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Abstract
Space situational awareness systems primarily focus on detecting and tracking space
objects, providing crucial positional data. However, understanding the complex space
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) o domain requires characterising satellites, often involving estimation of bus and solar panel
Miguel Caro Cuenca.

Email: miguel.carocuenca@tno.al sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep
learning models for substructure segmentation in inverse synthetic aperture radar images
is challenging due to the high costs and hardware requirements. The authors present a
framework addressing the scarcity of inverse synthetic aperture radar data through syn-
thetic training data. The authors approach utilises a few-shot domain adaptation tech-
nique, leveraging thousands of rapidly simulated low-fidelity inverse synthetic aperture
radar images and a small set of inverse synthetic aperture radar images from the target
domain. The authors validate their framework by simulating a real-case scenatio, fine-
tuning a deep learning-based segmentation model using four inverse synthetic aperture
radar images generated through the backprojection algorithm from simulated raw radar
data (simulated at the analogue-to-digital converter level) as the target domain. The au-
thors results demonstrate the effectiveness of the proposed framework, significantly
improving inverse synthetic aperture radar image segmentation across diverse domains.
This enhancement enables accurate characterisation of satellite bus and solar panel sizes
as well as their orientation, even when the images are sourced from different domains.
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1 | INTRODUCTION

Space situational awareness (SSA) is usually understood as the
ability to monitor, understand, and predict the location,
movement, and behaviour of objects in space [1]. Although
this definition includes observing celestial bodies, our focus is
on man-made objects like satellites and debris.

Radar systems play a very important role in SSA since they
are able to provide a wealth of information on remote objects.
In particular, imaging radars are able to characterise space
objects using inverse synthetic aperture radar (ISAR) tech-
niques, see for example, refs. [2, 3] or [4].

However, understanding the capabilities of an unknown
satellite from an ISAR image is not trivial. Satellite capabilities
can be estimated simply from its size, shape, and solar panel
size. For example, CubeSats whose sizes are just in the order of
tens of centimetres usually are passive devices in contrast to
earth observations systems which are usually a couple of me-
tres long, Parameters such as the satellite power budget can be
inferred from their solar panel size. To achieve this charac-
terisation, one typical strategy is to perform semantic seg-
mentation of the ISAR image of the satellite.

Semantic segmentation is a computer vision task in which
the goal is to categorise each pixel in an image into a class. For
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the development of a computer vision model, we make use of
training data that consists of images and corresponding masks
with ground truth annotations for the class of each pixel. The
training data is used to learn the model parameters such that
the model is able to correctly predict the class of each pixel.

Several techniques can be utilised for the segmentation
task, with deep learning [5] based methods being the most
effective approach. Deep learning-based segmentation
methods have shown to yield superior results in terms of ac-
curacy and efficiency compared to other methods for a wide
vatiety of applications [6, 7]. Examples include scene undet-
standing for autonomous driving [8], robot perception [9],
semantic segmentation for medical image analysis [10, 11] and
automated satellite-to-ground image annotation [12].

The use of deep learning-based segmentation in SSA is still
relatively limited. In 2019, Xue et al. [13] proposed StarNet, a
deep learning architecture similar the popular U-Net [14] for
dim target detection in star images. In 2023, Mastrofini et al.
[15] developed a system for attitude determination of stars and
onboard space surveillance and tracking of resident space
objects. On the topic of automated segmentation of satellites in
ISAR images we only identified a single study: Du et al. [16],
that used generative adversarial networks to segment synthetic
ISAR images. Next to the segmentation strategies, Wang et al.
[17] focus directly on classification and they showed that good
classification results can be obtained by using high-resolution
ISAR images.

Deep learning methods typically require thousands of
images for training and model optimisation. However,
recording that large amount of ISAR images is costly and re-
quires dedicated SSA systems. A typical strategy to overcome
the lack of sufficient real training data is the use of simulated
data for deep learning model development. For example, in the
medical domain, Al Khalil et al. [18] showed segmentation
failures in cardiac magnetic resonance imaging can be reduced
by training with realistically synthesised pathology images.
Similarly, Chen et al. [19] presented a method to develop a
segmentation model for autonomous driving using synthetic
images.

