

 Inferring an analysis model from execution logs

From PPS to LSAT

TNO Public TNO 2023 R12452
15 December 2023

ICT, Strategy & Policy
www.tno.nl
+31 88 866 50 00
info@tno.nl

 TNO Public

TNO 2023 R12452 – 15 December 2023

From PPS to LSAT

Inferring an analysis model from execution
logs

 TNO Public

Our partners

Author(s) Jacques Verriet
Classification report TNO Public
Title TNO Public
Report text TNO Public
Number of pages 24 (excl. front and back cover)
Number of appendices 0
Sponsor ASML
Programme name Maestro
Project name Maestro 2023
Project number 060.55514/01.01

 TNO Public TNO 2023 R12452

 TNO Public

All rights reserved
No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

The research is carried out as part of the Maestro program under the responsibility of TNO-
ESI with ASML as the carrying industrial partner. The Maestro research is supported by the
Netherlands Organisation for Applied Scientific Research TNO.

© 2023 TNO

 TNO Public TNO 2023 R12452

 TNO Public 3/24

Contents

Contents .. 3

1 Introduction ... 4
1.1 Outline ... 4
2 TMSC pre-processing .. 5
2.1 PPS vs. LSAT .. 5
2.2 Collapsing TMSC call stacks .. 6
2.3 Summary .. 7
3 Transformation example .. 8
3.1 Input TMSC model .. 8
3.2 TMSC pre-processing .. 9
3.3 LSAT model creation .. 11
3.3.1 Machine specification .. 11
3.3.2 Setting specification ... 13
3.3.3 Activity specification .. 13
3.3.4 Dispatching specification .. 18
3.4 Timing analysis .. 19
3.5 What-if analysis .. 20
3.6 Summary .. 21

4 Conclusion .. 23

5 References .. 24

 TNO Public TNO 2023 R12452

 TNO Public 4/24

1 Introduction

In a model-based development way of working, models are used to specify a system and to
automatically analyse the specified system. By iteratively adapting the specification and
analysing the specification’s performance, one can explore the system’s design space to
come to a specification that is to be realised.

These specification models are often created manually, and this may involve a large effort.
Manual modelling is natural for greenfield development as no system exists yet. In case of
brownfield development, the model-based design space exploration typically starts from an
existing system. To reduce the model creation effort, one could use information from the
existing system to create a (partial) initial model.

This report addresses the (partial) creation of analysis models from execution logs. We
illustrate this transformation using PPS [1] [2] and LSAT [2] [3]. PPS (Platform Performance
Suite) is a tool to visualise and analyse timed message sequence charts (TMSC) [4], which
capture a system’s (timing) behaviour in terms of events and their dependencies. LSAT
(Logistics Specification and Analysis Tool) is a tool to specify and analyse the timing
behaviour of flexible manufacturing systems.

1.1 Outline
There are conceptual differences between PPS models and LSAT models. Chapter 2 explains
these differences and describes a way to make PPS’ TMSC models more suitable for
translation into LSAT model. Chapter 3 illustrates the transformation of a TMSC into an LSAT
model. The focus on Chapter 3 on the parts of the transformation that can and cannot be
automated. Chapter 4 reflects on the illustrated approach.

 TNO Public TNO 2023 R12452

 TNO Public 5/24

2 TMSC pre-processing

Creating an LSAT model from a PPS model involves transforming a PPS TMSC into the four
elements of an LSAT model [2]. As PPS is primarily meant for software systems with a
CORBA-like architecture and LSAT is primarily targeted at mechanical systems, this
transformation is not straightforward. In this chapter, we discuss a way to pre-process
TMSCs such that they can more easily be transformed to an LSAT model. In Section 2.1, we
discuss the different characteristics of PPS’ TMSCs and LSAT models that make the
transformation between them difficult. In Section 2.2, we describe one approach to reduce
the distance between TMSCs and LSAT models.

2.1 PPS vs. LSAT
The input for the transformation from PPS to LSAT models is a Timed Message Sequence
Chart (TMSC) [4], which involves a set of events and a set of timing constraint relations
between these events. A simple example of an artificial TMSC is shown in Figure 2.1.

