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Abstract

In the literature, two different frameworks exist for describing the rheology of solid/liquid suspensions: (1) the “viscous” framework in terms
of the relative suspension viscosity, 7,, as a function of the reduced solid volume fraction, ¢/¢,,, with ¢,, the maximum flowable packing
fraction, and (2) the “frictional” framework in terms of a macroscopic friction coefficient, u, as a function of the viscous number, /,, defined
as the ratio of the viscous shear to the wall-normal particle stress. Our goal is to compare the two different frameworks, focusing on the effect
of friction between particles. We have conducted a particle-resolved direct numerical simulation study of a dense non-Brownian suspension
of neutrally buoyant spheres in slow plane Couette flow. We varied the bulk solid volume fraction from ¢, = 0.1 to 0.6 and considered
three different Coulomb friction coefficients: x, = 0, 0.2, and 0.39. We find that 7, scales well with ¢/¢,,, with ¢, obtained from
fitting the Maron—Pierce correlation. We also find that u scales well with /,. Furthermore, we find a monotonic relation between ¢/,
and /,, which depends only weakly on u,. Since 1, = u/1,, we thus find that the two frameworks are largely equivalent and that both
account implicitly for Coulomb friction. However, we find that the normal particle stress differences, Ny and N,, when normalized with
the total shear stress and plotted against either ¢/¢,, or I,, remain explicitly dependent on g, in a manner that is not yet fully
understood. © 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons 3

Attribution (CC BY) license (http:/creativecommons.org/licenses/by/4.0/). https://doi.org/10.1122/8.0000729 g
. INTRODUCTION consider high concentrations but well below the jamming%

limit. In this case, the suspension viscosity, n, depends on a 3
number of physical parameters, such as the densities of the h
fluid (p;) and solid phase (p,), the dynamic fluid viscosity
(n9), the sphere diameter (d), the number density of parti-
cles per unit volume (n), parameters related to frictional par-
ticle contacts (especially the Coulomb coefficient of sliding
friction, u,), the thermal energy k7T (with k the Boltzmann
constant and 7T the temperature), the imposed shear rate (y),
and the time passed since the moment this shear rate was
imposed (7) [3],

In many industrial processes, solid—liquid suspensions
play an important role, such as in food processing, 3D print-
ing of solid rocket fuels, and solid-liquid fluidized-bed reac-
tors. Next to that, suspensions are commonly encountered in
daily life as, for example, in cosmetic products, paints, and
fresh concrete. To be able to produce and transport these sus-
pensions in an efficient manner, a thorough understanding of
the suspension rheology is required, i.e., the behavior of the
suspension under imposed shear.

The rheology of suspensions has been studied exten-
sively for many years since pioneering work by Albert
Einstein [1,2]. A good overview of the subject is given in n=1(ps: Py M- d. 1 1, KT, 7. 1). M
several review articles [3—5]. Suspensions show an increase
in mixture viscosity, with respect to the viscosity of the Based on dimensional analysis, these physical parameters can
carrier fluid, for increasing solid volume fraction. Dense be combined to form the following dimensionless groups:
suspensions can exhibit shear rate dependent behavior such

as yield stresses [6], shear thinning [7,8], and (dis)continu- n=L ¢=nlr ye P, = P p,— 3engd’y
ous shear thickening [9-12]. The focus of the present study T’ 67 2 4 kT 2 )
. . . 22
is on the rheology of monodisperse suspensions of spheres Re; _ A’y t = tkg3 1,
m nd3> e

in a Newtonian carrier fluid subject to simple shear. We

where ¢ is the particle volume fraction, Pe; is the Péclet
number, and Re; is the particle Reynolds number based on
YAuthor to whom correspondence should be addressed; electronic mail: the applied shear rate. In this work, we will consider neu-
w.p.breugem @tudelft.nl trally buoyant particles for which p, =1, non-Brownian
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particles for which Pe; > 1, simple shear in the Stokes
regime at Re; = 0.1, and steady-state conditions 7, >> 1.
Given these assumptions, dimensional analysis thus suggests
that the relative viscosity depends only on ¢ and u,,

n, = f(, ). 3)

In his seminal work in the early 1900s, Einstein [1,2]
showed theoretically that for very dilute suspensions up to
¢ =~ 0.05, when hydrodynamic and contact particle interac-
tions can be ignored, the relative viscosity increases linearly
with the particle volume fraction. It was many years later that
Batchelor and Green [13] extended his work to moderate
concentrations up to ¢ ~ 0.1 by including hydrodynamic
interactions, resulting in a second-order correction term in
the expression for the relative viscosity. For simple shear
flows, the result is given by

n,:1+§¢+5.2¢>2. 4)

For concentrations higher than ¢ ~ 0.1, contact particle-
particle interactions cannot be neglected anymore and
become increasingly important with increasing concentration.
For very high concentrations, the suspension viscosity
diverges toward a state in which the suspension stops to
flow, known as the jamming transition. The divergence of
the viscosity is described by several empirical correlations
[14-16] of which the Maron—Pierce correlation works partic-
ularly well for high volume fractions [15],

-2

Here, ¢,, is the maximum flowable packing fraction or the
volume fraction at which the suspension ceases to flow as the
relative viscosity diverges. The maximum flowable packing
fraction typically has a value of ¢,, = 0(0.58 — 0.65), while
the precise value is usually adjusted to provide a best fit with
experimental data. Note that the Maron—Pierce correlation
does not explicitly depend on u,. as one would expect based
on Eq. (3) for the dense regime where particle contacts are
frequent. However, this dependency is generally assumed to
be implicitly contained in ¢,,, whose value is typically lower
for higher values of . [10,11]. Furthermore, we remark that
the Maron—Pierce correlation does not recover Einstein’s ana-
lytical expression for the dilute regime, and it suggests,
though counter-intuitive, that there is still a dependency on
¢,, in this limit. On the other hand, the Krieger—-Dougherty
[16] relation for the suspension viscosity

d) ) —2.5¢,,
=(1--—" 6
G ( b ©

does recover the Einstein viscosity in the dilute limit but
appears less accurate in the very dense regime. Equations (5)
and (6) are equivalent if and only if the maximum flowable

packing fraction ¢,, = 0.8, although actual values are closer
to 0.6.

