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ABSTRACT

With increasing numbers of chemicals used in modern society, assessing human and environmental exposure to them is becoming increasingly difficult. Recent
advances in wastewater-based epidemiology enable valuable insights into public exposure to data-poor compounds. However, measuring all >26,000 chemicals
registered under REACH is not just technically unfeasible but would also be incredibly expensive. In this paper, we argue that estimating emissions of chemicals based
on usage data could offer a more comprehensive, systematic and efficient approach than repeated monitoring. Emissions of 29 active pharmaceutical ingredients
(APIs) to wastewater were estimated for a medium-sized city in the Netherlands. Usage data was collected both on national and local scale and included prescription
data, usage in health-care institutions and over-the-counter sales. Different routes of administration were considered as well as the excretion and subsequent in-sewer
back-transformation of conjugates into respective parent compounds. Results suggest model-based emission estimation on a city-level is feasible and in good
agreement with wastewater measurements obtained via passive sampling. Results highlight the need to include excretion fractions in the conceptual framework of
emission estimation but suggest that the choice of an appropriate excretion fraction has a substantial impact on the resulting model performance.

1. Introduction

Good water quality is essential to society and ecosystem health. A
number of ecosystem services are directly linked to surface water
quality, e.g., drinking water production and recreation. Currently,
assessment of surface water quality relies heavily on empirical data.
Within the European Water Framework Directive (WFD, European
Commission (2000)), Member States monitor the chemical water quality
of their surface water bodies for a number of reference compounds
(European Commission, 2022). While this concerted effort offers the
opportunity to compare the environmental status between different
European river catchments over time, it is limited in scope as it provides
retrospective information on a relatively small number of compounds.
Pollution already occurred and conclusions on the overall risk of
chemical exposure cannot be drawn as only a limited number of com-
pounds are being measured.

With increasing numbers of chemicals used in modern society,
assessing human and environmental exposure empirically is becoming
increasingly challenging. In 2007, the European Union (EU) adopted a
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regulation to register, evaluate, authorize and restrict chemicals
(REACH). Under REACH, the chemical industry and EU-importers have
to register any chemicals that are used in quantities larger than one
tonne per year via the European Chemicals Agency (ECHA). In 2023, the
REACH database contains entries for >26,000 chemicals (ECHA, 2023).
Those chemicals are prospectively evaluated regarding ‘safe use’ by
evaluation of predicted environmental concentrations for a typical Eu-
ropean water body and the predicted no-effect concentrations (PNECs).
Despite technical advances, particularly in the field of non-target
screening, quantifying all registered chemicals in environmental sam-
ples to ascertain ‘safe use’ is both technically and financially unfeasible.

Empirical monitoring comes with substantial limitations. Besides
being time- and location-specific, quantification of environmental con-
centrations is limited to those compounds for which analytical detection
techniques are available (target analyses). This is particularly prob-
lematic for compounds often occurring in environmental concentrations
below the analytical detection limits such as natural and synthetic
hormones (Gunnarsson et al., 2019; Ojoghoro et al., 2021) and for
chemical structures for which no analytical standards are availabe (e.g.,
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human metabolites and environmental transformation products). While
non-target screening can identify the presence of any chemical struc-
tures in environmental samples, including molecular structures of hy-
pothetical tranformation products, quantification is only possible in
combination with mass-spectrometry equipment. Therefore, analytical
detection limits represent a major bottleneck in the holistic mapping of
environmental pollution with chemicals of emerging concern (CECs).

Instead, databases with usage data, such as the REACH database, can
in principle be used for prospective, model-based prediction of envi-
ronmental quality provided that the pathways between the source and
the target compartment are known. For example, van de Meent et al.
(2020) estimated European-wide surface water concentrations of >5000
organic chemicals following such an approach within the SOLUTIONs
project. Van Gils et al. (2020) refined this model by applying a more
detailed hydrological model to derive spatiotemporal-explicit concen-
trations for a large number of contaminants of emerging concern (CECs).
These examples demonstrate that model-based, prospective prediction
of surface water quality is feasible and could offer an efficient alterna-
tive to measuring environment concentrations.

In this paper, we argue that for some compound groups estimating
emissions to wastewater based on usage data can be a cheap and
informative alternative for repeated monitoring. However, such sys-
tematic modelling approaches stand and fall with the quality of the input
data. We hypothesize that due to the lack of sufficiently detailed infor-
mation on emission sources and exposure routes, model-based pro-
spective prediction of surface water quality is still running behind its full
potential for the majority of CECs. Compared to other groups of chem-
icals, data on the usage of pharmaceuticals are relatively detailed and
abundant. Particularly, data on prescription drugs used by the general
public are in many countries accessible via public databases. Usage of
pharmaceuticals in health care facilities such as hosptials and care
homes are typically also registered in detail for financial (health insur-
ance) reasons. Therefore, the data coverage on pharamceutical usage is
relatively high for different geographical scales.

The aim of this study is to develop, validate and explore the potential
of predicting mass loads of CECs to wastewater based on usage data for
urban areas. Hereto, we collected monthly prescription and usage data
of 29 active pharmaceutical ingredients (APIs) for a medium-sized city
in the Netherlands. Local API data included the clinical use in a hospital
and several long-term care facilities. City-wide emission estimates to
wastewater were validated with field measurements obtained through
passive sampling of the influent at the local wastewater treatment plant
(WWTP). Our study bridges the gap between emission estimation efforts
on the continental scale (Van de Meent et al., 2020, Van Gils et al., 2020)
and studies describing highly granulated source-specific CEC emissions
(e.g., Zillien et al., 2019), by aiming at refining land-use specific emis-
sion estimates on the regional scale. The methods presented in this paper
can also be developed for other land uses and compound categories, for
example, API emissions from livestock (Rakonjac et al., 2022), high-
lighting the potential of model-based emission estimation for other CECs
provided that required data are accessible.

