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A B S T R A C T

Lightweight materials used for impact mitigation must be able to resist impact and absorb the maximum
amount of energy from the impactor. Auxetic materials have the potential to achieve high resistance by
drawing material into the impact zone and providing higher indentation and shear resistance. However, these
materials must be artificially designed, and the large deformation dynamic effects of the created structures must
be taken into consideration when deciding on a protection concept. Despite their promise, little attention has
been given to understanding the working mechanisms of high-rate and finite deformation effects of architected
auxetic lattice structures. This study compares the static and dynamic elastic properties of different auxetic
structures with a honeycomb structure, a typical non-auxetic lattice, at equivalent mass and stiffness levels.
In this study, we limit the investigation to elastic material behavior and do not consider contact between
the beams of the lattices. It is demonstrated that the equivalent static and dynamic properties of individual
lattices at an undeformed state are insufficient to explain the variations observed in impact situations. In
particular, the initial Poisson’s ratio does not determine the ability of a structure to resist impact. To gain a
thorough comprehension of the overall behavior of these structures during localized, high rate compression, the
evolution of the elastic tangent properties under compression and shear deformation was monitored, leading
to a more profound understanding. Observations made in one configuration of stiffness and mass are replicated
and analyzed in related configurations.
. Introduction

Impact events occur on various types of structures, ranging from
oofs damaged by hailstorms (Saini and Shafei, 2019) to civil structures
xposed to accidents, such as a car hitting a bridge pillar (Pan et al.,
018). Detonation debris hitting personal protective equipment (see
.g. Crouch, 2019) or satellites in orbit threatened by micromete-
rites and space debris (Pardini and Anselmo, 1999) are examples
f high impact velocity scenarios that occur in a military or space
ontext. In the quest for better mitigation of these impacts, auxetic1

aterials – materials with a negative Poisson’s ratio – exhibit several
eneficial properties, such as higher indentation resistance (Argatov
t al., 2012) and shear resistance (Choi and Lakes, 1992), as well
s increased fracture toughness (Choi and Lakes, 1996) and energy
bsorption (Jiang and Hu, 2017). These properties are promising in the
uest for lightweight materials for impact protection.

The differences in deformation behavior between non-auxetic and
uxetic materials are visualized in Fig. 1.1. On the left, the lateral
xpansion is sketched during compression, as expected for materials

∗ Corresponding author at: Faculty of Civil Engineering and Geosciences, Delft University of Technology, Postbus 5048, 2600 GA Delft, The Netherlands.
E-mail address: t.gartner@tudelft.nl (T. Gärtner).

1 the term was coined by Evans et al. (1991) from the Greek auxetos ‘‘that may be increased’’.

with a positive Poisson’s ratio. The right side of the figure shows
the lateral contraction after compression, as indicated by a negative
Poisson’s ratio. This lateral contraction leads to a densification of the
material at the point of impact. In addition to the properties mentioned
above, this promises additional impact resistance.

Auxetic materials are rarely found in nature (e.g. cow teat skin Lees
et al., 1991 or crystalline silica Keskar and Chelikowsky, 1992), but
they can be artificially constructed through careful design, as shown
in various reviews (Ren et al., 2018; Zhang et al., 2020; Wang et al.,
2020; Bohara et al., 2023). As the reviews show, the approach to
designing auxetic metamaterials is well understood, but limited to static
problems, and there are myriad types of auxetic architectures (see
also Álvarez Elipe and Díaz Lantada, 2012). Since the understanding
of internal deformation patterns in dynamic environments and the
resulting implications for the use of auxetic metamaterials in protective
layers is limited and mostly based on macroscale investigations with
little insight into the workings at mesoscale, there is a need for a better
understanding of the dynamic properties of these structures. Tatlıer
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Fig. 1.1. Positive Poisson’s ratio materials (𝜈 > 0) and negative Poisson’s ratio or
auxetic materials (𝜈 < 0) under compression.
Source: Adapted from Lim (2015).

(2022) compares different auxetic structures with comparable weight
in crushing events without discussing the equivalent properties of the
unit cells or their internal deformation mechanism. Even when the
deformation mechanisms are described, the authors focus on one type
of lattice only (e.g. Zhao et al., 2018 describe the dynamic perfor-
mance of arrowhead structures, Mercer et al., 2022 investigate different
re-entrant lattices).

As can be seen from the reviews on the subject, there are many pos-
sibilities for designing auxetic metamaterials. The linear, static prop-
erties of all these structures in the undeformed state are well under-
stood (Ren et al., 2018; Wang et al., 2020). In Reda et al. (2018),
the interaction between anisotropy and finite strains up to 10% on the
resulting static properties is studied together with the phase velocities
of acoustic waves propagating through the lattice for Euler–Bernoulli
beam structures with negligible bending stiffness. In impact scenarios,
however, larger deformations (up to full densification) are expected
with nonlinear waves propagating through the lattice structure. The
dynamic properties of different auxetics – and the influence on im-
pact mitigation – are mainly reported phenomenologically for singular
auxetic architectures without any comparison of different architectures
under similar circumstances (see among others Alomarah et al., 2020;
Chen et al., 2021; Gálvez Díaz-Rubio et al., 2021).

This study contributes a first step in addressing the lack of under-
standing of the deformation behavior of (auxetic) architected materials
under high-rate localized compression by comparing the geometrically
nonlinear static and dynamic properties of different architectures in a
purely elastic environment. Our focus is on two-dimensional structures
in order to identify the interdependencies between the lattice architec-
ture and the resulting dynamic behavior. We compare a set of different
architectures based on the underlying mechanisms that produce aux-
eticity, all designed to exhibit the same linear-elastic properties and
mass density. The study is carried out for nonlinear and dynamic prob-
lems and offers explanations for the observed differences. The different
auxetic architectures are studied using a custom finite element (FE)
implementation of nonlinear Timoshenko beams following (Simo and
Vu-Quoc, 1986; Crisfield and Jelenić, 1999) for greater flexibility and
computational performance. For the dynamic simulations a predictor–
corrector scheme with step-size control is implemented. In this study
material nonlinearities and contact between the bars are ignored.

The paper is structured as follows: In Section 2 an overview of the
possibilities to generate auxeticity in architected materials is given.
Then, in Section 3, the numerical framework and its mechanical back-
ground are discussed. In Section 4, linear, static studies are performed
on unit cells to find comparable configurations of different architec-
tures. It is shown how these linear properties change when entering the
nonlinear regime. The resulting dynamic effects are reported in a local-
ized impact test including a study on strain rate effects. In Section 5,
the performance implications of the different architectural approaches
are discussed. Finally, conclusions are drawn, and limitations of this
2

study are presented. T
Fig. 2.1. Chiral architecture. (a) shows the design and geometric parameters, (b)
illustrates uniaxial compression.

2. Auxetic architectures

2.1. Design options

The auxetic effect is based on the lateral inward movement of parts
of the structure under uniaxial compression. This inward movement can
be explained by two main mechanisms: rotation and inward folding.2
In the following, different unit cell architectures and the corresponding
design parameters will be explained. A unit cell, in the context of this
publication, is the smallest part of a lattice that can be copied and
connected to create the entire lattice.

The first class of auxetic architectures is constituted by those that
derive their negative Poisson’s ratio from rotation at the joints. These
so-called chiral structures generate a rotating effect with circularly
oriented beams, thus inducing rotation under compression. The chiral
structure considered is the model introduced by Smith et al. (2000),
under a different name, to describe the behavior of auxetic foams.
In Bahaloo and Li (2019), the effects of geometrical parameters on the
linear effective properties of the structure are described. A schematic of
the chiral architecture is shown in Fig. 2.1(a) and its auxetic mechanism
is illustrated in Fig. 2.1(b). For the design of this architecture, it
should be noted that due to the linear elasticity model on the material
level, structures with geometric similitude exhibit the same equivalent
properties. Thus, the width 𝑏 and the thickness of the bars 𝑑 are not
chosen as independent parameters but rather the ratio 𝑡 = 𝑑∕𝑙𝑐 , with
𝑙𝑐 = 0.5𝑏∕ cos 𝛼 as the length of a central bar. Next to this ratio, the
angle of the bars 𝛼 is a variable measure. The colors in the mentioned
and the following figures represent the same architecture throughout
the manuscript in all illustrations and graphs.

Taking four chiral unit cells and mirroring every other cell creates
an antichiral structure, where a single unit cell consists of four rota-
tional centers with alternating directions. The antichiral architecture is
presented in Fig. 2.2(a) with its deformation mechanism in Fig. 2.2(b).

The second class of architectures is composed of lattice structures
that fold at the joints. In order to create an auxetic effect, this class
consists of non-convex polygons, i.e. polygons with a reflex angle
(𝜃 > 180◦). The auxetic effect is caused by the non-convexity of the
re-entrant structures, which causes them to fold laterally inwards un-
der compression. The most prominent example of this is a re-entrant
honeycomb (see among others Gibson et al., 1997). The parameters of
this architecture are shown in Fig. 2.3(a) and the working mechanism
is illustrated in Fig. 2.3(b). Again, due to geometric similitude the

2 Körner and Liebold-Ribeiro (2015) argue that these two effects can be
urther reduced to a single mechanism, namely rotation. They describe a
orkflow to generate arbitrary auxetic structures based on eigenmode analysis.
o explain the folding mechanism, they consider out-of-plane modes and
ecover the rotation mechanism by projecting the eigenmodes onto a plane.

his results in beam rotation as opposed to joint rotation.
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Fig. 2.2. Antichiral architecture. (a) shows the design and geometric parameters, (b)
illustrates uniaxial compression.