Figure 2.1: Input TMSC

Figure 2.1 shows the software call stacks of two software threads and the dependencies
between the corresponding events. A TMSC may contain different types of dependencies:
 There are dependencies between the start and the end of one function. Two of these are

shown in Figure 2.1. Similarly, there may be dependencies between the start and the end
of a call stack.

 In case of a (remote) function call, there are dependencies between the start of the
calling function and the start of the called function and between the end of the called
function and the end of the calling function. These dependencies represent data being
exchanged between the functions. The dashed dependencies in Figure 2.1 are the
dependencies of a remote function call.

 In case of sequence dependencies, there are dependencies between the end of a
predecessor function and the start of a successor function. Figure 2.1 does not include
this type of dependencies.

 TNO Public TNO 2023 R12452

 TNO Public 6/24

With respect to dependencies between events, LSAT is much more restrictive than PPS:
LSAT’s activity models only allow dependencies between the end of an action/function and
the start of another. Another difference between PPS’ TMSC and LSAT’s activity models is the
fact that LSAT activity model dependencies do not have a duration: all communication is
assumed to be instantaneous.

A third difference between PPS’ TMSCs and LSAT models is the call stacks. PPS has been
developed to visualise and analyse the timing behaviour of software systems and LSAT has
been developed for the analysis of the timing behaviour of the hardware actions of flexible
manufacturing systems.

2.2 Collapsing TMSC call stacks
To facilitate a transformation from PPS’ TMSC to LSAT models, we should address the
differences identified in Section 2.1. We use the TMSC in Figure 2.1 as an illustration on how
one could deal with the differences.

To eliminate a TMSC’s call stack structure, the call stack can be flattened. Figure 2.2 shows a
TMSC in which the call stack of Figure 2.1 has been collapsed to the bottom functions of the
stacks. To capture the dependencies of the original call stack structure, these bottom
functions are split at the synchronisation points of the original TMSC. Note that the start and
end times of the call stacks are identical in Figure 2.1 and Figure 2.2. Also the timing of the
dependencies (between the call stack) is identical.

Figure 2.2: Flattened TMSC

The dependencies in the TMSCs in Figure 2.1 and Figure 2.2 are not instantaneous; in fact,
there are significant communication delays. To have these delays appear in an LSAT model,
the communication delay can be modelled as a function. Figure 2.3 shows a TMSC which
augments the TMSC in Figure 2.2: a network swim lane has been introduced. The TMSC in
Figure 2.3 replaces the dependencies in Figure 2.2 by two instantaneous dependencies. To
capture the duration of the original dependencies, network communication functions are
introduced.

 TNO Public TNO 2023 R12452

 TNO Public 7/24

Figure 2.3: Flattened TMSC with network functions

After these changes, a TMSC has been transformed into a TMSC resembling an LSAT’s activity
model.

2.3 Summary
In this chapter, we have presented the main differences between PPS’ TMSCs and LSAT
model. In addition, we have presented an automatable TMSC transformation, which makes
a TMSC conceptually similar to LSAT activity models.

 TNO Public TNO 2023 R12452

 TNO Public 8/24

3 Transformation example

In this chapter, we explain a method to create an LSAT analysis model from a timed
message sequence chart in PPS. We use a timed message sequence chart (TMSC) from Jonk
[4] as a starting point. This model is explained in Section 3.1. Section 3.2 explains how the
input TMSC is transformed into a TMSC which is suited for translation into an LSAT model.
The transformation into an LSAT model is explained in Section 3.3. Section 3.5 illustrates the
type of analysis that can be done once an LSAT model has been created. Section 3.6
summarises the transformation and reflects on the level of automation that can be
achieved.

3.1 Input TMSC model
We use a TMSC model from Jonk [4] as an example to create an LSAT model. This TMSC is
shown in Figure 3.1. This TMSC was manually created in PPS using Figure 8 of Jonk [4] as a
reference. This TMSC captures the wafer exposure loop of a lithography scanner. For each die
on a wafer, two cyber actions are performed: (pink) Compute actions and (yellow) Queue
actions. The Compute action computes the setpoints to be tracked for the wafer exposure
control loop. The consecutive Queue action queues these setpoints in a buffer.

