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ABSTRACT

Humanmicrobiomes, particularly in the gut, could have a major im-
pact on the efficacy and toxicity of drugs. However, gut microbial
metabolism is often neglected in the drug discovery and development
process. Medicen, a Paris-based human health innovation cluster, has
gathered more than 30 international leading experts from pharma, aca-
demia, biotech, clinical research organizations, and regulatory science
to develop proposals to facilitate the integration of microbiome science
into drug discovery and development. Seven subteams were formed to
cover the complementary expertise areas of 1) pharma experience and
case studies, 2) in silico microbiome–drug interaction, 3) in vitro micro-
bial stability screening, 4) gut fermentation models, 5) animal models,
6) microbiome integration in clinical and regulatory aspects, and
7) microbiome ecosystems and models. Each expert team produced
a state-of-the-art report of their respective field highlighting existing
microbiome-related tools at every stage of drug discovery and devel-
opment. The most critical limitations are the growing, but still limited,
drug–microbiome interaction data to produce predictive models
and the lack of agreed-upon standards despite recent progress. In

this paper we will report on and share proposals covering 1) how
microbiome tools can support moving a compound from drug dis-
covery to clinical proof-of-concept studies and alert early on poten-
tial undesired properties stemming frommicrobiome-induced drug
metabolism and 2) how microbiome data can be generated and in-
tegrated in pharmacokinetic models that are predictive of the hu-
man situation. Examples of drugs metabolized by the microbiome
will be discussed in detail to support recommendations from the
working group.

SIGNIFICANCE STATEMENT

Gut microbial metabolism is often neglected in the drug discovery
and development process despite growing evidence of drugs’ effi-
cacy and safety impacted by their interaction with the microbiome.
This paper will detail existing microbiome-related tools covering
every stage of drug discovery and development, current progress,
and limitations, as well as recommendations to integrate them into
the drug discovery and development process.

Introduction

Microbiome research has evolved significantly during the past
20 years, thanks particularly to the development and increased accessi-
bility to next-generation sequencing technologies. With several hundred
bacterial species identified in each human individual’s gut, each of them
harboring 4000 to 6000 genes, the number of microbial genes outnum-
bers the human genome by more than 100-fold (Rajili�c-Stojanovi�c and
de Vos, 2014; Gilbert et al., 2018). This estimate is aligned with about

This work received no external funding.
No author has an actual or perceived conflict of interest with the contents of

this article.
An earlier version of this paper appears in Gut Microbiome Integration in Drug

Discovery and Development of Small Molecules under the doi DMD-PI-2023-
001420.

dx.doi.org/10.1124/dmd.123.001605.
S This article has supplemental material available at dmd.aspetjournals.org.

ABBREVIATIONS: 5-ASA, 5-aminosalicylic acid; ADME, absorption, distribution, metabolism, excretion; ADMET, absorption, distribution,
metabolism, excretion, toxicity; BCS, Biopharmaceutical Classification System; DDI, drug–drug interaction; DME, drug-metabolizing enzyme;
INTEDE, Interactome of Drug-Metabolizing Enzymes; PBPK, physiologically based pharmacokinetics; PK, pharmacokinetics; SHIME, Simulator
of Human Intestinal Microbial Ecosystem; SPF, specific pathogen free; TIM, TNO Gastro-Intestinal Model; UC, ulcerative colitis.

274

1521-009X/52/4/274–287$35.00 dx.doi.org/10.1124/dmd.123.001605
DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 52:274–287, April 2024
Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics

http://dmd.aspetjournals.org/content/suppl/2024/02/02/dmd.123.001605.DC1
Supplemental material to this article can be found at: 

 at A
SPE

T
 Journals on M

arch 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

dx.doi.org/10.1124/dmd.123.001605
http://dmd.aspetjournals.org
https://dx.doi.org/10.1124/dmd.123.001605
http://dmd.aspetjournals.org/content/suppl/2024/02/02/dmd.123.001605.DC1
http://dmd.aspetjournals.org/


230,000 nonredundant gut bacterial genomes recently catalogued (Almeida
et al., 2021; Kim et al., 2021). Such a large number of genes encode an
extensive enzymatic repository, capable of metabolizing a broad spectrum
of chemical compounds of endogenic and exogenic origin. Therefore,
microbiota have been identified as potential contributors to xenobiotic
biotransformation. The impact of such microbial metabolism on drug
efficacy and/or toxicity has been suggested for a growing number of
drugs (Noh et al., 2017; Zhang et al., 2018; Weersma et al., 2020).
The gut microbiota can impact drug metabolism in multiple ways: it

can metabolize drugs directly; it can influence drug metabolism by im-
pacting the activity of human drug-metabolizing enzymes (DMEs)
(CYP450s, transferases; Dempsey and Cui, 2019); it can hydrolyze the
conjugated forms produced by DMEs; and all of these modalities can oc-
cur concurrently (Kang et al., 2013; Enright et al., 2016; Li et al., 2016;
Spanogiannopoulos et al., 2016; Noh et al., 2017; Dhurjad et al., 2022;
Dikeocha et al., 2022; Pant et al., 2023; Yang et al., 2023). In addition,
effective drug concentration can also be decreased by intracellular accu-
mulation of the unmodified drug in microorganisms thus altering drug
disposition (Kl€unemann et al., 2021). Importantly, medical drugs have
been shown to be among the strongest factors influencing the composi-
tion and functions of the gut microbial ecosystem (Forslund et al., 2015;
Maier et al., 2018; Bruno et al., 2019), coining the term of reciprocal mi-
crobiota drug interactions (Zimmermann et al., 2021).
These bidirectional drug–microbiome interactions need further scru-

tiny by the pharmaceutical industry, health and research professionals,
as well as regulatory agencies. To evaluate how approaches to study
drug–microbiota interactions could be included in future drug discovery
and development processes, a working group has been formed by Medi-
cen. It includes more than 30 leading experts from pharma, biotech, clinical
research organizations, regulatory science, and academia (https://medicen.org/
a-propos/filieres-axes-strategiques/). In frequent meetings, the team
collected materials that were used as a basis to discuss potential imple-
mentation of microbiota-mediated drug metabolism into the drug dis-
covery and development pipeline.
Pharmaceutical companies involved in the consortium have been con-

fronted with these drug–microbiome interactions at some point of the
development of new chemical entities. They have, or have not, used ex-
isting in silico, in vitro, and in vivo tools to better understand the poten-
tial impact of the microbiota on the safety and efficacy of molecules.
However, the assessment often remains inconclusive, occurs late in the
development process, and lacks integration into the drug discovery and
development workflow. Review of the existing tools by the working
group has highlighted major progress made to support many stages of
drug discovery and development. However, increasing findings of drug–
microbiota interactions pose a challenge to the industry, if more system-
atic approaches to address those interactions are to be implemented. The
implementation of standardized tools, processes, reference materials, dem-
onstration of predictability in humans, and clinical expertise will facilitate
their adoption.
To establish whether understanding of the microbiome and drug–

microbiome interactions will accelerate the discovery and development
process of safe and efficacious drugs, the working group has identified
two main areas, which will be further elaborated in this paper. The first
one is how microbiome tools could support the R&D process from drug
discovery to clinical proof-of-concept studies by allowing the early
identification (and removal) of some risks, improving the safety and ef-
ficacy of drug candidates, and, when overlooked in due time, retrospec-
tively explain in vivo metabolism profiles. The second one is about the
modelling aspect and the need to generate predictive data representative
of the human situation. Integration of microbiome considerations in
these modelling approaches could in the future improve in vitro to

in vivo extrapolation and capture interindividual variability in drug response
(safety and efficacy).