Fig. 2.3. Re-entrant honeycomb architecture. (a) shows the design and geometric
parameters, uniaxial compression is illustrated in (b) for 0◦ orientation and in (c) for
90◦ orientation.

properties do not change with absolute scale, instead of the lengths,
𝑙 and 𝑏, individually their ratio 𝑟 = 𝑙

𝑏 is taken as design variable and
instead the thickness of a single beam 𝑑, the thickness scaled to the
base length 𝑡 = 𝑑

𝑏 is taken as variable. Finally, the angle between the
ase and the angled beams 𝛼 is added to the set of variables for this

architecture. Since the properties of this architecture are not invariant
to the orientation, this architecture will also be investigated rotated by
90◦. The corresponding deformation mechanism is shown in Fig. 2.3(c).

While the re-entrant structure has two opposing folds, another
architecture with two folds in the same direction is the arrowhead
structure. This commonly investigated auxetic structure was originally
the result of a topology optimization for negative Poisson’s ratio (Larsen
et al., 1997). The architecture is visualized in Fig. 2.4(a) along with its
parameters and the working mechanism shown in Fig. 2.4(b). In this
structure, the beam thickness 𝑑 is scaled with the height of the unit
ell 𝑡 = 𝑑

ℎ . The three variables, that determine the properties of this
tructure are the two angles of the longer beam 𝛽 as well as the shorter
eam 𝛼 and the height ℎ. As with the re-entrant honeycomb structure,
his architecture is also studied rotated by 90◦. The corresponding
3

eformation mechanism is shown in Fig. 2.4(c).
Fig. 2.4. Arrowhead architecture. (a) shows the design and geometric parameters,
uniaxial compression is illustrated in (b) for 0◦ orientation and in (c) for 90◦ orientation.

Table 2.1
Range of properties for different architectures.

Architecture 𝛼 𝑡 𝑟 𝛽 design constraint
re-entrant (20◦ , 85◦) (0.01, 0.1)

(

1
3
, 4
3

)

−− 𝑟 < 1
2 cos 𝛼

arrowhead (5◦ , 45◦) (0.01, 0.1) −− (50◦ , 80◦) 3 tan 𝛼 < tan 𝛽
chiral (5◦ , 60◦) (0.01, 0.1) −− −−

antichiral (5◦ , 60◦) (0.01, 0.1) −− −−
honeycomb (95◦ , 145◦) (0.01, 0.1)

(

1
3
, 4
3

)

−−

To allow for a comparison of the different architectures, a non-
uxetic architecture is also included as a reference. Since the normal
oneycomb is based on the same architecture as the re-entrant honey-
omb, it is included in the study. Due to this similarity, its properties
re determined by the same geometry factors as the re-entrant hon-
ycombs, namely the ratio between the beam lengths 𝑟 = 𝑙

𝑏 , the ratio
between the thickness and the base length 𝑡 = 𝑑

𝑏 and the angle between
the base beams 𝛼. Similar to the argumentation in the re-entrant archi-
tecture, investigations are also conducted with the structures rotated
by 90◦. The general configuration is depicted in Fig. 2.5(a), with the
deformation mechanisms are shown in Figs. 2.5(b) and 2.5(c) for the
0◦ and 90◦ orientation respectively.

2.2. Design selection

The parameters of all the selected architectures are tuned so that
all the lattices in the undeformed configuration have the same Young’s
modulus in the vertical direction and the same relative density. The
following is a brief explanation of the procedure for metamaterials with
a density relative to the constituent material

𝜌⋆rel =
𝜌

𝜌mat
= 0.1

and an equivalent Young’s modulus 𝐸⋆
𝑦 = 300MPa, where (⋅)⋆ repre-
sents target properties. For all investigations, the base material of the
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Table 2.2
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 300MPa, 𝜌⋆rel = 0.1.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.035 65.62 − 0.43 0.100 297 273 −1.00 −0.92 8 8
re-entrant (90◦) 0.046 81.67 − 0.50 0.100 297 2,937 −0.26 −2.60 15 15
arrowhead 0.021 11.60 74.90 − 0.100 296 468 −0.73 −1.16 924 924
arrowhead (90◦) 0.030 13.81 64.34 − 0.100 295 80 −1.85 −0.50 1,583 1,583
chiral 0.078 28.11 − − 0.100 299 299 −0.38 −0.38 53 19
antichiral 0.085 26.09 − − 0.100 299 299 −0.69 −0.69 10 10
honeycomb 0.094 119.69 − 1.14 0.100 299 243 1.08 0.88 87 87
honeycomb (90◦) 0.096 125.63 − 1.17 0.100 299 187 1.24 0.77 100 100
I

Fig. 2.5. Honeycomb architecture. (a) shows the design and geometric parameters,
uniaxial compression is illustrated in (b) for 0◦ orientation and in (c) for 90◦ orientation.

structures is set as a generic metal with 𝐸mat = 210GPa, 𝜈mat = 0.3, and
𝜌mat = 7850 kgm−3.

Since this study assumes linear elastic material behavior at the
microscale, structures with geometric similitude can be assumed to
have identical properties. Thus, as explained above, the thickness 𝑡 of
the beams related to the primary length of the unit cell as well as
the ratio between the beam lengths 𝑟 are taken as free variables. All
free variables are tuned within their ranges and conditions reported
in Table 2.1 to ensure realistic structures. The ranges and conditions
are explained in more detail in Appendix A. Given these design ranges,
the individual structures are subsequently tuned to exhibit properties
as close to the targets as possible. The resulting properties as well as
visualizations of the corresponding unit cells are shown in Table 2.2.
Details of the tuning process and results for different target lattice
properties are shown in Appendix A.

3. Numerical framework

The aforementioned lattice structures are implemented as nonlinear
Timoshenko beams, also known as Simo–Reissner beams (Reissner,
4

1981; Simo, 1985) or special Cosserat rods (see also Antman, 2005; f
Eugster, 2015). The implementation for this work is carried out using
the JIVE-Framework (Dynaflow Research Group, 2021).

A nonlinear Timoshenko beam can be described by its centerline
and the orientation of its cross-section along the length of the beam.
This results in a mapping from a one-dimensional length space to a six-
dimensional configuration space. In this six-dimensional configuration
space, derivatives can be calculated to obtain a six-dimensional strain
space for the beam. For details, see Antman (2005) and Eugster (2015).
The relationship between the beam-type strains and the beam-type
stresses is assumed to be linear elastic for this work.

For the FE discretization, this study follows the approach of Simo
and Vu-Quoc (1986) for the determination of the stiffness matrices and
the resulting nodal forces. Linear Lagrangian shape functions are used
to interpolate the position vectors, with reduced integration to avoid
shear-locking phenomena. The orientation matrices are interpolated us-
ing spherical interpolation as suggested by Crisfield and Jelenić (1999).
Derivations and detailed explanations can be found in the referenced
literature.

The time integration for the dynamic simulations is performed by
a pairing of an explicit and an implicit Euler scheme in a predictor–
corrector fashion in order to ensure fast computation times for the
small time steps required for the high-speed impact computations
while maintaining accuracy. For this purpose, the system of second-
order differential equations is transformed into a system of first-order
differential equations by introducing the node velocities as additional
state variables. To ensure the reliability of the simulations, step-size
control is employed using a Milne-device (Milne, 1926) error estima-
tor. The orientation matrices, which belong to the special orthogo-
nal group SO(3), are integrated using an exponential integrator (see
e.g. Munthe-Kaas, 2015).

3.1. Tangent property computation

The linear equivalent properties of a unit cell need to be com-
puted for simple deformation modes. In order to do so, PBCs were
implemented. Since the investigated architectures do not possess nodes
in the corners, ghost nodes have been introduced for the application
of the PBCs. The implementation of this procedure is explained in
Appendix B.1.

In order to determine the equivalent elastic properties in a de-
formed state, a simple approach using finite differences was chosen.
The incremental displacement gradient 𝛿𝑯 is related to incremental
Piola–Kirchhoff stresses 𝛿𝑷 by tangent stiffness tensor C4

𝛿𝑷 = C4 ∶ 𝛿𝑯 . (3.1)

n order to estimate the elastic properties at a fixed deformation in a

irst step, the displacement gradient at this deformation 𝑯◦ is recorded.
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Then in a next step, this displacement gradient is perturbed in one
direction

𝑯 𝑖𝑗± = 𝑯◦ ± 0.5 × 10−9
[

𝛿𝑖1𝛿𝑗1 𝛿𝑖1𝛿𝑗2
𝛿𝑖2𝛿𝑗1 𝛿𝑖2𝛿𝑗2

]

𝑖, 𝑗 ∈ [1, 2] (3.2)

ith the Kronecker delta 𝛿𝑘𝑙. The corresponding 1st Piola–Kirchhoff
tress tensors 𝑷 𝑖𝑗±, 𝑖, 𝑗 ∈ [1, 2] are then recorded. For all directions,
orresponding tangent properties are first computed by addition of the
ecorded values

𝛥𝑯 𝑖𝑗 = 𝑯 𝑖𝑗+ −𝑯 𝑖𝑗−

𝛥𝑷 𝑖𝑗 = 𝑷 𝑖𝑗+ − 𝑷 𝑖𝑗− 𝑖, 𝑗 ∈ [1, 2]. (3.3)

Then the coefficients of the tangent stiffness tensor are determined by
dividing the stresses by the corresponding strains:

𝑐𝑖𝑗𝑘𝑙 =
𝛥𝑃 𝑘𝑙

𝑖𝑗

𝛥𝐻𝑘𝑙
𝑘𝑙

. (3.4)

Finally, using the inverse of the stiffness tensor C4, the compliance
ensor S4, the equivalent tangent Young’s modulus is calculated by
earranging the equation

𝛿𝐻11 0
0 𝛿𝐻22

]

= S4 ∶
[

𝛿𝑃11 𝛿𝑃12
𝛿𝑃21 0

]

(3.5)

for

𝛿𝐻11 =
1

𝐸11
𝛿𝑃11. (3.6)

The Poisson’s ratio is then found by further rearrangements leading to

𝛿𝐻22 = −𝜈12𝛿𝐻11. (3.7)

Similar procedures are employed to determine the tangent properties
𝐸22 and 𝜈21.

