APIs, the estimated 
emissions based on usage data were within a factor of 10 from waste
water measurements obtained via passive sampling. Modelling based on 
sales and prescription data can provide additional insights into mass 
flows compared to field measurements. 

Disentangling processes causing variability in API emission estima
tion remains difficult. Besides variability in usage data, the choice of 
excretion fraction has a major effect on the emission estimation. Model 
performance consistently improved if excretion of parent compounds 
and conjugated parent compounds were taken into account. Emission 
estimates for compounds excreted in low fractions are substantially 
more sensitive to small variations in assumed and actual excretion 
fractions than compounds excreted in large fractions. 

Accounting for complete and instant back-transformation of conju
gated parent compounds led to better emission estimates compared to 
wastewater measurements. This suggests that back-transformation is 
likely a relevant fate process within the sewer system, which therefore 
needs to be considered when estimating API emissions to WWTP 
influent. 

Pharmacokinetic data reported in literature are often based on a 
relatively small group of study subjects who do not necessarily reflect 
the general population. More research is required to accommodate so
cietal diversity in toxicokinetics and to improve the mechanistic un
derstanding of confounding factors. 

4.2. Recommendations and future research prospects 

Based on the outcomes of this study, we suggest three main di
rections for future research. Firstly, we recommend evaluating if the 
method presented could be used and automated to estimate API emis
sions on a European scale. If country-specific usage data on APIs and a 
comprehensive overview of related excretion fractions were available, 
the approach we present in this study could be extrapolated e.g. via per 
capita emission loads to other locations. Given that our case study 
focused on a medium sized city, the applicability of the approach would 
need to be assessed for substantially larger cities as well as for lower 
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populated areas. The contribution of health care facilities in terms of API 
emissions will need to be evaluated on a case-by-case basis, especially if 
hospitals have on-site wastewater treatment facilities in place. 
Depending on the temporal and spatial resolution of future studies, the 
implications of commuting and large-scale events would need to be 
studied. 

Secondly, we recommend conducting more research into the impact 
of compound properties in relation to sampling techniques used in 
empirical monitoring campaigns of raw wastewater. Particularly lip
ophilicity or the degree of ionization could underestimate the measured 
emission loads if only the water phase is being sampled. Furthermore, 
more empirical research is necessary to assess the fate of conjugated 
parent compounds and metabolites in wastewater. 

Thirdly, this study highlights that combining modelling with 
empirical monitoring offers substantial opportunities for a more effi
cient and more holistic approach to assessing emission loads of APIs to 
the environment. If the required data would become accessible, the 
presented approach could likely be expanded to other groups of chem
icals of emerging concern besides APIs. Therefore, we recommend 
conducting more research into the identification and parametrization of 
emission sources and related emission pathways of other groups of 
chemicals to the environment. 
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Fig. 5. Accounting for back-transformation of conjugated metabolites into their respective parent compounds. Usage data based on local dataset for 2020. Measured 
loads represent average of two sampling campaigns at WWTP Nijmegen in May and September 2020. Fex, parent refers to the excretion fraction for the parent 
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