2. Materials and methods
2.1. Study area

The city of Nijmegen is located in the southeast of the Netherlands
and counts approx. 180,000 inhabitants. The city population is
comparably younger than the national average due to the presence of
one university (ca. 24,000 students) and two other institutions for
higher education counting together about 16,700 students in total (ROC,
2020). People aged 20-29 represent the largest group with 37,000 in-
habitants (S1). The city has two hospitals (ca. 600 beds each) and 24
care homes for elderly and people requiring long-term care.

The city has one municipal WWTP with a capacity of 400,000 pop-
ulation equivalents (p.e.) that also treats wastewater from 11

Environment International 185 (2024) 108524

neighboring villages which count in total ca. 100,000 inhabitants.
Treatment steps include primary and secondary treatment using acti-
vated sludge. In this particular WWTP, wastewater is heated, resulting in
relatively constant water temperatures around 15 °C in winter and 28 °C
in summer. More details on the treatment steps and the typical waste-
water composition can be found in S2. The sewer system is mainly
composed of gravity sewers with a total length of 595 km, of which 352
km are combined sewers containing wastewater and surface run-off.
Following the approach by Kapo et al. (2017), the estimated average
sewer residence time within the city is approximately 2 h (maximum 4 h,
S3).

2.2. Compound selection

In total, the emissions of 32 CECs to wastewater were estimated
based on usage data (Table 1). All compounds were selected to cover a
broad chemical spectrum within our analytical possibilities (for details
see Section 2.4). Among the selected CECs, 29 APIs were chosen rep-
resenting different treatment regimes, that is, to treat acute versus
chronic illnesses, different routes of administration, different sources,
that is, hospital-specific APIs, over the counter drugs (OTCs),
prescription-only APIs and combinations thereof. We also included 3
human metabolites of selected APIs in the emission estimation and
chemical analysis.

2.3. Prescriptions, usage and sales data of APIs

Efforts were made to create a comprehensive overview of the mass of
APIs used, by combining data from different sources. For the
Netherlands, annual prescription data to the general public on a national
scale were collected for 2020 from the Dutch open-access databank on
prescription data (www.gipdatabank.nl) for 29 APIs (Table 1). It was
assumed that prescription data to the general public refers only to
pharmaceuticals that can be self-administered thus orally or rectally.
Data reported in GIPdatabank are based on declarations of 19 Dutch
health insurance companies, covering together almost the entire Dutch
population. Since data is based on declarations, only those pharma-
ceuticals are reported for which health insurances offer reimbursements.
Furthermore, usage of pharmaceuticals in health care institutions such
as hospitals or care homes is not registered in GIPdatabank (Zorgin-
stituut Nederland, n.d.), neither are OTC sales. This means that data
reported in GIPdatabank offer an incomplete overview of pharmaceu-
tical usage in the Netherlands.

On a local scale, monthly prescription data of 2020 was purchased
for 27 APIs for the city of Nijmegen and its surroundings from the Dutch
Foundation for Pharmaceutical Statistics (Stichting Farmaceutische
Kengetallen, SFK, www.sfk.nl). SFK collects data on pharmaceutical
dispense from 97 % of all Dutch community pharmacies, covering 15.8
million inhabitants (Stichting Farmaceutische Kengetallen, n.d.). This
dataset reports API usage expressed as total number of DDDs prescribed
and sold in Nijmegen and the 11 surrounding villages that are connected
to WWTP Nijmegen. The dataset allowed for further specification be-
tween routes of administration and age groups, and included OTC sales
via pharmacies in the area. Usage of pharmaceuticals in health care
institutions is not covered by SFK datasets and neither are OTC sales via
retail.

To cover API usage by the health care institutions in Nijmegen,
monthly usage data on all APIs were obtained from one of the two
hospitals in Nijmegen as well as for 9 care homes in the city. Since no
data could be obtained for the other hospital, we chose to neglect its
contribution to the overall API emissions to wastewater. An earlier study
demonstrated that individual hospitals contribute only very little (1-2
%) to the overall API load in wastewater in cities of similar size and that
API usage can vary substantially between hospitals (Zillien et al., 2019).
For these reasons, also contributions of the remaining care homes were
neglected.
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Table 1
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Compound selection of this study. o = oral, p = parenteral, r = rectal, d = dermal. PRE = prescription drug, OTC = over-the-counter drug, HC = drug reserved for
health care, CP = consumer product, n.a. = not applicable.

Group API Abbreviation CAS-number Route of administration Type

Analgesic Acetaminophen (Paracetamol) PAR 103-90-2 o, r PRE + OTC

Angiotensin II receptor blocker Valsartan VAL 137862-53-4 o PRE

Antibiotic Amoxicillin AMO 26787-78-0 o, p PRE
Azithromycin AZI 83905-01-5 o PRE
Cefuroxime CEF 55268-75-2 0, p HC (+PRE)
Ciprofloxacin CIP 85721-33-1 o, p PRE
Clarithromycin CLA 81103-11-9 o PRE
Doxycycline DOX 564-25-0 o, p PRE
Erythromycin ERY 114-07-8 o PRE
Levofloxacin LEV 100986-85-4 o,p PRE
Ofloxacin OFL 82419-36-1 o PRE
Sulfamethoxazole SUL 723-46-6 o,p PRE
Tetracycline TET 60-54-8 o PRE
Trimethoprim TRI 738-70-5 0, p PRE

Anticonvulsant Carbamazepine CAR 298-46-4 o PRE

Antidepressant Fluoxetine (Prozac) FLU 54910-89-3 o PRE

Antilipemic Gemfibrozil GEM 25812-30-0 o PRE

Beta-blocker Atenolol ATE 29122-68-7 o PRE
Metoprolol MET 51384-51-1 o,p, I PRE
Sotalol SOT 3930-20-9 o PRE