The use of simulated data is also promising for SSA. In the
previous work [20], we developed a deep learning-based seg-
mentation model using synthetic images. The model was based
on the U-Net [14] architecture and trained with images that
were simulated by a fast simulator at the image level using a
realistic radar response with limited details (low-fidelity). The
evaluation was done for other low-fidelity images (same
domain), resulting in intersection over union (IoU) scores of
0.64-0.81.

However, when a deep learning model trained on a single
(source) domain (e.g. low-fidelity simulated images) is applied
to another (target) domain (e.g. measured ISAR imagery), there
is typically a strong decrease in segmentation performance, due
to the gap in appearance between the domains. One strategy to
overcome this is the use of few-shot learning, where only a few
examples of the target domain are available. This technique has
been studied in the context of image-classification [21-23] and
to a limited extent also for semantic segmentation [24—20].

Recently, a novel framework for few-shot learning for se-
mantic segmentation was presented by Tavera et al. called
pixel-by-pixel cross-domain alignment (PixDA) [27]. The
framework includes a pixel-by-pixel domain adversarial loss
that was designed to align the images of the source to the target
domain on a pixel-level. The method also includes a strategy to
prevent the negative transfer of knowledge learnt on the source
domain and a regularisation technique to prevent overfitting,
PixDA was shown to achieve state-of-the-art results on
synthetic-to-real benchmarks where semantic segmentation is
applied to street scenes in German cities.

To the best of our knowledge, few-shot learning for
domain adaptation has not been applied in the context of SSA.
We propose a framework based on few-shot learning to
perform semantic segmentation with only a few ISAR images.
We demonstrate the training of a deep learning-based seg-
mentation model using rapidly simulated low-fidelity ISAR
images. This model is successfully applied to ISAR images in
different domains, such as high-fidelity simulated ISAR images.
These high-fidelity simulations closely resemble measured
ISAR images, incorporating realistic noise, requiring a signifi-
cantly longer time for synthesis. We finetune on only a few
images from target domain and are able to get useful seg-
mentation results. These, in turn, provide a good basis for the
assessment of the satellite's bus and panel sizes. Our experi-
ments demonstrate the effectiveness of domain adaptation in
improving results, indicating its potential application with
measured data.

The rest of this article is arranged as follows. Section 2
describes the simulated data sets, the models and experiments.
Section 3 contains both quantitative and visual results of the
segmentation method, which are discussed in Section 4. The
article ends with a brief conclusion in Section 5.

2 | MATERIALS AND METHODS

2.1 | ISAR image simulations

Our main focus in this study is to demonstrate the effective-
ness of domain adaptation in improving results, indicating its
potential application to measured data when accessible.
Although measured ISAR images would have been ideal for
validation (as well as training), scarcity of those data sets
necessitated the use of simulated ISAR images for both
training and validation of our segmentation models. To address
this challenge, we employed two different sets of simulations:
low-fidelity and high-fidelity simulations (or ISAR images).
Low-fidelity simulations were utilised for training purposes,
providing a foundation for our models. In contrast, high-
fidelity simulations (some example images are shown in
Figure 1) were reserved for verification due to the absence of
measured data sets, ensuring an evaluation of the model's
performance.

While ISAR processing uses radar data to generate two-
dimensional high-resolution images of a target, where the
relative rotation of the target is exploited to create a synthetic
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aperture, in our low-fidelity simulations, the generation of
ISAR images involved a structured process ensuring that
similar ISAR images are quickly simulated for training,

