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Abstract
An execution trace is a model of a single system behavior. Execution traces occur everywhere in the system’s lifecycle as they
can typically be produced by executable models, by prototypes of (sub)systems, and by the system itself during its operation.
An execution trace can be visualized and analyzed with various techniques, providing insight into the dynamic behavior,
performance, bottlenecks, etc., of the system. In this paper, we present the Trace tool of the Eclipse Trace4cps project
for the visualization and analysis of execution traces. A prominent application is the trace-based performance engineering
of embedded or cyber-physical systems. Performance is an important system quality, as it can give a competitive advantage.
Reasoning about system-level performance in such systems, however, is hard due to its cross-cutting nature. We show how
the Trace tool can support this by various examples. Performance engineering is not the only application of the Trace tool,
however: it supports system analysis in a wide range of situations.

Keywords Embedded systems · Cyber-physical systems · Execution traces · Performance engineering · Performance
analysis · Run-time verification · Trace-to-trace transformation · Bottleneck analysis · Trace comparison ·
Repetitive-structure analysis

1 Introduction

1.1 A tool for trace-based visualization and
analysis

An embedded system is a computer system that is part of
a larger mechanical or electronic system. A cyber-physical
system integrates computation and physical processes. It may
consist of several networked embedded subsystems that to-
gether monitor and control a physical process. The physical
process affects the computation, and the computation affects
the physical process [1]. Examples of embedded and cyber-
physical systems from the high-tech industry include modern
cars, wafer scanners, medical imaging systems, pick-and-
place equipment, and production printers. We present the
Trace tool of the Eclipse Trace4cps project [2] for trace-
based visualization and analysis of embedded and cyber-
physical systems. It is centered around the concept of an ex-
ecution trace, which is a formal model of a single system be-

havior. Our execution traces consist of a discrete part (time-
stamped events and claims on resources and dependencies
between events and/or claims) and a continuous part (real-
valued signals over time) and as such are tailored to the em-
bedded and cyber-physical systems domain. The execution
traces can be produced by executable models or prototypes
of (sub)systems during system design or by an operational
system. A prominent application of the tool is trace-based
performance engineering of embedded and cyber-physical
systems. We define system performance according to [3].

System performance—the amount of useful work
done by a system, measured in production speed of
products of a predefined quality

Better system performance provides a competitive advange
and is often a key attribute. Understanding, analyzing, and
ultimately solving performance issues is, however, notori-
ously difficult. Image processing in software, for example, is
complex due to pipelining, buffering, and resource sharing.
Reasoning about the performance of such a software com-
ponent is almost impossible without executable models that
capture its behavior. Other software and electrical or mechan-
ical components and networks that have to be considered in
combination for the total system performance make matters
worse: system performance is a cross-cutting concern. It is
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Fig. 1 Image-processing pipeline (a)3 and a small execution trace (b)

Fig. 2 Die-packaging process (a)4 and a partial execution trace of a die bonder (b)

widely recognized that it is hard to reason about cross-cutting
system-level properties of embedded and cyber-physical sys-
tems [4–6]. As a result, system performance often is emerg-
ing during the development and can only be dealt with in a
reactive manner. But even then, understanding why the sys-
tem performance is as it is often is hard. Throughout the
paper we show with various examples how the Trace tool
can aid the performance-engineering process.

Note that our tool is not concerned with design and im-
plementation of embedded or cyber-physical systems. There
is a plethora of work on this subject, and many approaches
(e.g., simulation) have design-time methods that are capable
of producing execution traces. Moreover, prototypes or oper-
ational systems typically are capable of generating execution
traces, or can be redesigned to do so. Thus, our tool is com-
plementary: it can be applied whenever execution traces are
available. It helps to obtain insight into a system’s behavior
and supports detection and diagnosis of behavioral problems
during many phases of the system’s lifecycle.

The high-level method of application of the Trace tool that
we propose is a simple iterative process consisting of three

3 Reprinted by permission from Springer Nature: [7], copyright 2010.
4 Reprinted by permission from Springer Nature: [8], copyright 2017.

steps: acquire an execution trace, assess the trace, and then
act on the results. This paper is focused on the second step:
assessment of the trace by visualization, transformation, and
analysis techniques. We illustrate the use of the Trace tool
with two running examples.

Example 1
Fig. 1a shows a schematic representation of an artificial em-
bedded image-processing pipeline. Although artificial, this
example is inspired by the systems and problems that we
encounter in our work with the high-tech industry (e.g., im-
age processing in production printers) and contains many of
their aspects. The system processes images using seven tasks
(A–G). The tasks are mapped to a computational platform
consisting of a CPU, a GPU, an FPGA with four functions,
and two memories. The computational load of the tasks is
specified inside the ellipses, and the storage requirements are
indicated by the arrow to the memories, which are labeled
with the required amount. Note that there are three kinds
of images that impose different computational and memory
loads on task A. These are given in the table (x and y values)
for each of the image types (low, normal, or high workload).
This table also specifies the frequency of occurrence of the
various image types in the incoming image stream. Task F is
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only executed for images of type high. We have a discrete-
event simulation model of this system that gives execution
traces with claims on resources and dependencies between
these claims. Figure 1b shows an execution trace obtained
with the simulation model for processing four objects. Time
is shown on the horizontal axis. The colored rectangles are
claims of resources. The cyan blocks in the upper-left corner,
for example, model the claims of task A: one claim of the
CPU, one claim of memory M1 for the internal processing
(given by y), and one claim of memory M1 for data trans-
fer to task B (always 10 units of memory). The claims are
grouped according to the name of the task they belong to,
i.e., the first horizontal swimlane contains all claims for task
A, the second for task B, etc. The coloring of the claims is
according to the image identifier that is being processed, i.e.,
all cyan claims are for processing image 0, all red claims are
for image 1, etc. The durations of tasks A and G are some-
times longer than their nominal execution time as given in
Fig. 1a because they share the CPU. When both are active at
the same time, their execution speed is halved. Finally, the
application dependencies that are shown in the schematic of
Fig. 1a are also present in the trace.

Example 2
Fig. 2a shows the schematic outline of a die-packaging pro-
cess. Dies are separated in the dicing step. In the following
die-attach step, dies are picked from the wafer by a collet
and attached to a lead frame. As part of the die-attach step,
various inspections are performed that check for defects such
as scratches on the dies. The wire-bonding step then makes
connections between the die and the packaging. Finally, cast-
ing material is forced into a mold that contains the die. The
casting material encapsulates the die and prevents it from be-
ing damaged. The die-attach step is realized by a die-bonder
machine. Execution traces of the die bonder can be obtained
by processing the logging of the system or via a simulation
tool. These are execution traces with events and continuous
signals. Figure 2b shows a part of an execution trace of the die
bonder. Time is shown on the horizontal axis. The discrete
events are shown as upward arrows, and the signals are shown
as real-valued continuous functions of time. The signals in
this example show the position of mechanical components
or motors. For instance, the NEEDLE_P signal, shown in the
third section from the top, gives the position of a needle that
pushes a die from the wafer such that it can be picked up
by the collet. The various NEEDLE_IP events in the second
section from the top indicate that the needle has reached a
certain position. The X1_MOTOR_P and Y1_MOTOR_P
signals in the sixth and eighth sections show how the wafer
moves between die pickups by the collet.

1.2 Related work

Trace-based performance engineering: Trace-based perfor-
mance engineering covers the class of techniques that can
be applied to systems and system models that can produce
execution traces. As the Eclipse Trace4cps project, the
Eclipse Trace Compass project [9] also provides a tool
for trace-based performance engineering. This tool, however,
is mostly targeted at software and networking systems. The
OpenTracing initiative provides vendor-neutral APIs and in-
strumentation for distributed tracing and its focus is on micro-
service architectures [10]. Further, there are many domain-
specific and company-specific trace-based approaches for
performance engineering. The ChronView tool provides de-
tailed trace visualization and analysis for embedded systems
and is tailored to the automotive domain [11]. Examples of
tracing for internet-related services are Google’s Dapper [12]
and Facebook’s Canopy [13]. The Concerto approach devel-
oped for ASML [14] is an example of company-specific trac-
ing for a cyber-physical system. Our tool is targeted at embed-
ded and cyber-physical systems and lies between generic ap-
proaches and company-specific approaches for tracing. The
distinguishing feature of our approach is that it has a wide
variety of analysis methods, which are founded on a sound
and concise mathematical basis.

Critical-path analysis: Critical-path analysis originates
from the project planning domain to minimize the duration
of a project based on a graph representation of a project
[15–17]. Extensions such as resource leveling [18] and the
critical chain method [19] also take resources into account.
Minimization of the makespan of a project with resource
constraints, however, is known to be NP-hard [20]. In earlier
work [21, 22], we have addressed the challenge of how to
reconstruct a weighted directed acyclic graph of the system’s
execution from a single execution trace, which can then be
used for critical-path analysis. The reconstruction is based
on identifying causal dependencies. In this article, we gen-
eralize the approach to graphs with cycles and negatively
weighted edges based on event networks [23]. Partial knowl-
edge of the system’s execution graph is assumed in most
related work in the embedded and distributed systems do-
mains, e.g., [24–30]. An exception is [31], which presents
an informal approach similar to ours. Also related are tech-
niques for process or workflow mining [32]. In [33], for
instance, a Petri-net-based performance model is generated
from a set of execution traces. This work uses the same intu-
ition for deriving causal dependencies between tasks. Finally,
our way to detect resource bottlenecks as part of the critical-
path analysis is strongly related to the bottleneck analysis in
Synchronous Dataflow as presented in [34].

Trace comparison: Quantitative similarity of timed sys-
tems has been studied in [35] and [36]. Both define a metric
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on execution traces that requires that the events in both se-
quences are equal (i.e., only the timing of the events may
differ). This is too strong for our setting. Execution traces
can be seen as strings to which edit distances such as the
Levenshtein distance [37] can be applied. This approach is
not robust for execution traces in which the timestamps of
equal events differ slightly. This has been addressed in [38]
by a weighted edit distance. The complexity of the algorithm
is, however, quadratic in the length of the input traces, which
renders it expensive in many practical cases. Furthermore,
a string-edit distance disregards the parallelism in the sys-
tem as it assumes a total order on the events. In earlier work
[22], we have taken parallelism into account by applying a
graph-edit distance [39] on the graph representations of the
execution traces. The computation of the graph-edit distance
using insertion, deletion, and substitution of vertices is NP-
hard in general [40]. In our case, however, substitution is not
needed; omitting this option renders the computation of the
graph-edit distance tractable. In addition to the earlier devel-
oped graph-edit distance, we introduce two new comparison
techniques, one to verify that timing constraints specified
by dependencies between claims and events in one trace are
satisfied by another trace and one to compare the durations
of claims of two traces.