The constrained moduli 𝑀11,𝑀22 and shear moduli 𝐺12, 𝐺21 are
determined by rearrangements of the equation
[

𝛿𝐻11 0
0 0

]

= S4 ∶
[

𝛿𝑃11 𝛿𝑃12
𝛿𝑃21 𝛿𝑃22

]

(3.8)

for

𝛿𝐻11 =
1

𝑀11
𝛿𝑃11. (3.9)

Again, identical procedures are employed to determine 𝐺12, 𝐺21, and
𝑀22. Details are found in Appendix B.2.

4. Numerical results

Using the methods described in Section 3 and the unit cells derived
from the architectures as described in Section 2, the changes in the
properties of unit cells subjected to large deformations are discussed
below. First, the equivalent Young’s modulus and Poisson’s ratio as
static properties are presented, followed by an overview of the equiva-
lent lateral to the impact (𝑥-direction) pressure and shear wave speeds
as well as the longitudinal to the impact (𝑦-direction) pressure wave
speeds as dynamic properties of the different architectures. Finally,
the behavior of the different architectures under high strain rate and
localized compression is examined and discussed.

Fig. 4.1. (a) uniaxial compression (Eq. (4.1)), (b) planar compression (Eq. (4.2)) and
(c) pure shear deformation (Eq. (4.3)) of the re-entrant unit cell using the PBCs as in
Fig. B.1.
5

Fig. 4.2. Stress–strain curves in uniaxial (unconstrained) compression for different
architectures.

4.1. Static properties of the architectures

The evolution of the initial static properties of each architecture,
reported in Table 2.2, is investigated with the procedures described in
Section 3.1 applied to single unit cells. Structures that maintain high
stiffness over a wide range of deformations are expected to have higher
resistance in an impact scenario, as the decelerating forces on the
impactor are high over the range of deformation to be expected during
impact. To estimate this, three types of deformation are considered: (a)
unconstrained uniaxial compression (in the following called uniaxial),
(b) constrained uniaxial (in the following called planar) compression,
and (c) pure shear deformation, as visualized in Fig. 4.1.

The architectures are first exposed to uniaxial compression. This is
done by applying the displacement gradients

𝑯 = 𝑘
[

∙ 0
0 −1

]

𝑘 ∈ [0, 0.33] , (4.1)

where ∙ denotes no constraint. This deformation mode is illustrated
in Fig. 4.1a. At each deformation step the corresponding equivalent
elastic tangent properties are recorded as well as the current stresses
and strains at the four boundaries. Since contact and interpenetration
of different beams, which is not modeled by the numerical framework,
occur at later stages of deformation, in the following only compression
up to 𝑘 = 33% will be discussed.

In the stress–strain curve (Fig. 4.2), it is shown that all but two
structures show a reduced stiffness under uniaxial compression. The
rotated re-entrant honeycomb structure (depicted by the dashed blue
line) is the only structure that keeps stiffening. This effect is due to the
fact, that the folding mechanism aligns the beams in vertical direction,
promoting axial loading over bending in uniaxial compression. The
same explanation holds for the initial stiffening of the arrowhead struc-
ture. However, at approximately 6.5% compression the beams start to
buckle, leading to a transition from axial loading to loading in bending
and thus an overall weakening at larger deformations. These effects are
depicted as well in Fig. 4.3a, where the normalized equivalent Young’s
modulus 𝐸𝑦 is plotted against the compressive strain. In this figure some
relevant deformation patterns of the architectures are visualized as
well. The buckling of the arrowhead structure (depicted in solid orange)
can be seen at the plotted deformation patterns at 6% and at 7%
compression. Prior to buckling the alignment of the beams is in vertical
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Fig. 4.3. Change of properties under uniaxial (unconstrained) compression for different
architectures, namely (a) the normalized (unconstrained) Young’s modulus 𝐸𝑦 and (b)
the Poisson’s ratio 𝜈𝑦𝑥.

direction, leading to more axial loading. After buckling, the beams are
loaded in bending again. Similarly, the vertical alignment of the beams
in the rotated re-entrant honeycomb structure is clearly visible in the
deformation sketches in Fig. 4.3a at 12.5% and 25%. Additionally, in
the lower graph Fig. 4.3b, the Poisson’s ratio 𝜈𝑦𝑥 is plotted against
compression. Structures with a reduced stiffness also exhibit a decrease
in involvement of lateral material in larger patches, i.e. a Poisson’s ratio
developing towards zero. This results in auxetic architectures exhibiting
a less pronounced negative Poisson’s ratio, thus reducing the effect of
lateral material involvement. Noteworthy is the fact, that the rotated
regular honeycomb structure, upon compression, resembles the rotated
re-entrant honeycomb structure. This is visualized in the deformation
pattern at 30%, and supported by the approximately linear decrease
of the Poisson’s ratio, leading to a change from non-auxetic to auxetic
behavior at high (> 33%) compression.

During impact, lateral material is confining the lateral displacement
of the impacted lattice, thus constrained uniaxial or planar compres-
sion resembles an impact scenario better. For the assessment of the
impact performance of metamaterials it is therefore valuable to also
consider planar compression. This planar compression is described by
the displacement gradients

𝑯 = 𝑘
[

0 0
0 −1

]

𝑘 ∈ [0, 0.33] . (4.2)

This deformation mode is illustrated in Fig. 4.1b. In Fig. 4.4 the
corresponding stress–strain curves are plotted. It should be noted, that
the stresses are much higher compared with the stresses in uniaxial
compression (in Fig. 4.2). In planar compression only the rotated re-
entrant honeycomb structure exhibits stiffening behavior. The regular
honeycomb and arrowhead architectures both display reduced stiffness
6

p

Fig. 4.4. Stress–strain curves in planar (constrained) compression for different archi-
tectures.

Fig. 4.5. Change of vertical properties in planar (constrained) compression for different
architectures, namely (a) the normalized (unconstrained) Young’s modulus 𝐸𝑦 and (b)
the Poisson’s ratio 𝜈𝑦𝑥.

eading to snap-through, resulting in negative slopes of the stress–
train curve following substantial planar compression. An illustration
f the corresponding deformed structures is provided in Fig. 4.5 for
he rotated honeycomb unit cell. This behavior is also observed in the
e-entrant honeycomb unit cell. The normalized Young’s modulus 𝐸𝑦
lotted against the deformation as done in Fig. 4.5a shows a similar
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Fig. 4.6. Stress–strain curves in pure shear for different architectures.

behavior. It should be noted here, that the Young’s modulus as proxy
for the unconstrained uniaxial tangent stiffness in Fig. 4.5a is not equal
o the derivative of the constrained stress–strain curve in Fig. 4.4.
he stiffness for all but the (anti-)chiral and the rotated re-entrant
oneycomb architecture become negative, resulting in loss of resistance
gainst unconstrained compression. In the lower graph, Fig. 4.5b, the
oisson’s ratio 𝜈𝑦𝑥 is plotted against the compressive strain. Here, the
otated regular honeycomb’s transition from non-auxetic to auxetic
ehavior is even more pronounced than for uniaxial compression and
an be observed around 18.5% compression. The deformation patterns
t 10% and 30% planar compression show the transitions from the
onvex honeycomb shape towards a non-convex shape resembling –
ike in the uniaxial case – a re-entrant honeycomb structure. Also, the
rrowhead structure transfers from auxetic behavior into non-auxetic
ehavior after buckling (in planar compression at approximately 1.5%).
his buckling is visualized in the deformation patterns at 0% and 2.5%
lanar compression in Fig. 4.5a.

In an impact scenario also significant shear deformation may be
xpected. The development of different architectures under shear de-
ormation is thus investigated by applying the displacement gradient

= 𝑘
[

0 −0.5
−0.5 0

]

𝑘 ∈ [0, 0.33] . (4.3)

his deformation mode is illustrated in Fig. 4.1c. In Fig. 4.6, the stress–
train curves for both shear components are shown. In the stress–strain
urves, the regular honeycomb structures show the strongest resistance
owards shear at higher deformations. The arrowhead structures show
steep decline in shear resistance, as they initially show the highest

tresses upon shear deformation, followed by only minor increase
n stresses at increasing strains. In Fig. 4.7 the normalized Young’s
odulus and the Poisson’s ratio are plotted against shear deformation.
ere, apart from the arrowhead structures, all structures show an

ncreasing Young’s modulus. Especially the non-auxetic honeycomb
tructures show an increase, which is significantly larger compared to
he corresponding auxetic structures. The arrowhead structures exhibit
hree regimes across the range of shear deformation examined. The pro-
ressive deformation patterns throughout shear deformation are shown
7

Fig. 4.7. Change of vertical properties under pure shear deformation for different
architectures, namely (a) the normalized Young’s modulus 𝐸𝑦 and (b) the Poisson’s
ratio 𝜈𝑦𝑥.