The low-fidelity simulation starts by calculating precise orbit
parameters of the targets derived from user-defined system
specifications. The detailed mesh model of the target was
transformed into a point target cloud. An in-house electro-
magnetic (EM) solver was then utilised to analyse the response of
each point scatterer for the radar carrier frequency. This analysis
accounted for different factors like shadowing effects. The
computed point scatterers r(x, , z, o) were skillfully projected
onto the ISAR image grid as 7(x,y,0), preserving their individual
radar cross section (RCS) values o, where x and y represent the
range and cross-range respectively. To simulate ISAR images
accurately, the projected scatterers were convolved with the
point spread function (PSF) of the system A(x, y) and a noise
model is added which takes into account the radar noise level.
Based on this procedure, which is also illustrated in Figure 2, an
ISAR image can be simulated as follows [20]:

Low fidelity simulated ISAR

I(x,y) = #(x,y,0)% h(x,y) + n(x,y) (1)

where * is the convolution operator and 7(x, y) is the noise
signal in the image domain. This convolution process inte-
grated the unique characteristics of the imaging system,
translating the point cloud into an ISAR image.

Using the obtained projections, ground truths were also
generated. Due to the nature of the projection process, some
scatterers might overlap after projection. This intricacy was
carefully considered, ensuring the creation of a comprehensive
ground truth dataset. For each image, a mask is generated
containing the label of each pixel. Pixels can belong to either
class 0 (background), class 1 (bus), class 2 (solar panel), or class
3 (both bus and solar panel).

Both simulated images and masks are cropped to a size of
256 x 256 pixels. Although this way of simulating is fast, some
typical noise factors are neglected, such as side lobes due to for
example, unknown target motion and detailed noise distribu-
tion. A total of 2662 images was simulated, which was split into

High fidelity simulated ISAR

FIGURE 1 Examples of simulated ISAR images. Left: Low-fidelity simulated image with corresponding ground truth labels. The red outline represents the

solar panel and the yellow outline represents the bus. A small region of ovetlap is indicated with blue. Right: High-fidelity simulated ISAR with cortesponding

ground truth labels. Only the outline of the labels are shown.

Orbit Generation

User
Parameters

v v Target

Noise Image
Target

EM Solver

Target Model (stl) |

Response (3D) - . Response (2D l ISAR Image
e T = g W6

5
10
x 18 y

Target Model
(Radar Line of sight)

Expected Image View
(Perpendicular to Radar Los)

FIGURE 2 Low-fidelity ISAR image simulation flow diagram.

Range

& 30
J -50 -40

60
-10

70

-80
20

-30 -100 80 20 -0 0 10 20 30
30 20 -0 0 10 20 30
Cross Range

Cross Range

Range
-

Expected Image 2D Final ISAR Image 2D

519017 SUOWILIOD BATER.D) 3|qe! dde 3 Aq pouBAOB 3.6 SOPILE YO ‘95N J0 Sa [N J0J AIRIGIT8UIIUO AB]1M UO (SUOTIPUOO-pUE-SWiBILL0"AB| 1M ATe.q1Bu 1 |U0//'SdIL) SUOTIPUOD PUE SWLB | aU 895 *[1202/80/22] U0 ARiq118UlIuO A8]IM ‘SPUR BN BLIU00D) AQ 9TSZT ZUSHEYOT OT/10p/L0DAa i ATeJq][pUI U0 "UR IEasa1 Y//:SdNY LU Papeo|umod ‘0 ‘Z6/8TS.T



HESLINGA ET AL.

three sets: 1863 for training, 532 for validation and model
selection, and 267 for evaluation.

The second set of synthetic ISAR aims at mimicking a real
scenario of data acquisition. This set consists of much more
realistic simulations where the noise and side-lobe behaviour is
expected to be very close to reality. These images are
computationally expensive to generate. We employ a back-
projection approach [28] for ISAR imaging using the signal
that is simulated at the raw radar level (as output by the
analogue-to-digital converter [ADC] of the radar receiver). The
complete simulation process includes propagation losses,
thermal noise, 3D-mesh models of satellites for RCS model-
ling, real orbits, and acquisition errors. We refer to these images
as high-fidelity ISAR images, which also have a corresponding
mask with pixel-wise class labels. A total of five high-fidelity
images were simulated and cropped to 256 X 256 pixels.