Repetitive-structure analysis: Our analysis of repetitive
structures is based on a graph representation of the execution
trace (as is the case for critical-path analysis and the graph-
edit distance for trace comparison). Graph-based anomaly
detection is widely studied; see, e.g., [41] for a survey. The
authors define the general graph anomaly detection problem
as follows: “Given a (plain/attributed, static/dynamic) graph
database, find the graph objects (nodes/edges/substructures)
that are rare and that differ significantly from the major-
ity of the reference objects in the graph.” Our work falls
in the class of static, attributed graphs and is related to
structure-based methods. The essence of our technique is
similar to the anomalous subgraph detection of [42]. We use
domain information to partition the subgraph. Instead of us-
ing entropy-based graph regularity measures to compare the
set of subgraphs, we apply the abovementioned graph-edit
distance.

Little’s-law-based analysis and resource-usage analysis:
Resource usage, throughput, latency, and work-in-progress
concepts are widely used and there are many tools that quan-
tify them. It is often unclear how these values are exactly
computed, i.e., there is a lack of formalization. There are ex-
ceptions, however. For instance, synchronous dataflow uses
the maximum-cycle-mean concept to define throughput; see,
e.g., [43]. Queueing theory [44] also has a mathematically
defined notion of throughput, latency, and work-in-progress,
and these are related through Little’s law [45]. Little’s law
considers averages, and in our work we lift it to continu-
ous real-valued signals. We define continuous throughput,

latency, and work-in-progress signals for execution traces in
an intuitive way.

Run-time verification: Following [46], we consider run-
time verification to concern “verification techniques that al-
low checking whether a run of a system under scrutiny sat-
isfies or violates a given correctness property.” A run of
a system is captured in our execution-trace formalism, and
we apply temporal-logic-based verification. Metric Tempo-
ral Logic (MTL) allows us to specify quantitative real-time
properties of execution traces [47, 48]. Many MTL algo-
rithms use tableau methods to construct an automaton of
the formula that accepts exactly those execution traces that
satisfy the formula [49–51]. Such an automaton can then be
used for run-time monitoring of systems [52–57]. Our setting
differs as we have offline access to the full execution trace
which does not grow anymore. In earlier work [58, 59], we
developed a dedicated checking algorithm that supports the
notion of informative prefixes [57] that uses the truncated
semantics of [60]. Our algorithm does not compute the truth
value of all subformulas (such as the dynamic programming
approaches that are suggested in [56, 57] do), but only the
ones needed for a verdict. Signal Temporal Logic (STL) is
a specification formalism for real-valued signals that was
introduced in [61]. Later work extends this to a robustness
estimate of the truth value [62, 63] and to efficient monitor-
ing [64]. There are many tools that support temporal-logic
specification and verification. The Breach toolbox of Mat-
lab, for instance, enables specification and analysis of STL
[65]. More recent work presents the AMT 2.0 tool, which
supports STL extended with timed regular expressions [66],
and RTAMT [67]. The work of [68] presents a tool with a
domain-specific language (DSL) for testing CPS models that
employs temporal logic. Dassault Stimulus [69] allows the
user to express textual requirements in a readable formal lan-
guage. Also, MathWorks supports expression and checking
of temporal logic formulas via a templating language [70].
Our DSL to express temporal logic formulas is closely re-
lated and provides a lot of flexibility to end up with readable
specifications. We have used the interface operator of [71] to
mix MTL and STL specifications, which is very helpful in
practice.

Trace transformation: Abstraction techniques for execu-
tion traces from software systems are presented, e.g., in
[72, 73]. These works have in common that the abstraction
techniques are hard coded. Our approach, however, makes
the user responsible for a sound transformation by specifi-
cation of the domain knowledge in a transformation recipe.
This is related to ideas from the process-mining community
that uses semantic structures such as taxonomies and on-
tologies to guide the abstraction process [74, 75]. Our work
is also related to [76], in which a DSL is used to import
packet-capturing data into the TraceCompass tool.
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1.3 Contribution

The main contribution of our work is a combination of sev-
eral visualization, transformation, and analysis techniques
for execution traces. All techniques are based on the for-
mal definition of the execution-trace concept and thus use a
common, consistent, and mathematically precise foundation.
Furthermore, our work has been consolidated in the open-
source Trace tool of the Eclipse Trace4cps project [2] and
thus is freely available (except for the trace-transformation
techniques that are still being prototyped). Below, we detail
our contributions.

• We combine and reconcile the contributions from earlier
work on critical-path and distance analysis [21, 22]. We
also generalize critical-path analysis and distance analysis
by allowing weighted edges in the underlying graph rep-
resentation of execution traces that is constructed by these
analysis methods. This generalization is adapted from the
event networks domain [23].

• We introduce two new techniques to compare execution
traces: one based on the duration of resource claims and
the other based on ordering constraints between discrete
events.

• Our repetitive-structure analysis first partitions a graph rep-
resentation of an execution trace into subgraphs and then
partitions this set of subgraphs into blocks with equivalent
behavior according to the graph-edit distance mentioned
earlier. This partially follows the general idea stated in
[42], but is applied in the domain of execution traces and
performance analysis.

• We formalize the concept of throughput, latency, and work-
in-progress by creating continuous signals from an execu-
tion trace, inspired by Little’s law [45]. We also compute
continuous resource-usage signals from execution traces.
As an extension, we compute a parameterized sliding-
window average of the signals using convolution. This is
especially useful for the throughput as the resulting signal
is often closer to human intuition than the raw throughput
signal. Although these are widely used concepts, we have
not found a similar precise treatment in the literature in the
context of execution traces.

• We have used the interface operator of [71] to include
STL subspecifications in the MTL specifications of [58].
Furthermore, we have created a DSL that aids the user
in writing clear and manageable temporal-logic specifica-
tions.

• The main contribution of the transformation technique and
DSL is the integration with the temporal-logic formalism
to specify the rules for transformation. This allows the
user to take the context into account, e.g., rules such as
the following can be specified: “if an event A happens and
within 5 milliseconds event B happens, then generate a
start event for the high-level action move”.

1.4 Outline

Section 2 presents the execution-trace formalism and the
visualization technique. This is the basis for all other for-
malisms and techniques. Performance analysis based on Lit-
tle’s law is presented in Sect. 3. Then, Sect. 4 presents
several temporal-logic formalisms, and a DSL for specify-
ing temporal-logic properties. Section 5 introduces trace-to-
trace transformations and a DSL for specifying such trans-
formations. The constraint-graph formalism is presented in
Sect. 6. This is a graph-based representation of an execu-
tion trace, and it lies at the basis of critical-path analysis,
trace comparison, and repetitive-structure analysis. These
techniques are also explained in this section. Finally, Sect. 7
concludes the paper.

2 Execution traces

In this section, we define the mathematical foundation of
execution traces. Throughout the paper, we use R to denote
the real numbers and R to denote the extended real numbers
(including −∞ and +∞). We use superscripts ≥0 and >0 to
indicate situations in which we only use the non-negative or
strictly positive numbers, respectively. Furthermore, we let
B denote the Boolean values.

2.1 Execution-trace formalism

Embedded and cyber-physical systems typically have both
discrete and continuous aspects in their behavior, and our
definition of execution traces covers both. The event, claim-
of-resource, and dependency concepts cover the discrete as-
pects. The signal concept covers the continuous aspect. To
model application-specific metadata that are associated with
instances of these concepts, we define attribute–value map-
pings. Let A be a set of attributes and let V be a set of attribute
values. We let M denote the set of all partial functions from
A to V. Each element of M is a value assignment to a subset
of attributes. Assigning sensible attributes to events, claims,
etc., is the responsibility of the user, and this is important
as it serves as a basis for the visualization and the analysis
techniques. Below, we formally define events, dependencies,
resources, and claims.

Definition 1 (Event)
An event is specified by a tuple (t,m), where t ∈ R is the
timestamp of the event and m ∈M specifies the event’s at-
tributes.

Next, we introduce dependencies between events.
Throughout this paper we loosely write about dependen-
cies between claims and/or events. As we will see in Def. 7,
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each claim is associated with a start event and an end event.
A dependency involving a claim thus refers to a dependency
as in the definition below involving the start or end event
associated with the claim.

Definition 2 (Dependency)
Let E be a set of events. A dependency on E is a tuple
(e0,e1,m), where e0,e1 ∈ E are the source and destination, re-
spectively, and m ∈M specifies the dependency’s attributes.

Definition 3 (Resource)
A resource is defined by a tuple (c,b,m), where c ∈ R≥0

is the capacity of the resource, b ∈ B indicates whether the
resource uses an offset, and m ∈M specifies the resource’s
attributes.

Definition 4 (Claim)
Let R be a set of resources. A claim of a resource (or just
claim) is defined by a tuple (t0, t1,r,a,o,m), where t0, t1 ∈ R
with t0 ≤ t1 are the start and end time of the claim, r =

(c,b,m′) ∈ R is the resource of the claim, a ∈ R≥0 is the
claimed amount, o ∈ R≥0

∪ {⊥} is the offset of the claim
(⊥ if and only if b = false), and m ∈M specifies the claim’s
attributes.

Resources and claims are not limited to the computational
sphere as in Ex. 1. They can also be used to model, e.g., a
portion of Euclidean space that needs to be claimed before
a mechanical component can move to avoid collisions. The
offset of the claim can be used to model, e.g., memory allo-
cation in which a claim has an explicit area of the memory. A
memory allocation of 2048 bytes starting at memory address
32768 can be modeled by a claim with offset 32768 and an
amount of 2048. The special offset ⊥ is used if and only if
the resource does not support an offset. The amount that is
claimed of a resource should not be larger than the capac-
ity of the resource. Of course, multiple overlapping claims
can use the same resource, and in that case the sum of their
amounts should not exceed the resource capacity. Proper use
of the offset and amount fields is the responsibility of the
user.

The continuous part of an execution trace consists of sig-
nals, which are real-valued functions on R. We limit our-
selves to piecewise second-order polynomials. These are
easy to define, have concise algebraic properties (e.g., the
quadratic formula), and are powerful enough to express the
basic kinematic equations, i.e., position as a function of time
assuming constant acceleration. This can be useful to capture
mechanical motion with just a few piecewise second-order
polynomial fragments instead of many samples with constant
or linear interpolation. Furthermore, this definition covers
signals obtained through sampling and linear interpolation,

which is natural for numerical simulation engines and sys-
tems. We believe, however, that all theory in this paper can be
extended at least to signals represented by general piecewise
polynomials. This, of course, implies more computationally
involved methods.

Definition 5 (Signal fragment)
A signal fragment is a tuple (t0, t1,a,b,c) ∈ R5 with t0 < t1. It
encodes the piecewise second-order polynomial f : R→ R

defined as follows:

f (t) =
{

a(t − t0)2 + b(t − t0) + c if t0 ≤ t < t1,
0 otherwise.

