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Abstract

We introduce two new methods for approximating the all-terminal reliability of undi-
rected graphs. First, we introduce an edge removal process: remove edges at random,
one at a time, until the graph becomes disconnected. We show that the expected num-
ber of edges thus removed is equal to (m+ 1)A, where m is the number of edges in the
graph, and A is the average of the all-terminal reliability polynomial. Based on this
process, we propose a Monte-Carlo algorithm to quickly estimate the graph reliabil-
ity (whose exact computation is NP-hard). Moreover, we show that the distribution of
the edge removal process can be used to quickly approximate the reliability polyno-
mial. We then propose increasingly accurate asymptotics for graph reliability based
solely on degree distributions of the graph. These asymptotics are tested against sev-

eral real-world networks and are shown to be accurate for sufficiently dense graphs.
While the approach starts to fail for “subway-like”” networks that contain many paths
of vertices of degree two, different asymptotics are derived for such networks.
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1 | INTRODUCTION

For a network (which we assume here is represented by a finite undirected graph, possibly with multiple edges) there are many
models of robustness to component failure. The simplest measures include the minimum degree (the minimum number of edges
whose removal disconnects a vertex from the rest of the graph), the edge connectivity (the minimum number of edges whose
removal disconnects the graph), and the vertex connectivity (the minimum number of vertices whose removal disconnects the
graph or reduces it down to a single vertex). Another indirect measure is the algebraic connectivity of the graph [12] which
measures how fast information propagates through the graph [13, 16, 23, 24].

However, such static measures are rather coarse and do not take into account that the components of a graph may, at different
junctures, fail to be operational. So more nuanced probabilistic models have been described, where the components (vertices
and/or edges) are subject to random failures. In the most common of these models, it is the edges that fail independently with
the same probability g, while the vertices are always operational, and we ask for the probability that the network is operational,
where operational can mean, for example:

e all vertices can communicate (the all-terminal reliability Rg(q), or simply R(g)), or
o two specific vertices s and ¢ (called the terminals) can communicate (two-terminal reliability R ;,(q)), or
e a specific subset K of vertices can communicate with one another (K-terminal reliability, Rg x(q)).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
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The computations of all of these polynomials (in variable g) are intractable, that is, NP-hard (see [6]). Of course, there are
other variants in the literature—some for node failures rather than edge failures, some for directed graphs, and some that allow
for failure dependencies. A general reference is [6], while more recent surveys include [2, 3].

2 | FIRST APPROACH: THE EDGE DELETION PROCESS

In our study of all-terminal reliability, we have been led recently to propose a new variant of network robustness based on an
algorithmic procedure. Consider the following edge deletion process: delete edges from the graph at random, one at a time
and stop when the graph becomes disconnected. Let s; denote the probability that under the edge deletion process the process
stops exactly after k steps. Can we determine the probability distribution of the s;’s? Of specific interest is the average number
of edge deletions to lead to disconnection, given by

w=) ks 2.1
k=0

How does this measure relate (if at all) to the existing reliability measures? We are interested in the answers to these questions,
both for synthetic graphs as well as for networks that appear in practice.

We remark that our interest grew out of a common Monte Carlo simulation of all-terminal reliability (see, e.g., [22]).
Namely, start with a (connected) graph G of order n and size m (i.e., with n vertices and m edges), a non-negative integer
ke {0,1, ... ,m—n+1} and for a large positive integer N, choose N random spanning subgraphs of G, each with m — k edges,
and determine the proportion r; of such spanning subgraphs that are connected. This value r, is an approximation to Rg(k/m).
A more efficient algorithm is to chose the k edges sequentially for deletion and stop when the graph becomes disconnected (as
further edge deletion cannot subsequently make the graph connected!).

Let us begin with a couple of examples.