Examples of Microbial Drug Metabolism

Early risk assessment within chemical series of clinical candidates
has been integrated progressively in drug discovery over the past few
decades (Maurer et al., 2022). Besides the targeted biological properties
of a clinical candidate, its physicochemical and pharmacokinetic proper-
ties, as well as biochemical off-target interactions, influence the medical
efficacy and safety of the drug candidate.
Typically, a thorough characterization of the absorption, distribution,

metabolism, excretion (ADME) and safety profile of a compound is per-
formed to accurately predict doses, exposures, drug–drug interactions
(DDI), and toxicity liabilities. Early identified undesired ADME proper-
ties and DDI liabilities can be addressed through structural modifica-
tions of the chemical entity by medicinal chemists. Based on a
multivariate optimization process, drug design is adapted for such an
evaluation following iterative use of in silico tools and high throughput
in vitro assays. Metabolic stability of the compound, mainly dependent
on hepatic biotransformation, is one of the most critical ADME parame-
ters and is determined early in the drug discovery process via liver mi-
crosomal or hepatocyte stability assays. An improved and more
comprehensive early metabolite profiling in drug design and discovery
has been implemented by Pfizer with real success in improving clinical
candidate quality (Cerny et al., 2020). Early identification of metabolic
pathways and metabolites supports prioritization of chemical series to
favor the best drug profile and potentially avoid undesired properties.
Cerny et al. have listed four questions that often present themselves
to medicinal chemists optimizing compounds for candidate selection: 1)
What are the important clearance mechanisms that mediate the disposi-
tion of my molecule? 2) Can metabolic liabilities be modulated in a fa-
vorable way? 3) Does my compound undergo bioactivation to a reactive
metabolite? 4) Do any of the metabolites possess activity, either on- or
off-target? An additional question necessary to support compound devel-
opment relates to metabolites in safety testing (Cerny et al., 2020). These
questions are also applicable to the microbiome field, raising the
question of how to best address them, which we further discuss in
this review.
Metabolism of drugs occurs mainly through drug-metabolizing en-

zymes, the main group of proteins responsible for metabolizing a large
and diverse range of chemicals (Penner et al., 2012). Microbiome
DMEs have been well described in recent reviews (Spanogiannopoulos
et al., 2016; Wilson and Nicholson, 2017); whereas hepatic DMEs focus
mainly on reactions aiming at the production of more hydrophilic mole-
cules, microbiome DMEs stimulate primarily reductive and hydrolytic
transformations. Therefore, drugs exposed to microbiome DMEs could
generate, at least locally, metabolites not observed by liver-mediated
transformations and hydrolyse conjugated drugs/metabolites formed in
the liver and excreted in the gut via the bile. Note that sometimes the
gut microbiota can produce metabolites more hydrophilic than the par-
ent compound (e.g. tacrolimus; Guo et al., 2019). Furthermore, these
drug microbiome-derived metabolites (that could be similar to or differ-
ent from host-mediated metabolites) could potentially be absorbed
through the gut epithelium and could then reach the blood circulation.
A few examples of drugs metabolized by the gut microbiota and leading
to bioavailable metabolites reaching the blood circulation have been re-
ported (see Table 2 in Cai et al., 2023). In addition, many transporters
are playing an important role in modulating drug pharmacokinetics
(PK) properties, DDIs, and related efficacy and toxicity. Direct or indi-
rect influence of the gut microbiota on drug transport has been shown
in several experiments but still requires more studies (see tacrolimus ex-
ample later and Zhang et al., 2021).
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More surprisingly, conjugation by human gut bacteria of bioactive
molecules into more hydrophilic metabolites was recently reported. Sul-
fonation of steroidal metabolites, including cholesterol or analogs such
as pregnenolone or lanosterol, was identified and a commensal biosyn-
thetic gene cluster characterized in a biochemical assay and mouse
germ-free model. This unexpected metabolism could result in potential
modulation of host immune responses through its influence on the
Th17/Treg cell balance (Yao et al., 2022).
Well-known examples of gut microbiota metabolism are reductive re-

actions of prodrugs such as the azo precursors of antibacterial sulphani-
lamides, the azo precursor of the prodrug sulfasalazine used in the
management of ulcerative colitis (UC), or nitro-containing benzodiaze-
pines that are reduced to active amino drugs by nitroreductases (Misal
and Gawai, 2018). It is important to note that reduction could lead to
unwanted and toxic compounds as has been shown for metronidazole
(Dingsdag and Hunter, 2018). Molecules bearing chemical moieties sus-
ceptible to reductive reactions should therefore be among the first candi-
dates for their evaluation of microbiome-mediated metabolism.
Another example of gut microbial metabolism is decarboxylation of

prodrugs such as levodopa. Levodopa is used to increase dopamine lev-
els for the treatment of Parkinson’s disease. Dopamine cannot cross the
blood-brain barrier contrary to levodopa. Once levodopa has reached
the central nervous system, it is metabolized in the brain to produce do-
pamine, the active therapeutic agent. However, in the gut lumen, levo-
dopa can be decarboxylated by microbial enzyme such as Enterococcus
faecalis tyrosine decarboxylase, reducing the bioavailability and brain
concentrations of levodopa and therefore limiting its medical efficacy to
improve symptoms of Parkinson disease patients (Jameson and Hsiao,
2019; Maini Rekdal et al., 2019; Beckers et al., 2022).
Glucuronidases are other well-known enzymes with the potential to

hydrolyze glucuronide metabolites, potentially originating from entero-
hepatic recirculation following parenteral administration of the parent
drug. This metabolism pathway has been observed for the anticancer
agent irinotecan, thus leading to gut toxicity of the deconjugated metab-
olite SN38 (Wallace et al., 2015). Indeed, when the parent drug irinote-
can is administered, it is converted by host carboxyesterase into its
active form SN38 in blood serum and tissues (Yue et al., 2021). SN-38
is extensively glucuronidated in the liver and eliminated through biliary
secretion in the intestine. In the intestinal lumen, however, bacterial
b-glucuronidase expressed by the host microbiota deconjugates the glucu-
ronic acid and regenerates the active form (SN38), which causes gastro-
intestinal damage and diarrhea that is dose-limiting for irinotecan. In both
cases, L-dopa and irinotecan, the use of inhibitors of the respective gut-
metabolizing enzymes has been suggested to improve drug efficacy, re-
duce drug toxicity, and decrease patient response variability (Cheng et al.,
2019; Maini Rekdal et al., 2019; Bhatt et al., 2020).
5-Aminosalicylic acid (5-ASA or mesalamine or mesalazine) is an-

other striking example of a drug recently proved to be metabolized into
its inactive acetylated form (N-acetyl 5-ASA) by unexpected gut micro-
bial enzymes (Mehta et al., 2023). 5-ASA is a first line treatment for
UC but with a reported lack of response to treatment for about half of
the patients (Ford et al., 2011). Ultimately, identification of responders
and nonresponders based on individual microbiome analysis could im-
prove UC treatment using metabolizing enzyme inhibitors or direct a
move to second-line drugs.
Similarly, the commonly used immunosuppressant tacrolimus was re-

cently shown to be converted by Faecalibacterium prausnitzii and other
gut bacteria to a therapeutically less potent metabolite, previously not
identified using hepatic microsomes. The in vitro observation was con-
firmed in human fecal samples. This newly identified route of elimination
for tacrolimus potentially contributes to the low and variable exposure af-
ter oral dosing; it also supports the observed positive correlation between

