
Received: 21 May 2023 Revised: 22 January 2024 Accepted: 9 February 2024

DOI: 10.1002/net.22215

R E S E A R C H A R T I C L E

New approximations for network reliability

Jason I. Brown1 Theodore Kolokolnikov1 Robert E. Kooij2,3

1
Department of Mathematics and Statistics,

Dalhousie University, Halifax, Nova Scotia,

Canada

2
Faculty of Electrical Engineering, Mathematics

and Computer Science, Delft University of

Technology, Delft, The Netherlands

3
UNIT ICT, Strategy & Policy, TNO (Netherlands

Organization for Applied Scientific Research),

The Hague, The Netherlands

Correspondence
Jason I. Brown, Department of Mathematics and

Statistics, Dalhousie University, Halifax, NS,

B3H3J5, Canada.

Email: brown@mathstat.dal.ca

Funding information
Natural Sciences and Engineering Research

Council of Canada, Grant/Award Numbers:

RGPIN 2018-05227, RGPIN 05191-2019

Abstract
We introduce two new methods for approximating the all-terminal reliability of undi-

rected graphs. First, we introduce an edge removal process: remove edges at random,

one at a time, until the graph becomes disconnected. We show that the expected num-

ber of edges thus removed is equal to (m+1)A, where m is the number of edges in the

graph, and A is the average of the all-terminal reliability polynomial. Based on this

process, we propose a Monte-Carlo algorithm to quickly estimate the graph reliabil-

ity (whose exact computation is NP-hard). Moreover, we show that the distribution of

the edge removal process can be used to quickly approximate the reliability polyno-

mial. We then propose increasingly accurate asymptotics for graph reliability based

solely on degree distributions of the graph. These asymptotics are tested against sev-

eral real-world networks and are shown to be accurate for sufficiently dense graphs.

While the approach starts to fail for “subway-like” networks that contain many paths

of vertices of degree two, different asymptotics are derived for such networks.
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approximation, average reliability, first order approximation, Monte Carlo, network
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1 INTRODUCTION

For a network (which we assume here is represented by a finite undirected graph, possibly with multiple edges) there are many

models of robustness to component failure. The simplest measures include the minimum degree (the minimum number of edges

whose removal disconnects a vertex from the rest of the graph), the edge connectivity (the minimum number of edges whose

removal disconnects the graph), and the vertex connectivity (the minimum number of vertices whose removal disconnects the

graph or reduces it down to a single vertex). Another indirect measure is the algebraic connectivity of the graph [12] which

measures how fast information propagates through the graph [13, 16, 23, 24].

However, such static measures are rather coarse and do not take into account that the components of a graph may, at different

junctures, fail to be operational. So more nuanced probabilistic models have been described, where the components (vertices

and/or edges) are subject to random failures. In the most common of these models, it is the edges that fail independently with

the same probability q, while the vertices are always operational, and we ask for the probability that the network is operational,

where operational can mean, for example:

• all vertices can communicate (the all-terminal reliability RG(q), or simply R(q)), or

• two specific vertices s and t (called the terminals) can communicate (two-terminal reliability RG,s,t(q)), or

• a specific subset K of vertices can communicate with one another (K-terminal reliability, RG,K(q)).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.
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2 BROWN ET AL.

The computations of all of these polynomials (in variable q) are intractable, that is, NP-hard (see [6]). Of course, there are

other variants in the literature–some for node failures rather than edge failures, some for directed graphs, and some that allow

for failure dependencies. A general reference is [6], while more recent surveys include [2, 3].

2 FIRST APPROACH: THE EDGE DELETION PROCESS

In our study of all-terminal reliability, we have been led recently to propose a new variant of network robustness based on an

algorithmic procedure. Consider the following edge deletion process: delete edges from the graph at random, one at a time

and stop when the graph becomes disconnected. Let sk denote the probability that under the edge deletion process the process

stops exactly after k steps. Can we determine the probability distribution of the sk’s? Of specific interest is the average number

of edge deletions to lead to disconnection, given by

𝜓 =
∞∑

k=0

ksk. (2.1)

How does this measure relate (if at all) to the existing reliability measures? We are interested in the answers to these questions,

both for synthetic graphs as well as for networks that appear in practice.