Example 1. First of all, consider the cycle graph C, of order n. Clearly the removal of any single edge does not
disconnect the graph, but the removal of any two edges does disconnect the graph. Thus s, = 1 while s; = 0 for all
k # 2, and hence

w(C,) = Z ks = 2. (2.2)

Example 2. As another example, consider the graph H of order 3, with vertices x;, y and x,, where each x; is joined
to y by [ edges. It is not hard to see that

0 k<l
21(‘,')
k=374 I<k<2-1, 2.3)
«7)
0 k>2l
and hence
21-12[(’<) )
1 21
H) = = . 2.4
y(H) ;<2]> o 24)
=\

While the definition of the s;’s and w do not, on the surface, seem to relate to the all-terminal reliability (the latter is a
polynomial in variable g), we shall see in the next section that there is indeed a deep connection between the two notions.

2.1 | Connections to all-terminal reliability

The aim of this section is to quantify the connections between the edge deletion process, in terms of the stochastic variable s; and
the all-terminal reliability. We will establish connections for three metrics related to the all-terminal reliability: the average reli-
ability (AR) of the graph, the full all-terminal reliability polynomial of the graph, and the 99-percentile value of the all-terminal
reliability (the choice of the 99-percentile is arbitrary, but is indicative of how reliable a network is expected to be in practice).

We begin by enumerating a number of useful forms of the all-terminal reliability polynomial. For a graph G of order n
and size m (here and elsewhere, we shall always assume that any graph under question is connected), its all-terminal reliabil-
ity has the following forms (each is an expansion of the polynomial under different bases for the underlying vector space of
polynomials—see [6]):
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Ro(q) = Y\ Nig"™(1 - g
i=0
= Y Fiq(1 - g™ 25)
i=0

=1-)Cq(—-g""
i=0

We refer to these as the N-, F-, and C-forms of the reliability polynomial, respectively. The interpretation of the coefficients
is as follows:

e N; counts the number of spanning connected subgraphs with i edges.

e F; counts the number of spanning connected subgraphs with m — i edges.

e (; counts the number of cut sets with i edges, that is, the number of subsets of i edges whose removal leaves the graph
disconnected.

Of these three forms, the first two have attracted the most attention in the literature. However, we will see that the connection
between the s;’s and all-terminal reliability is most easily drawn with the C-form.
We now state our main result, which connects the edge deletion process to the average reliability.

Theorem 2.1. Let G be a graph having m edges. Remove edges from G at random and one at a time, until the graph
becomes disconnected. Let y be the average number of edges thus removed. Then

1
v =(m+ 1)/ R(g)dq. (2.6)
0

Theorem 2.1 states that y is m + 1 times the average of the all-terminal reliability polynomial over the interval [0, 1]; the
latter is known as the average reliability (AR) of the graph, and has been studied in [4]. The average reliability of a graph was
proposed as a single numerical measure of the robustness of a graph, and allows one to search for the existence of an optimal
graph with respect to reliability (even when a graph optimal for all ¢ € [0, 1] need not exist [1]) among all graphs with a given
fixed number of vertices n and a fixed number of edges m. We remark that the average reliability (and hence y) is also known
to be intractable [4].

Proof of Theorem 2.1. Define ¢, = Zf:o s;. Then ¢y is the probability that removing k random edges disconnects
G. Furthermore, s; = ¢, — ¢x—1 and ¢; = %, where, as in the C-form, Cy, is the number of edge subsets of size k

i
whose deletion disconnects the graph. To see the latter, note that if a subset S of k edges has the property that G —S
is disconnected, then this is true under any edge ordering of S, so that

B Cy - k! C,

Tm—1) - (m—k+1) (k>

Ck

We now write the mean y as

Yy = stk
0

=c1—co+2(cr—ci)+---+mlcy, — 1)

=—Cy)—Cl—C—C3— " —Cp-1+Mmcy
m—1
Cr
T X
=0 ("
=(7)

On the other hand, from the C-form of the reliability polynomial,

Rig)=1- Y Cid (1 - g",
k=0
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so that, from the above formula for v,

1
/ R(g)dq
0

m 1
-3 / Crg'(1 — )" *dg
k=070

1w G
=1-— Yy =%
m+1 ;) (m)
k
-_v
m+1’
where we used the fact (see, e.g., [17]) that for i € {0, 1, ... ,m}, the integral of the Bernstein basis polynomial [9]

satisfies [01 (T)q"(l — )" ldg=1/(m+1).