The simulator of low and high-fidelity images produces
complex values. We convert the image power into a decibel
(dB) scale before training the segmentation models. The power
level in dB is given by Py = 20log,(|.]) .

Computational Complexity: For a target object image (of
the size of Envisat) utilising a high-quality mesh model, our in-
house EM simulations require less than 1 s. The process of
generating projections along with ISAR imaging grid, including
orbit determinations and shadowing, takes approximately 3 s.
This totals to 4 s per low-fidelity image when utilising graphics
processing unit parallelised multicore processing in a speci-
alised cluster. In contrast, generating a single high-fidelity ISAR
image takes several hours, resulting in significant time re-
quirements for processing a complete training set.

This observation leads to the conclusion that while simu-
lating high-fidelity image sets for training deep learning models
is technically possible, it is impractical. It is worth noting that
the example presented in this article focuses on a single sat-
ellite; however, our ultimate goal is to generalise the method,
requiring input from various satellite models to segment any
unknown satellites. To address this challenge, we introduced a
domain adaptation method for radar image segmentation
problems (refer to Section 2.3), which allows us to use low-
fidelity simulation for segmentation model training;

2.2 | Baseline model
There is a wide variety of deep learning architectures available
for the task of semantic segmentation. Here, we build upon
previous work by van Roojj et al., [20] using the U-Net ar-
chitecture [14], originally introduced for segmentation of
biomedical images. U-Net has been successfully used in a va-
riety of applications [29, 30]. Van Rooij et al. showed that it is
possible to effectively distinguish between the solar panel and
the main bus in images that are simulated under optimal
observing conditions. The U-Net model is implemented with
the segmentation_models_pytorch library based on PyTorch
and we use a ResNet-18 [31] backbone. The model is trained
with patches of 64 X 64 pixels (Figure 3) to output a 64 X 64
probability map for each of the classes background, bus, and
solar panel. Ten patches with corresponding masks are
extracted from each of the low-fidelity images of the training
set (18,650 patches in total). The cropping is done such that
most patches contain a part of the satellite. All image patch
intensities are scaled to have zero mean and unit standard
deviation.

The model is iteratively optimised as follows. The per-pixel
loss for each class is computed as follows:

Zic log(ﬁi,c) if c<3
Li.= (2)

| Zic log(max(ii,l,ii,z)) ifc=3

where z; . refers to the ground truth label per pixel for class c,
either 0 or 1. On the other hand, Z;, is the predicted proba-
bility that pixel ¢ belongs to class ¢ which is only obtained for
classes 0, 1, and 2. The total loss L,y is computed by summing
over the per-pixel losses per class:

; lic
ﬁmz = 721%6 - (3)

whetre N is the total number of pixels. The baseline model is
trained for 20 epochs with batch size of 32. The Adam opti-
miser [32] was used and the learning rate was set 0.0005.

FIGURE 3 Patch extraction for the training of the baseline segmentation model. On the left, a low-fidelity simulated image is shown with a corresponding

ground truth segmentation map. The red, light blue, and light green boxes represent locations where (64 X 64 pixels) patches are extracted. On the right these

patches are shown in more detail. Yellow pixels = bus, red pixels = solar panel, blue pixels = both.
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Evaluation of the baseline model is done for the 267 im-
ages of the evaluation set. The metric for evaluation of is IoU,
which we calculate for the bus class (¢ = 1) and solar panel
class (1 = 2):

1< TP;
IoU==Y —— 4
° Z;TP,-+FP,-+FM ®
where TP = true positives, FP = false positives, and

FN = false negatives. Without overlapping classes the TP, FP,
and FN can be calculated by using a soft-max operator on
predicted class probabilities; however, we have to take into
account that our ground truth labels contain class 3 (both bus
and solar panel), while our model only outputs probabilities for
classes 0, 1 and 2. One solution is to assign both classes 1 and 2
to a prediction when a certain threshold is met for a pixel. We
experimented with various ratios (using the validation set) and
found that we can simply assign both classes 1 and 2 to the
prediction for a pixel if both of the predicted output for class 1
and 2 are positive. For the ground truth annotations we assign
pixels with class 3 to both class 1 and 2. The baseline model is
also directly applied to the high-fidelity simulated ISAR images
to show how the segmentation model performs without
domain alignment.