We remark that our interest grew out of a common Monte Carlo simulation of all-terminal reliability (see, e.g., [22]).

Namely, start with a (connected) graph G of order n and size m (i.e., with n vertices and m edges), a non-negative integer

k ∈ {0, 1, … ,m− n+ 1} and for a large positive integer N, choose N random spanning subgraphs of G, each with m− k edges,

and determine the proportion rk of such spanning subgraphs that are connected. This value rk is an approximation to RG(k∕m).
A more efficient algorithm is to chose the k edges sequentially for deletion and stop when the graph becomes disconnected (as

further edge deletion cannot subsequently make the graph connected!).

Let us begin with a couple of examples.

Example 1. First of all, consider the cycle graph Cn of order n. Clearly the removal of any single edge does not

disconnect the graph, but the removal of any two edges does disconnect the graph. Thus s2 = 1 while sk = 0 for all

k ≠ 2, and hence

𝜓(Cn) =
∑

ksk = 2. (2.2)

Example 2. As another example, consider the graph H of order 3, with vertices x1, y and x2, where each xi is joined

to y by l edges. It is not hard to see that

sk =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0 k < l
2l
(

k
l

)

k
(

2l
l

) l ≤ k ≤ 2l − 1

0 k ≥ 2l

, (2.3)

and hence

𝜓(H) =
2l−1∑

k=l

2l
(

k
l

)

(
2l
l

) = 2l2
l + 1

. (2.4)

While the definition of the sk’s and 𝜓 do not, on the surface, seem to relate to the all-terminal reliability (the latter is a

polynomial in variable q), we shall see in the next section that there is indeed a deep connection between the two notions.

2.1 Connections to all-terminal reliability
The aim of this section is to quantify the connections between the edge deletion process, in terms of the stochastic variable sk and

the all-terminal reliability. We will establish connections for three metrics related to the all-terminal reliability: the average reli-

ability (AR) of the graph, the full all-terminal reliability polynomial of the graph, and the 99-percentile value of the all-terminal

reliability (the choice of the 99-percentile is arbitrary, but is indicative of how reliable a network is expected to be in practice).

We begin by enumerating a number of useful forms of the all-terminal reliability polynomial. For a graph G of order n
and size m (here and elsewhere, we shall always assume that any graph under question is connected), its all-terminal reliabil-

ity has the following forms (each is an expansion of the polynomial under different bases for the underlying vector space of

polynomials–see [6]):

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22215 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BROWN ET AL. 3

RG(q) =
m∑

i=0

Niqm−i(1 − q)i

=
m∑

i=0

Fiqi(1 − q)m−i

= 1 −
m∑

i=0

Ciqi(1 − q)m−i

(2.5)

We refer to these as the N-, F-, and C-forms of the reliability polynomial, respectively. The interpretation of the coefficients

is as follows:

• Ni counts the number of spanning connected subgraphs with i edges.

• Fi counts the number of spanning connected subgraphs with m − i edges.

• Ci counts the number of cut sets with i edges, that is, the number of subsets of i edges whose removal leaves the graph

disconnected.

Of these three forms, the first two have attracted the most attention in the literature. However, we will see that the connection

between the sk’s and all-terminal reliability is most easily drawn with the C-form.

We now state our main result, which connects the edge deletion process to the average reliability.

Theorem 2.1. Let G be a graph having m edges. Remove edges from G at random and one at a time, until the graph
becomes disconnected. Let 𝜓 be the average number of edges thus removed. Then

𝜓 = (m + 1)
∫

1

0

R(q)𝑑q. (2.6)

Theorem 2.1 states that 𝜓 is m + 1 times the average of the all-terminal reliability polynomial over the interval [0, 1]; the

latter is known as the average reliability (AR) of the graph, and has been studied in [4]. The average reliability of a graph was

proposed as a single numerical measure of the robustness of a graph, and allows one to search for the existence of an optimal

graph with respect to reliability (even when a graph optimal for all q ∈ [0, 1] need not exist [1]) among all graphs with a given

fixed number of vertices n and a fixed number of edges m. We remark that the average reliability (and hence 𝜓) is also known

to be intractable [4].