To illustrate the theorem, we again consider the two examples from Section 1.

Example 3. Foracycle C,, we have R(q) = (1 — g)"+mg(1 — g)"~', and direct integration yields /OIR(q)dq = miﬂ
On the other hand, removing any two edges (and exactly two edges) results in disconnection, so that y = 2,

consistent with (2.6).

Example 4. For the graph H introduced in Section 1, the reliability polynomial satisfies R(g) = (1 — ¢')*> while
m = 2[. We have

1 1
(m+1)/ R(q)dq=(21+1)/ (1 —q’)quz—,
0 0

2
consistent with the direct computations that y = [% in (2.4).

Theorem 2.1 gives a practical way to approximate y for large graphs using Monte Carlo simulation without computing the
reliability polynomial explicitly, which in general is intractable.

We will now show an even deeper connection between the edge deletion process and the all-terminal reliability polynomial.
From the C-form of reliability, we can write

1= k@ = Za('y )da-am. @)
Note that <'Z >qk(1 - q)’"‘k (k = 0,1, ... ,m) is a binomial distribution. In the limit of large m, it converges to a normal

distribution of mean u = gm and standard deviation 6 = 1/mgq(1 — g), so that ('Z)qk(l — gk ~

that for any continuous function f;, Laplace’s method gives the asymptotics

> 1 W=0\ yi
/Ofk 2no eXp( 202 >dk Tu

assuming o < u (see e.g., [14]). Approximating the sum in (2.7) by an integral then yields

- . 1 —k)?
ch<m>qk(l —g)" T~ Ck exp(w 2) >dk ~cy
k=0 k 0 2ro 20

\/2_# exp< (”2;]?2 > Recall

(o)

and it follows that 1 — R(g) ~ c,,, ¢ = p/m. Replacing u by k so that g = k/m, we obtain
¢k ~ 1= R(k/m). (2.8)

This means that the complement of the reliability polynomial (i.e., 1 — R(g)), is approximated by the normalized histogram of
the ¢;’s. To be more precise, assume we run the edge deletion process M times and denote the number of times the process stops
after exactly k steps by Si. Then we have s; = limM_woil—k and ¢, = limMﬁooiZi;o Sk.
From now on, we will refer to the expression 1 — R(q) as the complementary reliability polynomial.
Note that it follows from (2.8) that for large m, s; approximates minus the derivative of the reliability polynomial evaluated
at k/m, that is,
5 —R’(5>. (2.9)

m
We now show that for sufficiently small values of , ¢; can underestimate the values of 1 — R(k/m) while for sufficiently

large values of k overestimation can occur. Let A(G) denote the edge connectivity of a graph G. Then, for graphs with 4 > 1
and any 1 < k < A it holds that ¢, = 0, while 1 — R(k/m) > 0 although, in general, the value is very small. On the other
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hand, for k > m — n + 1, the edge deletion process always disconnects the network hence for those & it holds that ¢; = 1, while
1 — R(k/m) < 1 although again, in general, the difference is very small.

Finally, we can also use (2.8) to approximate the 99%-percentile of R(g). First determine the largest value of k which satisfies
¢ < 0.01 and denote this value by kggg. Then gogg, can be approximated by

kooo
Goos, = 2. (2.10)
m

2.2 | Validation on a synthetic and a real-world network

First we validate the results obtained in this section on a so-called crown graph. This graph is constructed by taking a complete
bipartite graph Ky » and joining the two nodes in the independent set of size 2 (see Figure 1). This graph has N + 2 nodes and
2N + 1 links, and will be denoted as Cry,».

