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Abstract

Accurately describing the fatigue crack growth rate and fatigue crack growth direction is crucial in determining the residual fatigue
life of steel structures in general and for railway rails in particular. The crack growth rate and crack growth direction depend on
the crack driving force.The stress intensity factor (SIF) is often considered as crack driving force and it depends on the applied
load, the crack length and geometry. This paper concerns a numerical investigation on an inclined edge crack in a rail subjected to
a moving patch load to evaluate its growth rate and direction including both normal and tangential stress components. A 2D finite
element (FE) model is created including friction between the crack faces. The crack is incrementally extended in the predicted
direction after each passage of the moving load. A parametric study is conducted to study the effect of the friction and traction
coefficients. The results are compared in terms of predicted crack paths and SIF characteristics. It is shown that both friction and
traction have a significant influence on the fatigue crack growth rate and path.
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1. Introduction

An accurate description of the crack growth rate and crack growth direction is crucial to accurately predict the
remaining fatigue life of a steel structure. In some cases these structures are subjected to non-proportional multi-axial
cyclic loading, for example in a wheel-rail system. The complex loading leads to rolling contact fatigue (RCF) see
Zerbst et al. (2009). Cracks originating from the head of the rail are often decisive for maintenance. Increasing the
prediction accuracy of the crack growth rate and crack growth direction reduces the usage of valuable maintenance
resources. The crack growth rate and crack growth direction depend on the crack driving force.The stress intensity
factor (SIF) is often considered as crack driving force in linear elastic fracture mechanics. The SIF is a function of the
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applied load, the crack length and the geometry. Numerical methods such as finite element (FE) method are used to
determine the SIFs for a complex geometry and complex loading conditions.

Several criteria are available to determine the fatigue crack growth direction. Most of them are developed for
proportional loading, such as the maximum tangential stress (MTS) criteria, Erdogan and Sih (1963) and Sih (1974)
the maximum shear stress criteria, Otsuka et al. (1975) and the maximum energy release rate criteria, Palaniswamy
and Knauss (1972). For non-proportional loading, Hourlier and Pineau (1982) developed a method which is based
on the maximum crack growth rate, supported by experimental results. The latter is used within the current research
as the loading in RCF is non-proportional. Highsmith (2009) did an extensive research on crack growth direction
theories.

Several studies determined the SIF evolution in the context of RCF for an inclined crack of a fixed length using the
FE method. Dubourg and Lamacq (2002) investigated the effect of friction coefficient on the SIF evolution. Dallago
et al. (2016) and Bogdanski and Lewicki (2008) researched the effect of fluid entrapment on SIFs using 2D FE models.
Naeimi et al. (2017), Afridi et al. (2022) and Nejad et al. (2016) investigated the SIF evolution in 3D.

The development of the extended finite element method (XFEM) allowed investigating growing cracks as the
defect does not need to conform to the FE mesh. For example, Troll¢é et al. (2014) studied the crack propagation of an
inclined edge crack using 2D XFEM with a non-linear material model, showing a significant influence of plasticity on
the crack growth. Nezhad et al. (2022), developed a framework to predict the crack growth direction in a rail subjected
to contact, bending and thermal loads. Leonetti and Vantadori (2022) estimated the SIFs of an inclined defect using
weight functions thereby reducing the computational costs significantly compared to FE modelling. Generally, the
previously mentioned research focussed on the stable crack growth regime, not including fracture. This paper concerns
a numerical investigation on an inclined edge crack in a rail subjected to a moving patch load to evaluate its growth
rate and direction including both normal and tangential stress components. The effect of different traction and friction
coeflicients on the predicted crack path is shown, taking into account both braking and accelerating traction forces.
A framework is developed using conventional FE, assuming linear elastic material properties. First the framework is
be described. Subsequently the results of the parametric analyses are given and discussed and finally conclusions and
suggestions for future work are presented.