Proof of Theorem 2.1. Define ck =
∑k

i=0
si. Then ck is the probability that removing k random edges disconnects

G. Furthermore, sk = ck − ck−1 and ck = Ck(
m
k

)
, where, as in the C-form, Ck is the number of edge subsets of size k

whose deletion disconnects the graph. To see the latter, note that if a subset S of k edges has the property that G− S
is disconnected, then this is true under any edge ordering of S, so that

ck =
Ck ⋅ k!

m(m − 1) · · · (m − k + 1)
= Ck(

m
k

) .

We now write the mean 𝜓 as

𝜓 =
m∑

0

ksk

= c1 − c0 + 2(c2 − c1) + · · · + m(cm − cm−1)
= −c0 − c1 − c2 − c3 − · · · − cm−1 + mcm

= −
m−1∑

k=0

Ck(
m
k

) + m

= m + 1 −
m∑

k=0

Ck(
m
k

) .

On the other hand, from the C-form of the reliability polynomial,

R(q) = 1 −
m∑

k=0

Ckqk(1 − q)m−k
,
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4 BROWN ET AL.

so that, from the above formula for 𝜓 ,

∫

1

0

R(q)𝑑q = 1 −
m∑

k=0
∫

1

0

Ckqk(1 − q)m−k
𝑑q

= 1 − 1

m + 1

m∑

k=0

Ck(
m
k

)

= 𝜓

m + 1
,

where we used the fact (see, e.g., [17]) that for i ∈ {0, 1, … ,m}, the integral of the Bernstein basis polynomial [9]

satisfies ∫
1

0

(
m
i

)
qi(1 − q)m−i

𝑑q = 1∕(m + 1).

To illustrate the theorem, we again consider the two examples from Section 1.

Example 3. For a cycle Cm we have R(q) = (1 − q)m+mq(1 − q)m−1
, and direct integration yields ∫

1

0
R(q)𝑑q = 2

m+1
.

On the other hand, removing any two edges (and exactly two edges) results in disconnection, so that 𝜓 = 2,

consistent with (2.6).

Example 4. For the graph H introduced in Section 1, the reliability polynomial satisfies R(q) = (1 − ql)2 while

m = 2l. We have

(m + 1)
∫

1

0

R(q)𝑑q = (2l + 1)
∫

1

0

(
1 − ql)2

𝑑q = 2l2
l + 1

,

consistent with the direct computations that 𝜓 = 2l2

l+1
in (2.4).

Theorem 2.1 gives a practical way to approximate 𝜓 for large graphs using Monte Carlo simulation without computing the

reliability polynomial explicitly, which in general is intractable.

We will now show an even deeper connection between the edge deletion process and the all-terminal reliability polynomial.

From the C-form of reliability, we can write

1 − R(q) =
m∑

k=0

ck

(m
k

)
qk(1 − q)m−k

. (2.7)

Note that

(
m
k

)
qk(1 − q)m−k

(k = 0, 1, … ,m) is a binomial distribution. In the limit of large m, it converges to a normal

distribution of mean 𝜇 = qm and standard deviation 𝜎 =
√

mq(1 − q), so that

(
m
k

)
qk(1 − q)m−k ∼ 1√

2𝜋𝜎
exp

(
(𝜇−k)2

2𝜎2

)
. Recall

that for any continuous function fk, Laplace’s method gives the asymptotics

∫

∞

0

fk
1√
2𝜋𝜎

exp

(
(𝜇 − k)2

2𝜎2

)
𝑑k ∼ f

𝜇

assuming 𝜎 ≪ 𝜇 (see e.g., [14]). Approximating the sum in (2.7) by an integral then yields

m∑

k=0

ck

(m
k

)
qk(1 − q)m−k ∼

∫

∞

0

ck
1√
2𝜋𝜎

exp

(
(𝜇 − k)2

2𝜎2

)
𝑑k ∼ c

𝜇

and it follows that 1 − R(q) ∼ c
𝜇
, q = 𝜇∕m. Replacing 𝜇 by k so that q = k∕m, we obtain

ck ∼ 1 − R(k∕m). (2.8)

This means that the complement of the reliability polynomial (i.e., 1 − R(q)), is approximated by the normalized histogram of

the ck’s. To be more precise, assume we run the edge deletion process M times and denote the number of times the process stops

after exactly k steps by Sk. Then we have sk = limM→∞
Sk
M

and ck = limM→∞
1

M

∑k
i=0

Sk.