For the crown graph Cry4,, according to [27], we have

R@ =1~ +q" =2"¢" 2.11)
The explicit expression (2.11) allows us to obtain a closed-form expression for y through (2.6):
I'(N+2) -N-1
=—"(1-2 , 2.12
I'(N +3/2) ( ) \/; 2.12)

where I" is the Gamma function.

We now use (2.11) and (2.12) to validate Theorem 2.1 by means of Monte Carlo simulation, as shown in Figure 1. Taking
N = 48, formula (2.12) yields weyer = 12.4389. On the other hand, using M = 1000 Monte Carlo simulations we obtained
wue = 12.39, in excellent agreement with the exact result. Finally, we use (2.11) to determine gg99, numerically by solving
R(g) = 0.99. With N = 48, (2.11) yields gg99, = 0.014469, so that removing kg9y, = 1.40 edges on average results in a 99%
probability of still being connected. According to Monte Carlo simulation, there is about a 1.3% probability of disconnection
after removing two edges (whereas removing one edge never disconnects a crown graph). Using linear interpolation, this yields
koo mc =~ 1.78. Note that the 99% threshold is in the very tail of the distribution, where the Monte Carlo approximation to R(g)
is degraded. Using a 90% threshold instead, the exact formula (2.11) yields kogy exaer = 4.589, compared to kogy pc = 5.0364,
a better agreement (9.7% relative error for kgyq, instead of 27% for kggq,).

Due to the nature of MC simulation, the accuracy increases with M but relatively slowly. To measure the accuracy, let K;
be the number of edges removed before the disconnection during simulation j. Define the Root Mean Square Error (RMSE) as

Ey = \/ Zj‘il (Wexacr — Kj)*/M. Table 1 lists Ej as a function of M. As expected, square root scaling Ey = oM~ typical
of Monte Carlo simulations, is observed.

Next we validate our results on a real-life network, namely the DFN communication network from the Internet Topology
Zoo [15]. This network has n = 58 nodes and m = 87 edges. This network is small enough to determine its reliability poly-

nomial exactly. We used the ReliabilityPolynomial command from Maple’s GraphTheory package to do so. Figure 2

[ |Monte Carlo, ¢ = 12.38

- =l—R, ¢=12.44
0 R A I I 6 6 I
0 5 10 15 20 25 30 35 40
mq

FIGURE 1  Left: The crown graph Crg. Right: Complementary reliability polynomial: Exact (dashed line) compared with Monte Carlo simulation (yellow
histogram), for Crs, using M = 1000 simulations.

TABLE 1 RMSE as a function of the number of simulations M.

M 1000 2000 4000 8000 16 000 32000
Ey 0.1706 0.1225 0.0867 0.0620 0.0439 0.0310
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n=58, m=87
30F
SR, ’ 20
O"i " // D /
0 5 10 15
degree
DFN
1r - .

[ |Monte Carlo, 3 = 6.673
| | I I

I I I —————
15 20

FIGURE 2 Top: The DFN network (consisting of 58 nodes and 87 edges) and its degree histogram. Complementary reliability polynomial (dashed line is
1 — R(g) computed exactly) compared with the CDF for the s,’s obtained through Monte Carlo simulations (yellow histogram).

shows the comparison between the normalized histogram for the ¢;’s (computed using 1000 Monte Carlo simulations), and the
complementary reliability polynomial 1 — R(g). Visually we see a good fit. In addition, yy,c = 6.673 while yy,r = 6.896, so
the relative error is only about 1%. Similarly we obtain kogy, ¢ = 0.1252 while kogg exac: = 0.1190, a relative error of about 5%.

3 | ANALYTIC APPROXIMATIONS FOR RELIABILITY POLYNOMIALS

So far we have compared the results obtained from the edge deletion process for graphs for which an explicit expression for
its reliability polynomial is available. However, in general such explicit expressions are intractable. In this section, we will
introduce two closed-form approximations for R(q), which allow us to compare the results of the edge deletion simulation with
the performance metrics y and the 99%-percentile.