2. Fatigue crack growth and direction prediction model

The framework used to calculate the SIF and predict the crack path is shown in Figure 1. Four steps are defined.
First, at step i = 0, a FE model is created with Young’s modulus E, Poisson ratio v, and with an initial defect with
length (ay), and predefined inclination angle (ap). Next the FE model is solved in multiple load steps, mimicking the
translation of a moving load from left (location of center of load x. = x;) to right (x, = x.), see Figure 2. This results
in a mode I SIF (K;) and mode II SIF (Kj;) as function of the position of the load patch. Subsequently the fatigue
crack growth rate (FCGR) and fatigue crack growth direction are determined. Finally the FE model is to be updated
with the new crack increment, Aa. The individual steps are described in more detail in this section.

Initial FE model Up(i?ittehi];:aTl? del Solve FE model Predict @4 X Finished
Por - Fe Ki(xe), Kir(xe) aiv1 = a; + Aa fishe
E,v,i=0 ;, a;

i=i+1

Fig. 1: Flowchart of the crack growth framework

2.1. Crack path calculations using the finite element method

A 2D plane strain FE model is formulated using Abaqus FEA. Geometrical non-linearity is considered. The model
resembles a rectangular geometry with an inclined defect. The model is supported at the bottom edge, see Figure 2.
The distribution of the vertical load follows a Hertzian contact stress. This distribution is applied at the top edge. The
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Fig. 2: Overview geometry

maximum stress Py = 845 MPa, which is an 2D approximation of a wheel load of 80 kN on a rail, assuming a 10 mm
transversal contact width. Hertzian contact theory predicts a semi-elliptical normal stress distribution with a contact
half width of b = 6.75 mm. Within one FE simulation, the load is translated from a begin position indicated with x;
and 7, to and end position indicated with x, and ¢,, see Figure 2. The stress distribution o, and shear stress distribution
7,y K at every increment and location are defined by Equation 1.

Poy1-(52)" iflx-xl <b

(X, Xe) = (1
otherwise
Assuming full sliding conditions, the tangential stress 7(x, x.) is described by Equation 2.
7(X, Xe) = Hrow - On(X, Xc) 2

in which y,_,, is the constant traction coefficient. Braking results in y,—,, > 0 and acceleration is denoted with y,_,, < 0.
Friction is assumed on the contact between the crack faces and is modelled using a Mohr-Coulomb friction model
with friction coefficient u.. A structured FE mesh is used, with quadratic elements (type CPES) using a full integration
scheme. A refined mesh is used near the crack tip, see Figure 3. For a sharp crack the theoretical strain field at the crack
tip in a FE model becomes singular. Using quadratic elements this singularity can be approximated by translating the
midside nodes to the quarter point position close to the crack tip. Contact formulations using the penalty method
including augmented Lagrange iterations are added between the crack faces to limit penetration.

Fig. 3: Example of mesh refinement in FE model

The SIF in this study is computed using the virtual crack closure technique method. In VCCT the SIFs are cal-
culated by assuming that the energy required to advance the crack with a small increment is the same as the energy
required to close the crack for the same increment, see Rybicki and Kanninen (1977) and Krueger (2004). The equa-
tions derived by Raju (1987) are used within this study, see Equation 3 and Equation 4.
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where G is the energy release rate, U are the nodal displacements and F are the nodal forces. The superscripts
correspond to the nodes in Figure 4a. All values are evaluated in a rotated coordinate system x’ and y’ which is
aligned with the crack in the current load increment (see Figure 4b). This alignment is based on the two elements in
front of the crack tip. For every time step the energy release rates (G) are calculated, and subsequently these can be
transformed to SIFs using Equation 5.

Ki(x0) = G (xc) Eery

)
Ky (xe) = sgn(AUy (x0) \JG1i (xc) Eepy

in which E, ¢ = E for plane stress and E, ¢ = % for plane strain.

(a)

Fig. 4: (a) Schematic overview of mesh used in the quadratic VCCT algorithm (b) Coordinate system for determination of crack growth direction

The Hourlier and Pineau (1982) criterion assumes that the crack grows in the direction in which the SIFs of an
infinitely small crack increment gives the highest FCGR. The SIFs of the (kinked) crack in the rotated coordinate
system are calculated using the first order approximation of the stress field given by Cotterell and Rice (1980), see
Equation 6.