From now on, we will refer to the expression 1 − R(q) as the complementary reliability polynomial.
Note that it follows from (2.8) that for large m, sk approximates minus the derivative of the reliability polynomial evaluated

at k∕m, that is,

sk ∼ −R′
( k

m

)
. (2.9)

We now show that for sufficiently small values of k, ck can underestimate the values of 1 − R(k∕m) while for sufficiently

large values of k overestimation can occur. Let 𝜆(G) denote the edge connectivity of a graph G. Then, for graphs with 𝜆 > 1

and any 1 ≤ k < 𝜆 it holds that ck = 0, while 1 − R(k∕m) > 0 although, in general, the value is very small. On the other
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BROWN ET AL. 5

hand, for k > m − n + 1, the edge deletion process always disconnects the network hence for those k it holds that ck = 1, while

1 − R(k∕m) < 1 although again, in general, the difference is very small.

Finally, we can also use (2.8) to approximate the 99%-percentile of R(q). First determine the largest value of k which satisfies

ck ≤ 0.01 and denote this value by k99%. Then q99% can be approximated by

q99% =
k99%
m

. (2.10)

2.2 Validation on a synthetic and a real-world network
First we validate the results obtained in this section on a so-called crown graph. This graph is constructed by taking a complete

bipartite graph KN,2 and joining the two nodes in the independent set of size 2 (see Figure 1). This graph has N + 2 nodes and

2N + 1 links, and will be denoted as CrN+2.

For the crown graph CrN+2, according to [27], we have

R(q) = (1 − q)N((1 + q)N − 2
NqN+1) (2.11)

The explicit expression (2.11) allows us to obtain a closed-form expression for 𝜓 through (2.6):

𝜓 = Γ(N + 2)
Γ(N + 3∕2)

(
1 − 2

−N−1
)√

𝜋, (2.12)

where Γ is the Gamma function.

We now use (2.11) and (2.12) to validate Theorem 2.1 by means of Monte Carlo simulation, as shown in Figure 1. Taking

N = 48, formula (2.12) yields 𝜓exact = 12.4389. On the other hand, using M = 1000 Monte Carlo simulations we obtained

𝜓MC = 12.39, in excellent agreement with the exact result. Finally, we use (2.11) to determine q99% numerically by solving

R(q) = 0.99. With N = 48, (2.11) yields q99% = 0.014469, so that removing k99% = 1.40 edges on average results in a 99%
probability of still being connected. According to Monte Carlo simulation, there is about a 1.3% probability of disconnection

after removing two edges (whereas removing one edge never disconnects a crown graph). Using linear interpolation, this yields

k99%,MC ≈ 1.78. Note that the 99% threshold is in the very tail of the distribution, where the Monte Carlo approximation to R(q)
is degraded. Using a 90% threshold instead, the exact formula (2.11) yields k90%,exact = 4.589, compared to k90%,MC = 5.0364,

a better agreement (9.7% relative error for k90% instead of 27% for k99%).

Due to the nature of MC simulation, the accuracy increases with M but relatively slowly. To measure the accuracy, let Kj
be the number of edges removed before the disconnection during simulation j. Define the Root Mean Square Error (RMSE) as

EM =
√∑M

j=1
(𝜓exact − Kj)2∕M. Table 1 lists EM as a function of M. As expected, square root scaling EM = O(M−1∕2), typical

of Monte Carlo simulations, is observed.

Next we validate our results on a real-life network, namely the DFN communication network from the Internet Topology

Zoo [15]. This network has n = 58 nodes and m = 87 edges. This network is small enough to determine its reliability poly-

nomial exactly. We used the ReliabilityPolynomial command from Maple’s GraphTheory package to do so. Figure 2

FIGURE 1 Left: The crown graph Cr6. Right: Complementary reliability polynomial: Exact (dashed line) compared with Monte Carlo simulation (yellow

histogram), for Cr50 using M = 1000 simulations.

TABLE 1 RMSE as a function of the number of simulations M.

M 1000 2000 4000 8000 16 000 32 000

EM 0.1706 0.1225 0.0867 0.0620 0.0439 0.0310
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6 BROWN ET AL.