F. prausnitzii abundance and oral tacrolimus dose (Guo et al., 2019).
Contribution of the gut microbiota to the highly variable PK of tacrolimus
was recently confirmed by a study showing that the gut microbiota is
able to influence the expression of efflux transporter ABCB1, which lim-
its tacrolimus intestinal absorption (Degraeve et al., 2023).
This diverse set of drugs illustrates the growing number of reported

drugs metabolized by the gut microbiome with an impact on drug effi-
cacy and safety. Therefore, the working group asked the questions of
whether the potential interaction of a drug with the gut microbiome
should be more regularly assessed and at what stage of the drug discov-
ery and development process this should occur (Javdan et al., 2020).
A consideration to make when addressing this question is why the

microbiome has been overlooked for so long if it does play such a sub-
stantial role in drug metabolism and clearance.
Firstly, drug candidates moving through preclinical and clinical de-

velopment were initially low molecular weight and soluble compounds,
often highly bioavailable after oral administration [Biopharmaceutical
Classification System (BCS I) and II] and therefore poorly exposed to
the microbiota of the large intestine after their efficient absorption in the
small intestine. It could be a major component explaining why drug–
microbiome interaction has been underestimated apart from a few re-
markable examples (e.g. L-dopa, irinotecan, sorivudine, nitrazepam,
sulfasalazine, omeprazole).
However, clinical trials over the past 40 years have handled an ever-

increasing structural complexity of small molecules (Shultz, 2019). Pro-
gressively, a growing number of compounds reached the market that cate-
gorize beyond the boundaries of the famous Lipinski rule of 5 (particularly
compounds with molecular weight above 500 daltons), resulting in higher
risk of poor intestinal absorption upon oral administration (Lipinski et al.,
2001; Hamley and Jimonet, 2015), hence yielding compounds that are
more easily exposed to the gut microbiota. This evolution highlights the
possibility to identify oral drugs beyond the initial limits but also represents
a greater challenge for medicinal chemists to control compound lipophi-
licity (measured logD), aqueous solubility, and resulting permeation
properties (Tinworth and Young, 2020). With the increase in low per-
meability drugs (BCS III and IV) and decreased small intestine absorp-
tion, the colonic drug concentrations are not negligible and the drug
exposure to the microbiome gains significance (Maier et al., 2018).
In addition, new modalities have been explored more recently that

are covering a large chemical space with limited knowledge about their
behavior in the gut, e.g. protein degraders, macrocyclic peptides, and
oligonucleotides (Valeur and Jimonet, 2018). To illustrate, we could
highlight the outstanding discovery and optimization by Merck scien-
tists of orally bioavailable macrocyclic peptides as PCSK9 inhibitors
(Johns et al., 2023). Despite a low oral bioavailability of 2%, obtained
using permeation enhancers, phase 2b of MK-0616 showed efficacy at
reducing LDL cholesterol with an acceptable safety profile (Ballantyne
et al., 2023). Potential interaction with the gut microbiota and influence
on the intestinal permeability will need to be closely evaluated.
A second explanation lies in the tremendous analytical progress that

has revolutionized the microbiome field over the past 20 years, not only
from a phylogenetic point of view but also from a functional point of
view. It has described the microbiome as intrinsically highly diverse
and characterized by a huge variability in composition and function be-
tween human subjects. Before the possibility to sequence microbiome
genomes on large scales and at an affordable price, it was not possible
to identify the presence of given bacterial enzymes and potentially re-
lated drug metabolism. Therefore, the influence of the microbiome on
drug PK and medical response variability could not be easily proven.
However, many studies have been reported the past 10 years to exem-
plify the involvement of specific gut bacteria on PK parameters of drugs
such as digoxin, lovastatin, amiodarone, tamoxifen, acetylsalicylic acid,
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or acetaminophen. Unfortunately, studies have been conducted mainly in
rodents, with limited confirmation in human up to now (D�zidi�c-Krivi�c
et al., 2023). Pharmacomicrobiomics is a new field exploring the variabil-
ity in drug response due to human microbiomes (Doestzada et al., 2018).
The combination of an individual’s genetic profiles with personal micro-
biome information will be a key driver toward stratification into human
subpopulations (e.g. according to responder status or bioavailability sta-
tus) and eventually a more accurate prediction of drug efficacy at the indi-
vidual level (Steiner et al., 2022).
Changes in compound properties, new formulations (e.g. controlled-

release formulation), as well as progress in gut microbiome knowledge and
-omics technologies should stimulate the assessment of drug–microbiome
interactions with the objective to improve drug candidate quality and indi-
vidual response to treatment.

How Microbiome Tools Can Help Bring a Compound from Drug
Discovery to Clinical Proof of Concept Studies

Drug Design, In Silico Databases, Predictive Models
Although some microbiome-encoded DMEs are well documented, re-

porting of drug–bacteria and drug–enzyme interactions is quite limited,
and only a few databases, mentioned next, report data of suitable quality
for in silico hypotheses and modeling.
A recent initiative collected 448 human DMEs, 599 microbial DMEs,

the respective drugs known to be metabolized by these enzymes, and the
interactions of DMEs with the microbiome, the host proteins, and the
xenobiotics in a database of the Interactome of Drug-Metabolizing En-
zymes (INTEDE) (Yin et al., 2021). The list of DMEs and their interac-
tome is mainly based on a literature review combined with human DME
tissue and disease-specific expression patterns collected from public data.
The INTEDE initiative sheds light on the importance and complexity of
how joint contribution of human and microbial DMEs can modify overall
drug metabolism, how the microbiome interacts with DMEs and can
thereby alter DME functionality, and finally how xenobiotics may modu-
late DMEs. A possible enhancement of INTEDE content to parallel hu-
man DME expression profile for microbial DMEs would be adding their
presence/absence information deduced from publicly available metage-
nomics data from healthy and disease cohorts. The functional potential
from microbial DMEs could be extrapolated from online microbial ge-
nome databases as well as publicly available metagenomics data, the lat-
ter of which would also allow stratification across healthy and disease
cohorts according to presence of DMEs (Qin et al., 2010).
The MASI database is another literature-based initiative structuring

the current microbiota-active-substance-disease knowledge (Zeng et al.,
2021) counting 1051 pharmaceuticals and 406 dietary, herbal, probi-
otic, or environmental substances with 806 microbial species linked to
56 diseases (13,191 interactions). Even if both INTEDE and MASI are
only focused on the currently approved drugs or drugs under clinical
evaluation, they point out the importance of systematically collecting and
organizing this type of knowledge in an integrated and structured manner.
With the advent of large language models we can anticipate that the de-
velopment of more comprehensive databases will undergo significant
advancements.
Computational modeling of microbial communities with genome-scale

reconstruction of their metabolic networks is recognized as a comple-
mentary approach to both in vitro and in vivo experiments. AGORA2
(Assembly of Gut Organisms through Reconstruction and Analysis,
version 2) represents one of the latest initiatives in the realm of consor-
tium modeling applications, specifically focused on predicting the transfor-
mation of known microbial drugs (Heinken et al., 2023). AGORA2 is
particularly impressive due to its extensive coverage of the human micro-
biome, encompassing 7302 strains, 1738 species, and 27 phyla.
Moreover, AGORA2 reconstructions are fully compatible with the

human (Brunk et al., 2018) and whole-body metabolic models (Thiele
et al., 2020) therefore enabling investigating host–microbiome co-metabo-
lism in silico. To include the microbiome in the very early phase of in
silico drug discovery, it is essential to 1) build a repository of compounds,
2) identify chemical conversions that modulate bioactivity, 3) couple this
to drug-metabolizing enzymes that could facilitate such conversions, and
4) eventually couple this to microbial genome databases where more
adequate gene annotation may help to link DME-encoding genes with
chemical structures and putative microbial metabolites. It would allow
the generation of hypotheses about the potential behavior of chemical
moieties when they are subjected to given bacteria and their metaboliz-
ing enzymes. The scientific community’s proactive efforts in this field
are demonstrated through the recent publication of the SIMMER plat-
form, which combines chemoinformatics and metagenomics approaches
to predict bacterial species and enzymes capable of known biotransfor-
mation in the human gut (Bustion et al., 2023).
Machine learning models could be developed as soon as sufficient

high-quality data become available and assist in the effective establish-
ment of drug–bacteria interactions databases. Training such machine
learning models has been exemplified to enable the prediction of drug–
microbiome interactions for new compounds (McCoubrey et al., 2021a;
McCoubrey et al., 2021b). From a set of 455 drugs susceptible to me-
tabolism or bioaccumulation, the authors developed a model for predict-
ing whether or not a new drug would be substantially metabolized or
accumulated by intestinal microbiota. Similarly, a new data-supported
prediction tool, named GutBug and freely available on the web, has
been recently reported (Malwe et al., 2023).
The new database under development within the Microbiome Project

of the Pistoia Alliance will bring up a larger and data-rich set for more
finely tuned models to be matured through experimental validation cycles
(https://www.pistoiaalliance.org/projects/current-projects/microbiome/).
Defining specific data formats, standards, and repositories for microbiome
drug/compound interaction (or more specifically metabolism) information
could significantly improve future models and therefore predictions.
While computational PK–pharmacodynamics models are crucial for

guiding drug development across vast chemical libraries, either based
on superior disposition properties (e.g. solubility, high intestinal absorp-
tion, low clearance) or biological efficacy (e.g. substance functionalization
for enhanced tissue or receptor affinity), the impact of microbiome-based
in silico prediction models in the drug discovery trajectory remains to be
assessed. With the ongoing enhancement of data quality, it will certainly
be possible to add microbiome metabolism hypotheses to the in silico
repertoire of compound properties and predictive parameters. As for any
physicochemical or absorption, distribution, metabolism, excretion, toxic-
ity (ADMET) parameters, significant gut metabolism alert would trigger
the need for experimental screening to validate or not the prediction.
These in silico models could be highly instrumental in upfront stratifica-
tion of individuals based on bioavailability or responder status. Moreover,
these models could be a crucial aid in risk prediction, for instance for ac-
cumulation of toxic phase I drug metabolites due to microbiome interfer-
ence with first pass drug clearance or to more accurately predict fatal
health risks from drug interactions as illustrated in the Okuda et al.
(1997) study.