For spherical particles, which we consider in this work,
the relative viscosity has been extensively studied both exper-
imentally [17-20] and numerically [21-27] over the years.
This has led to a large amount of data for various kinds of
particles with different size, roughness, and friction coeffi-
cients. The literature has shown that the data collapse fairly
well to a master curve when the volume fraction is normal-
ized by the maximum flowable packing fraction ¢,,, which is
dependent on the properties of the particles. The rheology
described as a function of the normalized volume fraction
¢/ ¢, will be referred to as the viscous rheology in the
remainder of this work.

In experiments, it is difficult to independently vary the
solid friction of the particles; therefore, numerical simula-
tions provide useful insight into the effect of solid friction on
the relative viscosity. Sierou and Brady [21] used accelerated
Stokesian dynamics to investigate the flow of hard spheres in
shearing flow, reaching volume fractions of up to 60 vol. %.
They concluded that the microstructure and rheology are
extremely sensitive to particle contacts. Additionally, they
observed ordering at volume fractions over ¢ = 0.5, which
affected the relative viscosity. The layering of particles
decreased the relative viscosity at these volume fractions with
respect to a disordered suspension. Yeo and Maxey [22] per-
formed fully three-dimensional direct numerical simulations
(DNSs), employing a force-coupling method to study the rhe- §
ology of suspensions without solid friction. For the core
region of the planar Couette geometry, the relative viscosity 2
showed good agreement with the FEilers correlation [14];§
however, for the wall region, layering of particles caused dis- 8
parate results. Gallier et al. [23] studied the effect of the solid &
friction coefficient on the rheology using DNS, employing a
fictitious domain method, finding that the viscosity increases
with increasing Coulomb friction coefficient. By separating
the hydrodynamic and contact contributions, they showed
that the strong increase in relative viscosity near jamming is
caused by the contact between particles. More recently,
Cheévremont et al. [27] used discrete element method (DEM)
simulations to study the effect of friction by solving for the
particle contact and lubrication forces based on the assump-
tion that the long-range hydrodynamic interactions do not
play a role at high volume fractions [25]. They found a
similar dependence of the rheology on the friction coefficient
and good agreement with previous simulations. Additionally,
the experimental data of Boyer et al [19] showed good
agreement with their simulations when a solid friction coeffi-
cient of i, ~ 0.5 was used.

The relative viscosity is not sufficient to describe the com-
plete rheology of suspensions and is, therefore, not sufficient
for constitutive modeling. The microstructure induces anisot-
ropy in the particle stresses under shear, which leads to
non-Newtonian behavior [4]. Therefore, the normal stress
differences are important for the description of the suspen-
sion rheology, which are defined as N} = X;; — Xy and
N, = X5, — X33 for the first and the second normal stress dif-
ference, respectively. Here, the subscripts 1, 2, and 3, refer to
the direction of the mean flow, velocity gradient, and
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vorticity, respectively. The normal stress differences are diffi-
cult to measure, explaining the sparse experimental literature
data and the large discrepancies among different datasets.
Experiments [17,18,28,29] and numerical simulations
[21-23,26,30] are largely in agreement for the second
normal stress difference N,, which is negative and increases
in magnitude with increasing volume fraction. There is,
however, less consensus on the first normal stress difference
N;. Large variations between datasets and experimental
uncertainty give rise to inconclusive results on the sign of
Ni, but for low solid fractions, the magnitude is much
smaller than that of N,. Some results show a strong increase
in magnitude at higher volume fractions, either to positive or
negative values. Gallier et al. [24] showed that the large posi-
tive values at high volume fractions are caused by wall
effects in confined suspensions. Recently, Badia er al. [31]
made an effort to develop a continuum model for suspension
flow. In that work, they deduced material functions from sim-
ulation data in the literature, which include polynomial
descriptions of the contact normal stresses and normal stress
differences. These polynomials are a function of the normal-
ized volume fraction ¢/¢,, and provide a good fit to a set of
data compiled from multiple literature sources [8,23,32], sug-
gesting that the normal stresses scale with the normalized
volume fraction.

An alternative description of the rheology, not hampered
by the divergence of the viscosity near jamming, was intro-
duced by Boyer et al. [19] using insights from the granular
flow community. This description, which we will refer to as
frictional rheology, describes the suspension rheology in
terms of the macroscopic friction coefficient u and the
viscous number /. Here, u is defined as the ratio between the
total shear stress and the wall-normal particle stress,
U =012/0pm, and I, is defined as the ratio of the viscous
shear stress over the wall-normal particle stress,
I, = 19y /0 p2>. Using a custom pressure-imposed shear cell
on a rheometer, Boyer et al. [19] performed experiments
measuring the contribution of the particles to the wall-normal
stress. The shear cell was designed such that the fluid was
able to pass through the top plate while keeping this top plate
freely moving to impose a normal force to the suspension.
Based on the experimental results, Boyer et al. [19] proposed
the following relation for the macroscopic friction coeffi-
cient:

Hy — Hy

5
2L L+ Sl 7
T o Ol @

uly) = iy +

where ¢, = 0.32, u, = 0.7, and Iy = 0.005 are empirically
determined constants. In Eq. (7), the first two terms corre-
spond to the contact contribution, whereas the last two terms
correspond to the hydrodynamic contribution. Furthermore,
they proposed a relation between the solid volume fraction
and the viscous number,

P

¢(Iv) - .
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The frictional rheology is related to the previously discussed
viscous rheology through 7, =u/I,, and from Egs. (7)
and (8), Einstein’s relation can be recovered in the limit of
very large I, or very small ¢. Note that this frictional descrip-
tion of the rheology does not explicitly account for interparti-
cle friction. However, both u and I, are strongly influenced
by interparticle friction in the dense regime, and it is thus
assumed to be implicitly accounted for.