FIGURE 2 Top: The DFN network (consisting of 58 nodes and 87 edges) and its degree histogram. Complementary reliability polynomial (dashed line is

1 − R(q) computed exactly) compared with the CDF for the sk’s obtained through Monte Carlo simulations (yellow histogram).

shows the comparison between the normalized histogram for the ck’s (computed using 1000 Monte Carlo simulations), and the

complementary reliability polynomial 1 − R(q). Visually we see a good fit. In addition, 𝜓MC = 6.673 while 𝜓exact = 6.896, so

the relative error is only about 1%. Similarly we obtain k99%,MC = 0.1252 while k99%,exact = 0.1190, a relative error of about 5%.

3 ANALYTIC APPROXIMATIONS FOR RELIABILITY POLYNOMIALS

So far we have compared the results obtained from the edge deletion process for graphs for which an explicit expression for

its reliability polynomial is available. However, in general such explicit expressions are intractable. In this section, we will

introduce two closed-form approximations for R(q), which allow us to compare the results of the edge deletion simulation with

the performance metrics 𝜓 and the 99%-percentile.

3.1 First and second order approximations
The probability of a single vertex being isolated is q𝑑, where 𝑑 denotes the degree of the vertex. When q is small and for a

sufficiently dense graph, the probability of having no isolated vertices asymptotically can be approximated by

R1(q) ∶=
n∏

j=1

(
1 − q𝑑j

)
. (3.13)

This heuristic ignores any inter-dependence of the vertices, but works well when the graph is sufficiently “dense”. Note that

(3.13) only depends on the degree sequence of the graph and not on its finer structure. This is a property exhibited by the

so-called “random configuration model”, see for example, [11, 18, 21] and references therein. For sufficiently dense graphs,

we use the heuristic that the probability of being disconnected approaches the probability of having an isolated vertex. While

the rigorous justification of this heuristic remains an open problem, it is similar to the classical results for the Erdős-Rényi

random graph model [8]. We will see below that R1 provides a good approximation to R for many realistic networks as well as

for random regular graphs of degree 3 or more.

A more accurate formula for R(q) also incorporates the probability of having no isolated 2-vertex subgraphs. Given an edge,

the probability that it is disconnected from the graph is qa−2(1 − q), where a is the sum of the degrees of the vertices adjoining

this edge. This leads to the following, more accurate asymptotics: R ∼ R2, where

R2(q) ∶=
n∏

j=1

(
1 − q𝑑j

) m∏

j=1

(
1 − qaj−2(1 − q)

)
, (3.14)
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BROWN ET AL. 7

where aj is the sum of degrees of the two vertices adjoining an edge j. Higher-order asymptotics can be written by considering

isolated graphs of 3 or more vertices. However we will show in the next section that for most practical examples we considered,

R2 (and even R1) provides high accuracy.

The asymptotic formulae (3.13,3.14) can also be used to estimate 𝜓 in (2.6), the expected number of edges that need to be

deleted in order to disconnect the network. We have the following, increasingly accurate approximations for 𝜓 :

𝜓1 ∶= (m + 1)
∫

1

0

R1(q)𝑑q; (3.15)

𝜓2 ∶= (m + 1)
∫

1

0

R2(q)𝑑q; (3.16)

In addition, we will also use the asymptotics (3.13) and (3.14) in the right-hand side of (2.8), which approximates the CDF

of the sk’s.

3.2 Regular graphs
Consider the special case of 𝑑-regular graphs, in particular for large n. For this case, the approximation (3.13) becomes

R1(q) = (1 − q𝑑)n (3.17)

whereas (3.14) yields

R2(q) = (1 − q𝑑)n(1 − q2𝑑−2(1 − q))n𝑑∕2
. (3.18)

From (3.17) we estimate:

q99% ∼ (1 − (0.99)1∕n)1∕𝑑 (3.19)

To compute ∫
1

0
R1(q)𝑑q,we estimate (1 − q𝑑)n ∼ exp

(
−nq𝑑

)
, n ≫ 1, so that

∫

1

0

R1(q)𝑑q ∼ 1

𝑑

Γ(1∕𝑑)n−1∕𝑑
, n ≫ 1. (3.20)

Substituting m = n𝑑
2

for 𝑑-regular graphs into (2.6) yields 𝜓 ∼ 𝜓1 for n ≫ 1 where:

𝜓1 =
n1−1∕𝑑

2
Γ
(

1

𝑑

)
, n ≫ 1 (3.21)

For example for a three-regular graph, this estimate yields 𝜓1 = 1.3394n2∕3
.