In Vitro Screening Assays and the Need for “Standardized”
Assays
Despite the state-of-the-art multiomics approach over the past decade

to characterize the human microbiome, in particular the intestinal micro-
biome, it remains complicated to precisely define what a “healthy” mi-
crobiome is (Shanahan et al., 2021). The reason is well known:
interindividual variability in microbiota composition and functionality is
driven by a plethora of determinants such as age, sex, ethnicity, diet,
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medication, numerous other environmental factors, and even factors
throughout life such as birth mode and childhood infections. Hence, it
is extremely challenging to predict drug–microbiome interactions as the
prescription of a drug is generally used to correct a disease, which may
itself be accompanied by an alteration of the microbiome associated
with the host. It would therefore also be necessary (theoretically) to de-
fine the state of the microbiota of those patients who are to receive a
drug, which, depending on the disease, can be just as complicated as de-
fining a healthy microbiota. Additionally, almost all microbiota models
are based on stool samples reflecting only partially the digestive tract
(Shalon et al., 2023).
In this context, it is difficult to recommend the use of specific, stan-

dardized in vitro models for testing the metabolism of drugs by gut mi-
crobiota. Solutions do exist, however, which can help to de-risk the
development of a drug whose activity could be modified by the
microbiota.
The first and most intuitive solution is to test drug modification by

isolated bacteria in high-throughput 96-well plate configurations, as pre-
sented in several recent studies (Maier et al., 2018; Zimmermann et al.,
2019a). In the future, it could be envisaged to set up standardized panels
of strains covering a maximum of metabolic activities, as predicted by
full genome sequencing and/or simple enzymatic tests. The panels of
strains to be tested as a priority could then be chosen according to the
chemical structure of the molecules under development and their greater
or lesser probability of susceptibility to certain types of enzymes [bacte-
rial beta-glucuronidases, for example (Candeliere et al., 2022)]. The con-
ditions under which the tests are conducted (growth conditions, growth
phase of the bacteria, drug vs. bacteria concentration ranges, etc.) should
be standardized, which may be difficult for strict anaerobic bacteria that
are likely difficult to cultivate. Moreover, the growth medium to which
microbial cultures are subjected may very much determine whether or
not a chemical compound is converted: this may depend on the microbe’s
intrinsic metabolic or co-metabolic potency, on available macronutrients
(C- or N-source), and on specific co-factors for DMEs. Despite the in-
creasing availability of gut microbial strains from culture collections
(Poyet et al., 2019; Liu et al., 2021), this approach will probably remain
limited by the difficulty, or even impossibility, to cultivate certain micro-
bial species, independent of their abundance in the intestinal ecosystem
(Yang et al., 2021).
The use of defined intestinal bacterial communities is an interesting

and promising alternative, taking into account the possible cooperation
of different species/strains in the drug metabolism as such. Yet, it also
allows to maintain drug-metabolizing species/strains that rely on cross-
feeding with certain co-factors from other endogenous gut microbes be-
fore they can be effectively cultivated. Several approaches can be used
to generate simplified gut bacterial communities to which drugs are ex-
posed (for a recent review of synthetic microbiota generated by different
teams; see van Leeuwen et al., 2023). This may involve mixing micro-
bial strains, which are initially grown individually, and incubating them
together for a specific time to assess drug metabolism (Cheng et al.,

2022). One can also try to co-cultivate strains in the same fermenter
over several generations, thus creating a more or less complex consor-
tium to which the drug candidate will be exposed (Blaustein et al.,
2021; El Houari et al., 2022).
An increased level of complexity in microbial populations can be ob-

tained by in vitro incubation of human-derived fecal microbiota sam-
ples, thus leading to the creation of a diversified microbiota to which
the drug can be exposed (Aranda-D�ıaz et al., 2022). These methods
have the advantage of generating relatively complex and stable micro-
biota, which can eventually be supplemented with other strains of inter-
est carrying specific enzymatic activities and which are therefore likely
to be standardized for recurrent testing. Yet, the extent to which interin-
dividual variability in microbiota composition needs to be captured with
high-throughput methods needs to be further investigated.
While waiting for more standardized models, Van De Steeg and col-

leagues recently reported an ex vivo fermentation screening platform in
which human fecal microbiota pooled from several individuals were
subjected to simulated colon conditions (van de Steeg et al., 2018). A
set of 12 drugs (omeprazole, simvastatin, metronidazole, risperidone,
sulfinpyrazone, sulindac, levodopa, dapsone, nizatidine, sulfasalazine,
zonisamide, and acetaminophen) was incubated with human-derived mi-
crobiota under strictly anaerobic conditions. Composition of the human
microbiota in the assay was representative of the microbiota found in
the colon; the diversity of the microbial composition was maintained
during incubations and was reproducible between experiments. Five out
of the 12 included drugs (sulfasalazine, sulfinpyrazone, sulindac, nizati-
dine, and risperidone) showed microbiota-based biotransformation after
24 hours of incubation in the ex vivo fermentation assay, thus demon-
strating that drug metabolites formed by microbial metabolism can be
detected in a qualitative manner. These data were in accordance with
the previously reported in vivo metabolism of the five drugs (see van de
Steeg et al., 2018, and Table 1). Development of this in vitro system is
ongoing toward a more quantitative prediction of drug disposition in hu-
man. Furthermore, this approach allows the use of microbiota samples
coming from a single donor, opening the opportunity to evaluate inter-
and intrapersonal variability to drug metabolism and therefore a primary
step toward personalized medicine. By selecting a set of, e.g., 100 do-
nors based on either microbiome diversity or phenotypic diversity (age,
geography, lifestyle, diet), a microbiome predisposition score compara-
ble to genetic predisposition analysis could be developed as a novel
standardized assay.
As mentioned, standardized assays are not yet available, but screen-

ing assays, microbiome models, and reference compounds are described
and could already be used during the drug discovery and development
process. Their adoption, in combination with available in silico data as
described earlier, should be seen as an opportunity to alert as early as
possible on potential microbiome involvement in drug metabolism and
its related consequences on efficacy, safety, and response to treatment
variability (Fig. 1).