Following the introduction of this frictional rheology
framework, attempts have been made to improve the model
description by adapting the contributions of the hydrody-
namic and contact interactions [23,27,33]. Gallier et al.
[23] took a different approach to obtain the hydrodynamic
contribution to the macroscopic friction coefficient, based
on the rheological model of Krieger—Dougherty [16],
giving

b

=L Uil and =7

, ©)

with [n] = 2.4 and n = 0.4. Lecampion and Garagash [33]
adapted both contributions to the macroscopic friction coeffi-
cient without significantly changing the total, leading to

) = py +% (1 —(%)

2
(e Gera)er) () o

with 3 =10.158, u; =0.3, and ¢, = 0.585. Cheévremont
et al. [27] proposed changes to the hydrodynamic component
of the model by Gallier et al. [23], B

02 20z Aeniged 0z

—[n]

Uy — 1 1

p=u =t L 1= $,—| (11)
14+ L/I, 1+ 12

with u; =0.36, u, =0.7, I =0.0133, and [5] =5/2.
Chevremont et al. [27] found very good agreement with
existing data for an [/, range of 5 decades. The literature
shows that frictional rheology is suitable to describe the rela-
tion between the shear stress and the wall-normal particle
stress for different suspension characteristics and particle
properties, with slightly altered model coefficients.
Nevertheless, the frictional rheology framework is, to our
knowledge, not thoroughly tested against the normal stresses
and stress differences that are needed for a full constitutive
set of equations for suspension rheology.

In this paper, particle-resolved DNS is used to study the
rheology of dense non-Brownian suspensions of neutrally
buoyant spheres in a Newtonian carrier fluid in plane
Couette flow. The Navier—Stokes equations are solved for the
fluid phase and the Newton—Euler equations for the solid
phase, where the coupling between the phases is numerically
accomplished through a computationally efficient immersed
boundary method (IBM) [34]. The aim of this study is to
compare the viscous to the frictional rheology, i.e., the
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scaling of the rheology with ¢/¢,, and the viscous number,
respectively.

One of the main novelties of our work lies in the
advanced numerical method used to investigate suspension
rheology. We use particle-resolved DNS combined with a
frictional soft-sphere collision model for particle contacts,
which has been extensively validated against experimental
data for oblique particle-wall and particle-particle collisions
in viscous fluids [35]. Compared to the previous
particle-resolved DNS study of Yeo and Maxey [22], our
contact model includes tangential friction and stick/slip
transition behavior. Gallier et al. [23] used a similar
contact model compared to ours in their particle-resolved
DNS study, but with a subtle difference in the definition of
particle contact related to particle roughness, and their
contact force expressions are different from our model
except for the Coulomb friction force in the slip regime.
Furthermore, we use a larger domain size in our simula-
tions (domain height of 13.5 vs 10 particle diameters) and
consider a wider range of bulk solid volume fraction
(¢, = 0.1 —0.6).

In our study, we consider three different values for the
Coulomb coefficient of sliding friction, . =0, 0.2, and
0.39, to investigate to what degree ¢/¢,, and I, account for
variations in interparticle friction. The results are used to
perform a comprehensive comparison with previous work for
the microstructure, stresses, shear rheology, and frictional
rheology. To our knowledge, such comprehensive compari-
son has not been performed since the work of Gallier et al.
[23], after which new models were introduced for the fric-
tional rheology [27,33]. We consider the separate contribu-
tions from hydrodynamic and contact interactions to the
rheology modeling and investigate in what way the solid fric-
tion coefficient affects these contributions. This shows the
nuances of modeling the rheology for both the dilute regime,
where hydrodynamics dominates, and the dense regime,
where the contact interactions are most important. The pre-
sentation of our results as a function of both ¢/¢,, and I,
provides insight into the relation between the two rheology
descriptions.

Il. METHODS
A. Governing equations and contact model

The fluid phase is governed by the Navier—Stokes equa-
tions that are made dimensionless with the particle diameter
as a length scale, /s = d, the reciprocal of the shear rate as a
time scale, tef =1/7, and the fluid density, Py These
primary scales can be use to derive a velocity scale,
urer = yd, and a stress scale, 6, = pfdzjfz. This leads to the
following nondimensional equations:

V-u=0, (12a)

Ou 1
V.-uu=-Vp+—Vu, 12b
8t+ uu p—&—ReY u (12b)

in which u is the velocity, and p is the pressure. The motions
of the spherical particles are governed by the Newton—Euler

equations

du, 6
e _Z -n)dA +F. |, 13
Pr da (iw (o7 - mdd + > (130

do. 60
p,.T“Zz; (iﬁrx (af-n)dA+Tc>,

in which u, and o, are the translational and rotational veloc-

ity of a particle, respectively; the fluid stress tensor is defined

as oy = —pl + z- ((Vu) + (Va)"); n is the outward pointing
Y

(13b)

normal vector; r is the position vector with respect to the par-
ticle centroid; and the final terms, F,. and T,, are the force
and torque working on the particle as a result of contacts
with other particles or the channel walls. The fluid and solid
phase are coupled through a no-slip/no-penetration condition
on the surface of the particles

U=u.+@.XronA,. 14)

Contact between particles is handled using a soft-sphere
contact model, including lubrication corrections for short-
range particle-particle and particle-wall interactions, which is
described in detail by Costa et al. [35]. This contact model is
based on a linear spring-dashpot model in which rigid parti-
cles are computationally allowed to slightly overlap. The &

@

normal contact force is determined using [35] §
Fij,n = _knaij,n — Mulhijn, (15) ,J:

§

2

where 0, is the overlap distance between two particles, u;; ,
is the relative normal velocity of the particles, k, is the
normal spring coefficient, and 7, is the normal damping
coefficient. The effect of solid friction is incorporated in the
tangential contact force, which accounts for stick/slip transi-
tion according to [35]

Fy; = min(||~kys — naal, || =#cFiall )tz (16)

Here, 0;;; is the tangential displacement, u;, is the relative
tangential velocity, k; is the tangential spring coefficient, 7,
is the tangential damping coefficient, x,. is the Coulomb coef-
ficient of sliding friction, and ¢; is the surface tangent unit
vector.