After these cyber steps, the actual exposure is performed. This exposure involves two
physical actions: (grey) Step actions and (blue) Scan actions. The Step action positions the
wafer for the exposure of the next die and the Scan action performs the die exposure. As
these steps use the queued setpoints, there is a dependency between the cyber actions and
the physical actions: there are arcs from the end of the Queue action to the start of the Step
action.

Figure 3.1: Input TMSC (recreated from Jonk [4])

To optimise exposure accuracy, information about physical disturbances encountered during
Step and Scan actions is used in the Compute step. This dependency is realised by the
(green) Retrieve actions, which retrieves information from the (running) Step and Scan

 TNO Public TNO 2023 R12452

 TNO Public 9/24

actions. The retrieved information is used for the Compute and Queue actions of the next die
to be exposed. This is captured by the dependencies between the end of Scan actions and
the end of Retrieve actions, which coincide with the start of Compute actions.

Note that there is no Retrieve action between the cyber actions of the first and second die:
the retrieval of information from the exposure of the first die is input for the Compute and
Queue actions for the third die. This corresponds to a buffer size of two [4]. With a buffer size
of one, the exposure of the second die would be delayed, leading to a lower exposure
throughput. On the other hand, the exposure would use more recent disturbance
information, which could lead to higher-quality exposure.

3.2 TMSC pre-processing
The TMSC model discussed in Section 3.1 does not match the dependencies of LSAT [2] [3].
Retrieve actions run in parallel to the Step and Scan actions from which they gather
information. This requires the Retrieve action to end after the Scan action. This is something
that LSAT cannot capture in its activity language.

This issue can be resolved by adapting the TMSC using domain knowledge. There are several
ways to do this. Deciding which approach to take requires domain knowledge, e.g. regarding
which actions are most important:
 Action removal: The simplest manner would be removing all Retrieve actions from the

TMSC and replacing the dependencies between the end of a Scan action and the end of a
Retrieve action by dependencies between the end of a Scan action and the start of a
Compute action. The resulting TMSC is shown in Figure 3.2.

 Action splitting: A second way to resolve the issue is similar to the approach presented in
Chapter 2: the Retrieve action can be split into a Wait action and a Retrieve action. The
dependencies between the end of the Scan action and the end of the Retrieve action are
replaced by dependencies between the end of the Scan action and the start of the new
Retrieve actions. The resulting TMSC is shown in Figure 3.3: the (green) Retrieve actions in
Figure 3.1 have been replaced by a (brown) Wait action, which starts directly after the
(yellow) Queue action and ends together with the (blue) Scan action, and a (green)
Retrieve action.

 Action shortening: A third way is simpler than the second but is based on the same
principle. Instead of splitting the Retrieve actions into two actions, the Retrieve actions is
shortened. This is done by delaying the start of Retrieve actions until the end of Scan
actions and introducing a dependency between the end of a Scan action and the start of
the consecutive Retrieve action. The resulting TMSC is shown Figure 3.4; its (green)
Retrieve actions now start directly after the (blue) Scan actions.

 TNO Public TNO 2023 R12452

 TNO Public 10/24

Figure 3.2: TMSC after removing the (green) Retrieve actions

Figure 3.3: TMSC after splitting the (green) Retrieve actions in (brown) Wait and (green) Retrieve actions

 TNO Public TNO 2023 R12452

 TNO Public 11/24

Figure 3.4: TMSC after delaying the start of (green) Retrieve actions

For this illustration, we have chosen the third way, i.e. the Retrieve actions are shortened by
delaying their start time. The resulting TMSC is shown in Figure 3.4. We use this TMSC as the
basis for creating an LSAT model.

Note that the TMSC pre-processing may change the timing of a TMSC. Whether this is
acceptable is a decision to be made using application knowledge. The purpose of the
application considered in this chapter is maximising the exposure throughput. As the
selected pre-processing does not change the timing behaviour of the Step and Scan actions,
shortening the Retrieve actions does not influence the exposure throughput.