3.1 | First and second order approximations

The probability of a single vertex being isolated is ¢, where d denotes the degree of the vertex. When ¢ is small and for a
sufficiently dense graph, the probability of having no isolated vertices asymptotically can be approximated by

n

Ri(g) := (1 -4%). (3.13)

J=1

This heuristic ignores any inter-dependence of the vertices, but works well when the graph is sufficiently “dense”. Note that
(3.13) only depends on the degree sequence of the graph and not on its finer structure. This is a property exhibited by the
so-called “random configuration model”, see for example, [11, 18, 21] and references therein. For sufficiently dense graphs,
we use the heuristic that the probability of being disconnected approaches the probability of having an isolated vertex. While
the rigorous justification of this heuristic remains an open problem, it is similar to the classical results for the Erd6s-Rényi
random graph model [8]. We will see below that R; provides a good approximation to R for many realistic networks as well as
for random regular graphs of degree 3 or more.

A more accurate formula for R(g) also incorporates the probability of having no isolated 2-vertex subgraphs. Given an edge,
the probability that it is disconnected from the graph is g 2(1 — g), where a is the sum of the degrees of the vertices adjoining
this edge. This leads to the following, more accurate asymptotics: R ~ R,, where

n

Ro(g) := [J(1 =g ] (1 - g2 = 9)), (3.14)

=1 j=1
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where g; is the sum of degrees of the two vertices adjoining an edge j. Higher-order asymptotics can be written by considering
isolated graphs of 3 or more vertices. However we will show in the next section that for most practical examples we considered,
R, (and even R)) provides high accuracy.

The asymptotic formulae (3.13,3.14) can also be used to estimate y in (2.6), the expected number of edges that need to be
deleted in order to disconnect the network. We have the following, increasingly accurate approximations for y:

1
Yy i=(m+ 1)/ Ri(@)dq; (3.15)
0

1
v 1= (m+ 1) / Ra(q)dq; (3.16)

0
In addition, we will also use the asymptotics (3.13) and (3.14) in the right-hand side of (2.8), which approximates the CDF

of the s;’s.

3.2 | Regular graphs

Consider the special case of d-regular graphs, in particular for large n. For this case, the approximation (3.13) becomes

Ri(@)=(1-q") (3.17)
whereas (3.14) yields
Ro(q) = (1 = ¢*)y"(1 = g*72(1 — )"/ (3.18)
From (3.17) we estimate:
@oor ~ (1 = (0.99)!/m)1/¢ (3.19)

To compute folRl(q)dq,we estimate (1 — ¢¢)" ~ exp(—ng?), n > 1, so that

1
/ Ri(q)dg ~ éF(l/d)n_l/d, n> 1. (3.20)
0

Substituting m = % for d-regular graphs into (2.6) yields y ~ y for n > 1 where:

nl—l/d 1
vi="5 r(g), n> 1 (3.21)

For example for a three-regular graph, this estimate yields y; = 1.3394n%/3.
Next we compute the asymptotics to two orders. Applying Laplace’s method, we estimate

1 1
0 0

1 _ " _y —4,2-2/d—142/d (1 _\1/d-1/d _
= —pl/d e Yo7 in (1=x"4n )xl/d Liy
d 0

N ln—l/d/ e—x<1 _ ﬂxz—z/dn—nz/d)xl/d—ldx
d 0 2
~ én_]/d (r(l/d) - %n—‘“/dr(z - 1/d)),
so to two orders in n, we obtain y ~ y,, where

vy = %nl—wm Jd) - %nl/dr(Z ~1/d). (3.22)

4 | VALIDATION OF THE APPROXIMATIONS FOR THE RELIABILITY
POLYNOMIALS

In this section, we compare the outcomes of the edge deletion process with the approximations Equations (3.13) and (3.14) for
the reliability polynomial.
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FIGURE 3 Comparison of Monte Carlo simulations (using M = 1000) and asymptotics based upon R;(g) and R,(g) for some real-world networks. Shown
are the CDF’s for the s;’s obtained using Monte Carlo simulations, and complementary reliability polynomials, based upon the asymptotics (3.13) and (3.14).