K7 (6, x.) _ l 3cos g + cos 376, -3 (sing + sin 37‘9) K (x.) ©)
K7, (0, x.) 4 sing + 3sin 379, cos g + 3 cos 379 K (x.)

in which 6 is the angle of the infinitely small (kinked) crack around the crack tip, see Figure 4b. To calculate the crack
growth rate using these SIFs the equivalent stress range is calculated with:

AK; (0) = max [KK7 (6, x.))] — min [(K] (6, x:))]

AK;I @ = rr}ax [K;I (6, x.)] — min [K71 (6, x0)] (7)
% * 2 * 2 0.5

AK;, (6) = (AK; (0) + cuAK}, (6)°)

where (o) are Macaulay brackets, () = (e + |o|) /2. The material constant c¢;; = 0.772 and is based on experimental
fatigue crack growth data obtained for 900A (R260) rail steel, see Dubourg and Lamacq (2002). Finally the FCGR
can be calculated using for example the equation developed by Paris et al. (1961), see Equation 8.

d m
dTC\l7 ©) = C(AK;, ) ®)
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where C, m are material properties. However, in these formulations for the equivalent SIF and the crack growth
equation, sequence effects are not taken into account. Therefore, the angle which predicts the highest crack growth
rate is equal to the angle of the highest equivalent SIF range, and the predicted crack growth angle is given by
Equation 9.

Oprea = argmax AK;, (6) ®
0
However the framework allows for more advanced crack growth laws. A comparison is made with the MTS criterium,
Erdogan and Sih (1963). This criterion predicts the angle based on the SIF ranges, see Equation 10.
AK; = max [K; (x.)] — min [K] (x.)]
X X

. (10)
AKjy = max [Kj; (x;)] — min [Ky; (x)]
Subsequently, the angle is predicted by Equation 11
3AKY + JAK} + 8AK?AK?,
H%Zj = —sgn (AKj;) cos™! (11)

AK} +9AKF,

2.2. Update of finite element model

Following the previously determined direction, the FE model is updated taking a predefined step Aa, see Figure 1
An automated remeshing scheme is used to conform the mesh to the updated crack. Subsequently, the FE model can
be solved for the updated geometry.

3. Results
3.1. Model verification

For verification of the model, the results from this study are compared with results from Trollé et al. (2014). In
accordance with their study an initial crack length of @ = 6 mm, angle a, = 15 deg, friction coefficient of y. = 0.1 and
traction coefficient of yu,_,, = 0.4 are used. Figure 5 shows the results as a function of the normalized load position
x/b, in which x/b = 0 means that the center of the contact patch load is above the crack mouth, see Figure 2. The
solid lines in sub figures (a) and (b) are results obtained from Trollé et al. (2014). The other lines are the SIFs obtained
within the current research for different element sizes. The elements around the crack tip have an element face length
L, of 8x 1072 mm, 2x 1072 mm or 5x 10~ mm. The elements near the crack faces are scaled accordingly, see Figure 6.
Figure 5a shows the mode I results and Figure 5b shows the mode II results. No significant differences in results is
seen using different element sizes, therefore in further analyses L, = 2x 1072 mm is used. Differences at maximum K;;
(max 10.0%) and maximum K; (max 5.0%) can be seen between the results from Trollé et al. (2014) and the current
implementation. These differences are attributed to the implementation of the crack, and SIF calculation method. In
this study conventional FEM is used, and the SIF is calculated using the VCCT method. Trollé et al. (2014) use the
XFEM method and calculates the SIFs using an energy approach.

Figure 5c shows the predicted crack path after approximately 0.7 mm crack growth for different crack increments
Aa. Small oscillations in the predicted crack path can be seen. However, the trend of the three paths is similar. There-
fore Aa = 0.1 mm is used in the remainder of this study. Based on these results, it is assumed that the current
framework is able to predict the SIF distribution and crack path for a two-dimensional inclined edge crack, subjected
to a moving patch load.