2.3 | Proposed framework for ISAR image
segmentation

For segmenting ISAR images, we propose a framework
(Figure 4) based on PixDA by Taverna et al. [27]. PixDA is a
domain alighment technique that uses a domain adversarial
loss. This means that, apart from predicting the correct class
for cach pixel, the model is incentivised to learn a feature
representation that is similar to the source and target domain
[33, 34]. Domain adversarial networks have shown to be
effective for learning from different domains for various ap-
plications [35, 30], including semantic segmentation [37]. Novel
for PixDA is that the domain adversarial loss is implemented
on a pixel-level to promote good performance for each class,
including those that are underrepresented. To achieve this, a
standard adversarial loss is modulated by a term that represents
the model's ability to predict the class correctly and weight
based on the frequency of the class in the target data set.

Low-fidelity
simulations

U-Net segmentation model
with ResNet backbone

PixDA

l segmentation
model
Sample selection

Domain adversarial loss
Knowledge distillation

Target
domain (e.g.
measured
ISAR)

FIGURE 4 Framework for few-shot learning with PixDA.

The PixDA method also includes a sample selection pro-
cedure to find samples from the source domain that are more
similar to the target. In addition, knowledge distillation is used
as a technique to prevent overfitting. With knowledge distil-
lation, knowledge from a large model is transferred to a model
with less parameters [38, 39], a strategy that has been shown to
be useful in image classification [40], biomarker approximation
[41], and image segmentation [42].

We use the implementation of PixDA provided by the
authors [43]. The starting point for the PixDA framework is
our U-Net baseline model. Our source data set consists of the
1863 training images from the low-fidelity simulations. For the
fine-tuning with PixDA, four out of five high-fidelity images
are used. We use all default settings, except for the batch size set
to 4 and early stopping after 5000 iterations. Evaluation of the
fine-tuned model is done using leave-one-out cross-validation:
five models are trained, each with one of the high-fidelity
simulated images left out. Evaluation is done for the left-out
image by calculating the ToU as described previously.

3 | RESULTS

When the baseline model is applied to the low-fidelity simu-
lated ISAR evaluation set images an IoU of 0.72 (£0.14) is
obtained, where £ represent one standard deviation. Figure 5
displays two examples of the results. For the top row example,
the predicted segmentation is very close to the ground truth
mask (IoU = 0.86). We see some minor mistakes on the
borders of the segmentation, but the satellites' shape, size, and
orientation can be correctly identified. The bottom row shows
an example where the segmentation is below average
(IoU = 0.60). Although it is still possible to determine the
orientation of the satellite, the shape and the size of the bus are
more difficult to determine.

On the right side of Figure 5, we include uncertainty maps
for the predictions. To measure uncertainty we use the
amplitude of the predicted confidence for the class that is
predicted for each pixel. We invert the confidences and
normalise with respect to the pixel that has the highest pre-
dicted value. We end up with a map that shows the most
certain regions in black and the most uncertain regions in
white/yellow. For the top row in Figure 5 the uncertainty
maps show that the most uncertain regions overlay with the
border of the bus and solar panel. For the example in the
bottom row;, it is not only the border regions which are un-
certain, but most of solar panel area is highlighted. Examining
the solar panel area in the simulated image clearly highlights
the challenging nature of assessing this region, even for human
experts.

Figure 6 shows the results for two examples of the high-
fidelity simulated ISAR images. When the baseline model is
applied to the high-fidelity simulated ISAR, the resulting seg-
mentations are very poor (IoU = 0.13 & 0.04), as can be seen
in the third column of Figure 6. These segmentations do not
provide useful information about the satellite.
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Low fidelity simulated ISAR

Ground truth mask

Prediction Uncertainty map

10

loU = 0.86

10

loU = 0.60

FIGURE 5 Segmentation results for the baseline model on the low fidelity simulated ISAR images. IoU, intersection over union. Yellow = bus, red = solar

panel, blue = both.