TABLE 1

In vitro metabolism of drugs using human fecal samples; confirmation in in vivo experiments

Drug Metabolic reaction observed in vitro
Metabolic reaction observed in vivo:

species Reference

Sulfasalazine Azo reduction Rat and human Peppercorn and Goldman, 1972
Sulfinpyrazone Sulfoxide reduction (deoxygenation) Rabbit and human Strong et al., 1987
Sulindac Sulfoxide reduction (deoxygenation) Rabbit and human Strong et al., 1987
Nizatidine Nitrogen oxide reduction (deoxygenation) Human Basit et al., 2002
Risperidone Isoxazole scission due to N-O bond

reduction and subsequent hydrolysis of
imine intermediate

Rat, dog, and human Mannens et al., 1993
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In Vitro/Ex Vivo Models to Mimic the Human Gastrointestinal
Tract
The ideal strategy for studying drug–microbiota interactions is to di-

rectly investigate these interactions inside the human body. However,
clinical studies are hampered by ethical, regulatory, and budgetary con-
straints and are often limited to end-point measurements, making it
more difficult to fully grasp the dynamics of drug metabolism and to
identify the sites at which drug metabolism take place. After all, the
composition of the fecal microbiota is fundamentally different from the
other gastrointestinal compartments, both longitudinally from the oral
cavity to the colon and cross-sectionally from the digestive lumen to the
intestinal epithelium (Van den Abbeele et al., 2011). In vivo studies in
mammals constitute a relevant alternative to human assays in the pre-
clinical stage but with limitations mainly due to differences between hu-
man and animal diet and digestive physiology, obviously impacting gut
microbiota composition and functionalities (Hugenholtz and de Vos,
2018). Furthermore, the 3R principle widely encourages the develop-
ment of alternative in vitro approaches to reduce the number of animals
used in scientific research. In vitro models of the digestive tract are
therefore of utmost importance for human gut research.
Human in vitro gut models have been developed in a wide range go-

ing from simple static monocompartmental models to the most complex
dynamic multicompartmental ones. Simple static models of the upper
gastrointestinal tract reproduce one or several of the successive oral,
gastric, and/or small intestinal phases of human digestion by changing
pH conditions and adding appropriate digestive secretions in a single

vessel maintained at body temperature (Minekus et al., 2014). Compared
to static systems, dynamic models reproduce pH kinetics, variation in di-
gestive secretions flow rate, and/or chyme transit in monocompartmental
(Human Gastric Simulator, Dynamic Gastric Model) (Kong and Singh,
2010; Thuenemann et al., 2015) or multicompartmental model systems
[Continuous Transfer Digestion Model, the Dynamic Digestion System,
or the In Vitro Digestion System (Tompkins et al., 2011; M�enard et al.,
2015), TNO Gastro-Intestinal Model (TIM)-1 (Minekus et al., 1995;
Cordonnier et al., 2015; Denis et al., 2016)]. However, all these
model systems only reproduce the physicochemical and enzymatic
parameters of digestion and do not include microbiota.
The full implementation of gut microbiota is effectively integrated in

several colon models, including the simplest ones, which are static batch
culture systems (Roupar et al., 2021; Hernandez-Sanabria et al. 2020).
Those models are inoculated with human-derived fecal microbiota and
maintained under anaerobic conditions to simulate colonic fermentation
but without any renewal of the nutritive medium. Such an approach is
limited in time by substrate availability (24 to 72 h) and fluctuations in
parameters like pH that are not regulated. In contrast, dynamic colonic
models are based on the principle of semicontinuous or continuous fer-
mentation and just like batch systems are inoculated with fecal sam-
ples. Such models are maintained under anaerobiosis and reproduce
colonic temperature, pH, redox conditions, and transit time while pro-
viding the appropriate nutritional conditions mimicking human ileal
effluents. This allows maintaining functional microbiota up to several
weeks (or even several months with specific adaptations) without

Fig. 1. Evaluation of gut microbiome metabolism in drug discovery.
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microbial washout (Fehlbaum et al., 2015). The most characterized
colonic in vitro models are probably the Reading Model (Gibson
et al., 1988), the TIM-2 (Minekus et al., 1999), the Polyfermentor In-
testinal Model (Zihler Berner et al., 2013), and the artificial colon
(Cordonnier et al., 2015). Only a few models such as the well-known
Simulator of Human Intestinal Microbial Ecosystem (SHIME) (Molly
et al., 1993; Van de Wiele et al., 2015) or the SIMulator of the Gastro-
Intestinal tract (Barroso et al., 2015) are including the entire gastrointesti-
nal tract, from the stomach to the colon. Several configurations of the
colonic compartments include the use of three-stage bioreactors in series
to mimic the different sections of the human colon (Gibson et al., 1988;
Cinquin et al., 2006; Van de Wiele et al., 2015) or the addition of mucin
beads to distinguish luminal from mucosal colonic environments and their
associated microbiota (Van den Abbeele et al., 2013; Deschamps et al.,
2020; Roussel et al., 2020).
Up to now, most of the studies involving in vitro human gut models

and pharma compounds have been performed in upper gastrointestinal
systems devoid of resident microbiota. The main objectives were to as-
sess the impact of oral formulation (Dickinson et al., 2012), digestive
physicochemical parameters such as bile secretion (Pentafragka et al.,
2022), or fasted versus fed status (Verwei et al., 2016) on the kinetics
of release, dissolution, and bioaccessibility of drugs in the digestive
lumen.
Concerning the integration of gut microbiota in human gut models

for studying drug–microbiome interactions, only a handful of studies
have been conducted, ranging from simple batch models to complex dy-
namic ones like the SHIME. The most frequently studied active sub-
stances are antibiotics (Verdier et al., 2021; Calatayud et al., 2022;
Endika et al., 2023), followed by chemotherapeutics (Vanlancker et al.,
2017), with the authors commonly investigating the effects by drugs on
gut microbiota composition, diversity, and metabolic activities. After
antibiotic disturbances of the microbiota, some strategies aiming to re-
store microbial equilibrium have also been tested such as a probiotic
mixture of 8 bacterial strains upon clindamycin treatment in the TIM-2
(Rehman et al., 2012), a blend of 9 probiotic organisms plus 10 diges-
tive enzymes after administration of 5-fluorouracil and vancomycin as
microbiome-disrupting drugs in the SHIME (Ichim et al., 2018), or au-
tologous fecal microbiota transplantation after ciprofloxacin treatment in
the artificial colon (Verdier et al., 2021). Similar to the upper gut mod-
els, most of the studies in the colon models were performed under
healthy conditions, i.e. using fecal microbiota from healthy volunteers.
However, Maccaferri and colleagues (Maccaferri et al., 2010) evaluated
the impact of rifaximin, a rifamycin derivative used in the treatment of
Crohn’s disease, on gut microbiota structure and microbial metabolic
profiles using the MacFarlane and Gibson system inoculated with fecal
samples from patients affected by colonic active disease. Interestingly,
Van de Wiele’s team further assessed whether colon microbiota modu-
lated the anti-inflammatory efficacy of celecoxib, used in the treatment
of chronic inflammatory disorders, through the coupling of a simplified
epithelial inflammation model with in vitro batch incubation of fecal
microbiota (Hernandez-Sanabria et al., 2020). Lastly, using a simplified
but high-throughput 96-deep well plate culture of human gut micro-
biota, it was shown by metaproteomic analysis that gut microbiota
growth curves, taxonomy, and functional responses were different de-
pending on whether metformin was added during the lag, exponential,
or stationary phase. These results suggest that the timing for drug stimu-
lation should be considered when studying drug–microbiome interac-
tions (Hao et al., 2020).
As described earlier, compared to their wide potential, the use of

in vitro gut models to assess the bidirectional interactions between gut
microbiome and pharma compounds still remains in its infancy. Such
in vitro approaches need to enable a high level of experimental control

and reproducibility, excluding confounding environmental or dietary
factors, and therefore enable in-depth mechanistic studies on drug–
microbiota interactions. The selection of an in vitro model primarily
depends on the research question to be answered, the targeted gastroin-
testinal compartments, and the number of tested compounds. Dynamic
and multicompartmental models enable a multiparametric control that
allows for mechanistic investigations, with in vitro conditions closely
related to the in vivo situation. However, these models are not always
best suited for screening studies, since they are labor intensive and time
consuming, hence allowing for only a limited number of independent
repetitions. While most of current studies focus on the effect of active
pharma substances on microbiota composition and function, inversely
in vitro gut models can be relevant to investigate drug metabolism or
degradation by gut microbes. Importantly, current in vitro studies only
assessed drug interactions with fecal or colonic-oriented fecal microbes
whereas most of available drugs are absorbed in the upper human gut
(Murakami, 2017). It would therefore be highly interesting to further de-
velop in vitro small intestinal models to assess drug–microbiome inter-
actions with specific human small intestine microbes (Cieplak et al.,
2018; Calatayud et al., 2019; Stolaki et al. 2019; Deyaert et al., 2023;
Malik et al., 2023). Lastly, in vitro gut models can advantageously inte-
grate many factors responsible for interindividual variabilities in drug
absorption or metabolism, such as age, diet, variation in microbiome
composition, and diversity between individuals.