Table 2 shows numerical values for the average number y of deleted links to disconnect the networks, as well as 99% threshold values.

4.1 | Validation on real-world networks

In this subsection, we consider a number of real-world networks, taken from the Internet Topology Zoo [15] and the Net-

work Repository [25]. We apply Theorem 2.1 and asymptotics (3.15) and (3.16) to several real-world networks; the results are

presented in Figure 3 and Table 2. The column y,¢ is computed using the Monte Carlo method, averaged over 1000 simulations.

Columns y; and y, are asymptotic estimates as given by (3.15) and (3.16), respectively. In addition, we include the reliability

measure gggg. Despite the diversity of networks presented in Figure 3, the asymptotics agree very well with Monte Carlo

simulations for all networks shown except “Singapore”, which represents the subway network in Singapore. The agreement

breaks down for such network because it consists of many “strings”: paths where each vertex has degree at most two. We will

discuss how to improve asymptotics of such “subway” networks in Section 5.

It is interesting to note that the approximations for ggg¢, using either R; or R, give identical or nearly identical results (to all

digits shown) in about half of the cases.
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TABLE 2 Comparison of Monte Carlo and asymptotic estimates for selected real-world networks (see also Figure 3).
Network n Avg deg Deg std Yme Yy 73 G999, (MC) 99% (Ry) 99% (R;)
Hagy 37 10.81 6.94 91.171 93.096 92.856 0.0928 0.0913 0.0913
ISNA 60 3.13 2.80 3.62 4.18812 3.98228 0.000404 0.000480 0.000459
Illinois 70 7.82 3.43 92.578 94.5861 93.8267 0.0636 0.0553 0.0553
Singapore 103 2.27 0.818 3.0090 8.1923 5.7095 0.00033 0.000901 0.0016
IEEE118 118 3.03 1.574 11.045 13.02 11.056 0.000868 0.00145 0.00110
Berlin 224 3.35 1.27 24.017 25.1483 24.1642 0.00115 0.00124 0.00124
US-air97 332 12.807 20.134 35.335 37.04 36.882 0.00014692 0.00018276 0.00018276
s838 512 3.12 1.63 15.39 20.5658 15.0196 0.000221 0.000306 0.000208
wikivote 7066 28.513 57.733 43.61 44.36 44.17 4.72E—-06 4.45E-06 4.44E—-06
ia-email-EU-def 32430 3.35 18.18 2.178 2.1407 2.13919 4.103E-07 4.03E-07 4.02E-07

d=3, n=100

1-R(q)

[ Monte Carlo
1R,

1R,

I
40 45 50

’ d=4, n=100
Zost
- [ IMonte Carlo
1R,
1R,
o~ . = = 1 e e o
0 10 20 30 40 50 60 mq 70 80 90
= d=10, n=100
G
& 0.5+
o= [ IMonte Carlo
1R,
1R,
0 L | | [TTTITTTTT J
150 200 250 mq 300 350 400

FIGURE 4 Comparison of Monte Carlo simulations and asymptotic complementary reliability polynomials for random d-regular graphs, with d as indicated
and n = 100.

4.2 | Validation on regular graphs

Table 2 shows the comparison between asymptotic results and Monte Carlo simulations for random d-regular graphs (con-
structed using the configuration model [18]) with n = 100 and d as indicated. Here, y and gg9¢ ¢ are computed using the
Monte Carlo method using 10000 realizations and is believed to be accurate to within less than 1% (as validated by averaging
over several random subsets of simulations of size 5000). The relative errors err; = 1 — w/y; and err, = 1 — y /y», are also
shown. Note that for d = 3, y; captures about 82% of cases, whereas getting either an isolated vertex or an isolated two-graph
captures 92% of all cases (the remaining cases correspond to getting an isolated graphs of order 3 and higher). As the graph
density is increased, disconnection due to isolated vertices captures more and more cases; for example, it captures >98% of
cases when d = 10 (Figure 4).