Next we compute the asymptotics to two orders. Applying Laplace’s method, we estimate

∫

1

0

R2(q)𝑑q ∼
∫

1

0

e−nq𝑑e−n 𝑑

2
q2𝑑−2(1−q)

𝑑q

= 1

𝑑

n−1∕𝑑
∫

n

0

e−xe−
𝑑

2
x2−2∕𝑑n−1+2∕𝑑(1−x1∕𝑑n−1∕𝑑)x1∕𝑑−1

𝑑x

∼ 1

𝑑

n−1∕𝑑
∫

∞

0

e−x
(

1 − 𝑑

2
x2−2∕𝑑n−1+2∕𝑑

)
x1∕𝑑−1

𝑑x

∼ 1

𝑑

n−1∕𝑑
(
Γ(1∕𝑑) − 𝑑

2
n−1+2∕𝑑Γ(2 − 1∕𝑑)

)
,

so to two orders in n, we obtain 𝜓 ∼ 𝜓2, where

𝜓2 =
1

2
n1−1∕𝑑Γ(1∕𝑑) − 𝑑

4
n1∕𝑑Γ(2 − 1∕𝑑). (3.22)

4 VALIDATION OF THE APPROXIMATIONS FOR THE RELIABILITY
POLYNOMIALS

In this section, we compare the outcomes of the edge deletion process with the approximations Equations (3.13) and (3.14) for

the reliability polynomial.
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8 BROWN ET AL.

FIGURE 3 Comparison of Monte Carlo simulations (using M = 1000) and asymptotics based upon R1(q) and R2(q) for some real-world networks. Shown

are the CDF’s for the sk’s obtained using Monte Carlo simulations, and complementary reliability polynomials, based upon the asymptotics (3.13) and (3.14).

Table 2 shows numerical values for the average number 𝜓 of deleted links to disconnect the networks, as well as 99% threshold values.

4.1 Validation on real-world networks
In this subsection, we consider a number of real-world networks, taken from the Internet Topology Zoo [15] and the Net-

work Repository [25]. We apply Theorem 2.1 and asymptotics (3.15) and (3.16) to several real-world networks; the results are

presented in Figure 3 and Table 2. The column𝜓MC is computed using the Monte Carlo method, averaged over 1000 simulations.

Columns𝜓1 and𝜓2 are asymptotic estimates as given by (3.15) and (3.16), respectively. In addition, we include the reliability

measure q99%. Despite the diversity of networks presented in Figure 3, the asymptotics agree very well with Monte Carlo

simulations for all networks shown except “Singapore”, which represents the subway network in Singapore. The agreement

breaks down for such network because it consists of many “strings”: paths where each vertex has degree at most two. We will

discuss how to improve asymptotics of such “subway” networks in Section 5.

It is interesting to note that the approximations for q99% using either R1 or R2 give identical or nearly identical results (to all

digits shown) in about half of the cases.
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BROWN ET AL. 9

TABLE 2 Comparison of Monte Carlo and asymptotic estimates for selected real-world networks (see also Figure 3).

Network n Avg deg Deg std 𝝍MC 𝝍1 𝝍2 q99% (MC) 99% (R1) 99% (R2)

Hagy 37 10.81 6.94 91.171 93.096 92.856 0.0928 0.0913 0.0913

ISNA 60 3.13 2.80 3.62 4.18812 3.98228 0.000404 0.000480 0.000459

Illinois 70 7.82 3.43 92.578 94.5861 93.8267 0.0636 0.0553 0.0553

Singapore 103 2.27 0.818 3.0090 8.1923 5.7095 0.00033 0.000901 0.0016

IEEE118 118 3.03 1.574 11.045 13.02 11.056 0.000868 0.00145 0.00110

Berlin 224 3.35 1.27 24.017 25.1483 24.1642 0.00115 0.00124 0.00124

US-air97 332 12.807 20.134 35.335 37.04 36.882 0.00014692 0.00018276 0.00018276

s838 512 3.12 1.63 15.39 20.5658 15.0196 0.000221 0.000306 0.000208

wikivote 7066 28.513 57.733 43.61 44.36 44.17 4.72E−06 4.45E−06 4.44E−06

ia-email-EU-def 32 430 3.35 18.18 2.178 2.1407 2.13919 4.103E−07 4.03E−07 4.02E−07

FIGURE 4 Comparison of Monte Carlo simulations and asymptotic complementary reliability polynomials for random 𝑑-regular graphs, with 𝑑 as indicated

and n = 100.