In Vivo Models: How Do We Select the Most Relevant Animal
Models—Translation Between Species?
The multimodality of drug–microbiome interactions makes it necessary,

during the research and development process of a drug, to use animal
models, which combine gut microbiota and DME in a comprehensive
physiological environment. Indeed, to date, no alternative system has
proven capable of recapitulating the complexity of a living organism.
The choice of animal models depends on the results of the previous

stages—in silico, in vitro, and ex vivo—of the research and develop-
ment process. Indeed, the objective of the in vivo stage is to validate
the results of the previous stages, to provide additional information, and
to detect unexpected deleterious effects that would lead to the reinitia-
tion of in silico, in vitro, and ex vivo studies in order to reduce identi-
fied risks. A large panel of animal models does exist (Supplemental
Table 1), and strengths and drawbacks of the main ones are highlighted
in this section. A suitable combination of these different models should
allow for successful coupling between the early R&D stages and the
in vivo phase and increase the chances of translating the results into the
clinical phase (Zimmermann-Kogadeeva et al., 2020; Dodd and Cann,
2022; Liu et al., 2022; Moossavi et al., 2022).
Academic studies on microbiota–drug interactions have mainly used

rodents carrying their natural microbiota (conventional rodents), with a
specific pathogen free (SPF) sanitary status. Their comparison with
germ-free rodents (without microbiota) helps to highlight the possible
role of the microbiota in the metabolic fate of the investigated drug
(Peppercorn and Goldman, 1972; Brandi et al., 2006; Selwyn et al.,
2015a; Selwyn, 2015b; Zimmermann et al., 2019b). These SPF models
have several limitations: composition of the microbiota varies according
to environmental factors, including the supplier and the animal facility
where the studies are carried out, and the SPF condition, while prevent-
ing interference with pathogenic microorganisms, leads to a reduction
of the microbiota diversity, which may compromise the maturation and
physiological reactivity of the animal (Ericsson et al., 2015, 2018;
Rausch et al., 2016; Wolff et al., 2020; Long et al., 2021). It may then
be preferable to use rodents carrying a wild rodent microbiota (Rosshart
et al., 2019).
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Other studies use germ-free rodents that are colonized with one or
several bacteria whose genome encodes enzymatic activities that may
play a role in the metabolism of the investigated drug, based on prelimi-
nary in silico or in vitro studies. These models are a remarkable tool to
verify and characterize this role in vivo (Humblot et al., 2007; Haiser
et al., 2013, 2014; Zimmermann et al., 2019b). More specifically, they
enable dissection of microbiota and host contributions to the drug metab-
olism and building of pharmacokinetic models to quantitatively predict
the microbiota contribution to systemic drug and metabolite exposure
(Zimmermann et al., 2019b). However, these models have the disadvan-
tage of an extremely simplified microbiota and, hence, of an incomplete
physiological maturation and reactivity. Therefore, the results need to
be supplemented by experiments with animal models carrying a com-
plete gut microbiota to quantitatively verify the contribution of the mi-
crobiota under actual physiological conditions.
In recent years, research on the gut microbiota has increasingly made

use of animal species other than rodents. Indeed, they can sometimes be
advantageously replaced by invertebrates (e.g. nematodes, insects) or non-
mammalian vertebrates (e.g. fish), whose physiology and host–microbiota
relationships are, in some aspects, common with mammals. As they can
be used in large numbers and are less expensive than rodents, they are
well suited for screening similar to those carried out in vitro (Erkosar
et al., 2013; Dirksen et al., 2016; Garc�ıa-Gonz�alez et al., 2017;
Scott et al., 2017; Catron et al., 2019; Douglas, 2019; Ericsson, 2019;
Kumar et al., 2020; Ludington and Ja, 2020; Poupet et al., 2020; Lu et al.,
2021; Radeke and Herman, 2021; Matthewman et al., 2023). As with any
result obtained from a simple model, it must then be confirmed in a com-
plex system with close similarity to humans to enable extrapolation. In
this context, one should not forget the large animal models such as pigs,
often dismissed for cost reasons yet interesting thanks to their physiologi-
cal proximity to humans and the possibility of simulating human patholo-
gies (Zhang et al., 2013; Clayton et al., 2018; Coelho et al., 2018; Vlasova
et al., 2018; Ericsson, 2019; Matthewman et al., 2023).
Whatever the animal species used, the natural microbiota can be re-

placed by a microbiota of human origin. These “humanized” models
have been widely used in academic gut microbiome research for several
years (Arrieta et al., 2016). They have the great advantage of consider-
ing the specific composition and functions of the human microbiota,
making the results more easily transferable to humans (Arrieta et al.,
2016). They also have the advantage of allowing the study of unbal-
anced microbiota associated with pathological situations (Aguanno
et al., 2022). However, in addition to the fact that they cannot reproduce
the original ecosystem with a high fidelity due to the fact that the ge-
netic, immune, physiological, and dietary environments of the recipient
animals are different from that of humans (Arrieta et al., 2016), they
suffer from the absence of a standardized and widely accepted fecal
microbiota transfer protocol. Should we consider a single or multiple
human donors? Under what conditions should human fecal samples be
stored to optimize the engraftment of the microbiota in the recipient ani-
mals? Is it preferable to use germ-free or conventional recipient animals
(after depletion of the original microbiota)? What should the practical
modalities of inoculation of the recipient animals be, and how much
time is necessary for the stabilization of the transferred microbiota?
All these variations still make it challenging to integrate this type of model
into the study and development of a drug (Wos-Oxley et al., 2012; Ken-
nedy et al., 2018; Le Roy et al., 2019; Burz et al., 2019; Lundberg,
2019; Berland et al., 2021; Bokoliya et al., 2021; Gheorghe et al.,
2021; Gopalakrishnan et al., 2021).
New models could overcome the drawbacks of this lack of standardi-

zation. These are models with simplified microbiota, whose composition
is known, reproducible, and designed to simulate the functions of a
complex microbiota and, consequently, host–microbiota interactions.

The development of this type of model initially focused on the murine
microbiota, leading for example to the “Schaedler flora,” a consortium
of eight bacterial strains that gives the animals physiological characteris-
tics close to those of conventional animals (Wannemuehler et al., 2014;
Wymore Brand et al., 2015). This microbiota can then be supplemented
by one or several other strains with specific functions (Lobel et al.,
2020). Since then, several groups have developed more complex con-
sortia, of murine or human origin, with the objective of reconstituting as
faithfully as possible the functions of a native microbiota, while guarantee-
ing reproducibility of the microbiota over time and between laboratories
(Rezzonico et al., 2011; Slezak et al., 2013, 2014; Uchimura et al., 2016;
Eberl et al., 2020; Darnaud et al., 2021). Active research in this field
should allow a continuous improvement of these models.
Overall, many animal models are available to study microbiota–drug

interactions. While academic research currently uses a wide range of ani-
mal models to study microbiota–host interactions, most of the few stud-
ies on microbiota–drug interactions focus on conventional and germ-free
rodents. Extending the use of other models, such as human and/or
simplified microbiota models, would broaden the knowledge of
microbiota–drug interactions and refine the drug research and de-
velopment process.

Specific Clinical Requirements If the Gut Microbiome Is Integrated
in the Clinical Development of Small Molecules
Today, when performing traditional ADMET studies for drug candi-

dates, it is not yet common to actively assess the impact of gut micro-
biome composition/functions on the PK of the drug candidate (Hitchings
and Kelly, 2019). However, it is now clear that differences in microbiome
composition and function between healthy individuals and patients or
even interpatient can explain variability in a PK profile (Cai et al., 2023).
To document how the microbiome is responsible or not for the variation
in a PK profile, it is important to measure these differences in micro-
biome composition/function.
Integration of gut microbiota in ADMET studies and in a more gen-

eral way in the clinical development of any drug candidate would re-
quire integrating the specificities linked to microbiome sampling and
analysis in the design of these clinical studies. Generating reliable mi-
crobiome data in clinical studies depends on three key factors:

� Technical aspects should be considered as early as clinical trial de-
sign in order to ensure that appropriate sampling, sample preserva-
tion, and storage occurs prior to analysis.