Central nervous system stimulant Methylphenidate (Ritalin) RIT 113-45-1 o PRE

Contrast agent Iohexol IOH 66108-95-0 p HC
Iomeprol oM 78649-41-9 P HC

Diuretic Hydrochlorothiazide HYD 58-93-5 o PRE

NSAID Diclofenac DIC 15307-86-5 o,p,r,d PRE + OTC
Ibuprofen IBU 15687-27-1 o,p, r,d PRE + OTC
Naproxen NAP 22204-53-1 o, T PRE + OTC

Opioid Codeine COD 76-57-3 o PRE + OTC
Oxycodone OXY 76-42-6 o,p PRE

Human metabolite 4-Hydroxydiclofenac 40HD 64118-84-9 n.a. MET
5-Hydroxydiclofenac 50HD 69002-84-2 n.a. MET
Ritalinic acid RITAC 19395-41-6 n.a. MET

The painkillers diclofenac, naproxen, acetaminophen and ibuprofen
. . Nppp X DDD
are also available as OTC drugs in most Dutch supermarkets, drugstores Citper-capita = N (€8]
NL.2020

and pharmacies. To account for the OTC use of those APIs, a dataset
covering the total volume of Dutch wholesales via supermarkets, drug-
stores and online retail in 2020 for diclofenac, naproxen, acetaminophen
and ibuprofen was kindly provided by Nielsen (www.nielsen.com) at no
cost. This dataset included also the sale of APIs via private labels.

For all APIs, it was assumed that prescription, usage and sale
together equal consumption, hereafter referred to as ‘consumption’ or
‘usage’ interchangeably. Consequently, we did not account for unused
left-over medicines or a delay between purchase and consumption.

2.4. Estimating API emissions to wastewater

To calculate national per capita consumption Cn per.capica based on
the total number of daily defined doses (DDDs) as reported in GIPda-
tabank, API-specific DDDs were collected for the matching ATC codes
via the WHO ATC index (https://www.whocc.no/atc_ddd_index/).
Subsequently, the annual per capita prescription (grams per person per
year) was calculated for each API according to Eq. (1):

where Nppp refers to the total number of DDDs prescribed as reported in
GlIPdatabank.nl, DDD refers to the API-specific DDD as reported by the
WHO (typically grams of milligrams per DDD) and Pyy, 2020 refers to the
total population of the Netherlands in 2020 as reported by the CBS (in
our case 17,407,585 (2020); retrieved October 7th 2021). The same
equation was used to calculate local per capita consumption using the
population connected to the local WWTP instead of Py, 2020-

To estimate API emissions to wastewater, predicted emissions loads
(PEL) were estimated for each API (x) using Eq. (2):

PEL\’ = Z M)»,i Xﬁzxc.x.i (2)

i

where M, ; is the total mass of API x prescribed (grams) for route of
intake i, and f, . ; refers to the excretion fraction for API x and route of
intake i.

Excretion fractions for all routes of intake were obtained via public
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databases such as Drugbank (drugbank.ca), the ‘summary of product
characteristics’ (SmPc) available via the Dutch ‘Medicine Information
Bank’ (www.geneesmiddelinformatiebank.nl) and scientific literature.
Excretion of the two human metabolites of diclofenac and methylphe-
nidate was estimated by using the excretion fractions referring to these
two specific metabolites as reported in literature (S4).

Similarly, the excretion of conjugate metabolites was accounted for
via excretion fractions reported specifically for those metabolites. Back-
transformation of conjugate metabolites into the respective parent
compound was considered by adding the excretion fractions reported for
the conjugated parent compounds to the excretion fractions reported for
the free parent compound as described earlier in (Delli Compagni et al.,
2020). This was not in all cases unambiguous as reported excretion
fractions sometimes seemed to refer to all kinds of conjugated metabo-
lites but not necessarily exclusively to the conjugated parent compound
(discussed further in Section 3.2). In the absence of empirical data on the
kinetics of back-transformation from conjugate metabolites in waste-
water, we assume complete back-transformation into the parent com-
pound. An overview of the excretion fractions used in this study can be
found in S4.

2.5. Field measurements

Wastewater at the WWTP influent was sampled using passive sam-
plers to obtain weekly time-weighted average loads of APIs. Two sam-
pling campaigns were conducted in May and September 2020. During
each sampling campaign, one set of passive samplers (Speedisks©)
containing DVB-HLB adsorption material was deployed for one week at
the influent collection basin. To allow direct contact between sampler
and wastewater, the outer rim of the Speedisk© was removed (S5). The
samplers were attached to a metal rod to weigh them down and keep
them submerged (S6). The exposure time was kept relatively short to
ensure linear uptake of APIs to the sampler. The weather during both
sampling campaigns was dry, so no dilution by surface run-off was ex-
pected. Upon retrieval, samplers were immediately transported in glass
jars on ice to the laboratory and frozen at —18 °C until further analysis.

After addition of the internal standards, the extraction was per-
formed following a 3-step-approach: during the first step, the passive
samplers were extracted using 2 mL methanol. In a second step, samplers
were extracted again using five times 5 mL dichloromethane. Both el-
uates were combined, dried with sodium sulphate over a glass frit and
concentrated to 2-3 mL. In a third step, four times 5 mL of 1 % formic
acid methanol was used to extract any remaining polar compounds. This
eluate was then concentrated to 1-2 mL, subsequently completely dried
under a stream of nitrogen to remove the formic acid and dissolved
again in methanol. Per sampler, those three methanol fractions were
combined and vortexed. The resulting extract was concentrated under a
stream of nitrogen, then brought to a final sample volume of 1 mL and
stored at —20 °C until the analysis.

Analysis was performed following the same protocol as described in
Zillien et al. (2019). In short, samples and internal standards were
analyzed using Agilent 1260 series high-performance liquid chroma-
tography coupled with an Agilent 6460 triple quadrupole LC/MS with
Jetstream Electron Spray Ionisation (ESI) and multiple reaction moni-
toring (MRM). The target compounds were determined with one pre-
cursor ion and two product ions. Calibration was done before measuring
the samples with known amounts of the analytes in nine steps with
concentrations ranging between 0 and 50 ng mL ™. The limit of detec-
tion (LOD) and limit of quantification (LOQ) of the analytes were
determined with signal-to-noise ratios of 1:3 and 1:10, respectively.
Average analytical recoveries, calculated water concentrations and in-
formation on the LOD and LOQ are given in S7. The method resulted in
LOQ values ranging between 0.5 and 1 ng mL ™! of extract. Given that
the volume of the final extract was 1 mL, results were reported as load
(ng) of APIs per set of samplers.