The contact model coefficients k,, k;, n,, and n, depend
on the dry normal (e,) and tangential (e;) coefficients of res-
titution and the contact time (7,,) [35]. In the present DNS
study, we have fixed the latter at e, = 0.97, ¢, = 0.1, and
T.on = 4Ar with At the computational time step. To improve
the temporal resolution at which the lubrication and contact
forces are resolved, substepping is employed [35] with the
number of substeps within a computational time step set to
40 in the current simulations.

We have extensively validated our contact model against
experimental data for oblique particle-wall and particle-
particle collisions in viscous fluids in a previous study [35].
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Our model is more advanced compared to the work of Yeo
and Maxey [22] as it includes also tangential friction. Gallier
et al. [23] used a similar contact model in the sense that their
model does include tangential forces and stick—slip transition
behavior. However, there is a subtle difference in the defini-
tion of particle contact related to particle roughness, and their
contact force expressions are different from our model except
for the Coulomb friction force in the slip regime. They
define the start of particle contact by the moment when the
distance between the centroids of two spheres drops below
d + h,, with h, the particle roughness height, while in our
case, we assume particle contact to happen when the distance
drops below d. In our model, the effect of particle roughness
is included explicitly in the lubrication force corrections and
implicitly in the parameters of the collision model, notably
the Coulomb friction coefficient.

B. Numerical method and computational setup

The governing equations for the fluid phase are solved on a
fully staggered, Cartesian grid using a finite-volume/central-
differencing approach combined with a predictor/correcter and
third-order Runge-Kutta 3 (RK3) scheme for integration in
time. This method is explained in detail by Breugem [34]. For
the present simulations in the Stokes regime, the semi-implicit
Crank—Nicolson scheme was implemented for integrating the
diffusion term in Eq. (12b). An efficient IBM is used for the
fluid/solid coupling, by means of locally adding forces to the
Navier—Stokes equations near the boundary of a particle, to
enforce Eq. (14) by good approximation. In the present simu-
lations, this coupling is semi-implicit based on the approach of
Tschisgale et al. [36].

The integration of the Newton—Euler equations for the
solid phase is performed using the same RK3 scheme. For
particles in close proximity, lubrication force corrections are
used to account for subgrid hydrodynamic interactions, for
which a contribution is added to the contact force. This lubri-
cation force is capped for interparticle distances smaller than
the particle roughness, which is assumed to be 0.001d. The
grid resolution used for the simulations is d/Ax =16,
meaning there are 16 grid cells for the fluid phase over one
particle diameter. This resolution was successfully used in
the rheological study by Picano ef al. [37] in the weakly iner-
tial regime.

In this work, we consider neutrally buoyant spherical par-
ticles, p, =1, that are monodisperse in size. The main
parameters that we vary are the bulk volume fraction, which
ranges from ¢, = 0.1 to ¢, = 0.6, and the Coulomb coeffi-
cient of sliding friction, which is set to 4. = 0, u, = 0.2, and
. = 0.39. The value of p. =0.39 is based on the value
measured for polystyrene spheres in recent tilted-flume
experiments by Shajahan er al. [38]. This gives a total of 24
cases, as specified in Table I. The same friction coefficient
is used for interparticle and particle-wall contacts. The com-
putational domain is a rectangular box with dimensions:
L,=L,=13.5d and L, = 27d. A schematic of the computa-
tional domain is shown in Fig. 1. The domain is periodic in
the x and y directions, while a no-slip/no-penetration boun-
dary condition is imposed on the walls. The shear Reynolds

TABLE I. Parameters of the simulated cases: g, is the Coulomb coefficient
of sliding friction, ¢, is the bulk solid volume fraction, N, is the number of
particles, #,7 is the transient time of the simulation until the flow is fully
developed, #,y is the duration of the simulated steady-state, L., is the width
of the core region, L, is the width of the wall region, ¢. is the average
solid volume fraction in the core region, and y, is the average shear rate in
the core region.

He b N, Ly tsy  Leoreld  Lyauld b 7l

0 0.1 940 94 102 2.5 5.5 0.104  0.980

0 0.2 1880 94 102 2.5 5.5 0.208 0.980

0 0.3 2819 63 53 2.5 5.5 0.309 0.969

0 0.4 3759 94 61 2.5 5.5 0.410  0.901

0 0.45 4229 109 105 2.5 5.5 0.454  0.876

0 0.5 4699 125 89 2 5.75 0.486 0.831

0 0.55 5169 156 83 1.6 5.95 0.517 0.974

0 0.6 5639 125 114 1.6 5.95 0.565 0.939

0.2 0.1 940 94 94 2.5 5.5 0.109 0.963

0.2 0.2 1880 94 94 2.5 5.5 0.210 0.971

0.2 0.3 2819 63 61 2.5 5.5 0.312 0.954

0.2 0.4 3759 94 52 2.5 5.5 0.410  0.885

0.2 0.45 4229 109 97 2.5 55 0.458 0.817

0.2 0.5 4699 94 120 2 5.75 0.503 0.719

0.2 0.55 5169 125 84 1.6 5.95 0.504 0.834

0.2 0.6 5639 125 55 1.6 5.95 0.561 0.879

0.39 0.1 940 94 102 2.5 5.5 0.105 0.975

0.39 0.2 1880 94 102 2.5 5.5 0.210 0.971

039 0.3 2819 55 44 2.5 5.5 0.312 0.948

0.39 0.4 3759 63 55 2.5 5.5 0.414  0.860

0.39 0.45 4229 109 105 2.5 5.5 0.460 0.788 ,

0.39 0.5 4699 94 66 1.8 5.85 0.510 0.644 5

0.39 0.55 5169 156 83 1.6 5.95 0.523 0.473 g

0.39 0.6 5639 188 45 1.6 5.95 0.580 0.771 i
o
N
S
N
o

number is set to Re; = 0.1 for this study. This value is =
chosen to be in the Stokes regime while still being high
enough to allow particles to move over sufficiently large dis-
tances during the course of a simulation such that the flow
and spatial particle distribution become independent from the
initial condition. The particles are initialized by a random
positioning in the domain, while making sure there is no