� Microbiome composition/function variability at the intraindividual
level as well as within a given population and between healthy
volunteers and patients may impact the size or characteristics of
the population (definition of inclusion/exclusion criteria), as well
as the sampling strategy within a given study.

� How data from microbiome studies is reported with respect to in-
terpretation and comparability must be considered.

Technological Considerations. Integration of microbiome compo-
sition and/or function analysis in the clinical development of drugs will
impact sampling and analytical method selection.
The type of sample, collection timepoints, collection device, collec-

tion procedure, sample quantity and quality, and storage conditions will
depend on the question to be answered, the final destination of the
samples, and the analytical method to be applied (e.g. metagenomics,
metabolomics) (Vandeputte et al., 2017; Zubeldia-Varela et al., 2020).
For example, in the case of analysis of the gut microbiota composition
via next-generation sequencing methods, particular attention should be
paid to the preservation of the DNA of the samples by direct freezing
of the samples or the use of DNA stabilizers. If the objective is to
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analyze the metabolites produced by the microbiome (both metabolites
produced during fermentation but also metabolites generated from
drugs), consideration should be made for the preservation of volatile
metabolites and the avoidance of certain stabilizers. The potential for
interference between sampling conditions and stabilizers should be
discussed with the analytical lab.
The storage and shipping conditions are also key factors to consider.

Depending on the study protocol and health status of the subject, the
sampling can be performed at home. In this case, a feces collection kit
must be provided for the patient to take home, and the collection in-
structions must be clearly explained by the clinicians. A detailed and
precise storage procedure must also be provided to the patient, and a re-
quest must be made to the patient to document any deviation from the
procedure provided.
Sampling Strategy and Population. Microbiome composition

varies between individuals within healthy or patient populations affected
by different diseases. Understanding how these variations in gut micro-
biome composition/functions may affect the PK of a given drug candi-
date could provide a first set of important data. However, it is important
to understand that the suitability and predictability of data obtained in
healthy individuals must be carefully analyzed before extrapolating it
into the targeted population of the drug candidate. Disease and medical
conditions are associated with modifications of the microbiome compo-
sition and/or function, which can lead to different levels of absorption,
distribution, metabolism, or toxicity within a patient population when
compared to healthy individuals. In addition, microbiome characteristics
may also evolve along the course of a pathology. As such, collection
timepoint(s) have to be adapted to the status of the patients, their transit
time, any co-medication (e.g. acute or chronic treatment), and the partic-
ular phase of the pathology as well as the PK of the drug candidate.
The definition of the collection timepoint(s) could be supported by pre-
clinical data such as that obtained in artificial gastro-intestinal models
(e.g. TIM or the SHIME) (see In Vitro/Ex Vivo Models to Mimic the
Human Gastrointestinal Tract section) that can reproduce a patient’s mi-
crobiome composition.
It is also important that the “metadata” for each sample (i.e. sampling

conditions and subject characteristics) are accurately recorded. Given
that the gut microbiota composition/function can be modified by numer-
ous factors, it is important to thoroughly characterize the patient popula-
tion included in the study and to document patient level metadata/
potential confounding factors in order to avoid bias in data interpreta-
tion. These metadata can be, for example, diet, disease stage, comorbid-
ities, concomitant drugs (before/during the study), physical activity,
living place, genetic background, and others.
As there is an intraindividual variation of the microbiota, serial sam-

ple collection is recommended for each sampling timepoint (Johnson
et al., 2020; Vandeputte et al., 2021).

� Baseline: at least three serial sample collections
� First week of treatment: sampling every day
� Second and third week of treatment: sampling every 2 to 3 days
� Then, depending on the duration of the treatment and duration of

the study, sampling once a week
� End of the treatment: at least three serial sample collections

Clinical Study Reporting. The final point to consider is the report-
ing of clinical studies analyzing the microbiome. Too often the report-
ing is poor and limited, such that data are not reproducible and thereby
prevent any further use in metadata or other types of reanalysis. A con-
sortium has recently published the STORMS checklist: Strengthening
The Organization and Reporting of Microbiome Studies (Mirzayi et al.,
2021). This checklist for reporting on human microbiome studies,

organized into six sections covering all sections of a scientific publication,
propose the minimum information to report in order to facilitate manu-
script preparation, peer review, and reader comprehension of publications
but also comparative analysis of published results. A clear and complete
description of the analytical procedure and bioinformatics pipelines used
to generate the data should be included in the publication.

How Can Integration of the Microbiome Improve In Vitro to
In Vivo Extrapolation and Capture the Interindividual

Variability in Response and Toxicity?

Despite the extensive occurrence of microbiome-derived metabolism
for many drugs in in vitro conditions, a lingering question remains re-
garding its significance and predictability in representing a crucial as-
pect of drug clearance in vivo. It is essential to acknowledge that the
development and standardization of in vitro liver tools, along with their
integration into predictive physiologically based pharmacokinetic (PBPK)
models, have been time-consuming processes spanning many years.
While the results are deemed acceptable for interspecies comparisons and
drug–drug interactions, there is a recurring issue of underpredicting
in vivo clearance when using liver tools alone, requiring the incorporation
of intestinal metabolism and transporter-mediated uptake for specific
drugs.
This paper endeavors to demonstrate that tools and models capable

of predicting microbiome-derived metabolism are reaching a level of
maturity that allow them to complement the existing framework. More
significantly, these advancements aim to draw attention to specific cases
where the microbiome plays a pivotal role in the efficacy and toxicity
of drugs.
PBPK models are PK models based on physiological processes.

Today, in silico predictions and PBPK modeling are used as a
translational approach throughout drug discovery, hit-to-lead gen-
eration, preclinical development, and in clinical studies. These
models integrate in silico, in vitro, and in vivo animal data to pre-
dict the PK parameters of a chemical (and its metabolites) within
the body over time for animals and humans (Marshall et al., 2016).
PBPK models can therefore be a key element in the integration of

microbiome data in the drug development process. They could be used
to organize current knowledge on how the microbiome impacts the dis-
position of certain “model” drugs, to predict the effect of the the micro-
biome on PK parameters of drug candidates.
PBPK models have a particular value when animal models are less

robust and help to bridge from in silico/in vitro human data to the po-
tential impacts of drug microbiome interactions in humans. Once these
models are built, they allow for introduction of interindividual variabil-
ities and prediction of the behavior of a drug in infants and the elderly
but also model disease situations.
Specific PBPK drug–microbiome models are available for key gut

metabolic reactions with a good prediction of the in vivo pharmacoki-
netic behavior of the drug tested. It has been done, in a very pragmatic
way, in the case of the azo bond reduction of sulfasalazine, with a sim-
ple inclusion of a poor absorption scalar of 0.001 to represent the exten-
sive metabolism of the drug by the anaerobic bacteria present in the
colon (De Sousa Mendes et al., 2018). For other reductases involved in
the gut metabolism of levodopa, budesomide, nitrendipine, nimodipine,
rivaroxaban, and sulfasalazine, a PK model using in vitro human micro-
biome data has been used to predict if activity in the proximal colon or
in the distal ileum is likely to be clinically important for an oral form of
these drugs (Vertzoni et al., 2018).
In the case of the sulfoxide reduction of sulindac and sulfinpyrazone,

a PBPK model including degradation half-life obtained in fecal incuba-
tions was used to calculate an intrinsic colon clearance, which was used