Measured loads of APIs per set of samplers were extrapolated to
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weekly emission loads MEL per API x according to Eq. (3) as described in
Zillien et al. (2019):
L, x @WWTP

MEL, = ——— 3
R, X Tampling )

where L, is the measured load (grams per week) of API x on the samplers
per week at the WWTP influent; Quwwrp is the total weekly discharge
(liter per 7 days); R; is the sampling rate per sampler (liter per day) and
Tsampling Tefers to the sampling duration (7 days). Qwwrp Was based on
daily influent discharge measurements at the WWTP. To derive time-
weighted average concentrations in WWTP influent, we assumed an
average sampling rate of 50 mL per sampler per day (Smedes et al.,
2013; Zillien et al., 2019).

2.6. Evaluation of model performance

Emission estimates were compared to field measurements obtained
through passive sampling. To compare model performance when using
different levels of detail in input data, two model performance indicators
defined by Morley et al. (2018) were used: To assess the overall model
spread (i.e., deviation from the 1:1 line), the Median Symmetric Accu-
racy was calculated. Applied to the context of our study, the Median
Symmetric Accuracy (Xi) was calculated according to Equation (4):

" () D) 1) )

where PEL, is the predicted environmental load of API x in wastewater,
and MEL, is the measured environmental load of API x in wastewater.
The Median Symmetric Accuracy can be interpreted as the unsigned
percentage of error in which both under- and overestimations are
penalized equally (Morley et al., 2018). The smaller X; the better the
predicted loads coincide with measured loads and therefore, X; gives an
indication of overall model spread. As indication, a factor of 10 devia-
tion results in an X; value of 900 %.

To assess whether the predicted loads are systematically over- or
underestimating measured loads, the Symmetric Signed Percentage Bias
(SSPB) was calculated based on Morley et al. (2018). SSPB in our context
was calculated according to Eq. (5):

PEL
SSPB = 100% x signum | median | In ad
MEL,

G

A positive value for SSPB indicates a systematic overestimation, mean-
ing that predicted loads are generally larger than measured loads
whereas a negative value suggests predicted loads being smaller than
measured loads and therefore indicate a systematic underestimation.

<mfdian (
Xi = 100% x (-

3. Results and discussion

In this section, we first present the comparison of modelled and
measured API loads in wastewater using different input data (3.1), then
showcase the utility of model-based emission estimation (3.2). Subse-
quently, we discuss in more detail the factors causing variability in
emission estimates (3.3) and assess if accounting for in-sewer trans-
formation via re-transformation of conjugated metabolites into their
respective parent compounds improves emission estimates (3.4).

3.1. Estimating API emissions on city-scale: Proof of principle
Of the compounds selected for this study, mean annual emission

estimates of 20 compounds were within a factor of 10 from mean
wastewater measurements (Fig. 2). For 9 of the remaining 12
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Fig. 1. Conceptual framework of this study.
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Fig. 2. Comparison of measured weekly load of 32 APIs at WWTP Nijmegen
(influent) with estimated weekly loads. Measurements represent the average of
2 sampling campaigns, error-bars in measurements indicate min and max
values. Estimates are based on local data and account for back-transformation
of conjugate metabolites. Xi = 256 %, SSPB = 60 %. Vertical dotted line rep-
resents the limit of detection (LOD) and vertical dashed line represents the limit
of quantification (LOQ). Black solid line represents ideal ratio of 1 (predicted
emission equals measured emission), blue solid lines indicate a 10-fold devia-
tion from it. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

compounds, deviation between estimates and measurements were larger
than a factor of 10. For cefuroxime (29.7); diclofenac (11.6); erythro-
mycin (25.7); fluoxetine (26.8); iohexol (25.1); iomeprol (3877.9) and
valsartan (15.8) estimated emission loads were higher than wastewater
measurements. Of those, 4 compounds (iomeprol, iohexol, fluoxetine,
and erythromycin) were measured below the LOQ (Fig. 2). In contrast,
for gemfibrozil (62.2) and ibuprofen (22.2) estimated loads were lower
compared to measured loads. Emission estimates agreed particularly
well with sewer measurements for compounds showing good average
analytical recoveries (>60 %, i.e., trimethoprim, sulfamethoxazole, co-
deine, oxycodone, atenolol, methylphenidate).

While the parent compound diclofenac was overestimated, emission
estimates for both its hydroxy metabolites 4OHD and 50HD match well
with wastewater measurements. This overestimation of DCF as parent
compound suggests that either the excretion fractions used for the
parent compound and diclofenac-glucuronide are higher than in reality;
or less dermal DCF is used than is sold; or that the wash-off fraction of

dermally applied DCF is estimated too high. On the contrary, the good
match between prediction and measurements of 40HD and 50HD sug-
gests that usage data seems rather accurate (further discussed in Sections
3.2 and 3.3). In comparison, methylphenidate (RIT), which is in the
Netherlands only available upon prescription, and its metabolite rita-
linic acid (RITAC) agree well with wastewater measurements. This
observation highlights the utility of focusing not just on individual
parent compounds but also on related human metabolites for model
validation (Bakker-'t Hart et al., 2023).