The last two columns in Table 3 show the 99-percentile, computed using Monte Carlo simulation (g99% a¢) and the asymp-
totic approximation in formula (3.19) (g99% 4s). We observe an increasing accuracy of the asymptotics with increased d. The
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TABLE 3  Asymptotics versus Monte Carlo results for d-regular graphs.

d y Y1 %) %erry %err, q999%MC 499% as
3 23.5 28.856 25.71 18% 8% 0.015 0.046
4 53.3 57.32 54.41 7% 2% 0.074 0.100
10 296 300.13 296.32 1.7% <1% 0.3870 0.3983
- Singapore -
—
—_ /
¥ —
i MC, )~ 5.905
05F e 1R, 1,=10.1907
L~ 1Ry, 1,=8.02737
L1 -
1-Rs, 1), = 6.1842
0 I I [ I
0 5 10 15

mq

FIGURE 5 Left: Subway-type network “Singapore”, with one-shell removed. Right: Comparison of Monte Carlo simulation and approximations of the
complementary reliability polynomials, based upon (3.13), (3.14) and (5.23). Also shown are the averages.

agreement for gggg, is rather poor when d = 3 and n = 100 because in that case mgggy 4s & 2, which is rather small (at the very
tail of the distribution). The agreement is much better when d = 10.

S | SUBWAY-LIKE NETWORKS

As seen in Figure 3, the asymptotics (3.13) and (3.14) break down for the subway network of Singapore. It is characterized by
many paths made of consecutive vertices of degree 2, interspersed with a few transfer stations that have higher degree. We will
refer to these types of networks as “subway-type” networks [7]. For this type of network, the breakdown of connectivity is most
likely to happen because one of the “paths” gets disconnected, rather than getting an isolated vertex. This is the reason why R,
or R, fail to estimate reliability in this case.

To obtain a better estimate of y for “subway-type” networks, we first process the graph by removing the “one-shell” from
the graph as follows. Remove all vertices of degree one and their associated edges from the graph. Repeat, until there are no
more vertices of degree one. If the reliability polynomial of the graph with the one-shell removed is R(g), then the reliability
polynomial of the original graph is (1 — ¢)XR(g), where K is the number of edges/vertices in the one-shell that were removed.

In what follows, we shall assume without loss of generality that the one-shell has been removed to simplify the computation.
We first compute the probability that in a single path consisting of / edges, some vertex cannot communicate with either of the
end terminals of the path. This probability corresponds to failure of at least two edges along this path. The probability of such a
failure is thus given by 1 — p’ — [p'~!q where p = 1 — q. This yields the following estimate for the reliability polynomial R ~ R
for subway-type networks:

Ri(q) = [J«1 -9+ (1 = @' q) (5.23)
J

where the product is taken over all the paths (consisting of vertices of degree 2 inside the graph, and with /; being the number
of edges in such a path.
The corresponding estimate for y becomes

1
yy = (m+ 1)/ Ry(q)dq. (5.24)
0

The function Rg,.;(q) and the corresponding y; is shown in Figure 5. As can be seen, y; does a much better job for subway-type
graphs than either y| or y».

Finally, the two asymptotics (isolated vertex, path failure) can be combined for an even better approximation, but we do not
pursue this further here.
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6 | DISCUSSION

Graph connectivity is an important measure in network theory. In this work, we have presented a simple Monte Carlo algorithm
which consists of removing edges at random until the graph becomes disconnected. As the number of simulations increases, this
method recovers exactly the average of the reliability polynomial. It can also be used to estimate the full reliability polynomial,
whose exact computation is an NP-hard problem. We presented a heuristic for simple asymptotic estimates for the reliability
polynomial of sufficiently dense graphs, based on the probability of getting an isolated vertex or a two-vertex graph. For sparse
“subway-type” networks, we presented a different estimate based on the number of cycles in the graph. All of these estimates
have been shown to work for many real-world networks as well as random regular graphs.
We end this paper with some open questions and conjectures.