282 Jimonet et al.

 at A
SPE

T
 Journals on M

arch 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


as a model input parameter to facilitate its conversion to sulfide metabo-
lite (Kostantini et al., 2022). For clonazepam, more complex reactions
have been included covering nitro reduction followed by oxidation, glu-
curonidation, and enterohepatic cycling. This is true also for hydrolytic
reactions in the case of the two antiviral drugs sorivudine and brivudine.
Prediction of the microbiome contribution versus the liver in the mouse
(conventional and germ free) has been realized using both in vitro incu-
bations and in vivo systemic exposure data (Zimmermann-Kogadeeva
et al., 2020).
Hydrolytic, glucurono-conjugations, enterohepatic circulation, and

b-glucuronidase reactions have been modeled in the case of irinotecan
with a two-compartment PBPK model, encompassing the liver and the
gut. Gastrointestinal microbial b-glucuronidase activity has been included
to predict the increased intestinal exposure to the active/cytotoxic metabo-
lite SN-38 but not its systemic exposure (Tao et al., 2022).
Finally, in the case of daidzein, small and large intestine compart-

ments, scaling of the kinetic Vmax parameters obtained in vitro with
human fecal incubations, and liver S9 were included to predict the
in vivo behavior of the drug, covering a range of metabolic reactions
such as b-glucosidase, reductase, and racemase (Wang et al., 2022).
These examples show that the link between in silico/in vitro micro-

biome metabolization data and the in vivo profile of a drug can poten-
tially be made early, to understand how the gut microbiome might impact
the interindividual variability. Employing in silico/in vitro microbiome
tools during the early phase of drug discovery can be important for colon
targeting programs or BCS class III and IV drugs for which colonic
absorption and therefore exposure to the microbiome will be relevant.
Additionally, considering that animal models are only partially predictive
of humans, PBPK modeling approaches are key tools to reduce the use
of animals in drug development (Wadman, 2023).
Beyond these more specific drug microbiome models, “classical”

whole-body PBPK models have been published for at least 50 drugs, in-
cluding a number with an advanced compartment absorption and transit
model (Thiele et al., 2017). The advanced compartment absorption and
transit model considers nine gastrointestinal compartments: the stomach,
seven small intestinal segments, and the large intestine. It represents
pH-dependent drug solubility, controlled release, drug absorption by the
stomach and colon, metabolism in the gut or liver, degradation in the lu-
men, changes in absorption surface area, changes in drug transporter
densities, and changes in efflux transporter densities. All of these can be
used to better predict PK behaviors of drugs in humans and even lead
to generic PBPK drug–microbiome approaches if the in vitro part can
be standardized and included on a systematic basis.

Quantitative Systems Pharmacology
When PBPK models are combined with a compound’s effects (phar-

macodynamics), one can evaluate the impact of the variability of the
PK on drug response. It is possible also to include cellular PBPK in
these models, but it is more difficult to account for microbial metabo-
lism and dietary information. Quantitative systems pharmacology, an
emerging field of modeling technologies that describes the dynamic in-
teraction between biological systems and drugs, is supposed to encom-
pass all these aspects (Helmlinger et al., 2019). A combined model of
small intestinal metabolism and levodopa PK has been realized and can
predict the influence of dietary amino acids on the bioavailability of
levodopa in Parkinson’s disease patients (Guebila and Thiele, 2016).

First Human Data to Validate a Drug–Microbiome PBPK Model
Once drug–microbiome interactions have been identified in drug dis-

covery and/or preclinical studies and a PBPK approach helps to predict
the potential impact in humans, it will require human data to validate
the hypothesis before entering into further development phases.

Classical human data phase 1 dose escalation studies could be used
to generate the first microbiome data in humans. However, the most ap-
propriate study would be the 14C radiolabeled drug metabolism study.
As a recent example, a radiolabeled human ADME study of ozanimod,
a new treatment for relapsing forms of multiple sclerosis, allowed the
extensive characterization of the metabolism of this drug, with the iden-
tification of three main metabolic pathways, including a reductive anaer-
obic metabolism mediated by the gut microbiota and responsible for a
predominant portion of the excreted dose via urine and feces (Surapaneni
et al., 2021). This radiolabeled study highlighted the importance of the
gut microbiota in the metabolic profile of a recently approved drug.

14C radiolabeled studies can combine identification of metabolites in
plasma, urine, and feces; microbiome profiling of the subject and the
data can then be used to validate a PBPK model based on in vitro and/
or in vivo animal data.
Historically these studies were performed during phase 1 clinical trials

and are now progressively conducted later in the development after the
single ascending dose and multiple ascending dose studies. However, due
to advancements in detection methods’ sensitivity,14 C-microtracer studies
[dose of #1 mCi (37 kBq) of radioactivity] have the potential to shift the
human ADME study to earlier in clinical development. This can facilitate
the generation of crucial initial human balance and metabolism data, a
recommendation made by pharmaceutical companies (Young et al.,
2023). Such studies would be particularly valuable for validating the im-
pact of microbiome transformation on the drug of interest (see Fig. 2).

Conclusion, Perspective, and Working Group Recommendations

This perspective paper prepared by the Medicen working group high-
lights that the human microbiome can have major impacts on the safety,
efficacy, and response variability of a large panel of drugs. This be-
comes particularly relevant for BCS class III and IV compounds with
low permeability and/or solubility and beyond the rule of 5 compounds,
all demonstrating increased exposure to the colonic microbiome due to
limited absorption in the upper gastointestinal tract. Over recent years,
tools have been developed to answer microbiome-related questions
throughout the drug discovery and development process. Whether these
tools are mature and robust enough to be fully integrated in the drug
discovery and development process of a new chemical entity remains to
be further elucidated. Today gut microbial metabolism is often ne-
glected in the analysis of human drug metabolism. However, the recent
example of ozanimod highlights the importance of understanding drug
metabolism early in the drug development process to avoid delays in
registration. In this case, microbial reductive pathways followed by an-
aerobic decarboxylation accounted for a significant part of ozanimod’s
metabolism and disposition, which could have been identified poten-
tially through in vitro microbiome stability studies earlier during the
drug discovery or development process.
To support drug discovery, the working group recommends the use

of one of the available databases integrating gut bacteria, bacterial en-
zymes, and substrates/products chemical structures that have been re-
cently published or are under development. They can help already to
identify chemical moieties susceptible to microbial metabolism by gut
commensals and therefore to foster an adapted development plan
through available in vitro and in vivo assays. This in silico evaluation
could be done as early as the hit-to-lead stage and integrated in the de-
risking strategy of lead compound selection. As examples of the highest
priority, we could nominate compounds bearing similar chemical moiety
to known drugs metabolized by gut bacterial enzymes, compounds sus-
ceptible to reductive or hydrolytic reaction, compounds with predicted
poor oral bioavailability, or compounds designed to target the large intes-
tine. They would all be highly exposed to the distal gut microbiota.
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As discussed in this review, in vitro standardized assays are not yet
available, but screening assays using either a specific strain, a defined
consortium of bacteria, or a stable complex microbiome are described
and could already be used to alert early on the potential involvement of
the gut microbiome to metabolize a given drug (candidate). Particularly,
experimental in vitro validation of in silico gut metabolism hypothesis
would be a necessary step before moving to complex assays. Negative
outcomes in such quite straightforward assays would minimize the risk
of a costly late identification of an unforeseen metabolic pathway.
Successful integration of in vitro microbiome data into PBPK models

to predict the in vivo behavior of a drug candidate has been realized for
various reductive, hydrolytic, and oxidative pathways, including com-
pounds undergoing enterohepatic circulation. This opens the way for ge-
neric models adaptable to drugs with similar pathways and potential
reference substrates to calibrate in silico, in vitro, and in vivo animal
models.
In case of a positive outcome in in vitro screening assays, or to evalu-

ate compounds showing peculiar PK profiles, selected advanced drug
candidates could be evaluated in human in vitro gut models and in ani-
mal in vivo models, humanized or not, to assess in a more physiological
context the fate of the compound and its interactions with the gut micro-
biome and the host. As for in vitro screening assays, a whole micro-
biome or a model microbiome could be used.
Finally, the possibility to use fecal samples for microbiome assessment,

either from healthy volunteers or from patients, would support patient
stratification and sampling strategy in clinical studies. The recent 5-ASA
example, showing a link between the presence of metabolizing enzymes
that inactivate the drug and failure to treatment for UC patients, illustrates
a critical role played by the microbiome and its metabolizing activity and
suggests possible ways to a more efficient and personalized medicine
(Mehta et al., 2023).
Ultimately, a full integration of studies evaluating the gut-mediated

effects in drug discovery and development will require access to high-
quality databases and related prediction tools, as well as the implemen-
tation of microbiome standards and reference compounds to develop

standardized reproducible assays. Without waiting for them, we encour-
age researchers to use available tools and experiments to evaluate poten-
tial gut microbiota involvement in drug metabolism and safety as a real
opportunity for better drug identification and individual treatment.
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