Three of the remaining compounds were not detected (amoxicillin,
doxycycline, tetracycline) despite being predicted above the LOQ. In the
case of amoxicillin, this is surprising as it is by far (by mass) the most
consumed antibiotic in this study and shows little variation in pre-
scription over the year (S8). However, a laboratory study conducted by
Hirte et al. (2016) demonstrated that amoxicillin undergoes abiotic
hydrolysis via cleavage of the beta-lactam ring resulting in the formation
of amoxicillin penicilloic acid. Additionally, subsequent condensation
and decarboxylation result in two more transformation products (Hirte
et al., 2016). When analyzing influent samples from different WWTPs,
the authors detected the transformation products in all samples while
amoxicillin was detected in only one of the five samples. Among the
transformation products, amoxicillin penicilloic acid showed much
higher peaks than the parent compound amoxicillin. The authors attri-
bute this to accelerated hydrolysis due to microbial activity in waste-
water (Hirte et al., 2016). Hence, formation of amoxicillin penicilloic
acid due to hydrolysis within the sewer system could offer an explana-
tion for not detecting amoxicillin in our study.

Tetracycline and doxycycline in their neutral forms are both lipo-
philic due to the benzene rings in their molecules. Furthermore, both
compounds are zwitterions having an acidic group (OH) as well as a
basic group (N). This means that both compounds can be charged either
positively or negatively depending on the pH of wastewater. Given the
pH of wastewater typically varies between 6.5 and 8 (Zillien et al.,
2022), the basic groups of both compounds would mainly be present as
deprotonated cation due to their pK, values of 7.68 (tetracycline) and
8.33 (doxycycline). Consequently, both compounds could be electro-
statically sorbed to negatively charged organic matter present in
wastewater. This could explain why we were not able to detect both
antibiotics in the water phase. Overall, this discussion highlights that
compound properties like lipophilicity and the degree of ionization
could affect the measured emission loads as, like most sampling
methods, passive sampling only samples compounds present in the
water phase. In contrast, predicted emission loads in this study refer to
total emissions (i.e., dissolved and sorbed) and could therefore result in
a mismatch between predicted and measured emission loads.

Emission estimation was performed using two different sources of
input data: a national dataset and a local dataset (see Section 2.3 for
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details on data coverage). Model performance, assessed via SSPB and X;,
was generally better when the national dataset was used compared to
the local dataset (Table 2). Furthermore, we assessed model perfor-
mance for three different excretion scenarios (Table 2): Following the
EMA-guideline for environmental risk assessment, a default excretion
fraction of 1 was applied, meaning that the entire consumed dose is
excreted as parent compound. This scenario led to the worst model
performance as estimations deviated on average a factor of 5 to 6 from
measurements (X;) and resulted in a substantial overestimation (SSPB).
Model performance consistently improved if excretion fractions for
parent compounds were taken into account. For both datasets, model
spread reduced to an average factor of 2.5-3.5 (X;) while overall pre-
dictions were underestimating field measurements (negative SSPB).
When in addition to excretion of the parent compounds also the excre-
tion of conjugate metabolites was taken into account, the model spread
remained unchanged, but resulted again in a slight overestimation
compared to measurements (positive SSPB). This underlines the
importance of considering excretion of parent compounds and conju-
gated parent compounds within prospective emission modelling.

3.2. Showcasing the utility of emission modelling

In this section, we illustrate the added practical value and flexibility
of a model-based approach by showcasing the results of two simple
analyses that can follow an emission estimation as presented in this
study.

First, a reliable and comprehensive dataset on API usage and emis-
sion sources offers the possibility to assess the origin of APIs that
cumulatively result in the predicted load at the WWTP influent. This
‘source-tracking’ enables the identification of the largest contributors,
which represents valuable information regarding possible emission
reduction targets. Fig. 3 displays the origin of the predicted influent load
of WWTP Nijmegen in 2020. It becomes clear that at-home consumption
of prescribed APIs accounts for the largest share of estimated loads to
WWTP influent (42 %), followed by APIs originating from OTC sales via
pharmacies and wholesales (together 29 %). The hospital included in
this study contributed 27 % of the total influent load, while care homes
contributed the least (2 %).

When taking a closer look at the contribution of the hospital to the
predicted load, the two contrast agents iomeprol and iohexol stand out
since together accounting for 75 % of the total hospital contribution.
This can be explained by high excretion fractions in combination with
the comparatively high molecular mass of contrast agents (IOM: 777.1
g/mol; IOH: 821.1 g/mol) and high usage volumes. When excluding
contrast agents from the analysis, the hospital contribution decreases to
8 % to the overall PEL. This is still higher than reported in our previous
study (Zillien et al., 2019) when measured loads in hospital wastewater

Table 2
Comparison of model performance for different scenarios assessed using either
national or local dataset. Only those APIs were assessed that were present in both
datasets (so acetaminophen, iohexol and iomeprol were excluded from local
dataset).

Scenario Dataset Xi SSPB Remarks
[%] [%]

Consumption

fex = 1, ex metabolites National 370 245 npp; = 23
Local 555 497 Npp; = 23

Excretion parent compounds

fex = parent National 157 —40 nap; = 26
Local 245 —6 napr = 26

Total excretion

fex = parent + conjugate National 157 15 nppp = 26
Local 245 24 nppr = 26
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were compared to measured WWTP influent loads. While it is difficult to
pinpoint the exact reason for this, several factors could play a role,
including differences in compound selection between both studies or
analytical constraints regarding limits of detection and quantification in
the previous study.