We use the term signal fragment for both the tuple
(t0, t1,a,b,c) and the function f that the tuple encodes. The
domain of a signal fragment f = (t0, t1,a,b,c), denoted by
dom( f ), is the interval [t0, t1).

Definition 6 (Signal)
A signal is defined by a tuple s = ({ f1, f2, . . . , fn},m), where
f1, f2, . . . , fn are signal fragments and m ∈M specifies the
signal’s attributes. The signal defines the function f : R→ R

defined as f (t) = f1(t) + f2(t) + · · · + fn(t). We use the term
signal for both the tuple s and the function f that the tuple
encodes.

The domain of a signal s, denoted by dom(s), is the union
of the domain of its fragments. An execution trace consists
of the concepts we have defined above.

Definition 7 (Execution trace)
An execution trace (or trace) is a tuple (E,D,R,C,S), where
E is a set of events, D is a set of dependencies on E , R is a
set of resources, C is a set of claims on R, and S is a set of
signals. With each claim c = (t0, t1,r,a,o,m)we associate two
events: start(c) = (t0,m ∪ {event_type 
→ s}) and end(c) =

(t1,m ∪ {event_type 
→ e}).5 These start and end events are
assumed to be part of E .

An execution trace has two types of events: regular events
that are not associated with a claim and start and end events
of claims. The claim-specific events can be distinguished
from the regular events by the special event_type attribute.

Finally, we define the domains of the discrete and contin-
uous data as follows:

dom(E) = [min{t | (t,m) ∈ E},max{t | (t,m) ∈ E}],

5 Here we assume that event_type ∈ A and s, e ∈ V, and also that
this special event_type attribute is not used for the application-specific
metadata defined by the user. Start and end events inherit the attributes
of the parent claim.
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dom(S) =
⋂
s∈S

dom(s).

Note that the domain of the events also covers the claims,
because we assume that the start and end events of the claims
are part of the events. The domain of the signals is the largest
interval on which we have fragment information for all sig-
nals.

Example 3
Consider the image-processing system as in Ex. 1. The ex-
ecution traces of this system have events, resources, claims,
and dependencies. The events are only the claim-specific
events as explained above. The resources only have a name
attribute: CPU, GPU, M1, M2, F1, F2, F3, or F4. We use
three attributes for the claims: (i) the name of the activity
(A–G), (ii) the id of the image that is being processed (a
natural number), and (iii) the type of image that is being
processed. The dependencies do not have attributes. In the
die-bonder example of Ex. 2 we have execution traces with
events and signals. Both have a name attribute that specifies
the event name and signal name, respectively. The events
also have a type and color attribute.

2.2 Attributes and visualization

The attributes that are part of all elements of an execution
trace are used heavily for the visualization and also for other
analysis techniques. Assigning proper attributes is an impor-
tant responsibility of the user. Below we define partitioning
and filtering based on attributes.

Definition 8 (Attribute partition)
Given a set of attributes A ⊆ A, we define an equivalence
relation ≡A on M as follows: m ≡A m′ if and only if m(a) =
m′(a) for all a ∈ A. This equivalence relation on M induces
a partitioning of M , where elements in the same block have
the same attribute values for A.

Definition 9 (Attribute filter)
A filter is a set F ⊆M. We say that m ∈M satisfies F if and
only if there is some f ∈ F such that f ⊆ m.

These partitions and filters can be lifted to events, re-
sources, claims, dependencies, and signals of an execution
trace, as these all have an attribute mapping: they are attribute
aware. If Z is a set of which the elements are attribute aware,
then we let Z

≡A denote the partitioning of this set according
to A. Furthermore, the application of a filter F to Z gives
a subset of Z in which the attribute map of each element
satisfies F .

We denote assignment (or overwriting) of an attribute a
with value v in m ∈M as follows: m[a← v]. This is also lifted

to a set Z with attribute aware elements, which is denoted by
Z[a← v].

An execution trace is visualized with a Gantt chart as
shown in Fig. 1b and Fig. 2b. Time is shown on the hori-
zontal axis, and the vertical axis is divided into a number
of sections (horizontal swimlanes). Each signal has its own
section, the claims are distributed over a number of claim-
specific sections, and the events are distributed over a num-
ber of event-specific sections. Dependencies are shown as
arrows between claims and/or events. The visualization has
a number of settings that can be used to configure the view:

• Resource/activity view (affects only claims): In resource
view, there is a claim-specific section for each resource
in the trace. In activity view, the claim-specific sections
are determined by the grouping setting of the claims (see
below).

• Filtering: Visual filters as in Def. 9 can be specified.
• Grouping: Assignment of claims/events to a certain section

is done by partitioning them according to a set of grouping
attributes.

• Coloring: The color of a claim/event or dependency is de-
termined by a set of coloring attributes. Every element in a
block of the coloring partition gets the same (randomized)
color.

This kind of visualization of execution traces is rather
straightforward, but it proves to be a valuable technique in
practice. Showing the full concurrent behavior of a system in
a single Gantt chart quickly gives an overview that is much
easier to understand than, for instance, raw logging data.

2.3 Tool support

Figure 3 shows the user interface of the Trace tool. The tool
supports a custom, human-readable file format that can be
used to specify execution traces. The tool can read such files
and process them further, e.g., by visualizing them or by
applying analysis techniques via the user interface. The file
format is designed for ease of use so that the threshold of
creating suitable input for the tool is low. The tool also has a
well-defined API that can be used to programatically create
execution traces. Finally, there is a command-line executable
to run temporal-logic verifications (also see Sect. 4.3).

3 Performance analysis

In this section, we present methods to create signals in the
sense of Def. 6 for resource usage, latency, throughput, and
work-in-progress from a given execution trace. Furthermore,
we present two ways to process the signals. First, we apply
a convolution with a rectangular window function to obtain
a sliding-window average of the signals. This, for instance,
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Fig. 3 Overview of the Trace user interface. The file explorer view (1)
shows the trace files (Gantt-chart icon) and in this case a single specifi-
cation file (see Sect. 4) with the green checkmark icon. The Gantt-chart
viewer (2) shows trace files. Parts of a trace file – events, dependencies,
claims, and signal fragments – can be selected and their properties in-
cluding the attributes are then shown in the properties view (3). Each
Gantt-chart viewer has a toolbar (4) with items to apply techniques,
such as the filtering, coloring, and grouping visualization techniques.
The various editors support syntax highlighting, etc. In (5), a property
specification file is shown. The outline (6) shows the structure of the

property in the highlighted line. A specification can be checked on a
trace file (invoked from the toolbar (4)). Logging of the verification
algorithm is written to the console view (7), and the results are shown
in the verification view (8). Another type of analysis is the timing anal-
ysis, for which the results are shown in a timing-analysis view (9) and
a timing-histogram view (10). There is also an Eclipse perspective (11)
that gives a default layout for all relevant views. The layout shown is not
the default; various views have been relocated (by drag-and-drop) to
convey as much information as possible in a single screenshot. Finally,
the help menu (12) gives access to documentation of the Trace tool

gives the signal for the average throughput of the last 10 sec-
onds. Second, we apply a histogram analysis to the signals.
This, for instance, gives the percentage of time that there
are at least five tasks running on the four-core CPU. The
signals that we obtain from traces and that result from the
sliding-window processing are piecewise constant or piece-
wise linear functions, which enables us to treat them as part
of the signals of an execution trace. All functionality (e.g.,
computing a throughput signal) is available via the toolbar
(4 in Fig. 3).

3.1 Sliding-window average and histogram
analysis

First, we define these two processing steps in general terms.
The first one is to compute a sliding-window average of some
function f : R→ R. Therefore, we define a parameterized
rectangular window function gw : R→ R with width w ∈

R
>0:

gw(t) =
{ 1
w if 0 ≤ t ≤ w,
0 otherwise.

We use the Dirac delta function δ for the window with
width zero, i.e., we define g0 = δ. The w-average of f then
is defined as the convolution of f and gw .

Definition 10 (w-average)
Given a function f : R→ R and w ∈ R≥0. The w-average of
f , denoted by avgf

w, is defined as f ∗ gw .

The w-average of f at time t gives the average value of f
over the last w time units, or in case w = 0, it gives f itself.

Proposition 1
If w = 0, then avgf

w(t) = f (t). If w > 0, then avgf
w(t) =

1
w

∫ t

t−w
f (τ)dτ.

The second processing step that we define for signals is
to create a time histogram. A time histogram is based on
a set of predicates that return either true or false for each
possible value of the signal. A time histogram then maps
each predicate to the total amount of time that the predicate
was true.
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Definition 11 (Time histogram)
Consider a set of predicates Φ = {φ1, φ2, . . . , φn} with φi :
R→ B. The time histogram for Φ is a function h : Φ→ R

defined in two steps as follows. Let Pφi be a partition of R
into disjoint blocks such that:

• each block can be written as an open, closed, or half open
interval,

• for each block B holds ∀t∈Bφi(t) or ∀t∈B¬φi(t), and
• Pφi is finite.

Then h(φi), defined below, gives the value of φi in the time
histogram:

h(φi) =
∑

B∈Pφi∧∀t∈Bφi (t)

sup(B) − inf (B).

When the predicates are of the form f = v , where f is
a signal and v ∈ R, then computation of the time histogram
is straightforward. Such a time histogram can be used, for
instance, to show how much time a single-core CPU was
occupied by more than one task. In that case, we need a
signal f for the number of concurrent clients on the CPU
and a set of predicates such that φi(t) is defined as f (t) = i.

3.2 Resource-usage signals

The instantaneous resource-usage signal is constructed from
the individual contributions of the claims to the usage of the
resource.

Definition 12 (Instantaneous resource usage)
Let (E,D,R,C,S) be an execution trace, let r ∈ R be a re-
source, and let v : C→ R be a valuation function. The in-
stantaneous resource usage of a claim c = (t0, t1,r,a,o,m),
denoted by rucr , is defined as follows:

rucr (t) =

{
v(c) t0 ≤ t < t1,

0 otherwise.

The instantaneous resource usage of the trace, denoted by
rur , is then defined as

∑
c∈C rucr .

The valuation function v that we use can be used to get
different interpretations of the resource usage. For instance,
if we use the claimed amount, that is, v(t0, t1,r,a,o,m) = a,
then rur (t) models the total amount of the resource that is
claimed at time t. If we use the constant 1, however, then
rur (t)models the number of different claims on the resource
at time t.