4.2 Validation on regular graphs
Table 2 shows the comparison between asymptotic results and Monte Carlo simulations for random 𝑑-regular graphs (con-

structed using the configuration model [18]) with n = 100 and 𝑑 as indicated. Here, 𝜓 and q99%,MC are computed using the

Monte Carlo method using 10 000 realizations and is believed to be accurate to within less than 1% (as validated by averaging

over several random subsets of simulations of size 5000). The relative errors err1 = 1 − 𝜓∕𝜓1 and err2 = 1 − 𝜓∕𝜓2, are also

shown. Note that for 𝑑 = 3, 𝜓1 captures about 82% of cases, whereas getting either an isolated vertex or an isolated two-graph

captures 92% of all cases (the remaining cases correspond to getting an isolated graphs of order 3 and higher). As the graph

density is increased, disconnection due to isolated vertices captures more and more cases; for example, it captures >98% of

cases when 𝑑 = 10 (Figure 4).

The last two columns in Table 3 show the 99-percentile, computed using Monte Carlo simulation (q99%,MC) and the asymp-

totic approximation in formula (3.19) (q99%,as). We observe an increasing accuracy of the asymptotics with increased 𝑑. The
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10 BROWN ET AL.

TABLE 3 Asymptotics versus Monte Carlo results for 𝑑-regular graphs.

𝒅 𝝍 𝝍1 𝝍2 %err1 %err2 q99%,MC q99%,as

3 23.5 28.856 25.71 18% 8% 0.015 0.046

4 53.3 57.32 54.41 7% 2% 0.074 0.100

10 296 300.13 296.32 1.7% <1% 0.3870 0.3983

FIGURE 5 Left: Subway-type network “Singapore”, with one-shell removed. Right: Comparison of Monte Carlo simulation and approximations of the

complementary reliability polynomials, based upon (3.13), (3.14) and (5.23). Also shown are the averages.

agreement for q99% is rather poor when 𝑑 = 3 and n = 100 because in that case mq99%,as ≈ 2, which is rather small (at the very

tail of the distribution). The agreement is much better when 𝑑 = 10.

5 SUBWAY-LIKE NETWORKS

As seen in Figure 3, the asymptotics (3.13) and (3.14) break down for the subway network of Singapore. It is characterized by

many paths made of consecutive vertices of degree 2, interspersed with a few transfer stations that have higher degree. We will

refer to these types of networks as “subway-type” networks [7]. For this type of network, the breakdown of connectivity is most

likely to happen because one of the “paths” gets disconnected, rather than getting an isolated vertex. This is the reason why R1

or R2 fail to estimate reliability in this case.

To obtain a better estimate of 𝜓 for “subway-type” networks, we first process the graph by removing the “one-shell” from

the graph as follows. Remove all vertices of degree one and their associated edges from the graph. Repeat, until there are no

more vertices of degree one. If the reliability polynomial of the graph with the one-shell removed is R(q), then the reliability

polynomial of the original graph is (1 − q)KR(q), where K is the number of edges/vertices in the one-shell that were removed.

In what follows, we shall assume without loss of generality that the one-shell has been removed to simplify the computation.

We first compute the probability that in a single path consisting of l edges, some vertex cannot communicate with either of the

end terminals of the path. This probability corresponds to failure of at least two edges along this path. The probability of such a

failure is thus given by 1− pl − lpl−1q where p = 1− q. This yields the following estimate for the reliability polynomial R ∼ Rs

for subway-type networks:

Rs(q) =
∏

j
((1 − q)lj + (1 − q)lj−1qlj) (5.23)

where the product is taken over all the paths (consisting of vertices of degree 2 inside the graph, and with lj being the number

of edges in such a path.