3.3 LSAT model creation
An LSAT model consists of four elements: a machine specification, a setting specification, an
activity specification and a dispatching specification. The creation of these specifications is
explained in Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4. For each of these LSAT specifications, we
address to what extent the specification could be generated fully automatically.

3.3.1 Machine specification
An LSAT machine specification defines the available resources and their peripherals. To
create a machine specification, we create a peripheral type for each of the swim lanes of the
input TMSC. The actions of these peripheral types correspond to the different actions in the
TMSC’s swim lane. In addition, we create a resource for each swim lane; this resource has a
single peripheral which has the swim lane’s peripheral type.

Figure 3.5 shows the machine specification corresponding to the TMSC in Figure 3.4. Most of
this specification can be generated automatically using the rules explained above.

The PrepareResult and ExecuteResult resources are not shown in Figure 3.4. These resources
are added for activity synchronisation, which is addressed in Sections 3.3.3 and 3.3.4. These
sections explain how such synchronisation resources could be introduced automatically.

What cannot be generated automatically is the number of instances of these
synchronisation resources. The machine specification in Figure 3.5 has two instances of

 TNO Public TNO 2023 R12452

 TNO Public 12/24

each synchronisation resource. This is needed to capture the 2-place buffer between
preparation and exposure.

Machine PPS2LSAT

PeripheralType Physical {
 Actions {
 Step
 Scan
 }
}

PeripheralType Cyber {
 Actions {
 Compute
 Queue
 Retrieve
 }
}

Resource Physical {
 p: Physical
}

Resource Cyber {
 c: Cyber
}

Resource Buffer(1, 2) {
}

Resource PrepareResult(1, 2) {
}

Resource ExecuteResult(1, 2) {
}

Figure 3.5: Textual machine specification

Figure 3.6 shows the graphical machine specification, which corresponds to the textual
specification in Figure 3.5.

Figure 3.6: Graphical machine specification

 TNO Public TNO 2023 R12452

 TNO Public 13/24

3.3.2 Setting specification
An LSAT setting specification can fully be derived from a TMSC model. There are typically
multiple instances of the same action in a TMSC swim lane. Each instance may have a
unique duration. These durations are all used in the LSAT setting specification, which has the
Array keyword to specify all durations of a peripheral action.

Figure 3.7 shows the setting specification corresponding to the (transformed) TMSC in Figure
3.4.

import "PPS2LSAT.machine"

Cyber.c {
 Timings {
 Compute = Array(1.7890, 1.9370, 2.290, 1.679, 2.056,

 1.845, 2.058, 1.770, 2.145, 1.707)
 Queue = Array(1.934, 2.059, 1.975, 1.976, 2.172,
 2.143, 2.069, 2.355, 2.136, 2.136, 2.126)
 Retrieve = Array(1.022, 0.967, 0.897, 0.884,
 1.163, 0.984, 0.847, 0.928)
 }
}

Physical.p {
 Timings {
 Step = Array(2.992, 3.020, 3.001, 3.003, 3.004,
 3.012, 2.994, 2.985, 2.993, 3.002)
 Scan = Array(2.998, 2.995, 3.022, 2.992, 2.986,
 3.000, 2.984, 2.996, 2.975, 2.996)
 }
}

 Figure 3.7: LSAT setting specification

The machine specification explained in Section 3.3.1 includes synchronisation resources that
are not present in an input TMSC model. As these synchronisation resources do not have
peripherals, they do not show up in a setting specification. This also means that an LSAT
setting specification could be generated completely from a TMSC.

3.3.3 Activity specification
An LSAT activity specification specifies the behavioural building blocks of a system. An
activity specification consists of multiple activities. An LSAT activity is represented by a
directed acyclic graph containing claims and releases of resources, actions by peripherals
and their synchronisations. The goal is to describe the recurring behaviour in an input TMSC
using LSAT activities.

Creating an activity specification from a TMSC requires more domain knowledge than
creating a machine specification. To partially generate an LSAT activity, one needs to specify
which (recurring) actions in the TMSC form an activity. In the (pre-processed) TMSC in Figure
3.4, there are five recurring actions: Compute, Queue, Retrieve, Step and Scan. In this
illustrative example, these are divided over two activities:
 The Compute and Queue actions are combined in a Prepare activity, and
 The Retrieve, Step and Scan actions are combined in an Execute activity.