Example 4
Consider the image-processing system from Ex. 1. Figure 4a
shows the claims on the CPU and memory M2 (second and

fourth section from the top). The first section shows the
CPU resource-usage signal with a sliding-window average
of 100 ms. The CPU usage is about 95%. The third section
shows the instantaneous resource usage of M2. The resource
is almost never completely used because of segmentation,
which can be clearly seen in the fourth section. We further
compute a time histogram for the CPU and M2 using the
valuation function that counts the number of claims on the
resource rather than the claimed amount. In terms of Def. 11,
we use the predicates f = i with i = 0,1, . . ., where f is
the instantaneous-resource-usage signal from Def. 12 with
valuation function v(c) = 1 for every claim c that uses the
resource. The resulting histograms for the two resources are
shown in Fig. 4b. Note that not the absolute time is given on
the y-axis, but the percentage with respect to the total length
of the underlying execution trace. This shows that for about
20% of the time, the single-core CPU has two claims on it.

3.3 Little’s law for execution traces

Little’s law stems from queueing theory and states that L =

λW , where L is the average number of items in the system,
λ is the average arrival rate of items, and W is the average
waiting time of an item in the system [45, 77]. In this section,
we present an analogy in the context of execution traces of
systems that process discrete items, based on signals for the
system’s work-in-progress, latency, and throughput.

In the following, we assume a system that works on dis-
crete items. In our execution traces, the distinction between
work on different items is made by the value of a certain
attribute, assumed to be id from now on. Without loss of
generality, we assume that every claim and event in the ex-
ecution trace has an integer value for the id attribute and
that the values 1,2, . . . ,n occur. Furthermore, we assume that
each item i has a specific value vi ∈ R. Examples of systems
that typically satisfy this assumption are video-processing
systems and manufacturing systems.

Let (E,D,R,C,S) be an execution trace. We define the
start and end timestamps of item processing as follows:

Tid=i =
{t | (t,m) ∈ E ∧m(id) = i} ∪
{t0, t1 | (t0, t1,r,a,o,m) ∈ C ∧m(id) = i},

tsid=i = min(Tid=i),

teid=i = max(Tid=i).

The start time of the work on item i is given by tsid=i
and the

end time of the work on item i is given by teid=i
. We abbreviate

teid=i
− tsid=i

with δi . We can compute these timestamps and δi
values straightforwardly from an execution trace. This gives
us the work-in-progress as follows.
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Fig. 4 Resource usage of the CPU and memory M2 (a) and a time histogram that shows the number of concurrent claims on the CPU and memory
M2 (b)

Definition 13 (Work-in-progress)
For item i, the work-in-progress, denoted by wipi , is defined
as

wipi(t) =

{
vi tsid=i

≤ t < teid=i
,

0 otherwise.

The instantaneous work-in-progress, denoted by wip, then is
defined as wip =

∑n
i=1 wipi .

The value vi can be used for counting the items (e.g.,
the number of images processed; vi = 1 for all items) or
for more specific accounting (e.g., the number of square
meters printed; vi then equals the number of square meters
of sheet i).

System throughput is an important aspect for many sys-
tems. Throughput is “an amount of work, etc. done in a
particular period of time” according to the Cambridge dic-
tionary. We note, however, that generally applicable mathe-
matical definitions of throughput are not readily available for
our discrete setting. Often, throughput is calculated by count-
ing a number of events and dividing that number by the total
time over which was measured (the “particular period” in the
quote above). This, however, gives only a single number, and
at what point in time do we actually have that throughput?
Below, we provide a rigourous definition of throughput. We
start with a definition of the work that is done. We there-
fore assume that the value of an item is produced in a linear
fashion.

Definition 14 (Cumulative work)
The work done for item i is the function ui : R→ R. defined
as

ui(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 t < tsid=i
,

vi (t−t
s
id=i
)

δi
tsid=i
≤ t < teid=i

,

vi t ≥ teid=i
.

The cumulative work done is work(t) =
∑n

i=1 ui(t).

The cumulative work as defined above is a piecewise linear
function. Next, we define the instantaneous throughput as the
rate at which the cumulative work that is done changes over
time.

Definition 15 (Instantaneous throughput)
The instantaneous throughput, denoted by the function tp :
R→ R, is defined as d

dt work.6

The area below the instantaneous throughput function on
the interval [a,b] is equal to the amount of work done in that
interval: work(b) −work(a).

Both wip and tp are thus piecewise constant polynomi-
als that can easily be computed from our execution traces
and fit Def. 6. The instantaneous throughput can be very ir-
regular with many changes between extreme values. This is
often hard to interpret. What does it mean that at time t the
throughput is 200 images per second and at time t + 1 ms the
throughput is 50 images per second? Using Def. 10, we can
compute the average throughput over the last w time units.
We say that the w-throughput at time t is the average of the
instantaneous throughput over the last w time units:

tpw = avgtp
w .

From Prop. 1, it follows immediately that tp0 = tp. Further-
more, the area under the tpw graph on the interval [a,b] is the
average value of work on [b− w,w] minus the average value
of work on [a − w,w]. If the work is constant on [b − w,w]
and on [a − w,w], then this reduces to work(b) − work(a)
just as for the instantaneous throughput. This notion of av-
erage throughput can be more intuitive, especially if w has a
magnitude that is easily observable by humans.

6 Note that work is not differentiable at all points because it is piece-
wise linear, resulting in a finite number of holes in work′. We fill a hole
at time t by taking the value limx→t+ work′(x) and do this for every
hole.
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Fig. 5 Derived Litte’s law signals

We have now covered two of the three ingredients of
Little’s law: work-in-progress and throughput. What remains
is the latency. Unfortunately, we cannot give an intuitive
compositional definition of latency, starting with the latency
of a single item, as we have done for the work-in-progress
and the throughput. Instead, we give the definition of latency
by applying Little’s law and we consequently give a property
of the latency signal that matches our intuition.

Definition 16 (Latency by Little’s law)
We define lat(t) as wip(t)

tp(t) for all t ∈ R such that tp(t) � 0.

When we consider only a single item i, the latency signal
has value δi on the interval [tsid=i

, teid=i
) and is undefined

otherwise. This is rather intuitive. When we have two items
that have no overlap, the latency signal is just the combination
of the latency signals for the two individual items. This still
could be written in the compositional style that we have
used for the work-in-progress and the throughput. It becomes
different, however, when we have items that have overlapping
processing times. In that case, just summing the individual
latencies is not appropriate. Instead, some kind of averaging
method is needed. This is exactly what Little’s law as applied
in Def. 16 does. It gives the following property of the latency
signal.

Proposition 2
We have δmin ≤ lat(t) ≤ δmax, where δmin = min{δi | 1 ≤ i ≤
n} and δmax = max{δi | 1 ≤ i ≤ n} for all t such that lat(t) is
defined.

The latency signal thus lies between the minimum and
maximum of the latencies of the individual items.

Example 5
Consider the image-processing system from Ex. 1. The signal
at the bottom in Fig. 5 shows the work-in-progress. Its value
reaches up to 10, which means that at that point in time there
are 10 images in the pipeline. The figure also contains the
signal for the instantaneous throughput tp and its window av-
erage over 0.1 seconds. The instantaneous throughput varies
with a high frequency between 0 and approximately 200 im-
ages per second. The window-average throughput smoothes
this out; its value is approximately between 140 and 180 im-
ages per second. (These numbers are not visible in the figure.)
Finally, the figure shows the latency signal, which has a value
between 23 and 39 ms. The actual bounds on the latency of
the individual images are 41 ms (upper bound) and 19 ms
(lower bound).

4 Run-time verification

In this section, we first present three temporal-logic for-
malisms. We then describe a DSL that can be used to specify
properties.

4.1 Temporal-logic formalisms

This section covers temporal logic, which is a formalism to
specify properties of execution traces. Since we have both
discrete and continuous data in our concept of execution
traces, we use MTL for the discrete part, STL for the contin-
uous part, and a mix of the two to express properties over both
discrete and continuous data. Sections 4.1.1 and 4.1.2 recall
existing theory on temporal logic and rephrase it slightly to
fit our definition of an execution trace. Section 4.1.3 presents
an adaptation of existing theory to integrate MTL and STL.
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4.1.1 Metric temporal logic

MTL is a formalism that allows specification of quantitative
real-time properties of sequences of discrete events [48].
The syntax of MTL formulas ranged over by φ is inductively
defined as follows:

φ := true |m | φ ∧ φ | ¬φ | φUIφ.

Here m ∈M is an atomic proposition and I is an interval
(open, closed, or half open) on R

≥0
. The temporal until

operator φ1UIφ2 informally expresses that φ1 must hold until
φ2 holds somewhere within I time units from now. We use the
following abbreviations for disjunction, implication, finally,
and globally:

φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2),

φ1⇒ φ2 = ¬φ1 ∨ φ2,

FIφ = trueUIφ,

GIφ = ¬FI¬φ.

The satisfaction relation |= for MTL is defined on finite se-
quences of events that are ordered by ascending timestamps.
From now on, we assume that any event sequence that we
refer to is ordered in this way.

Definition 17 (MTL semantics)
Consider a finite sequence of events σ = (t0,m0),(t1,m1), . . . ,

(tn,mn) that is ordered by ascending timestamps.7 The satis-
faction relation on the events σi = (ti,mi) is defined induc-
tively as follows:

σi |= true,
σi |= m iff m ⊆ mi,

σi |= φ1 ∧ φ2 iff σi |= φ1 ∧ σi |= φ2,

σi |= ¬φ iff σi � |= φ,

σi |= φ1UIφ2 iff ∃n≥ j≥i σj |= φ2 ∧ tj − ti ∈ I∧
∀i≤k< j σk |= φ1.

Note that formulas are interpreted relative to events and
not to arbitrary moments in time. A sequence of events σ
satisfies an MTL formula φ, denoted by σ |= φ, if and only
if σ0 |= φ. So we assume a strict semantics of finite until φ2
must hold.

Example 6
Consider the image-processing pipeline of Ex. 1. All claims
and events in an execution trace of this system have a name
attribute for the current activity and an id attribute for the

7 Note that there are multiple such sequences for a given set of events,
because multiple events can have the same timestamp. Our tooling picks
an arbitrary sequence that satisfies the ordering constraint.

image that is being processed by the activity. We can use
these attributes to specify lower and upper bounds on the
total processing time of an image with the following MTL
formula:

G
(
{name 
→A, type 
→ s, id 
→ 1} ⇒

F
[0,50]{name 
→G, type 
→ e, id 
→ 1}

)
.

Informally, this formula specifies that it always holds that
if activity A starts for image 1, then within 50 time units
activity G for that image ends.

In practice, we are always dealing with finite sequences
taken from some system. These are often prefixes of ongo-
ing behavior. Naively using the |= relation thus brings the
problem that an extension of the finite sequence that we are
considering might invalidate the result of the |= computation.
To deal with this problem, we use the informative prefix con-
cept of [78]. Let σ be a finite prefix of some event sequence
and let φ be an MTL formula. If every extension ofσ dissatis-
fies φ, then we call σ a bad prefix. Dually, if every extension
of σ satisfies φ, then we call σ a good prefix. A prefix is
not necessarily good or bad. We call a prefix that is neither a
neutral or non-informative prefix. Intuitively, an informative
prefix tells the whole story about the (dis)satisfaction of an
MTL formula [78]. For a more formal discussion, we refer
to [58].