Fig. 4.8. Pure shear deformation pattern of arrowhead structures.

n Fig. 4.8. After a steep initial decline in Young’s modulus, an almost
onstant modulus is seen before the Young’s modulus finally starts to
ncrease. These regions in the stiffness properties for the arrowhead
rchitecture are explained by the fact that the two central beams in
he unit cell initially form a downwards facing half-wave. Throughout
eformation, the amplitude of this half-wave is decreasing, leading
o load transfer by bending and pre-stresses even leading to negative
oung’s moduli, as can be seen in Fig. 4.7a. After some deformation one
f the two central beams suddenly shows large deformation, leading
o the two central beams resembling a full sine wave with one node
f the wave at the central joint. This is occurring at 4% for the

rotated and 7% for the unrotated variant. Here, further deformation
does not change the overall vertical stiffness of the unit cell, as the
connecting joint is now resembling the node of the wave. At 28% for
the rotated and 22% for the unrotated variant the second beam again
shows a sudden deformation in such a way, that the two central beams
again resemble a (now upwards facing) half-wave. The connecting joint
is located on the peak of this half-wave leading again to stiffening,

as every displacement of the joint has the resistance of the beams
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working against it. Lastly, the Poisson’s ratio (as seen in the lower
graph Fig. 4.7b almost remains unchanged under shear deformation for
all but the arrowhead architectures. The arrowhead architectures again
show two jumps in their tangent properties, coinciding with the earlier
mentioned configuration changes.

4.2. Dynamic properties of the architectures

In the assessment of the effects of different architectures in impact
scenarios, not only the (static) loading resistance, as discussed in Sec-
tion 4.1, is of importance, but also the behavior of the architectures
in dynamic loading is relevant. First measures to assess this dynamic
behavior are the pressure wave speed 𝑐𝑃𝑥 and shear wave speed 𝑐𝑆𝑥
lateral to the impact direction, as well as the pressure wave speed 𝑐𝑃𝑦
longitudinal to the direction of impact. They are computed with the
following formulae

𝑐𝑃𝑥 =

√

𝑀𝑥
𝜌

, 𝑐𝑆𝑥
=

√

𝐺𝑦𝑥

𝜌
, 𝑐𝑃𝑦 =

√

𝑀𝑦

𝜌
(4.4)

where 𝑀𝑥, 𝐺𝑦𝑥, and 𝑀𝑦 are determined during deformation as de-
scribed in Section 3.1. The density 𝜌 is updated with the deformation as
well. As these wave speeds are calculated for homogenized cells, wave
phenomena with wave lengths smaller than the size of each unit cell
are not captured in this approach. Considering the development of the
wave speeds 𝑐𝑃𝑥 , 𝑐𝑆𝑥

, 𝑐𝑃𝑦 in the three cases described in Section 4.1 –
uniaxial compression, planar compression, and pure shear – offers more
insight into the behavior of different architectures under dynamic load-
ing conditions. Higher lateral wave speeds lead to a higher involvement
of the lateral material, since the stress concentrations move faster to
the sides, i.e. the not impacted sections of the patch leading to a better
distribution of energy.

In Fig. 4.9 the wave speeds are plotted against uniaxial compression
for all eight architectures. In the top graph (Fig. 4.9a), the lateral pres-
sure wave speed 𝑐𝑃𝑥 is shown. It can be seen, that in the undeformed
state, the rotated re-entrant unit cell has the highest lateral pressure
wave speed of the investigated structures with an obvious decline upon
compressive deformation. In the middle graph Fig. 4.9b, the lateral
shear wave speeds of the different structures and their development
under uniaxial compression are shown. It can be seen, that the lateral
shear wave speeds, compared to the lateral pressure wave speeds,
are significantly smaller for all architectures but the arrowhead ones.
In the lower graph Fig. 4.9c, the longitudinal pressure wave speeds
𝑐𝑃𝑦 are shown. They show similar behavior to the Young’s moduli in
impact direction 𝐸𝑦 (compare Fig. 4.3a). The differences are due to the
constrained modulus 𝑀𝑦 in the formula for the wave speed instead of
the (unconstrained) Young’s modulus 𝐸𝑦 as well as in the consideration
of the changing density 𝜌 throughout the deformation.

The peaks in the chiral structure wave speeds in both graphs,
Figs. 4.9a and 4.9b, as well as in the rotated re-entrant honeycomb
structure in the 𝑐𝑆𝑥

graph, are caused by instabilities of the pre-stressed
beams undergoing small changes in loading direction leading to ‘micro’-
buckling, during the finite difference determination of the tangent
stiffness tensor C4. This leads to the structure appearing with greatly
exaggerated or reduced stiffness around polar points corresponding to
the peaks.

Similar behavior of the wave speeds can be seen in Fig. 4.10,
where the wave speeds are plotted against planar compressive strains.
Compared with the uniaxial case previously discussed, the rotated re-
entrant structure also tends to lose some of its lateral pressure wave
speed, as can be seen in Fig. 4.10a. This is, however, less pronounced
and since all other structures show a substantial decrease, it maintains
the highest wave speed. The shear wave speeds in Fig. 4.10b show
similarly low levels as in the uniaxial case. The pressure wave speeds in
the impact direction are depicted in Fig. 4.10c. The various peaks, that
8

can be seen, again stem from the pre-stress resultants in the singular r
Fig. 4.9. Change of the lateral pressure and shear wave speed under uniaxial
compression, (a) shows the lateral pressure wave speed 𝑐𝑃𝑥

, (b) shows the lateral shear
wave speed 𝑐𝑆𝑥

, (c) shows the pressure wave speed in impact direction 𝑐𝑃𝑦
.

beam elements at the various stages of compression corresponding
instabilities during the finite difference calculation.

In the shear deformation case, as shown in Fig. 4.11a, all architec-
tures show a positive lateral pressure wave speed throughout the shear
deformation except for the arrowhead unit cell in the 90◦ case. In the

iddle graph, Fig. 4.11b, again, all architectures but the arrowhead
nes show an ability to maintain their pressure wave speeds. The lower
raph in Fig. 4.11c depicts the development of the longitudinal pressure
ave speeds over the shear deformation. The negative range of wave

peeds for the arrowhead lattices is due to the subsequent flipping of
he two central beams as explained in Section 4.1 and shown in Fig. 4.7.
n Fig. 4.11 as before, the peaks and apparent infinite wave speeds stem
rom instabilities in the finite difference computation of the tangent
tiffness tensor C4.

4.3. Impact performance of architectures

The impact protection of the different architectures is assessed by
assembling the unit cells into a bigger patch. A schematic of the setup is
shown in Fig. 4.12 and will be subsequently explained. Initially, these
patches are globally compressed statically and dynamically at strain
rates 𝐻̇ of 2.5ms−1, 5ms−1, 7.5ms−1, and 10ms−1. Later, additional

aterial is added to the sides to investigate the effects of lateral
aterial involvement. The width of the impact loading is kept constant
ith the overall material width changing, resulting in width-to-impact
atios of 𝑟𝑖 = 1, 1.5, 2, 3, and 5. The compression is induced with
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Fig. 4.10. Change of the lateral pressure and shear wave speed under planar compres-
sion, (a) shows the lateral pressure wave speed 𝑐𝑃𝑥

, (b) shows the lateral shear wave
speed 𝑐𝑆𝑥

, (c) shows the pressure wave speed in impact direction 𝑐𝑃𝑦
.

changing Dirichlet boundary conditions on the top boundary over the
constant impact width, whilst the reaction forces are recorded. The
bottom boundary is fully fixed and the sides are free.

During the computation, the displacements of the boundary sub-
jected to movement 𝑢𝑡(𝑡) are stored as prescribed. The total force needed
to achieve this displacement 𝑓𝑡(𝑡) and the total reaction force at the
lower boundary 𝑓𝑏(𝑡) are recorded as well. In post-processing, the SEA
for the undeformed volume under the impacted boundary (with initial
height ℎ0 ≈ 1 cm, width 𝑤0 ≈ 1 cm, and depth 𝑑0 = 10 cm) is computed
as3:

SEA(𝑡) = 1
𝜌0 ∫𝜏<𝑡

𝑢𝑡(𝜏)
ℎ0

𝑓𝑡(𝜏)
𝑤0𝑑0

. (4.5)

The results of non-localized (𝑟𝑖 = 1), static (𝐻̇ = 0ms−1) com-
ression are shown in Fig. 4.13. It should be noted, that here only
eformations up to 20% are discussed in order to exclude interpene-
ration of beams, which may happen because contact is not considered
n the numerical framework. In the graph the SEA is plotted against the
ompressive strain. The patches consisting of arrowhead unit cells (both
otated and not) could not be computed for the desired compression
f 20% due to a plethora of local buckling points in the singular
tructural members. The compression of the regular honeycomb struc-
ures (rotated and not rotated) requires most work especially in the
ater stages. Given the static nature of this experiment, only the static
roperties described in Section 4.1 have an effect. Here, especially the
ertical stiffness during shear deformation as seen in Fig. 4.7a and
he constrained stiffness related to the constrained stress–strain curve

3 Normalization for the initial volume is taking place to eliminate differ-
nces between the aspect ratios of the architectures and subsequent differences
n initial volume.
9

Fig. 4.11. Change of the lateral pressure and shear wave speed under shear, (a) shows
the lateral pressure wave speed 𝑐𝑃𝑥

, (b) shows the lateral shear wave speed 𝑐𝑆𝑥
, (c)

shows the pressure wave speed in impact direction 𝑐𝑃𝑦
.

in Fig. 4.4 are of importance. In both of these figures the regular
honeycomb structures show the stiffest response over a wide range of
deformation.

The next experiments are conducted with increased width of the
patches (𝑟𝑖 > 1), but still under static loading (𝐻̇ = 0ms−1) and reported
in Fig. 4.14. The SEA is again plotted against the (local) compression,
in Fig. 4.14a for 𝑟𝑖 = 3 and in Fig. 4.14b for 𝑟𝑖 = 5. Given the
static context of this analysis, no fundamental changes are observed
apart from the overall rise in work needed to compress the supported
structure (compare the ranges of the y-axes of Figs. 4.13 and 4.14). It
should be noted, that the patches of the arrowhead architectures could
not be computed to the desired compression level again due to reasons
as mentioned before.