 TNO Public TNO 2023 R12452

 TNO Public 14/24

We choose for these two activities as they are logically decoupled. The Prepare activity
computes exposure setpoints and the Execute uses these setpoints. The synchronisation
resource PrepareResult is used for the handover of the setpoints. Similarly, the Execute
activity generates disturbance data, which is used by the Prepare activity. For this
synchronisation, we use the ExecuteResult resource.

DEPENDENCIES
The dependencies between the actions in an activity can to a large extent be derived from
the TMSC. If there is a dependency between the end of one action and the start of another
action of the same activity, then the corresponding activity will “inherit” this dependency.

In an LSAT activity, the execution of an action must be preceded by a claim of the
corresponding resource and followed by a release of this resource. These claims and
releases and the corresponding dependencies can be generated automatically as well.

SYNCHRONISATION BARS
Peripheral actions, resource claims and resource releases in an LSAT activity may have at
most one direct predecessor and at most one direct successor. In a TMSC, however, an
action may have multiple direct predecessors and multiple direct successors. To capture
such dependencies in LSAT, one needs to introduce synchronisation bars. For instance, if an
action A has two direct successor actions B and C, then the corresponding activity would
have a synchronisation bar S and dependencies from A to S, from S to B, and from S to C.1

SYNCHRONISATION RESOURCES
By splitting the recurring actions in a TMSC into activities, one cuts dependencies. By dividing
the functions of the TMSC in Figure 3.4 into a Prepare activity and an Execute activity, the
dependencies between the Queue and Step actions and those between Scan and Retrieve
actions are cut.

LSAT has two means to “restore” these cut dependencies: synchronisation resources and
events allow synchronisation between different activities. We have chosen to use
synchronisation resources, because events put additional constraints on an LSAT model.2
One could automatically generate a synchronisation resource for every cut dependency. Let
us consider the cut dependency between the Queue and Step actions. In the Prepare
activity, the corresponding synchronisation resource should be released after the Queue
action has finished. Moreover, in the Execute activity, this synchronisation resource should
be claimed before the Step action starts.

Figure 3.8 shows the textual specification of the Prepare activity; Figure 3.9 shows the
corresponding graphical representation. Note that the PrepareResult resource is claimed in
parallel to the Queue action, which writes the setpoints for the Step and Scan actions. The
ExecuteResult resource is claimed while the Compute action is executed. This is needed as
the Compute action uses the results of a previous Execute activity to compute the new
setpoints.

1 Unlike peripheral actions, resource claims and resource releases, synchronisation bars may have multiple direct

predecessor and multiple direct successors in an LSAT activity.
2 These constraints involve matching pairs of messages sent and received. For the running example, the constraints

require undesired duplication of activities.

 TNO Public TNO 2023 R12452

 TNO Public 15/24

This activity can (probably) not be generated fully automatically. The claims and releases
and actions that occur in the input TMSC and the corresponding dependencies could be
generated automatically. As explained above, the synchronisation bars, between the actions
and the resource claims and releases can be generated automatically as well. These are S0,
S1 and S2 in Figure 3.8 and the black bars in Figure 3.9.

It may be too hard to automatically introduce the synchronisation resources, e.g. the
PrepareResult and ExecuteResult resources, and their dependencies in an activity. Domain
knowledge is required to decide when to claim and release a synchronisation resource.

Note that introducing dependencies with synchronisation resources could require additional
synchronisation bars. As explained above, this could be resolved automatically.

activity Prepare {
 actions {
 ClaC: claim Cyber
 RelC: release Cyber

 ClaR: claim PrepareResult
 RelR: release PrepareResult

 ClaE: claim ExecuteResult
 RelE: release ExecuteResult

 Comp: Cyber.c.Compute
 Queu: Cyber.c.Queue
 }

 action flow {
 ClaC -> |S0
 ClaE -> |S0
 |S0 -> Comp
 Comp -> |S1
 ClaR -> |S1
 |S1 -> Queu
 |S1 -> RelE
 Queu -> |S2
 |S2 -> RelC
 |S2 -> RelR
}