High fidelity simulated ISAR  Ground truth mask

Baseline PixDA

loU=0.13

loU=0.20

FIGURE 6 Segmentation results for on the high-fidelity simulated ISAR images. The third column shows the segmentations by the baseline model. The

fourth columns shows the segmentations with the PixDA model. Yellow = bus, red = solar panel, blue = both.

Segmentation results on the high-fidelity simulated ISAR
images with the PixDA model are much better with an IoU of
0.55 (£0.00). In Figure 6, the fourth column shows the seg-
mentation with PixDA. Although the segmentations contain
some errors, the overall structure is much closer to the ground
truth mask. An overview of the numerical results is provided in

Table 1.

4 | DISCUSSION

In this study, we showed that a typical deep learning-based
segmentation model can be trained to segment satellite sub-
structures in synthetic ISAR images from a single source. The
direct application of such a model on ISAR images from a
different domain (high-fidelity simulations in our case) results
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TABLE 1 Overview of results. Scores represent intersection over
union (IoU).

Low-fidelity High-fidelity
simulations (Source) simulations (Target)
Baseline model 0.72 (£ 0.14) 0.13 (£ 0.04)
PixDA (4-shot) - 0.55 (% 0.06)

in poor segmentations. To overcome this knowledge gap, the
deep learning model can be finetuned with only a few images
of the target domain to get useful segmentations on the target
domain. We tested with simulated ISAR images with large side-
lobes to include cases with acquisition and processing errors
(not fully compensated trajectory). Although the segmenta-
tions are not perfect, they do allow for detailed analysis,
including the size and shape of the solar panel and bus, and the
satellite's orientation, which can otherwise be difficult for a
user to visually interpret. These results are in line with our
objectives for SSA, where we are interested in more than just
the detection and orbit estimation of satellites.

The amount of ISAR data collected when looking into
space is growing rapidly and manual analysis of ISAR images
will be unfeasible and too slow in most cases. At the same time,
annotating ISAR data is costly and time-consuming, The few-
shot learning approach that we applied indicates that only a
limited amount of data is needed to finetune a model for
another domain. Although we demonstrate the benefits of
domain adaptation by using high-fidelity simulations, the
concept and improvement remains almost the same when we
use measured images.

We chose PixDA as our few-shot domain adaptation
technique since this framework was shown to do well for
another application. However, there are other methods avail-
able which we will consider in future work. For example,
Zhang et al. [44] also developed a method for synthetic-to-real
domain alignment for street scene segmentation. Their method
includes a two-stage adversarial network which contains a
scene parser and two discriminators. Keaton et al. [45] used
few-shot domain adaptation for the case of cellular instance
segmentation in microscopy images by introducing a speci-
alised contrastive loss. Kalluri and Chandraker [46] proposed a
clustering-based adaptation approach for outdoor scene to
indoor scene segmentation.

In future work, we will first test with measured satellite
images to understand further the limitations of our proposed
framework. We will then extend this work with a variety of
satellites. In that way, the size and estimations can be evaluated
for a wide range of appearances. One additional interesting
question would be to find the relation between the number of
images used in the few-shot domain-adaptation and the quality
of segmentation and subsequent classification.

5 | CONCLUSION

Obtaining ISAR data from space objects, for training deep
learning segmentation models or other usage, is time-
consuming, costly and requires very dedicated hardware.

However, fast simulations enable the generation of a large
number of synthetic ISAR images containing similar features,
which can be used to train a baseline segmentation model. With
only a few images from a target domain, a segmentation model
can be fine-tuned to perform well on the specific domain. Our
experiments demonstrated the effectiveness of domain adap-
tation in improving IoU scores for segmenting the satellite's
bus and solar panel, indicating its potential application with
measured data. Based on accurate segmentations, satellite
characteristics can be determined, allowing for the classification
of satellite types and providing us with better SSA.
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