Open question 1. Choose a random graph consisting of n; vertices of degree 2, and n, vertices of degree 3. Suppose
that n; > nj,, in which case the graph is subway-like. What are the asymptotics of average reliability (AR) in this
case?

Open question 2. What is the average reliability of Erd6s-Rényi graphs? The degree distribution is Poisson in
this case.
More generally, what is the “best” degree distribution if we wish to optimize the average reliability?

Open question 3. Among all graphs of a fixed number of vertices n and edges m, which graph maximizes the
average reliability?

Consider the case of n = 12 and m = 18 (which includes all cubic graphs on 12 vertices). We used Brendon
McKay’s program Nauty [19] to generate a total of about 2 X 107 such graphs. Further restricting to only graphs
whose vertices have a minimum degree of 2 yields about 2 million graphs. By contrast, there are only 87 cubic
graphs on 12 vertices. Figure 6 shows the plot of AR versus the algebraic connectivity (AC) for this collection
of graphs.

The unique maximizer of AR = 0.350925 has AC = 1.467911, which is the second-highest AC. The unique maximizer of
AC =1.438447 has AR = 0.350792, which is the second-highest AR. Among high-AR graphs, the first 28 are cubic, having AR
from 0.3509 to 0.3429. The highest non-cubic graph has AR of 0.34121, and has girth 5. By contrast, there are many non-cubic
graphs with high AC; among the 30 graphs having the highest AC, only 2 are cubic. In terms of girth, there are a total of 7
girth-5 graphs, two of which are cubic.

Based on these observations, we propose the following conjecture.

Conjecture. Among all the graphs with a fixed number of nodes n and a fixed integer average degree d, the graph
that maximizes the average reliability is a d—regular graph.

15, n=12, m=18
. o girth=3
= girth=4
« girth=5
cubic

AC

0.5

0.15 0.2 0.25 0.3 0.35 0.4
AR

FIGURE 6 Algebraic connectivity (AC) versus average reliability (AR) for all connected graphs on 12 vertices and 18 edges with minimum degree 2. The
total number of such graphs is 2 189 608, of which 7 have girth 5, 74 021 have girth 4, while the remaining 2 115 580 graphs have girth 3.

85UB017 SUOLULLOD SAIERID 3ol dde 3y} Aq pauRA0B 818 S3[ e YO ‘SN 40 S3INI 104 ARIq1T 3UIIUO ABJIA UO (SUORIPUCD-PUR-SWRYWOD A8 | 1M ARR1q | BU1|UO//SHNY) SUORIPUOD PUe SWwid | 84} 835 * [7202/70/20] U0 A%eiqi8uliuo A8|IM ‘SpUeiaYIRN aUeIy00D Ag STZ2Z U 200T 0T/I0p/wo0d A3 | 1M Aelg1jeul|uoy//sdny Wwo. papeojumoq ‘0 ‘ZE00L60T



12 Wl LEY BROWNET AL.

In conclusion, let us mention some other related problems. In [10, 20], the authors modelled human frailty and death events
using complex scale-free networks. In their model, nodes are damaged at random (simulating an ageing process) until too much
damage is accumulated in the main nodes. Asymptotics could be derived for their model.

Monte Carlo techniques are used extensively for reliability and failure analyses. For example, reliability of Mobile Ad-Hoc
Networks (where the network changes in time) has been studied using Monte Carlo techniques [5]. It would be interesting to
extend the edge removal process to these classes of models.

Network reliability also has a connection with percolation theory. The percolation process can be viewed as a version of the
edge removal process on a grid but with a different termination condition, namely the emergence of a giant component, rather
than the network becoming disconnected [26]. Depending on the situation, this may be a better measure of network reliability
than a simple disconnection threshold.

Finally, we remark that our approach for analyzing network reliability can also be applied to the computation of two-terminal
reliability.
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