Next, the dynamic behavior is investigated using moderately lo-
calized impact conditions (𝑟𝑖 = 3) and a set of strain rates (𝐻̇ =
5ms−1 and 10ms−1). The SEA of the different structures is shown in
Fig. 4.15. The corresponding static compression is shown in Fig. 4.14a,
whereas the upper graph (Fig. 4.15a) shows the SEA at a compression
speed of 𝐻̇ = 5ms−1, which is doubled to 𝐻̇ = 10ms−1 in the lower
graph Fig. 4.15b. At moderate impact speeds (𝐻̇ = 5ms−1 in the upper
graph), the difference between the structures in static compression are
small, but the fact that the two regular honeycomb structure show a
higher absorption compared to the auxetic structures, does not change.
Only at the highest compression speeds (10ms−1), the re-entrant hon-
eycomb, in its 90◦ configuration, is able to match with the regular
honeycomb structures. As shown in Figs. 4.10a and 4.11a the re-entrant
honeycomb shows the highest lateral pressure wave speeds, which in
turn relates to a good involvement of the surrounding material. The
regular honeycomb architectures show the highest values in the SEA
throughout deformation, which is due to their ability to maintain a high

stiffness in loading direction (as seen in Figs. 4.5a and 4.7a).
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Fig. 4.12. Sketch of the setup used for the simulations.
Fig. 4.13. SEA at non-localized (𝑟𝑖 = 1), static (𝐻̇ = 0ms−1) compression.

Fig. 4.14. SEA at localized ((a) 𝑟𝑖 = 3, (b) 𝑟𝑖 = 5), static (𝐻̇ = 0ms−1) compression.
10
Fig. 4.15. SEA at localized (𝑟𝑖 = 3), dynamic ((a) 𝐻̇ = 5ms−1, (b) 𝐻̇ = 10ms−1)
compression.

A second set of investigations discussed in the following is con-
ducted with stronger localized impact conditions (𝑟𝑖 = 5) at the same set
of speeds (𝐻̇ = 5ms−1 and 10ms−1). In both graphs in Fig. 4.16, when
compared to the corresponding graphs in Fig. 4.15, it can be observed
that the effect of more lateral material is negligible for all architectures
except from the rotated re-entrant honeycomb depicted in dashed blue.
This effect, when comparing Figs. 4.15b and 4.16b even results in
a better energy absorption capability of the re-entrant honeycomb
structure compared to the regular honeycomb structure at high strain
rates. This is due to the capability to involve the lateral material under
strong deformation, which becomes more relevant with more lateral
material (higher 𝑟𝑖) and at higher strain rates, as in Fig. 4.16a the
rotated re-entrant honeycomb is not able to surpass the rotated regular
honeycomb architecture. Fig. 4.17 further illustrates this effect. The top
Fig. 4.17(a) depicts the left half of the regular honeycomb lattice and
the right half of the re-entrant honeycomb lattice, both in their 90◦

orientation, in the undeformed state. The line thicknesses correspond
to the beam thicknesses in the simulations, it should however be noted,
that the re-entrant structure has been enlarged by about 9% in order
to reach the same height and better visual comparability with the
regular honeycomb. In the lower graphs, the deformed halves of the
lattices are shown at ∼ 10% (Fig. 4.17(b)) and ∼ 20% (Fig. 4.17(c))
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Fig. 4.16. SEA at localized (𝑟𝑖 = 5), dynamic ((a) 𝐻̇ = 5ms−1, (b) 𝐻̇ = 10ms−1)
ompression.

ompression, with their respective undeformed configuration in the
ackground. Here, the involvement of the surrounding material by
ateral pressure wave speeds can be clearly seen. At 10% compression,
he re-entrant honeycomb lattice shows already deformation in the
pper right corner of the lattice, whereas the regular honeycomb lattice
hows deformation only up to roughly one third of the width. Up until
his point, as can be seen in Fig. 4.16b, the regular honeycomb absorbs
ore energy, which can be motivated by the higher stiffness observed

n Section 4.1. Only at later stages the higher material involvement
s discussed in Section 4.2 contributes to the energy absorption. This
an be more clearly seen in Fig. 4.17(c). Here the further involvement
f the surrounding material for the regular honeycomb lattice is low
hen compared to the involvement of lateral material by the re-entrant
oneycomb lattice on the right side, where the right edge shows defor-
ation all the way down to the back face. These deformations clearly

how the activation of the lateral material, leading to the dispersion
f the impact energy into kinetic and elastic potential energy of the
aterial far away from the impact zone. However, for the example of

he rotated regular honeycomb structure, it can be seen that this effect
oes not simply originate from a negative Poisson’s ratio, but rather
rom the ability to maintain its stiffness at different deformations modes
s discussed in Section 4.1 whilst at the same time providing the ability
o involve the lateral material as discussed in Section 4.2.

In Fig. 4.18 the effect of the lateral material as expressed by the
mpact ratio 𝑟𝑖 is shown as the SEA is plotted against the impact ratio
or different levels of compression. In this graph, it is shown that while
ost structures tend to obtain less additional benefit from additional

ateral material, the rotated re-entrant honeycomb exhibits even at
𝑖 = 5 a positive slope of the SEA-curve, resulting in an added benefit
f a further extension of the lattice to the sides, in other words for
igher 𝑟𝑖 values. This suggests, that when analyzing the elastic energy
bsorption capabilities of different architected materials, the Poisson’s
atio in itself is not sufficient in order to determine the performance of
particular architecture in impact scenarios.

. Varying the effective properties

As mentioned before, all observations have been made using the
⋆ ⋆
11

arget properties 𝐸𝑦 = 300MPa and 𝜌rel = 0.1. In the following
ection, these observations are summarized and their applicability and
imitations in a wider range of properties are shown. For this, both
⋆
𝑦 and 𝜌⋆rel are individually increased and decreased by a third. This

esults in three measures 𝐸⋆
𝑦 = 200MPa, 300MPa, and 400MPa for

the effective Young’s modulus and 𝜌⋆rel = 0.067, 0.100, and 0.133 for
the relative density and all nine combinations of the two effective
measures are investigated. The structures are first designed following
the optimization procedure described in Section 2.2 and subsequently
investigated in the same way as described earlier. The behavior at
different configurations is shown in Fig. 5.1, while the structures itself
together with their properties can be found in Appendix A. In the figure,
the SEA is plotted for different impact ratios 𝑟𝑖 at 20% compression level
for dynamic compression at 𝐻̇ = 10ms−1. The central graph shows the
observations at 𝐸⋆

𝑦 = 300MPa and 𝜌⋆rel = 0.1.
As discussed earlier, the honeycomb structures show the highest

absorption of energy for no or small lateral material around the impact
zone, due to their high stiffness during pure shear and resistance during
planar compression. In Section 4.1 the development of the Young’s
modulus 𝐸𝑦 for uniaxial compression, planar compression and pure
shear deformation is shown. It is demonstrated, that structures where
the load is carried predominately by axial forces rather than bending
moments experience an increase in 𝐸𝑦 whereas structures with more
bending loading during deformation experience a decrease.

The only structure able to gain further benefits from more lateral
material is the re-entrant honeycomb in its 90◦ configuration, due
to the consistently high lateral pressure wave speeds allowing the
involvement of a wide amount of lateral material. This is due to
the fact, that next to the pure static resistance to impact, also the
dynamic properties play an important role in the response of a patch
towards localized, high rate compression. These dynamic properties
are reported in Section 4.2. Here it is also shown, that the lateral
shear wave speeds are smaller than the lateral pressure wave speeds
for all architectures. Section 4.3 relates a consistently high lateral
pressure wave speed to the energy absorption of the architectures in
impact events. Planar compression and pure shear deformation are
considered the most relevant deformation patterns in impact scenarios.
For these two deformation patterns, it is essential for both critical
factors, stiffness in the loading direction (𝐸𝑦), and the lateral pressure
wave speed (𝑐𝑃𝑥 ), to remain at a high level in order to absorb the most
impact energy. Comparable results can be achieved in all investigated
configurations.

It should be noted, that the rotated re-entrant honeycomb structure
at 𝐸⋆

𝑦 = 200MPa and 𝜌⋆rel = 0.1, the antichiral structures at 𝜌⋆rel = 0.067,
and the rotated regular honeycomb structures at 𝜌⋆rel = 0.133 show
a different behavior than their counterparts at 𝐸⋆

𝑦 = 300MPa and
𝜌⋆rel = 0.1. However, these different observations can be explained by
differences in the evolution of the equivalent properties during the
discussed simple deformation modes.

6. Conclusion

The Poisson’s ratio alone is not sufficient to explain the differences
in elastic impact mitigation behavior between different lattice archi-
tectures. The working mechanisms of the lattice must be taken into
account as well to explain these differences. While the exact internal
deformation patterns are complex and highly dependent on the exact
boundary conditions, a clear dependency can be established between
the static properties and the ability of the architectures to adsorb and
disperse energy. The evolution of the stiffness in the direction of im-
pact, as well as the lateral pressure wave speed through the deformation
modes typical for impact scenarios, namely planar compression and
pure shear deformation, give an indication of the performance of the
architecture in highly localized impact scenarios. First, the stiffness
in loading direction must remain sufficiently high under both planar
compression and pure shear deformation. In particular, architectures
that exhibit folding in the impact direction, which results in higher
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Fig. 4.17. Comparison of the regular and re-entrant honeycomb under localized (𝑟𝑖 = 5), dynamic (𝐻̇ = 10ms−1) compression.
Fig. 4.18. SEA against impact ratio at 𝐻̇ = 10ms−1 and a strain level of 20%.

xial loading of the members, show stiffer responses throughout defor-
ation. However, they are prone to buckling in their axially loaded
embers, which can cancel this effect. Second, the lateral material

nvolvement, here estimated by the lateral pressure wave speed, must
emain at a sufficiently high level during deformation to allow the
mpact energy to be distributed to the surrounding material.