4.1.2 Signal temporal logic

STL is a formalism that allows specification of quantitative
real-time properties of real-valued continuous signals [61].
We start with a summary of definitions and results from
[63, 64]. Let S = {s1, s2, . . .} be a set of signals. The syntax
of STL formulas is inductively defined as follows:

φ := true | si ≥ 0 | ¬φ | φ ∧ φ | φUIφ.

Here, I equals either a real-valued interval [a,b] for some
0 ≤ a < b or [a,∞) for some a ≥ 0. For I = [a,b] and t ∈ R
we define I + t = [t + a, t + b] and for I = [a,∞) we define
I + t as [t + a,∞). The atomic propositions are of the form
si ≥ 0 and specify whether signals exceed the threshold value
0. Extension of the syntax and semantics with atomic propo-
sitions of the form si ≤ x and si ≥ x, where x ∈ R, can be
done by preprocessing [64]. We do not handle this explicitly
in the following theory, but the Trace tool supports these
constructions and we also use them in the examples.

Example 7
Consider the die bonder of Ex. 2. It is essential that the wafer
table is not moving whenever the collet is extended beyond
a certain threshold. Otherwise, physical contact between the
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collet and the dies on the moving wafer might cause scratches
on the dies. We can specify this property with STL. Execution
traces for this system have a signal wv for the speed of a motor
that moves the wafer table. They also have a signal cp that
gives the position of the collet that is used for picking a die
from the wafer. The STL specification then is the following:

G
(
(cp ≥ 0.01∨ cp ≤ −0.01) ⇒ wv = 0

)
.

Informally, this formula specifies that it always holds that
if the pickup collet is extended at least 0.01 length units in
either direction, then the wafer table is not moving (its speed
equals zero).

The semantics of an STL formula φ for a set of signals
S is defined over the time interval dom(φ,S) (we omit the
definition for the sake of conciseness). The definition of the
Boolean semantics S, t |= φ for an STL formula φ, a set of
signals S and t ∈ dom(φ,S), is similar to the semantics of
MTL. The difference is that MTL semantics is only defined
for the timestamps at which events occur, whereas STL se-
mantics is defined on all points in the domain of the formula.
The quantitative semantics of STL, as defined below, has a
specific interpretation in the sense that it gives an indication
of the robustness of the result. A value farther away from zero
indicates a “stronger” satisfaction. This quantitative seman-
tics has a wide range of uses and as such is a core technique
for the formal specification and verification of systems with
discrete and continuous components.

Definition 18 (Quantitative STL semantics)
Let φ be an STL formula, let S = {s1, s2, . . .} be a set of
signals, and let t ∈ dom(φ,S). The quantitative semantics is
a value ρ ∈ R and is defined as

ρ(true,S, t) = ∞,

ρ(si ≥ 0,S, t) = fi(t) (si is encoded by function fi),
ρ(¬φ,S, t) = −ρ(φ,S, t),
ρ(φ1 ∧ φ2,S, t) = min{ρ(φ1,S, t), ρ(φ2,S, t)},
ρ(φ1UIφ2,S, t) = sup

t′ ∈t+I
min

{
ρ(φ2,S, t ′),

inf
t′′ ∈[t ,t′]

ρ(φ1,S, t ′′)
}
.

The quantitative semantics has the following two funda-
mental properties. First, a ρ value greater than zero means
that the formula is satisfied and a ρ value smaller than zero
means that the formula is not satisfied. Second, ρ is a robust-
ness estimate: if S, t |= φ and the signals in S and S′ differ by
at most ρ(φ,S, t), then S′, t |= φ.

There is also work that deals with trace prefixes in the STL
context [79]. The authors define a robust satisfaction interval
that captures lower and upper bounds on the robustness value
of any completion of a partial signal. Many STL formulas
with an unbounded time horizon (e.g., G(ϕ⇒ Fψ)) have a

trivial interval that is not useful because it does not give any
information. They therefore introduce a nominal semantics
that is very close to the robust satisfaction of Def. 18 that
comes from [64].

4.1.3 Mixed temporal logic

We mix MTL and STL using the interface-operator idea of
[71]. This enables us to specify properties that refer to both
discrete and continuous parts of an execution trace. Let σ
be the sequence of events and let S be the set of signals
of an execution trace. The syntax of mixed-temporal-logic
(mix-TL) formulas is inductively defined as follows:

φ := true |m | φ ∧ φ | ¬φ | φUId φ |@cd
(φc),

φc := true | si ≥ 0 | ¬φc | φc ∧ φc | φcUIcφc .

Here, m ∈M, si ∈ S is a signal, Id is a proper interval for
MTL as defined above, and Ic is a proper interval for STL as
defined above. Note that the defining rule for φ is the MTL
rule extended with an interface-operator clause that allows
the inclusion of STL formulas. At each moment that an event
occurs, an STL formula can be evaluated. The cd superscript
indicates a transformation from the continuous to the discrete
domain. These STL formulas are produced by the φc rule,
which is equivalent to the STL syntax defined above. The
domain on which a mix-TL formula is defined depends on
the structure of the formula as follows:

dom(true,σ,S) = dom(S) ∩ dom(σ),
dom(m,σ,S) = dom(S) ∩ dom(σ),
dom(¬φ,σ,S) = dom(φ,σ,S),
dom(φ1 ∧ φ2,σ,S) = dom(φ1,σ,S) ∩ dom(φ2,σ,S),
dom(φ1UIφ2,σ,S) = dom(φ1,σ,S) ∩ dom(φ2,σ,S),
dom(@cd

(φ),σ,S) = dom(σ) ∩ dom(φ,S).

This brings us to the semantics of mix-TL. We use the stan-
dard MTL semantics in combination with the quantitative
STL semantics for STL subformulas.

Definition 19 (mix-TL semantics)
Let φ be a mix-TL formula, let σ be a sequence of events,
let S be a set of signals, and let i be an index of σ such that
ti ∈ dom(φ,σ,S). The semantics is defined as

σi,S |= true,
σi,S |= m iff m ⊆ mi,

σi,S |= φ1 ∧ φ2 iff σi |= φ1 ∧ σi |= φ2,

σi,S |= ¬φ iff σi � |= φ,

σi,S |= φ1UIφ2 iff ∃j≥i σj |= φ2 ∧ tj − ti ∈ I∧
∀i≤k< j σk |= φ1,

σi,S |= @cd
(φc) iff ρ(φc,S, ti) > 0.

We say that σ,S satisfies φ, denoted by σ,S |= φ, if and
only if σj,S |= φ, where σj is the first event with timestamp
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in dom(φ,σ,S). If the domains of the discrete and contin-
uous parts do not overlap, then the satisfaction relation is
undefined.

Note that the mix-TL semantics “samples” the continuous
signals only at the moments when an event happens. This
can give unexpected results. To make this more transparent
to the user, our tool raises an information message for this
kind of properties. Furthermore, it injects dummy events into
the trace and reports the maximum time between events. This
maximum time between events gives the user an indication
of the resolution of the evaluation of the STL part. Ideally,
the number of dummy events should depend on the degree
of variation in the range of the signals.

Example 8
Consider the die bonder of Ex. 2. A property that the system
must satisfy for correct operation is that a certain height
measurement is done after each wafer change. Dies may only
be picked from the new wafer after the height measurement.
This can be expressed using a mix-TL property. Execution
traces for the system have a signal wc that indicates the state
of the wafer change process. A value of at least one means
that a wafer change is in progress. Furthermore, the events
have a name attribute that indicates the current activity. The
presence of the height value for the name attribute means
that a height measurement has been taken. The presence of
the pickup value for the name attribute means that a die has
been picked from the wafer. The following mix-TL property
formalizes the requirement:

G
(
@cd
(wc ≥ 1)

⇒ ¬{name 
→ pickup}U{name 
→ height}
)
.

The wc ≥ 1 indicates that a wafer change is in progress.
In that case, no pickup event happens until a height-
measurement event happens.

4.2 Tool support for the temporal logic
formalism

The Trace tool contains a DSL that can be used to specify
MTL, STL, or mix-TL properties. The DSL has four impor-
tant features. First, the logical operators are implemented by
quasi-natural-language grammar elements. This makes the
formulas easier to read and understand for non-specialists
without loss of their precise mathematical semantics. Sec-
ond, the language supports definitions of formulas that can
consequently be used in any other formula by referencing.
Such decomposition improves readability of complicated for-
mulas. Furthermore, proper naming of the definitions helps
to improve the readability of composed formulas. Third,
a simple parameter mechanism is supported that helps the
specification for systems that process discrete items. In the

Fig. 6 Bounds on latency

Fig. 7 Die-scratch property

image-processing system of Ex. 1, for instance, every claim
and every event has an id attribute whose value gives the iden-
tifier of the image that is being processed. Instead of making
a separate specification for each image, a single specification
can be made with the parameter mechanism that quantifies
over all images. Fourth, the language supports specification
of time units in the intervals of the until operators. The in-
tervals are converted automatically to match the time unit of
the execution trace.

The language also has syntax to refer to the derived
resource-usage, throughput, work-in-progress, and latency
signals that have been defined in the previous section. This
is shown, for instance, in Ex. 10 below.

Example 9
This example shows the DSL specifications of the formulas
in Ex. 6, 7, and 8.

Figure 6 shows how we express bounds on latency of the
processing of the individual images of the image-processing
system in Ex. 6. Two parameterized definitions are given
for the start and end of processing of image i, respectively.
The formula to be verified, indicated by the check keyword,
quantifies over 200 image identifiers and expresses the lower
and upper bound on the processing latency.

Figure 7 shows how we express the die-scratch property
of the die bonder in Ex. 7. The signal keyword is used to
refer to signals in the execution trace based on the values of
attributes. Note that these signals are used in the subsequent
definitions and that the naming of these definitions is tailored
to readability. The final formulation of the check then is
straightforward.