Figure 3.8: Textual representation of the Prepare activity

 TNO Public TNO 2023 R12452

 TNO Public 16/24

Figure 3.9: Graphical representation of the Prepare activity

Figure 3.10 and Figure 3.11 show the textual and graphical representations of the Execute
activity. The PrepareResult synchronisation resource is used at the start of the activity. The
claim of this resource corresponds to retrieving the setpoints for the Step and Scan actions.
In this example., we assume that retrieving the setpoints from the PrepareResult resource is
a first small part of the Step action, but this could also be modelled as a separate action. The
ExecuteResult synchronisation resource is used at the end of the activity when information
about the execution is retrieved by the Retrieve action.

As the Execute activity also includes information that is not present in the input TMSC model,
the Execute activity can partially be generated, but requires manual extension using domain
knowledge. This involves the claim and release of the PrepareResult and ExecuteResult
synchronisation resources and their dependencies to the synchronisation bars S3, S4 and S5.

 TNO Public TNO 2023 R12452

 TNO Public 17/24

activity Execute {
 actions {
 ClaC: claim Cyber
 RelC: release Cyber

 ClaP: claim Physical
 RelP: release Physical

 ClaR: claim PrepareResult
 RelR: release PrepareResult

 ClaE: claim ExecuteResult
 RelE: release ExecuteResult

 Retr: Cyber.c.Retrieve
 Step: Physical.p.Step
 Scan: Physical.p.Scan
 }

 action flow {
 ClaP -> |S3
 ClaR -> |S3
 |S3 -> Step
 |S3 -> RelR
 Step -> Scan
 Scan -> |S4
 ClaC -> |S4
 ClaE -> |S4
 |S4 -> RelP
 |S4 -> Retr
 Retr -> |S5
 |S5 -> RelC
 |S5 -> RelE
 }
}

Figure 3.10: Textual representation of the Execute activity

 TNO Public TNO 2023 R12452

 TNO Public 18/24

Figure 3.11: Graphical representation of the Execute activity

In Section 3.3.1, we introduced two instances of the parameterised PrepareResult and
ExecuteResult. These resources can be seen as buffers between the activities: one activity
putting results in the buffer, the other taking them out. The fact that there are two instances
of both synchronisation resources is not visible in the Prepare and Execute activities. The
activities instances of these resources, but do not specify which one. In fact, both activities
are parameterised; they can use both instances of the synchronisation resources. Which
synchronisation resource instances are used must be specified in the dispatching
specification. This is explained in Section 3.3.4.

3.3.4 Dispatching specification
A dispatching specification specifies the order in which activities are dispatched. LSAT
activities synchronise via their shared resources.3 The claim of a resource by an activity can
only happen after the preceding activities have released it. Section 3.3.3 shows that the
Prepare and Execute activities share three resources: Cyber, PrepareResult and
ExecuteResult. Resource Physical is only used by the Execute activity.

To obtain the same recurring execution pattern as in the TMSC in Figure 3.4, we first
dispatch two Prepare activities and then alternately dispatch Execute and Prepare activities.
The corresponding dispatching specification for ten exposures is shown in Figure 3.12.

3 Activities may also synchronise via events, but we have decided not to use events in the transformation from PPS

to LSAT.

 TNO Public TNO 2023 R12452

 TNO Public 19/24

In this dispatching specification, the parameters between square brackets indicate which
instances of the PrepareResult and ExecuteResult resources are used. Between round
brackets, the die being prepared and exposed is specified. Note that both the Prepare and
the Execute activities alternate between the instances of the synchronisation resources.