The choice of the optimal material architecture is a difficult task
hen designing protection concepts for different kinds of threats and
nvironments. This work provides the design engineer with a first
nsight into the effects of different architectural choices in mechanical
etamaterials used in impact protection scenarios. It also provides
12
a solid foundation for further investigation into dynamic deforma-
tion patterns of architected materials by demonstrating the effects of
geometry in an elastic setting.
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Fig. 5.1. SEA at 20% compression at 𝐻̇ = 10ms−1.
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Table A.1
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 200MPa, 𝜌⋆rel = 0.067.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.032 75.59 − 0.82 0.067 198 14 −3.77 −0.26 2 2
re-entrant (90◦) 0.028 84.99 − 0.39 0.067 195 2,465 −0.21 −2.69 5 5
arrowhead (90◦) 0.025 8.55 53.06 − 0.067 194 8 −4.79 −0.20 1,291 1,291
chiral 0.058 21.71 − − 0.067 199 199 −0.38 −0.38 67 4
antichiral 0.061 19.01 − − 0.067 198 198 −0.70 −0.70 3 3
honeycomb 0.050 111.82 − 0.82 0.067 199 95 1.42 0.68 16 16
honeycomb (90◦) 0.045 127.38 − 0.72 0.067 199 55 1.87 0.52 18 18
Table A.2
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 200MPa, 𝜌⋆rel = 0.100.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.037 65.33 − 0.62 0.100 198 74 −1.60 −0.60 6 6
re-entrant (90◦) 0.034 63.18 − 0.46 0.100 196 208 −0.94 −1.00 6 6
arrowhead 0.025 5.27 70.70 − 0.100 198 1,873 −0.25 −2.39 1,398 1,397
arrowhead (90◦) 0.031 15.91 62.35 − 0.100 199 60 −1.77 −0.53 1,555 1,559
chiral 0.073 31.56 − − 0.100 200 200 −0.38 −0.38 97 68
antichiral 0.080 30.17 − − 0.100 199 200 −0.70 −0.70 9 9
honeycomb 0.094 124.94 − 1.13 0.100 199 306 0.79 1.21 96 96
honeycomb (90◦) 0.095 116.11 − 1.16 0.100 200 392 0.69 1.36 81 81
Appendix A. Structural configurations

A more detailed description of the tuning process for each archi-
tecture is described here. As can be seen in Fig. 2.3(a), the re-entrant
honeycomb has three variables that define the geometry, namely the
sizes of the base 𝑏 and the tilted bars 𝑙 as well as the angle of these tilted
bars 𝛼. Finally, the thickness of the bars 𝑑 is a parameter to be deter-
mined. This study assumes (linear) elastic material behavior. Structures
with geometric similitude can be assumed to have no difference in their
behavior. Therefore, the values of 𝑏, 𝑙, and 𝑑 by themselves are not
important, but the ratio between them is. We chose the ratio of the
tilted bar length to the base length 𝑟 = 𝑙

𝑏 and the ratio of the thickness
o the base length 𝑡 = 𝑑

𝑏 . In this study, the angle 𝛼 ranges from 20◦ to
5◦, the beam length ratio 𝑡 ranges from 1

3 to 4
3 , and the beam thickness

ratio 𝑡 ranges from 0.01 to 0.1. For small angles, the re-entrant beams
ay not intersect, so the additional constraint 𝑟 < 1

2 cos 𝛼 is introduced.
The arrowhead structure is defined by the two angles 𝛼 ∈ (5◦, 60◦),

∈ (45◦, 75◦) (see Fig. 2.4(a)) and the thickness of the beams relative
o the height of the structure 𝑡 = 𝑑

ℎ ∈ (0.01, 0.1), as can be seen in
Fig. 2.4(a). To get realistic structures, the constraint 3 tan 𝛼 < tan 𝛽 was
added.

For the second auxetic mechanism, as explained in Section 2.1, a
chiral and an anti-chiral lattice have been selected. As can be seen
in Figs. 2.1(a) and 2.2(a), the only parameters to set are the angle
𝛼 ∈ (5◦, 60◦) and the thickness of the beams relative to the width of
the unit cell 𝑡 = 𝑑

𝑏 ∈ (0.01, 0.1). Since the antichiral unit cell is based on
the chiral one, the parameters and their respective ranges are identical.

Finally, the properties of a non-auxetic architecture are also ex-
amined for comparison. For simplicity, the same parameter range is
14
chosen as for the re-entrant honeycomb, but with angles 𝛼 ∈ (95◦, 145◦),
resulting in a positive Poisson’s ratio (see Gibson et al., 1997).

For each considered architecture, in a first step, the elastic proper-
ties in the undeformed configuration are recorded for all valid combi-
nations in a full factorial exploration space. These results are then used
to create a (linearized) mapping for the four linear elastic constants
of an orthotropic material in 2D as well as the relative density  ↦
(

𝐸𝑦, 𝐸𝑥, 𝜈𝑦𝑥, 𝐺, 𝜌rel
)

. Where  is the point in the design space that
describes the variables described above. Using this mapping, a target
function is defined by calculating the root sum squared of the error
terms. In the case of the desired vertical Young’s modulus 𝐸⋆

𝑦 = 300MPa
and relative density 𝜌⋆rel = 0.1, this results in the following objective
function

𝑡() =

√

√

√

√

√

(

𝐸𝑦() − 𝐸⋆
𝑦

𝐸⋆
𝑦

)2

+

(

𝜌rel() − 𝜌⋆rel
𝜌⋆rel

)2

(A.1)

This objective function is now minimized in the parameter spaces
shown in Table 2.1 with the reported constraints using the scipy4

implementation of the DIRECT optimizer.
With the procedure described above, all architectures are tuned

to exhibit the desired properties. All combinations of 𝐸⋆
𝑦 = 200MPa,

300MPa, and 400MPa and 𝜌⋆rel = 0.067, 0.100, and 0.133 are de-
signed. The resulting orthotropic material properties are given in
Tables A.1 to A.9 accepting some discrepancy between the linearized
target function space and the actual computations. The corresponding
configurations are shown below the tables.

4 version 1.9.2.
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Table A.3
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 200MPa, 𝜌⋆rel = 0.133.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.035 53.37 − 0.35 0.133 199 801 −0.47 −1.89 11 11
re-entrant (90◦) 0.075 84.29 − 0.80 0.133 199 8,025 −0.11 −4.55 36 36
arrowhead 0.035 26.84 68.20 − 0.133 198 125 −1.22 −0.77 1,401 1,401
arrowhead (90◦) 0.028 23.86 73.89 − 0.133 199 462 −0.63 −1.46 1,136 1,136
chiral 0.082 38.53 − − 0.133 200 200 −0.38 −0.38 19 178
antichiral 0.091 38.87 − − 0.133 200 200 −0.69 −0.69 17 17
honeycomb 0.052 135.63 − 0.39 0.133 198 3,877 0.20 3.94 57 57
honeycomb (90◦) 0.099 96.35 − 1.03 0.133 199 7,997 0.12 4.72 73 73
Table A.4
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 300MPa, 𝜌⋆rel = 0.067.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.025 74.07 − 0.39 0.067 296 138 −1.40 −0.66 3 3
re-entrant (90◦) 0.027 85.00 − 0.34 0.069 292 2,611 −0.24 −2.17 5 5
arrowhead (90◦) 0.025 7.15 53.27 − 0.067 290 9 −5.59 −0.17 1,353 1,353
chiral 0.060 18.55 − − 0.067 299 299 −0.38 −0.38 10 −16
antichiral 0.063 15.84 − − 0.067 298 298 −0.69 −0.69 4 4
honeycomb 0.035 109.26 − 0.47 0.067 298 252 1.04 0.88 10 10
honeycomb (90◦) 0.036 121.56 − 0.51 0.067 298 94 1.74 0.55 12 12
Table A.5
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 300MPa, 𝜌⋆rel = 0.100.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.035 65.62 − 0.43 0.100 297 273 −1.00 −0.92 8 8
re-entrant (90◦) 0.046 81.67 − 0.50 0.100 297 2,937 −0.26 −2.60 15 15
arrowhead 0.021 11.60 74.90 − 0.100 296 468 −0.73 −1.16 924 924
arrowhead (90◦) 0.030 13.81 64.34 − 0.100 295 80 −1.85 −0.50 1,583 1,583
chiral 0.078 28.11 − − 0.100 299 299 −0.38 −0.38 53 19
antichiral 0.085 26.09 − − 0.100 299 299 −0.69 −0.69 10 10
honeycomb 0.094 119.69 − 1.14 0.100 299 243 1.08 0.88 87 87
honeycomb (90◦) 0.096 125.63 − 1.17 0.100 299 187 1.24 0.77 100 100
o

Appendix B. Boundary conditions and tangent properties

In this Appendix, a more detailed description of the implementation
of the PBCs and the subsequent computation of the elastic tangent
properties using these, as discussed in Section 3.1, is given.