Vtop
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L, ©
@ y
X UVbottom
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FIG. 1. Schematic representation of the computational domain indicating
the velocities of the top and bottom wall. The numbers along the coordinate
axes denote the flow (1), velocity gradient (2), and vorticity (3) directions.
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overlap between particles and of particles with the wall. For
concentrations above 30%, this random initialization is not
feasible anymore. Therefore, a body centered cubic (BCC)
structure, with random perturbations in the particle positions,
is used for the higher concentrations. The spacing of the
BCC structure is adapted to fit the desired number of parti-
cles in the domain. The flow is initialized by imposing a
linear velocity (plane Couette) profile in the streamwise
direction over the entire domain. The initial translational and
angular particle velocities are set to the local fluid velocity
and half of the local fluid vorticity at the position of the parti-
cle centroid. Parameters for the computational setup, as well
as derived quantities, are listed in Table 1.

C. Statistical averaging

The data from the DNS consist of detailed three-
dimensional velocity and concentration fields. These fields
need to be averaged over space and time to gain useful
insights into the flow dynamics. For plane Couette flow, the
mean flow only varies in the wall-normal direction.
Therefore, we apply plane-averaging over planes parallel to
the walls, followed by averaging over time. For the so-called
superficial average of the velocity, this can be expressed as

— 1

W)@ =1 I Z Z w(x, y, 2 O(1 — ax, y, z, 1) AxAy,
(17a)

— 1

()2 = - I Z Z}j u,(x, y, 2, Dalx, y, 7, HDAxAy,  (17b)

for the fluid and solid phase, respectively. The brackets and
bar denote the spatial averaging and ensemble averaging of
samples collected over time, respectively. Here, a is the
solid phase indicator function (0 in the fluid and 1 in the
particle phase), which is also used to determine the mean
local concentration as a function of the wall-normal coordi-
nate using

d(z) =

1
L E E a(x, v, z, HAxAy. (18)
by 1 y

Using the superficial averages and the mean local concentra-
tion, the intrinsic (phase-averaged) velocities can be com-
puted as

7 (uy)
(ug) = e (19a)
P _ () 19b
<“p> (z) . (19b)

In addition to the averaging, the superficial (macroscopic) par-
ticle stresses need to be computed to describe the rheology of
the suspensions. The microscopic particle stress distribution
within the particles is not explicitly solved in the DNS as this
is not required for rigid particles. However, it can be approxi-
mated from the average microscopic stress within a particle,
based on the stress distribution on the particle’s surface and
the contact forces acting on the particle according to

6
Pij ?

where the surface integral is equal to the hydrodynamic parti-
cle stresslet for freely rotating particles with zero net torque
and the summation accounts for the contribution from the
particle contacts. Similar to the superficial velocity averages,
the superficial particle stress can be determined as a function
of the wall-normal coordinate using

rjO'f,iﬂ/lldA + Z erc,i> N (20)

p

1
(0p)@ = LL Z 0%y, 7, DA, Y, z, DAXAY.  (21)

Note that ¢, ; at the right-hand side of Eq. (21) is approxi-
mated by the average stress within a particle and may, there-
fore, deviate from the actual local stress within a particle
when the particle stress distribution is strongly heteroge-
neous. As a result, the particle stress profiles may show artifi- 5
cial fluctuations near the wall where the gradients in the solid g
volume concentration are large due to particle layering.s
Nonetheless, in the present study, we focus on the rheology =
in the homogeneous core region of the channel for which %
Eq. (20) is a good approximation.

0

101

lll. RESULTS

The best way to get a first insight into the suspension
behavior is to look at the particle positions and velocities in
the domain. A snapshot of the simulations with ¢, = 0.5 is
shown in Fig. 2 for a time instance at which the flow is fully
developed. The figure shows the spatial particle distribution
and particle velocities in a 3D-slab and two perpendicular
cross-sections of the flow domain, for a friction coefficient of
#. =0 (a) and g, = 0.39 (b). As is visible from the colors,
the particles at the top of the domain move in the positive y-
direction with the wall velocity and the particles at the
bottom move the opposite way with the same velocity. The
particles in the interior show a smooth velocity gradient from
the bottom to the top of the domain with a velocity close to
zero at the centerline. Figure 2(a), corresponding to a friction
coefficient of u. = 0, shows that there is a clear particle lay-
ering along the walls that extends into the domain over a dis-
tance of approximately 4 particle diameters, after which the
layering is less distinct. Furthermore, outside this region of
particle layering, the particles align in trains that are oriented
approximately from the top left toward the bottom right of
the domain. This alignment is along the compressional axis
of the flow which is the direction in which the most particle
contacts are expected for a random particle distribution under
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FIG. 2. Visualization of the particles in a 3D-slab and two perpendicular cross-sections of the flow domain for the cases with ¢, = 0.5 and a friction
coefficient of u. = 0 (a) and . = 0.39 (b). The particles are colored by their centroid velocity in the flow direction normalized by the wall velocity.

shear. The addition of solid friction, shown in Fig. 2(b),
results in less distinct wall-induced layering that extends into
the domain over a distance of approximately 2 particle diam-
eters. The alignment of particles along the compressional
axis is, therefore, also more clearly visible, as the region of
the domain where this occurs is larger in this case.