import "PPS2LSAT.activity"

activities {
 Prepare[PrepareResult.1, ExecuteResult.1] (die=1)
 Prepare[PrepareResult.2, ExecuteResult.2] (die=2)
 Execute[PrepareResult.1, ExecuteResult.1] (die=1)
 Prepare[PrepareResult.1, ExecuteResult.1] (die=3)
 Execute[PrepareResult.2, ExecuteResult.2] (die=2)
 Prepare[PrepareResult.2, ExecuteResult.2] (die=4)
 Execute[PrepareResult.1, ExecuteResult.1] (die=3)
 Prepare[PrepareResult.1, ExecuteResult.1] (die=5)
 Execute[PrepareResult.2, ExecuteResult.2] (die=4)
 Prepare[PrepareResult.2, ExecuteResult.2] (die=6)
 Execute[PrepareResult.1, ExecuteResult.1] (die=5)
 Prepare[PrepareResult.1, ExecuteResult.1] (die=7)
 Execute[PrepareResult.2, ExecuteResult.2] (die=6)
 Prepare[PrepareResult.2, ExecuteResult.2] (die=8)
 Execute[PrepareResult.1, ExecuteResult.1] (die=7)
 Prepare[PrepareResult.1, ExecuteResult.1] (die=9)
 Execute[PrepareResult.2, ExecuteResult.2] (die=8)
 Prepare[PrepareResult.2, ExecuteResult.2] (die=10)
 Execute[PrepareResult.1, ExecuteResult.1] (die=9)
 Execute[PrepareResult.2, ExecuteResult.2] (die=10)
}

Figure 3.12: LSAT dispatching specification

3.4 Timing analysis
From the dispatching specification in Figure 3.12, one can perform a timing analysis. This
results in a Gantt chart, which is shown in Figure 3.13. The actions in the Gantt chart are
coloured according to the parameterised activity that they belong to. Note that the Gantt
chart is very similar to the one in Figure 3.4, i.e. the one from the source TMSC. The main
differences are the swim lanes corresponding to the instances of the PrepareResult and
ExecuteResult resources; these are not in the input TMSC.4

4 The Gantt chart visualisation of LSAT can be adapted to not show the synchronisation resources. Then the Gantt

charts would look even more similar.

 TNO Public TNO 2023 R12452

 TNO Public 20/24

Figure 3.13: Gantt chart from LSAT timing analysis

When applying LSAT’s critical path analysis, one obtains the Gantt chart shown in Figure
3.14. The actions that are coloured red are part of the critical path. The Gantt chart shows
that the actions of the Execution activity are critical. Only at the beginning of the Gantt chart
there are two critical actions from the Prepare activity, i.e. the preparation of the first
exposure.

Figure 3.14: Gantt chart from LSAT critical path analysis

3.5 What-if analysis
Having an LSAT model allows exploration of possible future system specifications. One can
quickly predict the system behaviour in case of changes. Using the LSAT model created in
Section 3.3, one can, for instance, analyse the effect of having a 1-place buffer instead of a
2-place buffer. This corresponds to using only one of the instances of the synchronisation
resources PrepareResult and ExecuteResult. The Gantt chart in Figure 3.15 shows that this
would hamper productivity: the Execute activity must wait for the Prepare activity to finish.

 TNO Public TNO 2023 R12452

 TNO Public 21/24

Figure 3.15: Gantt chart from LSAT’s timing analysis for what-if scenario with 1-place buffer

This is confirmed by the result of LSAT’s critical path analysis for this scenario. Figure 3.16
shows that all actions of the Prepare activity and (nearly) all actions of the Execute activity
are critical.

Figure 3.16: Gantt chart from LSAT’s critical path analysis for what-if scenario with 1-place buffer

The model also allows what-if analyses with respect to shorter or longer action durations,
the introduction of new actions, and the introduction of additional resources.

3.6 Summary
In this chapter, we have illustrated the creation of an LSAT model from an TMSC. The TMSC
pre-processing explained in Section 3.2 and the model creation explained in Section 3.3 were
both done manually, but as “mechanically” as possible. We draw the following conclusions:
 Pre-processing: The TMSC pre-processing explained in Section 3.2 could have been

automated by implementing custom rules capturing LSAT model characteristics. These
rules would be specific for a family of similar TMSCs.

 Machine specifications: The rules explained in Section 3.3.1 are generic. By implementing
and applying these rules, most of an LSAT machine specification can be generated
automatically:
− Resources and peripherals can be generated from a TMSC’s swim lanes,
− Peripheral actions can be generated from the different functions performed in an

TMSC’s swim lanes,

 TNO Public TNO 2023 R12452

 TNO Public 22/24

− Synchronisation resources can be generated from dependencies that are cut by
activity generation. Instances of synchronisation resources need to be introduced
manually.