Second, besides general source-tracking as described above, a
modelling approach to emission quantification can also shed light on
temporal trends in consumption and hence excretion. Fig. 4 depicts the
predicted load per capita to the WWTP, accounting for the different
compound groups and emission sources on a monthly basis in 2020. It
becomes clear that for most compound groups variation between
months is relatively small. One exception here are substantially higher
predicted loads of OTC drugs in March 2020, which are mainly attrib-
uted to higher OTC sales via pharmacies as well as higher prescriptions.
An opposite trend can be observed for contrast agents that depict a
declined use during March, April and May 2020 as compared to the rest
of the year. Both observations are likely linked to the onset of the Covid-
19 pandemic. For antibiotics, a substantially higher usage was observed
during the first three months of 2020 as compared to the rest of the year.
This is likely related to the lock-downs and social distancing measures
that were in place to limit the Covid-19 outbreak (Zorginstituut
Nederland, 2022) and is mainly attributed the usage pattern of amoxi-
cillin (S8). Similarly, lower quantities of contrast agents were used
during spring 2020 as clinical care focused mainly on Covid-19 patients
at that time. Overall, the compounds selected in this study resulted in an
estimated per capita excretion of 17.4 g per person in 2020. Of this, OTC
drugs represent the major share (62.4 %) followed by contrast agents
(20.3 %) and antibiotics (7.6 %). Although not the point of this study,
caution is advised when generalizing the API-related results presented in
this section as 2020 was anything but a ‘normal year’. The purpose of
this exercise was to showcase the utility of the modelling approach. The
aim of this study was to develop a validated, generalizable modelling
approach to quantify CEC emissions to wastewater.

While we only present the estimated mass loads for a selected
number of APIs, we also highlight the utility of such simple analyses. The
approach presented in this paper is easily transferrable to any API pro-
vided that a comprehensive and reliable consumption or usage dataset is
available for a given study area. Combining the outcomes of such
modelling exercises with ecotoxicity data enables prioritization of
emission reduction measures on various spatial scales ranging from
single hospitals (e.g., Zillien et al., 2019) to individual districts or cities
to entire regions or countries. Furthermore, if comparable data were
available for other groups of CECs, a similar conceptual framework
could be developed to assess the emissions of other land uses. Similar
approaches were followed to develop risk-based tools, for example, to
assess emissions of veterinary pharmaceuticals via manure application
(Rakonjac et al., 2022) or the environmental impact of pesticide use on a
river catchments in Indonesia (Utami et al., 2020) and California (Parker
and Keller, 2021). Furthermore, this type of analysis could help to assess
trends in API usage if comparable datasets are available for several years
and could help to forecast emissions, e.g. in relation to ageing societies.
Additionally, source tracking of API emissions within urban areas could
present a valuable tool to increase stakeholder interaction and could
serve as basis to discuss and prioritize local emission reduction strategies
(Moermond and de Rooy, 2022).

3.3. Variability in emission estimates

Variability and uncertainties are not unique to modelling emissions
but also inherent to field measurements. While analytical variability can
be assessed through stringent lab procedures (Section 2.5), quantifying
uncertainties introduced during exposure of the samplers in the field is
very difficult. Practical issues include the effect of toilet paper and other
sanitary items wrapped around samplers or the impact of varying flow
velocities on the uptake rate. These factors require more research in the
future. Based on our results, substantial variation was observed in field
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Fig. 3. Assessment of relative contribution per emission source to overall estimated API load at WWTP influent in Nijmegen for 2020. Color scheme: ColorB

rewer.org.

data obtained via passive sampling. For many compounds, variation in
measured loads was larger than the variation in estimated loads (Fig. 2).
This could be partially due to different temporal data resolution since
monthly usage data was compared to weekly time-weighted average
measurements but suggests overall that also measured loads derived
from passive sampling comes with limitations. In this section, we discuss
the factors causing variability in emission estimates in more detail,
particularly regarding uncertainties around usage and consumption data
and excretion fractions.

3.3.1. Usage equals consumption?

Following the conceptual framework of emission estimation (Fig. 1),
several factors can introduce uncertainty in the modelling steps and
potentially cause over- or underestimation of predicted API emissions to
wastewater. Starting with the prescription and sales data, it remains
unclear if all medication prescribed or sold is actually being consumed.
Furthermore, private import of pharmaceutical products from other
countries could result in higher measured loads compared to estimated
loads. For example, Vogler and de Rooij (2018) found that around 7 % of
the medication found in municipal waste in Vienna was of foreign
origin. Overall, several studies point to the fact that the general public
accumulates substantial amounts of unused medication at home, which
raises questions about what disposal routes people chose to dispose of
the unused products and what types of medication the leftover consist
of.

From a consumers’ perspective, three main routes of disposal are
available for unused medication: return to pharmacy or healthcare
providers; disposal via household garbage; or disposal via toilets/sinks.
Several studies investigated the behavior of the general public towards
pharmaceutical waste (e.g., Coma et al., 2008; Fenech et al., 2013; Stone
etal., 2022; Veiga et al., 2023; Vogler and de Rooij, 2018). For example,
Veiga et al. (2023) assessed disposal routes of unused medication in
Portugal via an online questionnaire and found that around 70 % of the
450 participants would return unused medicines to the pharmacy while
30 % would dispose them via the household garbage. In their study,
mainly painkillers and antihistamines remained unused. Similarly, a
study by Coma et al. (2008) analyzed pharmaceutical products returned

to pharmacies in Barcelona (Spain) and found that returned products
mainly belonged to ATC classes A (alimentary tract and metabolism) and
N (nervous system) (18 % each), followed by class C (cardiovascular
system, 11 %). Vogler and de Rooij (2018) studied pharmaceutical
products in the municipal waste of Vienna (Austria) and found that 42 %
of collected items were not identifiable and most identifiable products
belonged to ATC classes A, N or R (respiratory system). In the
Netherlands, initiatives to reduce pharmaceutical waste include trials to
re-dispense unused medicines that have been returned to pharmacies
(Bekker et al.,, 2019a; Bekker et al., 2019b). From a modelers’
perspective, these factors can complicate the emission estimation unless
detailed data is available.