Figure 3 shows a snapshot of the particles in the flow for
the case with ¢, = 0.6 and p. = 0.39. This case shows a
pronounced wall-induced layering that extends throughout
the entire domain, where the layers of particles at the wall
are very neatly aligned in the flow directions. Around the
centerline of the channel the layers are somewhat distorted
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FIG. 3. Visualization of the particles in two perpendicular cross-sections of the flow domain for the case with ¢, = 0.6 and a friction coefficient of u. = 0.39.
The particles are colored by their centroid velocity in the flow direction normalized by the wall velocity.

but remain clearly visible. The alignment of the particles in
the streamwise direction differs strongly from the case with
¢, = 0.5 where the alignment of the particles is along the
compressional axis of the flow, indicating a change in
dynamics when the solid volume fraction is high enough
for the wall-induced ordering to span the entire domain.
Moreover, looking at the xz-plane shown in the right pane
of Fig. 3, additional structuring of the particles is visible. In
this plane, the particles are arranged in a hexagonal
packing, which is clearly visible in the entire domain.

As explained in Sec. I C on statistical averaging, the
results of the simulations are plane-averaged in planes paral-
lel to the channels walls. This leads to statistics as a function
of the wall-normal coordinate in the channel, which are then
time-averaged over the simulated time period in which the
flow is fully developed. The resulting concentration profiles
are a good way to get an overview of the effect of volume
fraction and solid friction on the particle distribution in the
suspensions. Figure 4 shows the concentration profiles for all
cases. These profiles affirm the observation we made in
Fig. 2 that there is particle layering near the wall. The layer-
ing is more severe with higher bulk volume fraction and
extends into the domain with multiple clear layers for
¢, > 0.4. For the cases with a concentration of ¢, > 0.55,
the layering even extends throughout the entire domain, as
was also observed in Fig. 3 for the highest concentration. In
addition, the concentration profiles show that the wall-
induced layering changes from ¢, = 0.55 to ¢, = 0.6, for

4. = 0.39. This can be seen from the number of peaks in the
profiles, equal to 15 and 16 peaks (versus 23 and 24 at the
start of the simulation) for ¢, = 0.55 and ¢, = 0.6, respec-
tively. This is in line with the hexagonal packing that was
observed in Fig. 3. The change in layering occurs at a lower
volume fraction, between ¢, = 0.5 and ¢, = 0.55, for the
suspensions with a lower friction coefficient, showing that
the layering is partially mitigated by the increase of solid
friction. The increase in friction coefficient also leads to less
distinct peaks near the wall, which was previously observed
by Gallier et al. [24].

Next to the concentration profiles, we also look at the
velocity profiles. The mean intrinsic fluid velocity normalizedg
by the wall velocity is shown in Fig. 5 for all three friction§
coefficients. The fluid velocity for the cases without friction 3
shows a slight dependence on the solid volume fraction. Forg
increasing volume fraction, the velocity gradient or shear rateg
decreases for the region around the center of the channel. This ~
effect is stronger with increasing friction coefficient and
clearly visible at u,. = 0.39. There is a minimum in the shear
rate as a function of the bulk volume fraction after which the
shear rate increases again. This increase corresponds to the
cases with layering throughout the entire domain, showing that
this also affects the fluid velocity profile.

In Fig. 6, we compare the mean intrinsic fluid and particle
velocity profiles for the cases with ¢, = 0.4 and for friction
coefficients of y. =0 and p. = 0.39. While in the core
region, the particle and fluid velocity are almost exactly
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FIG. 4. Mean solid volume fraction for cases with . = 0 (a), u. = 0.2 (b), and u. = 0.39 (c) as a function of the wall-normal coordinate.
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FIG. 5. Mean intrinsic fluid velocity normalized by the wall velocity for cases with . = 0 (a), u. = 0.2 (b), and u. = 0.39 (c) as a function of the wall-normal

coordinate.

equal, macroscopic particle/fluid slip is observed in the wall
region, which is more clearly illustrated in the inset. At the
wall (z/d = 0) the fluid moves with the velocity of the wall
due to the no-slip condition that is enforced there. The parti-
cle phase does not have to obey a no-slip condition and
shows a slightly lower velocity at the wall. Moving away
from the wall the profiles fluctuate somewhat until a position
of z~ 1.25d where the velocity profiles coincide again,
showing that the slip only occurs in a thin layer near the wall
with a thickness on the order of a particle diameter. Even
though the velocity profiles change with friction coefficient,
the slip velocity is very similar as well as the width of the
layer where the slip occurs for both friction coefficients
shown in Fig. 6.

From the concentration and velocity profiles, we conclude
that there is a distinct difference in suspension dynamics
between the wall region and the core of the channel. The first
notable difference is the wall-induced layering, which origi-
nates from the constraint that particles cannot overlap with
the flat solid walls and which is amplified by the perfect
monodispersity of the spheres. Second, there is significant
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FIG. 6. Mean intrinsic velocity normalized by the wall velocity for the fluid
and solid phase as a function of the wall-normal coordinate, shown for the
cases with ¢, = 0.4 and for friction coefficients of x, =0 and u. = 0.39.
The black dashed line indicates the single phase reference, and the inset
shows the slip between phases close to the wall.

macroscopic particle-fluid slip in the wall region. This is
caused by the no-slip condition for the fluid, while the parti-
cles are allowed to slip. The choice of monodisperse spheres
and flat walls in the present study was motivated by the sim-
plicity of the system and of the related implementation in our
in-house particle-resolved DNS code. In the analysis of the
suspension rheology, we carefully distinguished between the
wall-affected layers on the one hand and the core region with

a homogeneous mean concentration and linear mean velocity
profile on the other hand. Furthermore, as wall-induced layer-
ing becomes progressively more important for increasing
bulk concentration, we ignored the cases with the highest
bulk concentrations where a homogeneous concentration in§
the core is absent. In the literature, different methods have§
been used to counteract the tendency of particle layering3
along the walls, such as (1) using a bidisperse or polydis—§
perse particle size distribution as these are naturally less 8
prone to ordering [39,40], (2) exchanging the flat walls fora
walls with a roughness on the order of the particle size,
which is widely used in suspension rheometry [41-43] and
also applied in numerical investigations [44—46], and (3)
using Lees—Edwards (periodic and sliding) boundary condi-
tions [47-49] for the particles, which removes the constraint
that particles cannot overlap with the walls. The use of such
methods is recommended for future research, in particular, to
extend the currently explored range of bulk concentrations in
our rheology analysis toward the jamming limit.