3.2. Influence of friction coefficient

Friction between the crack faces reduces the mode II SIF. However, determining the friction coefficient is non-
trivial, since fluid, debris and other lubricants could influence the frictional behaviour. The uncertainty in the fric-
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Fig. 5: SIFs as function of relative loading position; (a) mode I SIF, (b) mode II SIF, (c) Predicted crack paths for different crack increments Aa
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Fig. 6: Element meshes: (a) L, = 8 X 102mm, L, =2x 102 mm, L, = 5x 107> mm

tional behaviour is included by changing the assumed friction coefficient in the Mohr-Coulomb friction model. This
subsection shows the effect of various friction coefficients on the SIF evolution for an inclined edge crack.

All simulations are made with a, = 6 mm and @ = 15deg. Two different traction coefficients are used, namely,
Mr—y = 0.2 and y,—,, = 0.4. Figure 7 shows the results in terms of SIF. The influence of y. on K; appears to be limited.
The crack opens when the load reaches the crack mouth, i.e x/b = 0. Due to the crack inclination angle, the crack
opening is counteracted by the friction force, so an increase in friction coefficient reduces the max K;. For0 < x/b < 2,
a large part of the load patch is above the crack, causing it to close, and therefore K; is zero. For x/b > 2 the crack is
fully open causing that there is no effect of the friction coefficient on K;. The effect of the friction coefficient on Kj;
is more profound. Obviously, in the region were the crack is open (K; > 0), the effect of friction is very limited. Kj;
is reduced with increasing friction coefficient in the interval 0 < x/b < 2. For a high friction coefficient of y. = 0.5,
the location of maximum Kj; shifts from x/b ~ 0.6, with the load above the crack mouth, to x/b > 2.0 with the load
on the right side of the crack. Figure 7c shows the minimum (crosses) K;; and maximum (circles) Kj; as a function
of the friction coefficient. The dashed lines are results of the current research, the solid lines are results for the same
geometry obtained by Dubourg and Lamacq (2002). The blue and red curves are results obtained with y,_,, = 0.2 and
-y = 0.4, respectively. The results are in good agreement with the results obtained in Dubourg and Lamacq (2002).

The minimum value of Kj;, KZ’,’" is insensitive to ., because it occurs when the crack is fully open (K; > 0). On
the other hand, the maximum Kj; decreases significantly with increasing friction coefficient. Based on these results, it
is shown that a good approximation of the friction coefficient is essential in determining the FCGR.

Figure 7d shows the predicted crack paths for several friction coefficients, using the previously defined frame-
work, with a fixed crack increment of Aa = 0.1 mm and y,_,, = 0.4. A low friction coefficient results in a large Kj;
component, leading to a sharp angle. However the predicted path of the crack with u, = 0.5 is in between those of
te = 0.1 and p, = 0.3. This is due to the previously mentioned change of location of the maximum Kj;, from x/b ~ 0
for u. < 0.3 to x/b = 2.5 for u. = 0.5, see Figure 7b. It should be noted that this predicted crack path is strongly
dependent on the considered loads and boundary conditions. For future work it is recommended to expand the loads,
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Fig. 7: SIFs for different friction coefficients (a) mode I, (b) mode II, (¢) min. K;; and max. Kj; (d) Predicted crack paths for y,,—, = 0.4

with for example bending and thermal loads. The dashed yellow line is the predicted crack path when using the MTS
criterium. This criterium is originally developed for proportional loading and is therefore not applicable to the case of

an inclined crack, as shown.

3.3. Influence of traction coefficient

In this section the influence of the traction coefficient is studied and the results are shown in Figure 8. Distinction
is made between two friction coefficients . = 0.1 and u. = 0.5. Figure 8a shows the evolution of K; as a function
of the load position. The different colors represent different traction coefficients. The dashed curves are the results for
e = 0.1 and the solid curves are the results for g, = 0.5. Figure 8c shows the minimum and maximum of K; of the
entire load path as a function of the traction coefficient. The crack is open at K}*** , hence there is a limited influence
of the crack face friction (corresponding to the results of Figure 7a). As expected, K}"** is minimum when there is no
traction force applied because the traction load opens the inclined crack when passing over the rail. A braking traction
force p,—,, > 0 leads to a higher maximum K; component than an accelerating traction load, with the same absolute
traction coefficient.