 Setting specifications: Section 3.3.2 explained rules to create LSAT setting specifications
from a TMSC. These rules are generic as well. Implementing and applying them would
allow the fully automatic generation of a setting specification, because synchronisation
resources do not involve any actions.

 Activity specifications: Generating LSAT activity specifications is more challenging. As
explained in Section 3.3.3, activities can be partially generated automatically. This
requires a specification of the (recurring) actions in a TMSC which together comprise an
activity. Using such a specification, the parts that can be automatically generated are:
− The claims and releases of the used resources,
− The actions performed in the activity, and
− The dependencies between these claims, releases and actions including the

synchronisation bars needed to obtain a valid LSAT activity.
The elements of an activity that cannot be generated automatically involve domain
knowledge:
− The claims and the releases of synchronisation resources for synchronisation between

activities, and
− The dependencies between claims and releases of synchronisation resources and

actions of regular resources.
 Dispatching specifications: Dispatching specifications are the most difficult elements of

an LSAT model when it comes to automatic generation. This is because they require the
most domain/application knowledge. We conclude that such specifications should be
created manually.

We conclude that a large part of an LSAT model can be automatically generated from an
TMSC model. The size of this part depends mainly on the number of synchronisation
resources needed. If this number is small (compared to the number of swim lanes in a
TMSC), then we expect that at least 75% of an LSAT model can be generated automatically
from a TMSC.

 TNO Public TNO 2023 R12452

 TNO Public 23/24

4 Conclusion

In this report, we have presented a way to start a model-based way of working in case of
brownfield development. Instead of manually creating (initial) analysis models, one can
derive (partial) analysis models from system artefacts.

We have presented an example to transform a system’s execution log into a timing analysis
model. Using domain and application knowledge, an execution log captured in TMSC in PPS
can be semi-automatically transformed into an LSAT specification and analysis model. From
the example, we assess that at least 75% of an LSAT model can be derived automatically
from a TMSC in PPS; the rest must be added manually.

Note that the automatic generation percentage depends on the commonality of the input
and output formalisms. More similar formalisms are likely to allow a higher degree of
automatic transformation than dissimilar ones.

 TNO Public TNO 2023 R12452

 TNO Public 24/24

5 References

[1] K. Triantafyllidis, “PPS: From Methodology to Application in Industry,” TNO-ESI,

Eindhoven, 2022.
[2] TNO, “Platform Performance Suite (PPS),” 2023. [Online]. Available:

https://tno.github.io/PPS/.
[3] B. van der Sanden, Y. Blankenstein, R. Schiffelers and J. Voeten, “LSAT: Specification and

Analysis of Product Logistics in Flexible Manufacturing Systems,” in 2021 IEEE 17th
International Conference on Automation Science and Engineering (CASE), Lyon, 2021.

[4] Eclipse Foundation, “Eclipse LSAT,” 2023. [Online]. Available: https://eclipse.dev/lsat/.
[5] R. Jonk, J. Voeten, M. Geilen, R. Theunissen, Y. Blankenstein, T. Basten and R. Schiffelers,

“Inferring Timed Message Sequence Charts from Execution Traces of Large-scale
Component-based Software Systems,” TU/e, Eindhoven, 2019.

ICT, Strategy & Policy

High Tech Campus 25
5656 AE Eindhoven
www.tno.nl

	Contents
	1 Introduction
	1.1 Outline

	2 TMSC pre-processing
	2.1 PPS vs. LSAT
	2.2 Collapsing TMSC call stacks
	2.3 Summary

	3 Transformation example
	3.1 Input TMSC model
	3.2 TMSC pre-processing
	3.3 LSAT model creation
	3.3.1 Machine specification
	3.3.2 Setting specification
	3.3.3 Activity specification
	3.3.4 Dispatching specification

	3.4 Timing analysis
	3.5 What-if analysis
	3.6 Summary

	4 Conclusion
	5 References