The corresponding estimate for 𝜓 becomes

𝜓s = (m + 1)
∫

1

0

Rs(q)𝑑q. (5.24)

The function Rshell(q) and the corresponding 𝜓s is shown in Figure 5. As can be seen, 𝜓s does a much better job for subway-type

graphs than either 𝜓1 or 𝜓2.

Finally, the two asymptotics (isolated vertex, path failure) can be combined for an even better approximation, but we do not

pursue this further here.
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BROWN ET AL. 11

6 DISCUSSION

Graph connectivity is an important measure in network theory. In this work, we have presented a simple Monte Carlo algorithm

which consists of removing edges at random until the graph becomes disconnected. As the number of simulations increases, this

method recovers exactly the average of the reliability polynomial. It can also be used to estimate the full reliability polynomial,

whose exact computation is an NP-hard problem. We presented a heuristic for simple asymptotic estimates for the reliability

polynomial of sufficiently dense graphs, based on the probability of getting an isolated vertex or a two-vertex graph. For sparse

“subway-type” networks, we presented a different estimate based on the number of cycles in the graph. All of these estimates

have been shown to work for many real-world networks as well as random regular graphs.

We end this paper with some open questions and conjectures.

Open question 1. Choose a random graph consisting of n1 vertices of degree 2, and n2 vertices of degree 3. Suppose

that n1 ≫ n2, in which case the graph is subway-like. What are the asymptotics of average reliability (AR) in this

case?

Open question 2. What is the average reliability of Erdős-Rényi graphs? The degree distribution is Poisson in

this case.

More generally, what is the “best” degree distribution if we wish to optimize the average reliability?

Open question 3. Among all graphs of a fixed number of vertices n and edges m, which graph maximizes the

average reliability?

Consider the case of n = 12 and m = 18 (which includes all cubic graphs on 12 vertices). We used Brendon

McKay’s program Nauty [19] to generate a total of about 2 × 10
7

such graphs. Further restricting to only graphs

whose vertices have a minimum degree of 2 yields about 2 million graphs. By contrast, there are only 87 cubic

graphs on 12 vertices. Figure 6 shows the plot of AR versus the algebraic connectivity (AC) for this collection

of graphs.

The unique maximizer of AR = 0.350925 has AC = 1.467911, which is the second-highest AC. The unique maximizer of

AC= 1.438447 has AR= 0.350792, which is the second-highest AR. Among high-AR graphs, the first 28 are cubic, having AR

from 0.3509 to 0.3429. The highest non-cubic graph has AR of 0.34121, and has girth 5. By contrast, there are many non-cubic

graphs with high AC; among the 30 graphs having the highest AC, only 2 are cubic. In terms of girth, there are a total of 7

girth-5 graphs, two of which are cubic.

Based on these observations, we propose the following conjecture.

Conjecture. Among all the graphs with a fixed number of nodes n and a fixed integer average degree 𝑑, the graph
that maximizes the average reliability is a 𝑑−regular graph.

FIGURE 6 Algebraic connectivity (AC) versus average reliability (AR) for all connected graphs on 12 vertices and 18 edges with minimum degree 2. The

total number of such graphs is 2 189 608, of which 7 have girth 5, 74 021 have girth 4, while the remaining 2 115 580 graphs have girth 3.
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12 BROWN ET AL.

In conclusion, let us mention some other related problems. In [10, 20], the authors modelled human frailty and death events

using complex scale-free networks. In their model, nodes are damaged at random (simulating an ageing process) until too much

damage is accumulated in the main nodes. Asymptotics could be derived for their model.

Monte Carlo techniques are used extensively for reliability and failure analyses. For example, reliability of Mobile Ad-Hoc

Networks (where the network changes in time) has been studied using Monte Carlo techniques [5]. It would be interesting to

extend the edge removal process to these classes of models.

Network reliability also has a connection with percolation theory. The percolation process can be viewed as a version of the

edge removal process on a grid but with a different termination condition, namely the emergence of a giant component, rather

than the network becoming disconnected [26]. Depending on the situation, this may be a better measure of network reliability

than a simple disconnection threshold.

Finally, we remark that our approach for analyzing network reliability can also be applied to the computation of two-terminal

reliability.
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