The width of the core region, L.y /d, is defined around
the centerline with a value set to Le,./d = 2.5 for the cases
up to ¢, = 0.45, while set somewhat smaller for the cases
with ¢, > 0.5, see Table I. We would like to stress the fact
that splitting the domain in a wall and a core region makes it
possible to obtain an accurate description of the suspension
rheology in the statistically homogeneous core with a
uniform concentration profile. The cases with ¢, > 0.55 for
which the wall-layering extends throughout the entire domain
are excluded from the analysis and model fits. Figures 4
and 5 show that the concentration and shear rate in the core
region differ slightly from the bulk quantities. For the core,
we, therefore, determined the average shear rate (y.) and
average concentration (¢,.), of which the values are also
listed in Table I. The cases with ¢, = 0.4 will be used as an
example throughout this work because these cases nicely
illustrate the suspension in the dense regime.
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In order to investigate the suspension microstructure in the
core region, we computed the particle pair distribution func-
tion (PPDF). This expresses the likelihood of finding a
neighboring particle at a certain distance and orientation, r,
with respect to an arbitrary reference particle in the core
region

o) = (22)

NN — 1

V/Viox ) SN 6(r— @y, —xp).
P Pa

where V is the total volume of the core region, V,,, is the
voxel volume of the regular voxel grid used for the calcula-
tion, N is the total number of particles in the core region, x,
is the centroid position of the reference particle, and x, is
the centroid position of the neighboring particle. The func-
tion & gives a value of 1 if the particle centroid of the neigh-
boring particle is in the voxel of interest and O otherwise. In
Eq. (22), g(r) is normalized such that g(r) = 1 for a statisti-
cally homogeneous particle distribution in space. Figure 7
shows the PPDFs for a selection of cases with a bulk volume
fraction up to ¢, = 0.5 and for friction coefficients of . =0
and u,. = 0.39, calculated for the core region of the domain.
The color shows the probability of finding another particle
centroid at that location, with blue being a lower than
average probability and red being higher. Note that the scale
of the colorbar is split in two parts at a value of 1, with both
red and blue scaling linearly but with different factors. The
top row shows the cases with u. = 0, while the bottom row
shows the cases with u, = 0.39. The bulk volume fraction
increases from left to right. The PPDFs obtained from our
simulations show good qualitative agreement with the experi-
ments of Parsi and Gadala-Maria [50] and Blanc et al. [51],
obtained using a Couette rheometer. Our results are also in
good agreement with the Stokesian Dynamics simulations of
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Foss and Brady [52], for their high Péclet cases, and of
Sierou and Brady [21]. From the figures, it becomes clear
that fewer particles reside near the reference particle in the
extensional flow direction, in the so-called depletion zones.
The size of these zones becomes smaller with increasing
volume fraction and shifts to a position closer to 45° from
the positive y-axis. Furthermore, the spots of high probability
at r = 1d become more prominent with higher volume frac-
tion and shift toward the y-axis, indicating more frequent
contact of particles in this direction. This corresponds to the
snapshots of the spatial particle distribution and the concen-
tration profiles shown before. For the dense cases, secondary
rings of higher than average probability appear at a position
of r = 2d corresponding to multiparticle interactions. These
secondary rings are more clearly visible in the compressional
quadrants of the figure, corresponding to the particle trains
that we observed in Fig. 2. Additionally, in the cases without
friction horizontal streaks of higher probability are visible for
¢, > 0.3 showing the preference of particles aligning paral-
lel to the wall. It is important to note that this effect is much
stronger in the cases without friction, showing that solid fric-
tion decreases the tendency for wall-induced layering in
dense suspensions.

A convenient way to compare the PPDFs of different
cases is to radially average over a thin shell between
1 <r/d <1.05 around the particle as a function of the
position on the particle. This gives a good indication of the
position on the particle where close interactions with neigh—§
boring particles occur. Figure 8(a) shows the PPDFs in this &
thin shell for the same cases that are shown in Fig. 7. The%
angle 0 is defined clockwise from the negative y-axis as
depicted in the figure. The first feature that stands out is that &
the lower theta-bound of the depletion zones (g < 1) coin-&
cides for all the volume fractions investigated, with and
without friction, and is located at approximately 37z/4 and
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FIG. 7. PPDF shown for the core region and shear plane. The different panels correspond to different concentrations (¢, = 0.2 — 0.5, increasing from left to
right) and different friction coefficients (u, =0 for top and . = 0.39 for bottom panels). The black disc denotes the reference particle. The shell of
0.5 <r/d <1 is blanked out as it is an excluded volume inaccessible to neighboring particles. Note that the scale of the colorbar is linear, but split in two
parts, with an eleven times steeper increase for values above 1 than for values below 1.
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FIG. 8. PPDFs in the core region, averaged over a thin shell around the reference particle (1 < r/d < 1.05) and shown for a selection of cases with bulk
volume fractions up to ¢, = 0.5 (a) and comparison of the cases with ¢, = 0.4 with the literature (b).

Tr/4, respectively. The width of this depletion zone
decreases with increasing volume fraction but seems insensi-
tive to the friction coefficient. Following this depletion zone,
a peak develops at 8 = n with increasing volume fraction.
This peak indicates the alignment of particles parallel to the
walls. This alignment is stronger for the cases without friction,
which is evident from the larger peak amplitude. The plateaus
that are visible for all cases correspond to the compressional
quadrants of the shear flow. In this plateau, the probability
increases with increasing volume fraction and is mostly insen-
sitive to the friction coefficient. Figure 8(b) shows the PPDF
in the shell for the cases with ¢, = 0.4 over a range of
0 < 0 < 7. The numerical results of Gallier et al. [23] and
Yeo and Maxey [22] are shown for comparison. Our data
show very good agreement with the data from the literature.