B.1. Periodic boundary conditions

As can be seen in Fig. B.1, the boundary of a (rectangular) unit cell
is split into 4 sections 𝛤𝑇 , 𝛤𝑅, 𝛤𝐵 , 𝛤𝐿 such that 𝛤𝑇 represents all the
nodes on the top side of the unit cell, 𝛤𝑅 all the nodes on the right
side, 𝛤𝐵 all on the bottom side, and finally 𝛤𝐿 the nodes on the left side.
This figure shows for all 5 investigated unit cells (re-entrant honeycomb
15

unit cell in Fig. B.1(a), arrowhead unit cell in Fig. B.1(b), chiral unit h
cell in Fig. B.1(c), antichiral unit cell in Fig. B.1(d), and the regular
honeycomb unit cell in Fig. B.1(e)) the empty corners. We therefore add
‘ghost’ nodes, not connected to the rest of the mesh, in the corners for
the application of boundary conditions as described in the following.
The four nodes in the corners start with node 0 at the bottom left side
and are then numbered counter-clockwise.

The sets for corresponding sides need to be ordered in a way, such
that they correspond towards each other, i.e. in a rectangular unit cell
for every node on the bottom edge, we need to find a node on the top
edge, for which the relationship

𝑿𝑇 = 𝑿𝐵 +
[

0
ℎ

]

(B.1)

f the respective reference position vectors 𝑿 holds, where ℎ is the

eight of the unit cell. With its width 𝑤, a similar relationship holds
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Table A.6
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 300MPa, 𝜌⋆rel = 0.133.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.045 61.08 − 0.57 0.133 298 191 −1.21 −0.78 11 11
re-entrant (90◦) 0.070 83.33 − 0.69 0.133 298 6,987 −0.15 −3.55 37 37
arrowhead 0.025 42.99 75.37 − 0.133 294 24 −3.43 −0.28 686 686
arrowhead (90◦) 0.041 18.86 62.75 − 0.133 299 133 −1.44 −0.64 1,911 1,911
chiral 0.089 35.19 − − 0.133 300 300 −0.38 −0.38 156 35
antichiral 0.099 34.70 − − 0.133 299 299 −0.69 −0.69 19 19
honeycomb 0.097 131.09 − 0.83 0.133 299 1,319 0.45 1.99 162 162
honeycomb (90◦) 0.099 99.51 − 0.94 0.133 299 5,108 0.20 3.43 85 85
Table A.7
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 400MPa, 𝜌⋆rel = 0.067.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.026 76.05 − 0.40 0.067 398 136 −1.63 −0.56 4 4
arrowhead (90◦) 0.023 6.54 57.28 − 0.067 392 14 −5.12 −0.18 1,386 1,386
chiral 0.061 16.44 − − 0.067 399 399 −0.37 −0.37 2 −1
antichiral 0.064 13.85 − − 0.067 395 395 −0.68 −0.68 4 4
honeycomb 0.059 103.41 − 1.20 0.067 397 28 3.67 0.26 14 14
honeycomb (90◦) 0.031 143.10 − 0.56 0.067 395 13 5.50 0.17 10 10
Table A.8
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 400MPa, 𝜌⋆rel = 0.100.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.035 67.69 − 0.40 0.100 397 343 −1.02 −0.88 8 8
re-entrant (90◦) 0.045 83.36 − 0.46 0.100 394 4,132 −0.23 −2.41 16 16
arrowhead 0.015 31.67 79.43 − 0.099 380 36 −3.18 −0.30 435 435
arrowhead (90◦) 0.030 12.18 64.54 − 0.100 395 85 −2.05 −0.44 1,633 1,633
chiral 0.081 25.65 − − 0.100 399 399 −0.37 −0.37 33 44
antichiral 0.088 23.33 − − 0.100 398 398 −0.69 −0.69 11 11
honeycomb 0.054 118.49 − 0.49 0.100 397 927 0.61 1.44 37 37
honeycomb (90◦) 0.092 133.79 − 1.17 0.100 399 96 1.99 0.48 106 106
Table A.9
Resulting properties and unit cells of the investigated architectures with target properties 𝐸⋆

𝑦 = 400MPa, 𝜌⋆rel = 0.133.

Geometry 𝑡 𝛼 [◦] 𝛽 [◦] 𝑟 𝜌rel 𝐸𝑦 [MPa] 𝐸𝑥 [MPa] 𝜈𝑦𝑥 𝜈𝑥𝑦 𝐺𝑥𝑦 [MPa] 𝐺𝑦𝑥 [MPa]

re-entrant 0.045 62.12 − 0.49 0.133 397 340 −1.03 −0.89 13 13
re-entrant (90◦) 0.056 73.13 − 0.54 0.133 398 1,497 −0.47 −1.78 23 23
arrowhead 0.026 33.15 74.81 − 0.133 397 71 −2.30 −0.41 896 896
arrowhead (90◦) 0.025 18.09 76.47 − 0.133 395 747 −0.67 −1.27 978 978
chiral 0.094 32.74 − − 0.133 399 399 −0.37 −0.37 28 −69
honeycomb 0.100 127.62 − 0.83 0.133 399 1,195 0.55 1.64 161 161
honeycomb (90◦) 0.092 98.75 − 0.82 0.133 399 5,941 0.20 3.05 79 79
16
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Fig. B.1. Unit cells of (a) the re-entrant honeycomb, (b) the arrowhead structure, (c) the chiral structure, (d) the antichiral structure, and (e) the honeycomb structure with
notation used for establishing the PBCs.
b

to identify corresponding nodes between the left and right edges:

𝑿𝑅 = 𝑿𝐿 +
[

𝑤
0

]

. (B.2)

After having identified all nodes that need to be taken into account, it
is made sure that the rotation of one node is equal to the rotation of
the corresponding node on the opposite side by enforcing the following
two boundary conditions on the rotational displacement vectors 𝝑:

𝝑𝑖𝑇 = 𝝑𝑖𝐵 , ∀ 𝑖𝑇 ∈ 𝛤𝑇 , 𝑖𝐵 ∈ 𝛤𝐵 ∣ 𝑿𝑖𝑇 = 𝑿𝑖𝐵 +
[

0
ℎ

]

, (B.3)

𝝑𝑖𝑅 = 𝝑𝑖𝐿, ∀ 𝑖𝑅 ∈ 𝛤𝑅, 𝑖𝐿 ∈ 𝛤𝐿 ∣ 𝑿𝑖𝑅 = 𝑿𝑖𝐿 +
[

𝑤
0

]

. (B.4)

he translational displacement vectors 𝒖 are now coupled via the
ontrolling nodes at the corresponding sides as (sets are omitted for
etter readability)

𝑖𝑇 = 𝒖𝑖𝐵 +
(

𝒖3 − 𝒖0
)

, (B.5)

𝑖𝑅 = 𝒖𝑖𝐿 +
(

𝒖1 − 𝒖0
)

, (B.6)

hile the corner nodes are fixed to enforce the desired displacement
radient 𝐻𝑖𝑗 =

𝜕𝑢𝑖
𝜕𝑋𝑗

,

0 =
[

0
0

]

𝒖1 = 𝑯 ⋅
[

𝑤
0

]

𝒖3 = 𝑯 ⋅
[

0
ℎ

]

. (B.7)

t should be noted, that the ghost nodes are not connected to any
lement in the FE implementation and thus do not contribute to the
nternal force vector or stiffness matrix, but their effect stems from
onstraining the system whilst using them as helper nodes. Also, in
rder to prevent rigid body movement, a single node connected to the
tructure needs to have all translational degrees of freedom (DOFs)
17

eing equal to 0.
The 1st Piola–Kirchhoff stress tensor 𝑷 is subsequently calculated
ased on its definition
𝒇
𝛤0

= 𝑷𝒏0. (B.8)

Where 𝒇 are the forces on the surface, 𝛤0 is the area of the undeformed
surface and 𝒏0 is the normal to the undeformed surface. One can now
rearrange it for the different surfaces and average over two opposite
surfaces for numerical accuracy:

𝑃11 =
𝑓1(𝑅) − 𝑓1(𝐿)

𝛤𝑅 + 𝛤𝐿
(B.9)

𝑃12 =
𝑓1(𝑇 ) − 𝑓1(𝐵)

𝛤𝑇 + 𝛤𝐵
(B.10)

𝑃21 =
𝑓2(𝑅) − 𝑓2(𝐿)

𝛤𝑅 + 𝛤𝐿
(B.11)

𝑃22 =
𝑓2(𝑇 ) − 𝑓2(𝐵)

𝛤𝑇 + 𝛤𝐵
(B.12)

B.2. Computation of the tangent properties

We start from the relationships

𝛿𝑷 = C4 ∶ 𝛿𝑯 (B.13)

and

𝛿𝑯 = S4 ∶ 𝛿𝑷 . (B.14)

In order to simplify notation, 𝑷 ,𝑯 are now column-vectors and S4,C4

are now the matrices [𝑺], [𝑪]

𝛿

⎡

⎢

⎢

⎢

⎢

𝑃11
𝑃12
𝑃21

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

𝑐1111 𝑐1112 𝑐1121 𝑐1122
𝑐1211 𝑐1212 𝑐1221 𝑐1222
𝑐2111 𝑐2112 𝑐2121 𝑐2122

⎤

⎥

⎥

⎥

⎥

𝛿

⎡

⎢

⎢

⎢

⎢

𝐻11
𝐻12
𝐻21

⎤

⎥

⎥

⎥

⎥

(B.15)
⎣

𝑃22⎦ ⎣

𝑐2211 𝑐2212 𝑐2221 𝑐2222⎦ ⎣

𝐻22⎦



Mechanics of Materials 191 (2024) 104952T. Gärtner et al.