Figure 8 shows the height-measurement property of the
die bonder in Ex. 8. The names of the definitions are again
tailored to readability. Note that the check is underlined with
a warning that this is a mix-TL property that thus might suffer
from sampling effects as explained above.
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Fig. 8 Height-measurement property

Fig. 9 Productivity specification

An MTL formula (a mix-TL formula without STL sub-
formulas) is verified using the informative-prefix semantics
(see [58]). The verdict can be that the property is satisfied
(good), the property is not satisfied (bad), or that the trace is
non-informative. The last verdict indicates that extensions of
the trace exist that make the property satisfied or not satis-
fied. An STL formula (also an STL subformula of a mix-TL
formula) is verified using the semantics in Def. 18, using an
algorithm based on [64] that is adapted to piecewise second-
order polynomial signals. This algorithm can currently only
handle STL formulas without general until subformulas (i.e.,
only until operators with φ1 = true are supported). This, how-
ever, still leaves a very usable subset of STL for the user. A
mix-TL formula that has at least one STL subformula is ver-
ified using the semantics of Def. 19. Since this semantics
uses the standard MTL semantics and a clear interface for
STL subformulas, we can use the algorithm from [58], in
combination with an algorithm for the robust semantics of
STL. The underlying verification algorithms are motivated
by pragmatic considerations to bring verification technology
to the user of the Trace tool. There is room for improvement.
The open-source nature of the tooling lowers the threshold
for this. The Trace tool also has rudimentary support for
explanation of the verification verdict, as illustrated in the
following example. We intend to further refine this support
with, for instance, the systematic approach presented in [80].

Example 10
Consider the image-processing pipeline of Ex. 1. The pro-
ductivity of this system can be specified and verified using
our signal-based equivalent of Little’s law as introduced in
Sect. 3. The DSL for specifying temporal-logic properties
has support for the derived signals for resource usage, la-

tency, throughput, and work-in-progress. Figure 9, for in-
stance, shows a productivity specification for the image-
processing system. The first signal declaration, tp_per_s,
does not refer to a user-defined signal in the trace data, but
to the tpw signal as defined at the end of Sect. 3. The dec-
laration specifies that the id attribute must be used to dis-
tinguish the processing activities for different images. The
per s part specifies that the throughput is to be given in
images per second, and over 10.0 ms specifies a window
width of 10 milliseconds for the window-averaging opera-
tion. Similarly, the declaration of the work_in_progress

signal refers to the wip signal of the previous section based
on the id attribute. Using these signals, the productivity

specification can be written that states that the throughput in
the steady state is at least 100 images per second. We can
use the Trace tool to verify it on an execution trace. Fig-
ure 10 shows a part of the Trace UI after we have checked
this property on a trace. The result view on the right shows
the verdict of the properties, grouped by labels that are in-
spired by the informative-prefix status. The result shows that
the productivity property is not satisfied. Double-clicking
this property then gives an explanation in terms of the defi-
nitions that have been used in the property. For instance, the
section labeled withgood_throughput shows on which part
of the execution trace the property holds (green) and where
it does not hold (red). Clearly, the steady-state throughput is
not always as we required.

4.3 Application example: automated verification

Many embedded and cyber-physical systems rely on soft-
ware for supervisory control that directs the operation. Such
software typically is subjected to automated tests that are in-
tegrated with the version control system in a continuous in-
tegration environment. The Trace tool contains a command-
line application to run verifications that can be used for au-
tomation. We can use it to create automated tests based on
formal specifications of the behavior. Creating good specifi-
cations, however, is far from trivial and theferore we describe
a top-down process for creating specifications in the DSL:

• Create a check in the DSL and choose one of the temporal
operators (globally, finally, or until) that applies on the
highest level.

• Depending on this choice, one or two subformulas need to
be specified. For each of these subformulas create a def

in the DSL with a proper name such that the formula reads
naturally.

• Formalize the formula part of the def statements from
the previous step. Here, any DSL construct can be used,
such as conjunction, negation, etc. This again creates def
statements with proper names that need to be formalized.
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Fig. 10 Explanation of productivity violation

• Finish the recursive process by formalization of def state-
ments with atomic propositions, i.e., either an attribute–
value map or a signal comparison.

• The final step is to rewrite the definitions to improve the
readability. Sometimes it helps to introduce additional def-
initions or to merge definitions. Naming the definitions in
a way such that semi-natural language appears is a good
way to increase readability and convey the ideas to others.

During this process, it often is useful to have a number of
execution traces for validation, i.e., have a number of traces
where the specification should hold and a number of traces
where it should not hold. The default input format of the
Trace tool is straightforward and human-readable. It is easy
to create such test traces with a text editor.

Example 11
Consider the die bonder of Ex. 2. In certain scenarios, the ac-
tion that picks a die from the wafer must be skipped. In prac-
tice, however, this sometimes failed. The underlying cause
was an error in the supervisory control software which has
been fixed. To prevent this error from being reintroduced by
software evolution, we have created an automated regression
test based on the temporal-logic DSL. The continuous in-
tegration environment uses Behavioral-Driven Development
with the Python-based Behave tool [81]. We have scripted
the scenario to be tested and the extraction of the execu-
tion trace. The command-line verification tool of Trace has
been integrated in the Python environment. Furthermore, we
have formalized the property that needs to be verified for
traces that result from executing the scenario. This results in
a formal, automated regression test for the issue, which nev-
ertheless is easy to read and understand by non-specialists.

5 Trace-to-trace transformation

A trace-to-trace transformation specifies how an output trace
can be generated from an input trace. This is often useful
for, e.g., normalizing traces from different sources such as
a trace from a simulation model and a trace from a system.
This section first presents a brief overview of the structure of
a transformation and then provides the realization of trans-
formations in Trace through a DSL.

5.1 Transformation structure

A trace transformation consists of three main parts: a part
for the generation of new events, a part for the generation of
new claims, and a part for the generation of new signals. De-
pendencies and resources are handled automatically during
the handling of events and claims.

An event generator consists of a mix-TL formula and an
attribute map. Every event in the input trace that satisfies the
formula generates an event in the output trace with the same
timestamp but with the new attribute map.

A claim generator is similar to an event generator. There
are two mix-TL formulas: one for the start of the claim and
one for the end of the claim. If there are ns events for the
start of the claim and ne events for the end of the claim, then
at most ns · ne claims can be generated. Usually, however,
we intend to match a single start event to a single end event.
This is realized by an event-matching heuristic. This heuristic
matches a start event with an earliest end event that happens
after the start event.

A signal generator is built on the notion of a signal ex-
pression. Such an expression allows signal transformations
such that their result still is a piecewise second-order poly-
nomial. Examples include adding two signals, multiplying
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two signals, and taking the minimum and maximum of two
signals.

Next to these three main ingredients, there are four more
parts: a filtering specification that filters the input trace be-
fore the transformation starts, a trimming specification to
trim the output of the transformation to specific events/start
and end times, a real number that specifies the time shift to
normalize timestamps, and a Boolean that indicates whether
the transformation augments the input trace or creates a new
trace.

5.2 Tool support for transformation
specifications

We developed a DSL plugin for the Trace tool that can be
used to specify transformations. A trace-transformation spec-
ification contains a number of subtransformations. The sub-
transformations are executed in the order in which they are
specified, and the result of a subtransformation is the input
for the next subtransformation.

Example 12
Consider the die bonder in Ex. 2. An example trace transfor-
mation in the DSL is shown in Fig. 11a. The first line points
to the input execution trace. Then, two subtransformations
follow. The first subtransformation generates four types of
claims, and the second subtransformation adds a throughput
signal based on the generated claims. In the first subtransfor-
mation, we first limit the input trace to the interval of interest
and apply filters to the events and signals. Only relevant data
from this interval are considered when processing the trans-
formation. Filtering data that are not relevant for the transfor-
mation can significantly improve the transformation speed.
Next, four temporal-logic declarations follow (the transfor-
mation DSL uses the temporal-logic DSL). Then, four claim
generators are specified. They each consist of three elements
separated by a comma. The first two are the start and end
mix-TL formulas, respectively, which use the signal speci-
fication and the definitions from above. The third element
contains the attributes for the generated claim. In this exam-
ple, discrete events are combined with values of continuous
signals to define start and end events of claims. The last part
of the first subtransformation specifies that the trace must be
trimmed to the first occurrence of the extend claim and the
50th occurrence of the retract2 claim (relative to the start
of the trimming). The trimmed result is shifted in time such
that the first event happens at time 0.

The second subtransformation adds a throughput signal
to the result of the first subtransformation (because of the
augmenting strategy; if it is not specified, then the default is
used which only includes the generated events, claims, and
signals). The throughput of ... construction is also part
of the temporal-logic DSL and computes a signal using the

Fig. 11 A transformation specification (a), (filtered) input trace (b),
and generated output trace (c) for the die bonder

performance-analysis techniques based on Little’s law. This
is explained in Sect. 3. The final line of the second subtrans-
formation then specifies a file-name suffix for writing the
resulting trace.

Now consider the execution trace of the die bonder as
shown in Fig. 11b. This trace contains the signal and events
that are used in the transformation of Fig. 11a. The first
subtransformation discretizes the movement of the needle
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Fig. 12 LSAT trace of happy flow (a) and partial system trace of happy flow (b) for the die bonder

Fig. 13 Normalized LSAT trace (a) and normalized system trace (b) for the die bonder

in four phases using the information from both the events
and the signal. Furthermore, the output trace is trimmed (not
visible) and shifted in time. The second subtransformation
adds a throughput signal. Figure 11c shows part of the output
of the transformation with the four types of claims and the
throughput signal.

Example 13
For another example of the use of transformations, consider
again the die bonder of Ex. 2. We want to develop a new vari-
ant of the system with an additional inspection operation. We
have used the LSAT tool [82–84] to model the existing sys-
tem, and we need to validate the model. First, we acquire a
model trace of the happy-flow execution using LSAT (see
Fig. 12a) and a system trace of the happy-flow execution (see
Fig. 12b). (The labels on the y-axis in Figs. 12 and 13 have
been left out; they do not matter for this example.) Clearly,
these traces are very different. The LSAT trace is on a high
level of abstraction (mechatronic actions) and contains mod-
eling artifacts such as elements that are solely used for ensur-
ing mutual exclusion. The system trace is on a low level of
abstraction and contains supervisory control events and sig-
nals for, e.g., motor positions. Furthermore, the timestamps
are far from synchronized. Using the trace-transformation

technique, we normalize both traces to contain claims for
the relevant high-level actions (see Fig. 13a and Fig. 13b,
respectively). The traces look similar, but clearly the model
trace is a bit shorter than the system trace. Also note that
the dependencies of the LSAT trace are preserved by the
transformation. The normalization allows the traces to be
compared, which is described in the next section.

6 Constraint graphs and their techniques

This section presents constraint graphs, as well as critical-
path analysis, trace comparison, and repetitive-structure
analysis, which all are based on constraint graphs.

6.1 Constraint-graph formalism

Constraint graphs are directed graphs with real-valued
weights on the edges. They specify constraints on the rel-
ative timing of events.