In a similar way Figure 8b shows the results for K;;. Figure 8d shows the minimum (crosses) K;;, maximum Kj;
(circles) and maximum AKj; range (diamonds). From both figures a significant difference in SIF is seen between
the low and the high friction coeflicient: The latter gives a lower K}, which is due to the increased load fraction
transferred by friction, thereby shielding the crack tip. The minimum values are obtained when the traction coefficient
is zero. In mode II both a positive as well as negative traction coefficient results in a significant increase in SIF range.
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Figure 8e shows the predicted crack paths after approximately 1 mm crack growth with a fixed load step of Aa =
0.1 mm. Depending on the traction coefficients the crack does or does not to deviate from the initial direction. For
Ur—y = —0.4 the crack starts to grow upward due to the high negative Kj; value. In practice, spalling of part of the
rail head is sometimes seen. This could indicate upwards crack growth, however, such a a sharp deviation upwards is
probably not realistic. It is foreseen that adding additional loads, such as bending and thermal loads, will alter these

crack paths.
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4. Discussion

From the above shown results it is clear that both the friction and traction coefficient have a significant influence on
the predicted crack path. The current predicted crack paths are a result of the applied loading conditions and boundary
condition. Nezhad et al. (2022, 2023) investigated the influence of bending and thermal loads on the predicted crack
growth. The crack path is predicted using the vector crack tip displacement technique, which is based on displacements
at the crack tip. They concluded that the addition of bending and thermal load results in a more downward orientated
crack path than for the case of pure contact loading. It is expected that a significant effect applies to the cases studied
here. The residual stress field originating from manufacturing also influences the local stress state and should therefore
also be included in a complete framework. The effect of other modelling assumptions, such as the idealization of the
wheel-rail contact by a Hertzian contact distribution, should be verified with more complex (FE) models, possibly
including the wheel. The used crack growth Equation 8 assumes that the fatigue crack growth rate (FCGR) can be
estimated solely based on the equivalent SIF range. However, it is known that the FCGR of (rail)steel depends on the
mean stress, see Kim and Kim (2002). Incorporating a mean stress corrected crack growth equation would give the
opportunity to quantify the crack growth rate.

Additionally, Nezhad et al. (2022, 2023) showed an effect of the crack face friction on the predicted crack paths.
This effect, appears to be smaller than predicted by the current study. However, a quantitative comparison is not
possible due to a different crack geometry and crack prediction algorithm. Therefore, it is recommended to first
validate the Hourlier-Pineau direction algorithm with relevant experimental data and to determine relevant friction
coefficients.

The current study is limited to 2D, whereas defects in rails are complex 3D geometries. The above mentioned
modelling assumptions imply that the current model is unable to give a quantitative fatigue life. However, the model
shows the importance of traction and friction on predicted crack growth paths.

5. Conclusions and future work

This paper describes a framework to predict the crack growth direction for an inclined edge crack in a finite width
plate subjected to a moving load patch following a Hertz contact stress distribution. The framework consists of a FE
model with an incrementally updated crack. It is concluded that:

e A framework is developed which can be easily extended with additional loads including thermal loads and
residual stresses.

e The assumed friction coeflicient between the crack faces has a significant influence on the predicted crack paths
as the mode II SIF is dominating the crack growth behaviour.

e An increase in traction coefficient leads to an increase in both K; and Kj;. A negative traction coefficient, hence
accelerating of the wheel, leads to small increase in K; compared to a free rolling wheel and a more significant
increase in Kj;.

o The predicted crack paths are highly dependent on the friction and traction coefficients. The applicability of the
Hourlier Pineau criterium to predict the crack growth direction needs to be verified with experimental data. The
MTS criterium predicts unrealistic crack paths for this application.

o Extension of the model in three dimensions allows for investigating more complex and realistic crack shapes.
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