To assess whether variability in consumption pattern could affect the
model performance, we classified all APIs into two categories: APIs
predominantly used against acute health issues (antibiotics, painkillers,
contrast agents) and APIs that are mainly used to treat chronic diseases
(beta-blockers, other prescription drugs). This distinction was made
based on pharmacotherapeutic information available via www.
farmacotherapeutischkompas.nl. Indeed, the model spread (Xi) was in
both excretion scenarios smaller for the group of APIs used against
chronic diseases than for the ones against acute health issues (Table 3).
This seems logical as APIs used against chronic diseases are consumed
on a regular basis over an extended period of time resulting in rather
constant emissions to wastewater. The use of APIs against acute issues is
likely incidental and therefore more variation can be expected. Note-
worthy, however, the data used in this study is for 2020, which cannot
be considered a ‘normal’ year due to the onset of the global Covid-19
pandemic. It has been demonstrated that measures to restrict the
spread of Covid-19 reduced the prevalence of other infectious diseases
affecting in turn the usage of APIs, especially antibiotics, used against
acute health issues (Zorginstituut Nederland, 2022). This suggests that
the differences in consumption between chronically and acutely used
APIs will be larger in ‘normal’ years.

The assumption that prescription and sales equal consumption can
introduce uncertainty in the modelling framework. While considering
unused medication as being consumed and causes overestimation of API
emissions to wastewater, unjust neglect of import of pharmaceuticals
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Table 3
Assessing model performance for APIs used against chronic vs acute health is-
sues. For the classification of APIs according to group, see S9.

Scenario Dataset API group Xi SSPB remarks
Total excretion
fex = parent + conjugate Local Acute 471 151 npp; = 18
Chronic 110 -2 npp; = 11
National Acute 228 25 nppr = 15
Chronic 123 —51 npp; = 11

from abroad can result in underestimation. Similarly, disposal of unused
medication via toilets and sinks can result in higher wastewater loads
than expected based on emission estimation. Pinpointing the contribu-
tion of single factors to the overall uncertainty remains difficult as
specific information is lacking. While consumer surveys provide insights
into common practices of the general public, these surveys often sample
only a small group of individuals that are not necessarily representative
for the entire population. However, despite the variability around usage
data, the associated uncertainty seems to have a smaller effect on the
emission estimation compared to the choice of the excretion fraction.

3.3.2. Selecting ‘the right’ excretion fraction

The choice of the excretion fraction is a crucial step in estimating API
emissions to wastewater. Generally, when working with pharmacoki-
netic data, it is important to keep in mind that reported excretion data
are often based on a relatively small group of study subjects who do not
necessarily reflect the general population. While especially older studies
focused mainly on healthy males (Beery and Zucker, 2011) or ‘normal
volunteers’ (e.g., Bodey and Nance, 1972), more recent research led to
increasing evidence that factors like sex, age and ethnicity can cause
substantial interindividual variability in toxicokinetic processes (Soldin
and Mattison, 2009).

Physiological and hormonal differences between men and women
have been shown to affect the activity of enzymes involved in drug
metabolism and thus urinary excretion (Joseph et al., 2015; Scandlyn
et al., 2008; Sinués et al., 2008; Tomicic et al., 2011). For example, the
use of hormonal birth control medication and pregnancy increase
metabolic activity in women affecting particularly glucuronidation of
parent compounds (Scandlyn et al., 2008; Sinués et al., 2008; Tomicic
and Vernez, 2014). Tomicic et al. (2011) observed that women not using
hormonal contraceptives excreted significantly higher fractions for
parent compounds than men or women who are using hormonal con-
traceptives after exposure to different solvents via inhalation. The use of
hormonal contraceptives lead to a shift of 50 % in excretion ratio be-
tween parent compounds and metabolites (Tomicic et al., 2011). Other
studies report that besides sex also age is an important factor to explain
differences in the expression of human drug transporter genes affecting
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urinary excretion fractions (Joseph et al., 2015; Sinués et al., 2008). In
comparison, the effect of ethnicity on the metabolism and excretion of
drugs appears less pronounced (Darney et al., 2020; Kasteel et al., 2020).
However, single studies did observe differences between ethnic groups.
Critchley et al. (2005), for example, observed differences in the excre-
tion of conjugate metabolites between Hong Kong Chinese and Cauca-
sians after administration of a single oral dose of paracetamol. More
research is required to accommodate socio-demographic diversity in
toxicokinetics and to improve the mechanistic understanding of con-
founding factors. Altogether, those factors could explain the large ranges
in excretion fractions reported for many APIs.

Due to the large ranges in excretion fractions, selecting appropriate
excretion fractions for the emission modeling based on literature was in
many cases challenging. For example, the American Food and Drug
Administration (FDA) reports for orally administered gemfibrozil,
marketed under the tradename °‘LOPID’: ‘LOPID mainly undergoes
oxidation of a ring methyl group to successively form a hydroxymethyl and a
carboxyl metabolite. Approximately seventy percent of the administered
human dose is excreted in the urine, mostly as the glucuronide conjugate, with
less than 2 % excreted as unchanged gemfibrozil. Six percent of the dose is
accounted for in the feces.’” (Kimoto et al., 2015; US FDA, 2020). In
contrast, Knauf et al. (1990) report: ‘In healthy volunteers, only 0.02 to
0.15 % of the given dose was recovered in the urine as parent gemfibrozil [as
the urine concentrations were close to the detection limit of the assay method,
these values can be regarded only as rough estimates], while conjugates made
up 7-14 %’. Additionally, for conjugated metabolites, reported excretion
fractions sometimes seemed to refer to all kinds of conjugated metabo-
lites but not necessarily to the conjugated parent compound. Excretion
fractions selected for this study are reported in S4.

The variation in reported excretion fractions can affect the estima-
tion of API emissions to wastewater. Small deviations between assumed
and actual excretion fractions have a substantially larger effect on small
excretion fractions than on large ones. As for gemfibrozil, choosing an
excretion fraction of 2 % or 0.02 % results in a factor of 100 difference in
estimated emissions for the parent compound. Similarly, a 1 %-point
deviation does not really affect the estimated emission if the excretion
fraction of an API is above 90 % (e.g., fex clarithromycin: 0.95, fex
atenolol: 0.93). However, it will result in double or nil estimations for
the parent compounds of diclofenac of naproxen (both fox = 0.01).
Selecting an appropriate excretion fraction is therefore the major chal-
lenge when estimating API emissions. For some APIs, it is recommended
to also include excretion of conjugate metabolites as some conjugate
metabolites can back-transform into their respective parent compounds
via biological or abiotic fate processes.