Definition 20 (Constraint graph)
A weighted and directed graph (V,E), where V ⊆ R ×M
is a set of events (using the extended real numbers) and
E ⊆ V ×R×V is a set of edges, is called a constraint graph.
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Let w ∈ R
≥0

. The edge ((ti,mi),w,(tj,mj)) encodes the
constraint tj ≥ ti + w and thus specifies a lower bound on
the time between the events. Note that we can specify upper
bounds by negative weights: the edge ((tj,mj),−w,(ti,mi))

encodes the constraint ti ≥ tj + (−w), which can be written
as tj ≤ ti + w.

The constraint-graph representation of an execution trace
is used for critical-path analysis, for comparison of traces,
and for repetitive-structure analysis. Before we explain these
techniques, we first explain the semantics of a constraint
graph and various ways to construct constraint graphs from
execution traces.

Definition 21 (Constraint-graph semantics)
Consider a trace X = (E,D,R,C,S). Let G = (V,E) be a
constraint graph. We say that X satisfies G, denoted by X |=
G, if and only if for every ((ti,mi),w,(tj,mj)) ∈ E it holds
that if (ti,mi) ∈ E and (tj,mj) ∈ E , then tj ≥ ti + w.

The default constraint graph for an execution trace X =

(E,D,R,C,S), denoted by GX , is the graph (E,∅). That is,
the default constraint graph contains all events and no edges
between the events. Clearly, X |= GX . The default constraint
graph can be extended in the following ways:

• Source and sink: Add an src event (−∞,∅) and an snk event
(∞,∅). It also adds constraints (src,0, v) and (v,0,snk) for
all other events v ∈ V .

• Claim durations: For each c = (t0, t1,r,a,o,m) ∈ C with δ =

t1−t0, constraints (start(c), δ,end(c)) and (end(c),−δ,start(c))
are added. These constraints encode the claim duration.

• ε-end-start constraints: Given parameter ε ∈ R≥0, this
heuristic adds a lower bound constraint with value 0 be-
tween the end of a claim c and the start of a claim c′

if and only if c′ starts within ε time units after c ends.
More formally, for each claim c = (t0, t1,r,a,o,m) ∈ C and
c′ = (t ′0, t

′

1,r
′,a′,o′,m′) ∈ C such that 0 ≤ t ′0 − t1 ≤ ε , a

lower-bound constraint (end(c),0,start(c′)) is added.
• Dependency constraints: Let D′ ⊆ D. We add a constraint
(e0,w,e1) for each (e0,e1,m) ∈ D′, where w ∈ R or w is
given by some attribute a ∈ A such that m(a) is inter-
pretable as a real number.

With these extensions, we define three constraint graphs:

1. Gε=d
X starts from GX , adds claim durations, adds ε-end-

start constraints for ε = d, and adds source and sink.
2. G∞X starts from GX and adds ε-end-start constraints for

ε =∞.
3. GD(w)

X starts from GX , adds claim durations, adds depen-
dency constraints for all (e0,e1,m) ∈ D with weight w (in
case w ∈ R) or with a weight given by interpretation of
m(w) as a real number (in case w ∈ A), and adds source
and sink.

The first constraint graph captures execution dependen-
cies: intra-claim (via the claim durations) and inter-claim
(via the ε-end-start constraints). The second constraint graph
gives a partial ordering on claims that orders two claims if
and only if one starts not earlier than the other finishes.
The third constraint graph interprets the dependencies of the
trace as constraints. Note that X |= Gε=d

X and X |= G∞X by def-
inition. Whether X |= GD(w)

X depends on the user-specified
dependencies.

A path in a constraint graph is a finite sequence of
edges (v1,w1, v

′

1),(v2,w2, v
′

2), . . . ,(vn,wn, v
′

n) such that for all
1 ≤ i < n we have v ′i = vi+1. The sum of all the weights of
the edges in the path is the weight of the path. Cycles with
a positive weight indicate inconsistent constraints. A con-
straint graph that has cycles with a positive weight has no
trace that satisfies it.

6.2 Critical-path analysis

Critical-path analysis originates from the domain of project
management and was originally used to optimize project du-
ration by analysis of the project’s dependency graph [15, 16].
Given a weighted directed and acyclic graph, the critical
paths are the longest paths (in terms of the weight), and they
show the parts of the system whose improvement can help to
decrease the time needed to finish all the work. This concept
has succesfully been applied to execution traces in [21, 22]
by representing an execution trace as a weighted directed
acyclic graph. This section on critical-path analysis summa-
rizes and generalizes [22] by applying critical-path analysis
to the constraint graph, which may contain cycles and nega-
tively weighted edges that encode upper bounds on the time
between events. This generalization is straightforward, as a
constraint graph is an event network [23], for which critical-
path analysis has already been studied.

Definition 22 (Critical path)
Let (V,E) be a constraint graph and let v, v ′ ∈ V . The critical
paths from v to v ′ are the longest paths (in terms of weight)
from v to v ′.

The critical paths in a constraint graph can be computed
with the Bellman–Ford–Moore longest path algorithm as
shown in [23]. Note that a constraint graph can contain cy-
cles. If a constraint graph has a cycle with a positive weight,
then we say that the constraint graph is infeasible, because
in that case the constraints are inconsistent. This situation
can be detected on-the-fly by the Bellman–Ford–Moore al-
gorithm.

Our critical-path analysis technique first creates a con-
straint graph from an execution trace, then applies critical-
path analysis, and finally visualizes the critical-path result
by highlighting the claims and dependencies of the critical
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Fig. 14 Critical path with application information

path. We use two of the three types of constraint graphs that
have been defined in Sect. 6.1:

• GD(0)
X ,

• Gε=d
X .

Both these constraint graphs have src and snk events, and the
Bellman–Ford–Moore algorithm computes the critical paths
from the src event (which happens before every event in the
execution trace) to the snk event (which happens after every
event in the execution trace).

The first graph uses the existing dependencies in the trace
as lower-bound constraints in the constraint graph. The sec-
ond constraint graph uses a heuristic to capture the execu-
tion dependencies in the trace. This is equivalent to the ε-
approximation of [22]. Our critical-path analysis technique
is therefore equivalent to the technique described in [22],
and the theory from [22] carries over. Most notably, under
certain assumptions the ε-end-start heuristic gives an over-
approximation of the critical paths of the system. Note that
the existing dependencies in the trace are not used for con-
struction of this constraint graph. Similar to [22], we provide
the option to interpret the existing dependencies in the trace
as application dependencies. This information is combined
with the critical-path information to identify dependencies
in the critical path that are not due to application dependen-
cies. Such critical dependencies may be of special interest,
because they may be resolved in the implementation of the
system (without affecting the application), potentially speed-
ing up the system. Ex. 14 below shows an example.

Note that the critical-path analysis that uses Gε=d
X uses the

ε-end-start heuristic that only works on claims. That is, there
will be no dependencies involving regular events, and these
will thus not be used for the critical-path analysis. Ultimately,
it is the user’s responsibility to specify the constraint graph
on which to apply critical-path analysis.

Example 14
Consider the image-processing pipeline of Ex. 1. We apply
critical-path analysis to Gε=0

X . Note that the trace has de-
pendencies and that these are exactly the dependencies that
encode the application order. We therefore use the option to
interpret the existing dependencies as application dependen-
cies. This information is used for an extra highlight of claims

on the critical path that have no critical predecessor that fol-
lows from the application dependencies. Figure 14 shows
part of the critical path. The path follows the application de-
pendencies, except for the G to B jumps. The B instances on
the critical path that follow a G instance are therefore colored
bright red. What happens is that the execution of task B is
blocked due to lacking memory resources. As G ends, mem-
ory is freed and a waiting B can start. Increasing the amount
of memory may therefore help to improve the performance.

6.3 Application example: bottleneck analysis

During performance engineering, one of the main questions
often is to determine the bottleneck of a system. Therefore, we
obtain one or more representative traces. Since the critical-
path analysis technique is at the core of this method, it is
essential that the execution traces are suitable for the con-
struction of meaningful constraint graphs. Typically, execu-
tion traces in which the main system activities are modeled
by claims or execution traces with dependencies can be used.
We can then apply the following techniques:

• If necessary, process the trace with the transformation tech-
nique. Low-level events and signals such as in the traces
of the die bonder of Ex. 2 can be abstracted into claims
and/or dependencies. This makes the traces suitable for
critical-path analysis.

• Apply critical-path analysis to obtain the critical paths of
the system. The essence of critical-path analysis is a proper
constraint-graph representation. The technique uses either
G

D(0)
X or Gε=d

X . The former lets the user define all de-
pendencies (and thus constraints). This can be done, e.g.,
during construction of the trace or during application of the
transformation technique. The latter is subtle and seems to
work best on traces from models with ε = 0, because mod-
els typically have an as-soon-as-possible execution seman-
tics with “perfect” timing.

• Apply resource-usage analysis to discover resources with
high load. This gives an indication of improvements with
respect to resources if combined with the critical-path in-
formation.

Example 15
Consider the image-processing pipeline of Ex. 1. We have
modeled the existing system and want to experiment with
upgrades that improve its performance. Therefore, we need
to know the bottlenecks of the system. Ex. 4 already showed
that both the CPU and memory M2 have high loads. Since
the execution trace is produced by a discrete-event simulator
that we can tune, we do not need any preprocessing using
the trace-transformation technique. The dependencies in the
trace are dependencies of the application. No dependencies
that result from interaction on the resources are present in the
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execution trace because these are not statically known: they
emerge from the simulation. That is why we rely on the ε = 0
heuristic: if a claim starts at the same moment that another
claim ends, then we add a dependency between them. This
assumes that this kind of “perfect” timing behavior is due to
the fact that the latter claim must wait for a resource used
by the former claim. Ex. 14 gave us the result of the first
application of the critical-path analysis. The interpretation
of the dependencies as application dependencies gives us
additional information, namely that activity B always waits
for activity G to release memory. We can thus conclude
that memory M2 is a bottleneck of the system. We act by
increasing the amount of memory M2, and this indeed solves
this bottleneck.

A second application of the critical-path analysis now
shows that in the system with increased M2 memory, activity
A is mostly on the critical path. Since both A and G run on
the CPU, we create another resource-usage histogram of the
number of concurrent clients on the CPU. This histogram
shows that 34% of the time the two processes compete for the
single-core CPU. Since G has higher priority, A is preempted.
To resolve this bottleneck, we can either use a faster single-
core CPU or use a dual-core CPU.

6.4 Trace comparison

We present three analysis techniques that can be used for
comparing execution traces. Each of the techniques focuses
on another aspect. First, the timing analysis focuses on the
duration of claims. Second, the order analysis focuses on
the ordering and overlap of claims. No quantitative timing
aspects are taken into account. Third, constraint analysis
focuses on dependencies as timing constraints. Currently, the
supported trace-comparison techniques do not consider the
signals of execution traces. These can be compared manually
via proper visualization (possibly after transformation).