𝛿

T
a

[

w
e

r
s

⎡

⎢

⎢

⎢

⎢

⎣

𝛿

I

𝛿

T

𝛿

𝛿

w

𝛿

𝛿

𝛿

H

𝛿

A

𝛿
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𝛿

or with the index combination (11) ⇒ 1, (12) ⇒ 2, (21) ⇒ 3, (22) ⇒ 4

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1
𝑃2
𝑃3
𝑃4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑐11 𝑐12 𝑐13 𝑐14
𝑐21 𝑐22 𝑐23 𝑐24
𝑐31 𝑐32 𝑐33 𝑐34
𝑐41 𝑐42 𝑐43 𝑐44

⎤

⎥

⎥

⎥

⎥

⎦

𝛿

⎡

⎢

⎢

⎢

⎢

⎣

𝐻1
𝐻2
𝐻3
𝐻4

⎤

⎥

⎥

⎥

⎥

⎦

. (B.16)

he tangent stiffness matrix [𝑪] is computed as described in Section 3.1
nd the tangent compliance matrix [𝑺] is afterwards computed by

𝑺] = (0.5[𝑪] + 0.5[𝑪]𝑇 )−1, (B.17)

here the symmetrization of the stiffness is done to minimize numerical
rrors.

For the derivation of the (linearized) Young’s modulus and Poisson’s
atio, we need a relation between 𝛿𝑃𝑖 and 𝛿𝐻𝑖, where the orthogonal
tress is zero, whilst the orthogonal strain is free

𝛿𝐻1
0
0

𝛿𝐻2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑠11 𝑠12 𝑠13 𝑠14
𝑠21 𝑠22 𝑠23 𝑠24
𝑠31 𝑠32 𝑠33 𝑠34
𝑠41 𝑠42 𝑠43 𝑠44

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝑃1
𝛿𝑃2
𝛿𝑃3
0

⎤

⎥

⎥

⎥

⎥

⎦

. (B.18)

Starting with the third line of (B.18), we obtain

0 = 𝑠31𝛿𝑃1 + 𝑠32𝛿𝑃2 + 𝑠33𝛿𝑃3, (B.19)

𝛿𝑃3 =
−𝑠31
𝑠33

𝛿𝑃1 +
−𝑠32
𝑠33

𝛿𝑃2, (B.20)

𝑃3 = 𝑓31𝛿𝑃1 + 𝑓32𝛿𝑃2. (B.21)

nserting now (B.21) in the second line of (B.18), we obtain

0 = 𝑠21𝛿𝑃1 + 𝑠22𝛿𝑃2 + 𝑠23𝛿𝑃3, (B.22)

0 = 𝑠21𝛿𝑃1 + 𝑠22𝛿𝑃2 + 𝑠23(𝑓31𝛿𝑃1 + 𝑓32𝛿𝑃2), (B.23)

0 = (𝑠21 + 𝑠23𝑓31)𝛿𝑃1 + (𝑠22 + 𝑠23𝑓32)𝛿𝑃2, (B.24)

𝑃2 =
−𝑠21 − 𝑠23𝑓31
𝑠22 + 𝑠23𝑓32

𝛿𝑃1, (B.25)

𝛿𝑃2 = 𝑓21𝛿𝑃1. (B.26)

his can now be inserted into (B.21)

𝑃3 = 𝑓31𝛿𝑃1 + 𝑓32𝛿𝑃2, (B.27)

𝑃3 = (𝑓31 + 𝑓32𝑓21)𝛿𝑃1, (B.28)

hich gives for the first line of (B.18)

𝐻1 = 𝑠11𝛿𝑃1 + 𝑠12𝛿𝑃2 + 𝑠13𝛿𝑃3, (B.29)

𝐻1 = 𝑠11𝛿𝑃1 + 𝑠12𝑓21𝛿𝑃1 + 𝑠13(𝑓31 + 𝑓32𝑓21)𝛿𝑃1, (B.30)

𝐻1 = (𝑠11 + 𝑠12𝑓21 + 𝑠13(𝑓31 + 𝑓32𝑓21))𝛿𝑃1. (B.31)

ere we use

𝐻1 =
1
𝐸1

𝛿𝑃1 (B.32)

to determine the Young’s modulus.
In order to derive the Poisson’s ratio, we need to consider the last

equation of (B.18) and insert all previous results:

𝛿𝐻4 = 𝑠41𝛿𝑃1 + 𝑠42𝛿𝑃2 + 𝑠43𝛿𝑃3, (B.33)

𝛿𝐻4 = (𝑠41 + 𝑠42𝑓21 + 𝑠43(𝑓31 + 𝑓32𝑓21))𝛿𝑃1, (B.34)

𝛿𝐻4 =
𝑠41 + 𝑠42𝑓21 + 𝑠43(𝑓31 + 𝑓32𝑓21)
𝑠11 + 𝑠12𝑓21 + 𝑠13(𝑓31 + 𝑓32𝑓21)

𝛿𝐻1. (B.35)

gain we use the relationship

𝐻4 = −𝜈14𝛿𝐻1 (B.36)

o determine the Poisson’s ratio. Other properties are obtained again in
18

similar fashion by exchanging the indices.
For the derivation of the linearized modulus of constrained motion
n one direction, we need a relation between 𝛿𝑃𝑖 and 𝛿𝐻𝑖 from

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝐻1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑠11 𝑠12 𝑠13 𝑠14
𝑠21 𝑠22 𝑠23 𝑠24
𝑠31 𝑠32 𝑠33 𝑠34
𝑠41 𝑠42 𝑠43 𝑠44

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝑃1
𝛿𝑃2
𝛿𝑃3
𝛿𝑃4

⎤

⎥

⎥

⎥

⎥

⎦

. (B.37)

sing the last line of (B.37), we get

0 = 𝑠41𝛿𝑃1 + 𝑠42𝛿𝑃2 + 𝑠43𝛿𝑃3 + 𝑠44𝛿𝑃4, (B.38)

𝑃4 = −
𝑠41
𝑠44

𝛿𝑃1 −
𝑠42
𝑠44

𝛿𝑃2 −
𝑠43
𝑠44

𝛿𝑃3, (B.39)

𝛿𝑃4 = 𝑓41𝛿𝑃1 + 𝑓42𝛿𝑃2 + 𝑓43𝛿𝑃3. (B.40)

Now putting (B.40) into the third line of (B.37) results in

0 = 𝑠31𝛿𝑃1 + 𝑠32𝛿𝑃2 + 𝑠33𝛿𝑃3 + 𝑠34𝛿𝑃4, (B.41)

0 = 𝑠31𝛿𝑃1 + 𝑠32𝛿𝑃2 + 𝑠33𝛿𝑃3 + 𝑠34(𝑓41𝛿𝑃1 + 𝑓42𝛿𝑃2 + 𝑓43𝛿𝑃3), (B.42)

(𝑠33 + 𝑠34𝑓43)𝛿𝑃3 = (−𝑠31 − 𝑠34𝑓41)𝛿𝑃1 + (−𝑠32 − 𝑠34𝑓42)𝛿𝑃2, (B.43)

𝛿𝑃3 =
−𝑠31 − 𝑠34𝑓41
𝑠33 + 𝑠34𝑓43

𝛿𝑃1 +
−𝑠32 − 𝑠34𝑓42
𝑠33 + 𝑠34𝑓43

𝛿𝑃2, (B.44)

𝛿𝑃3 = 𝑓31𝛿𝑃1 + 𝑓32𝛿𝑃2. (B.45)

Inserting this back into (B.40) gives

𝛿𝑃4 = 𝑓41𝛿𝑃1 + 𝑓42𝛿𝑃2 + 𝑓43(𝑓31𝛿𝑃1 + 𝑓32𝛿𝑃2), (B.46)

𝛿𝑃4 = (𝑓41 + 𝑓43𝑓31)𝛿𝑃1 + (𝑓42 + 𝑓43𝑓32)𝛿𝑃2. (B.47)

Now (B.45) and (B.47) can be inserted into the second row of (B.37)
giving:

0 = 𝑠21𝛿𝑃1 + 𝑠22𝛿𝑃2 + 𝑠23𝛿𝑃3 + 𝑠24𝛿𝑃4, (B.48)

0 = 𝑠21𝛿𝑃1 + 𝑠22𝛿𝑃2 + 𝑠23(𝑓31𝛿𝑃1 + 𝑓32𝛿𝑃2)

+𝑠24((𝑓41 + 𝑓43𝑓31)𝛿𝑃1 + (𝑓42 + 𝑓43𝑓32))𝛿𝑃2, (B.49)

(𝑠22 + 𝑠23𝑓32 + 𝑠24(𝑓42 + 𝑓43𝑓32))𝛿𝑃2 =

(−𝑠21 − 𝑠23𝑓31 − 𝑠24(𝑓41 + 𝑓43𝑓31))𝛿𝑃1, (B.50)

𝛿𝑃2 =
−𝑠21 − 𝑠23𝑓31 − 𝑠24(𝑓41 + 𝑓43𝑓31)
𝑠22 + 𝑠23𝑓32 + 𝑠24(𝑓42 + 𝑓43𝑓32)

𝛿𝑃1, (B.51)

𝛿𝑃2 = 𝑓21𝛿𝑃1. (B.52)

Again this can be inserted back into (B.45) and (B.47):

𝛿𝑃3 = (𝑓31 + 𝑓32𝑓21)𝛿𝑃1, (B.53)

𝛿𝑃4 = (𝑓41 + 𝑓43𝑓31 + (𝑓42 + 𝑓43𝑓32)𝑓21)𝛿𝑃1. (B.54)

Finally, (B.52), (B.53), and (B.54) are inserted back into (B.37) to give

𝛿𝐻1 = (𝑠11 + 𝑠12𝑓21 + 𝑠13(𝑓31 + 𝑓32𝑓21)

+𝑠14(𝑓41 + 𝑓43𝑓31 + (𝑓42 + 𝑓43𝑓32)𝑓21))𝛿𝑃1. (B.55)

Now by comparing this to

𝛿𝐻1 =
1
𝑀1

𝛿𝑃1 (B.56)

we can calculate the constrained modulus.
The other constrained modulus as well as the shear moduli are

obtained in the same fashion.
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