3.4. In-sewer fate: Accounting for back-transformation of conjugate
metabolites

Deconjugation of conjugated metabolites can lead to back-
transformation into the respective parent compound. D’Ascenzo et al.
(2003) suggested that deconjugation of glucuronide metabolites could
be the result of enzymatic cleavage by p-glucuronidase secreted by E.coli
bacteria present in wastewater. After cleavage, the unconjugated parent
compound can be released into the water phase, which is also believed
to offer an explanation for negative removal efficiencies observed for
some pharmaceuticals, including diclofenac (Clara et al., 2005; Lee
et al.,, 2012; Vieno and Sillanpaa, 2014; Zorita et al., 2009). Since
conjugation is an important phase II elimination process relevant to
many orally consumed pharmaceuticals (Ge et al., 2016; Jarvinen et al.,
2022), this could also affect emission estimates of APIs to wastewater.

Based on the compound selection for this study, excretion of conju-
gated parent compounds is relevant for five APIs: diclofenac, naproxen,
acetaminophen, codeine and gemfibrozil. Respective excretion fractions
were collected from literature and subsequently added to the excretion
fractions reported for the parent compounds (Delli Compagni et al.,
2020). In the absence of empirical data on the kinetics of back-
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transformation in wastewater, we assumed complete and instant back-
transformation into the respective parent compound.

For three of the five APIs (diclofenac, naproxen, acetaminophen),
accounting for complete and instant back-transformation into the parent
compound led to overestimations as compared to measured loads (Fig. 5,
$10). However, precisely these APIs are available as OTC drugs for self-
medication in the Netherlands. Hence, overestimation of those APIs
could also suggest that some share of sold products remains unused. In
contrast, gemfibrozil is only available upon prescription. While excre-
tion of the parent compound of gemfibrozil resulted in a factor of 164
underestimation compared to measurements, including the excretion of
the conjugated parent compound resulted in only a factor of 9 under-
estimation. In the case of codeine, accounting for deconjugation of co-
deine conjugates resulted in a factor of 1.8 underestimation. However,
after completion of this research we found out that one codeine-
containing cough syrup is available as OTC medication which we
missed during data collection. Therefore, we cannot say with certainty
whether the improved fit between emission estimates and sewer mea-
surements is solely attributed to the effect of deconjugation or also
partially to the missed OTC formulation. While only indicative due to
the small sample size, our results suggest that back-transformation of
conjugated parent compounds is likely a relevant fate process within the
sewer system and therefore needs to be considered when estimating API
emissions to WWTP influent.

4. Conclusions and recommendations
4.1. Conclusions from this study

Estimating API emissions to wastewater based on usage and con-
sumption data is feasible on a city-scale. For most APIs, the estimated
emissions based on usage data were within a factor of 10 from waste-
water measurements obtained via passive sampling. Modelling based on
sales and prescription data can provide additional insights into mass
flows compared to field measurements.

Disentangling processes causing variability in API emission estima-
tion remains difficult. Besides variability in usage data, the choice of
excretion fraction has a major effect on the emission estimation. Model
performance consistently improved if excretion of parent compounds
and conjugated parent compounds were taken into account. Emission
estimates for compounds excreted in low fractions are substantially
more sensitive to small variations in assumed and actual excretion
fractions than compounds excreted in large fractions.

Accounting for complete and instant back-transformation of conju-
gated parent compounds led to better emission estimates compared to
wastewater measurements. This suggests that back-transformation is
likely a relevant fate process within the sewer system, which therefore
needs to be considered when estimating API emissions to WWTP
influent.

Pharmacokinetic data reported in literature are often based on a
relatively small group of study subjects who do not necessarily reflect
the general population. More research is required to accommodate so-
cietal diversity in toxicokinetics and to improve the mechanistic un-
derstanding of confounding factors.

4.2. Recommendations and future research prospects

Based on the outcomes of this study, we suggest three main di-
rections for future research. Firstly, we recommend evaluating if the
method presented could be used and automated to estimate API emis-
sions on a European scale. If country-specific usage data on APIs and a
comprehensive overview of related excretion fractions were available,
the approach we present in this study could be extrapolated e.g. via per
capita emission loads to other locations. Given that our case study
focused on a medium sized city, the applicability of the approach would
need to be assessed for substantially larger cities as well as for lower
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Fig. 5. Accounting for back-transformation of conjugated metabolites into their respective parent compounds. Usage data based on local dataset for 2020. Measured
loads represent average of two sampling campaigns at WWTP Nijmegen in May and September 2020. Fey parent refers to the excretion fraction for the parent
compound; fey, conjug. Tefers to the reported excretion fraction for the conjugated parent compounds; Xfe, refers to the sum of both excretion fractions (parent +
conjugated parent compound). More information on the selected excretion fractions can be found in S4.

populated areas. The contribution of health care facilities in terms of API
emissions will need to be evaluated on a case-by-case basis, especially if
hospitals have on-site wastewater treatment facilities in place.
Depending on the temporal and spatial resolution of future studies, the
implications of commuting and large-scale events would need to be
studied.

Secondly, we recommend conducting more research into the impact
of compound properties in relation to sampling techniques used in
empirical monitoring campaigns of raw wastewater. Particularly lip-
ophilicity or the degree of ionization could underestimate the measured
emission loads if only the water phase is being sampled. Furthermore,
more empirical research is necessary to assess the fate of conjugated
parent compounds and metabolites in wastewater.

Thirdly, this study highlights that combining modelling with
empirical monitoring offers substantial opportunities for a more effi-
cient and more holistic approach to assessing emission loads of APIs to
the environment. If the required data would become accessible, the
presented approach could likely be expanded to other groups of chem-
icals of emerging concern besides APIs. Therefore, we recommend
conducting more research into the identification and parametrization of
emission sources and related emission pathways of other groups of
chemicals to the environment.
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