6.4.1 Timing analysis

Timing analysis computes the durations of a set of claims
and shows statistics and a histogram of these durations. The
set of claims that is used is determined by the grouping at-
tributes for the visualization: all claims in a single section
form a set. More formally, let X = (E,D,R,C,S) be an execu-
tion trace and let A ⊆ A be the set of grouping attributes of
the visualization. Then, we compute the partition of the set
of claims according to A, which is C

≡A = {C1,C2, . . . ,Cn}.
Each subset of claims Ci is used to compute a claim-duration
histogram and duration statistics. If we have a second trace,
say X ′ = (E ′,D′,R′,C ′,S′), then we also compute the par-
tition: C ′

≡A
= {C ′1,C

′

2, . . . ,C
′

m}. We relate the blocks of the
different partitions: Ci relates to C ′j if and only if for all
c ∈ Ci and c′ ∈ C ′j it holds that c and c′ have the same values

Fig. 15 Timing histogram for a model and system trace

for the attributes in A. Histograms for such related blocks are
visualized in the same graph to visually compare them. Note
that the proper use of attributes in the traces, which might
come from different sources, is essential.

Example 16
Consider the die bonder of Ex. 2. In Ex. 13, we have ex-
plained how we have applied trace transformation to a model
and a system trace to go from low-level events, claims, and
signals to abstract claims with normalized attributes. Fig-
ure 15 shows the histogram of the clamp claims for both the
system and model traces. The distribution for the model trace
is very narrow because the model uses only a single value
for the timing of the clamp claims. Having such an overlay of
the timing gives a good visual indication of how the model
timing compares to the system timing.

6.4.2 Order analysis

This section is a condensed version of parts of earlier work
[22]. We have discussed how we can create constraint graphs
from execution traces. For distance analysis, we use the con-
straint graph G∞X . This constraint graph contains an edge
from the end of claim c to the start of claim c′ if and only
if c does not end strictly later than c′ starts. This graph is
equivalent to the ∞-approximated task graph of [22], and
the algorithm to compute it from an execution trace carries
over to our setting. This graph then is used in the graph edit
distance dged from [22]. This distance essentially captures
the number of insertions and deletions of events and edges
needed to transform one graph into the other. The distance
between two execution traces X1 and X2 thus is defined as
dged(G

∞

X1
,G∞X2
). In [22], it is shown that this is a pseudo-

metric on execution traces. We use the scheme of [22] to
assign weights to claims to indicate how much they con-
tribute to the pseudo-metric’s value. This weight is used for
visualization. Note that we use the attribute mappings of the
events to decide whether they are equivalent. The success of
comparing graphs with this technique thus heavily depends
on assigning proper attributes and values. Finally, note that
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Fig. 16 Visualization of differences of memory allocation strategies (first-fit and best-fit) with respect to a reference

the timestamps in the execution trace are only used qualita-
tively: they determine the partial order of the claim-specific
events but are not used in any other way in the distance
computation.

Instead of using the attributes to decide equivalence of
events from the traces that are compared, we could apply
a more sophisticated matching algorithm such as presented
in [85] for structural comparison of labeled transition struc-
tures. The scalability of this approach is not so good, how-
ever. What we have taken from this work, though, is the
method to compute the similarity between traces as a num-
ber between 0 (no similarity at all between the traces) and
1 (the traces are identical). This is called the F-measure in
[85] and its computation is a straightforward extension of
the graph-edit-distance computation. It provides a normal-
ized similarity value, whereas the raw graph edit distance
may be hard to interpret.

Example 17
Consider the image-processing pipeline of Ex. 1. Suppose
that, in addition to the discrete-event simulation model, we
have a reference execution trace from the system. We have
difficulty modeling the memory-allocation strategy that the
system uses because we do not exactly know the algorithm
that the system uses. We decide to approximate it with a
best-fit allocation strategy and a first-fit allocation strategy.
We create two execution traces and compare them to the ref-
erence trace with respect to memory allocation (see Fig. 16).
The first two sections on the vertical axis contain the mem-
ory allocation pattern of the reference trace. The third and
fourth section are for the first-fit strategy, and the fifth and
sixth section are for the best-fit strategy. The difference algo-
rithm visualizes the differences by shades of red. Clearly, the

best-fit strategy is closest to the reference. In fact, the graph
edit distance between the reference and the best-fit strategy is
8,282, and the graph edit distance between the reference and
the first-fit strategy is 26,311. The F-measure for the best-fit
strategy is 0.80 and the F-measure for the first-fit strategy is
0.36.

Note that the distance analysis uses G∞X and thus applies
the ε-end-start heuristic that works on claims. That is, there
will be no dependencies involving regular events not being
the start or end of a claim. These events are, however, part
of the constraint graph and hence they do count in the graph
edit distance through the vertex part.

6.4.3 Constraint-graph satisfaction

Consider the traces X1 and X2. We use the constraint-graph
semantics of Def. 21 to compute whether the trace X1 is
a model of the constraints specified by GD2(a)

X2
, where D2

contains the dependencies of X2 and a ∈ A is an attribute
that is present on each dependency and is interpretable as a
real number. The algorithm to compute X1 |= G

D2(a)
X2

follows
directly from the semantics, and it is straightforward to com-
pute the set of dependencies that are not respected by the
execution trace.

Example 18
Consider the die bonder of Ex. 2. In Ex. 13, we have explained
how we have applied trace transformation to a model and a
system trace to go from low-level events, claims, and signals
to more abstract claims with normalized attributes. Let X1
be the normalized system trace shown in Fig. 13b and let
X2 be the normalized model trace shown in Fig. 13a. The
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transformation has preserved the transitive dependencies and
added the sum of the durations of claims between source and
destination events of a generated dependency to the weight
attribute. Next, we compute whether X1 |= G

D2(weight)
X2

. This
is indeed the case: all constraints specified by the model are
satisfied by the system. This kind of comparison is useful for
model or system validation.

6.5 Application example: model/system
validation

Model and/or system validation can be done by comparing
model traces and system traces [84]. Therefore, we need to
obtain representative traces from the system and the model.
Care needs to be taken that the traces that need to be com-
pared execute the same scenario, e.g., the happy flow. We
can then apply the following techniques:

• Normalize the traces using the transformation technique.
This results in traces in which equivalent trace entities have
the same attributes and values.

• Visualize the traces in a single view. If equivalent trace
entities have the same attributes and values, then these can
be used for grouping and coloring. This makes manual
inspection of (small) traces much easier.

• Compare the traces using the timing analysis, graph-edit
distance, and constraint-graph satisfaction techniques.

The appropriate action following the comparison depends
on whether we do model validation or system validation. In
the first case, the model is a scientific model in terms of Lee
[86], which serves as a useful approximation of something
that already exists in nature (the system). Any mismatches are
thus caused by an inappropriate model and should therefore
be corrected in the model. In the latter case, the model is
an engineering model, which serves as a specification of
something that has been created. Mismatches are thus caused
by an inappropriate implementation, and should therefore be
corrected there (of course, that might be expensive).

Example 19
Consider Ex. 13 about the die bonder. We have used the
trace-transformation technique to normalize both the model
and the system trace to contain claims for the relevant high-
level actions (see Fig. 13a and Fig. 13b, respectively). The
traces look similar, but the model trace is a bit shorter than
the system trace. In addition to the visual inspection, we also
apply the timing analysis and constraint-graph satisfaction
techniques (see Ex. 16 and Ex. 18, respectively). The former
shows that the system timing deviates from the model timing.
The latter shows that all constraints in the model trace are
respected by the system trace.

6.6 Repetitive-structure analysis

Our repetitive-structure analysis method is based on the as-
sumption that execution traces originate from systems that
process discrete items and that each event in the execution
trace has an attribute that encodes an item identifier. This
often is a natural assumption for, e.g., image-processing sys-
tems such as in Ex. 1 or manufacturing systems such as
in Ex. 2. This item-identifier attribute, assumed to be id,
can be used to split an execution trace X = (E,D,R,C,S)
into subtraces. Let V = {v1, v2, . . . , vn} be the values of id
in E and C. We define n subtraces X1, . . . ,Xn as follows:
Xi = (Ei,∅,R,Ci,∅), where

• Ei = {(t,m) ∈ E |m(id) = vi}, and
• Ci = {(t0, t1,r,a,o,m) ∈ C |m(id) = vi}.

In Fig. 1b, for instance, the colors mark the subtraces. The
subtraces only consist of the events and claims; our approach
leaves out the dependencies and signals of the trace. The rea-
son is that we reuse the graph edit distance of the previous
section, which uses a constraint graph based on events and
claims only. We can now use the graph edit distance for an
equivalence relation that says that two subtraces are equiva-
lent if and only if their constraint graphs are identical modulo
the value of the id attribute.

Definition 23 (Behavioral equivalence)
Consider the subtraces X1, . . . ,Xn for attribute id. We say that
Xi and Xj are behaviorally equivalent for id if and only if
dged(G

∞

Xi [id←0],G
∞

Xj [id←0]) = 0. We denote this by Xi ≈id Xj .

From the fact that the execution distance is a pseudo-
metric, it follows straightforwardly that this is an equivalence
relation on the set of subtraces. Therefore, we can partition
the set of subtraces by this equivalence relation:

{
B1 = {X1

1 , . . . ,X
1
n1 },B

2 = {X2
1 , . . . ,X

2
n2 }, . . .

}
.

Each block Bi contains ni subtraces X i
j . Each subtrace con-

tains the events and claims involved with processing a single
item identifier, and all subtraces in a block have equivalent
behavior. We use this partitioning for three kinds of analysis:

• showing a bar chart with the count of each behavior, i.e.,
|Bi
| for each i,

• visualizing the execution trace with a coloring according
to behavior,

• visualizing representatives of each behavior.

Example 20
Consider the image-processing pipeline of Ex. 1. Note that
task F is only executed for objects of type high and that
tasks A and G share the CPU. We are wondering how many

Springer



124 M. Hendriks et al.

Fig. 17 Coloring according to the three behaviors (a) and representatives of each of the three behaviors (b)

different execution patterns exist with respect to the process-
ing of a single image. There are three different behaviors,
and Fig. 17a shows how they are distributed in the execution
trace. Figure 17b shows a representative of each behavior.
Note that two of the three behaviors are for processing im-
ages of type high using task F. These differ with respect to
the ordering between E and F.

7 Conclusion

In this paper we have presented the Trace tool of the Eclipse
Trace4cps project [2], which can support the trace-based
performance engineering of embedded and cyber-physical
systems. The core formalism is the execution trace, which
models a single system behavior. Execution traces can be
obtained from running systems (e.g., via the logging) and
also from executable models (e.g., simulations). This makes
the tool applicable in almost every phase of a system’s life-
cycle: from architecture, design, and realization (traces are
produced by models and prototypes) to operation (traces are
produced by the running system). Therefore, the tool fits well
with model-based performance engineering methods.
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