The applied shear results in stresses inside the microstruc-
ture of the suspensions, which can be used to determine the
rheology of the suspension. The total shear stress is defined
as [cf. Eq. (4.1) in Batchelor [53] and Eq. (7.3) in Guazzelli
and Morris [54]]

where the first term on the right-hand side is the viscous
shear stress with (v,,) = (v,) + (v¢) the mixture velocity, the
second term on the right hand side is the particle shear stress,
and the last two terms on the right hand side correspond to
the Reynolds stresses from fluctuating fluid and particle
motions, respectively. The Reynolds stresses are very close
to zero for the present simulations, as expected in the Stokes
regime, and are hence omitted in our analysis of the stresses. N
Figure 9 shows the shear stresses for the cases with S
¢, = 0.4. Comparing the total stress of the three friction §
coefficients shows that the shear stress increases with increas-%
ing friction coefficient. For all three cases, the total stress is®
constant in the core region, as expected for a fully developed S
flow, but fluctuations are observed in the wall regions. The 3
fluctuations are caused by the approximation of the micro-
scopic particle stress within the particles by the
particle-averaged value, resulting in a bias when the stress
distribution is strongly inhomogeneous as is the case in the
wall regions, see the discussion in Sec. II C. Irrespective of
the friction coefficient, the largest part of the shear stress is
the particle stress. This particle stress also accounts for the
increase in total stress with increasing friction coefficient, as
the viscous stress is similar for all three cases. The particle
stress consists of two separate contributions originating from
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FIG. 9. Mean shear stresses (o 12) for the cases with ¢, = 0.4 for a Coulomb friction coefficient of u, = 0 (a), g, = 0.2 (b), and ., = 0.39 (c), plotted as a
function of the wall-normal coordinate. Dashed lines show the decomposition of the particle stress in a hydrodynamic and contact contribution.
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FIG. 10. Mean wall-normal stresses (0;2,) for the cases with ¢, = 0.4 for a Coulomb friction coefficient of x. =0 (a), . = 0.2 (b), and u, = 0.39 (c),
plotted as a function of the wall-normal coordinate. Dashed lines show the decomposition of the particle stress in a hydrodynamic and a contact contribution.

the hydrodynamic interactions (0?3") and the contacts
(o915'") between particles. These are shown in Fig. 9 as the
dashed and dotted line, respectively. The hydrodynamic con-
tribution is larger than the contact contribution for the cases
with g, = 0 and u. = 0.2, whereas the two contributions are
equal for the case with . = 0.39. By increasing the friction
coefficient, only the contact contribution to the particle stress
increases. This shows that the increase in total shear stress is
completely caused by the stress originating from the particle
contacts.

Next to the shear stress components, the normal stress
components are important for the description of the suspen-
sion rheology. Figure 10 shows the wall-normal stresses for
the cases with ¢, = 0.4. The total wall-normal stress is

defined as

(022) = —(pr) + {op22)s (24)

where the first term is the fluid pressure and the second term
is the wall-normal particle stress. We remark that in the DNS
a zero reference pressure at the walls is used. Similar to the
shear stress, the total stress magnitude increases with
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increasing friction coefficient. The particle stress provides the
largest contribution to the wall-normal stress and moreover is
the term that increases with increasing friction coefficient.
Decomposing the particle stress into the hydrodynamic con-

Wact%

tribution (0'?; %) and the contact contribution (o oy
shown as the dashed and dotted line, respectively, shows that
the contacts give the largest contribution to the particle
stress. Moreover, the hydrodynamic contribution has the
opposite sign to the total particle stress and is close to zero.
From the stress budget in the shear plane we can deter-
mine the relative viscosity using the total shear stress divided

by the viscous shear stress
M4 lon) (25)
o 1 9{vm)
Re; 0z

Doing this, for all the cases, we can determine the relative
viscosity as a function of the volume fraction, which is
shown in Fig. 11(a). Our data are shown together with the
numerical results of Yeo and Maxey [22] and Gallier et al.
[23], as well as the experimental data from Zarraga et al. [17]
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FIG. 11. Relative viscosity as a function of the volume fraction (a) and the volume fraction normalized by the maximum flowable packing fraction (b), where
&,, is determined by fitting the Maron—Pierce correlation [15], Eq. (5), to the data indicated by the solid line. Colored markers show our data, where the open
markers indicate the cases with ¢, > 0.55, exhibiting pronounced particle layering, that were excluded from the fit. Black markers show data from the literature
[17,18,22,23]. The dashed lines show the relative viscosity derived from the frictional rheology model defined in Eq. (30) using 7, = u/I,.
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and Dbouk et al. [18]. We observe good agreement between
our simulations and the results from the literature up to
volume fractions of ¢, = 0.5; however, the experimental
results show consistently higher relative viscosity over the
entire range. The dashed lines show the relative viscosity
derived from the frictional rheology model and will be dis-
cussed later. The analytical result of Batchelor and Green
[13], valid for concentrations up to ¢ ~ 0.1 and defined in
Eq. (4), is shown for reference as the dashed-dotted line. We
observe that our results at ¢, = 0.2 are only slightly higher
than predicted from this relation, suggesting a still minor role
of contacts at this concentration. From Fig. 11(a) we observe
that the data does not collapse onto a single curve. A clear
influence is present of the friction coefficient, in line with
Eq. (1) based on dimensional analysis. It is only for the
lower concentration range, where contacts play a minor role,
that the data seem to collapse. For the cases with ¢, > 0.55,
we observe a deviation from the trend with a decrease in rela-
tive viscosity. This deviation can be explained by the layer-
ing of particles that we observe for these cases. The particle
layering makes it easier for particles to slide past each other,
decreasing the resistance to shearing motion and, therefore,
decreasing the relative viscosity. The deviation from the
trend at high volume fraction is even more visible in
Fig. 11(b). This figure shows the relative viscosity as a func-
tion the volume fraction normalized by the maximum flow-
able packing fraction ¢,,. The maximum flowable packing
fraction is determined by fitting the Maron—Pierce correlation
[15], given by Eq. (5), to the data, excluding the cases with
layering throughout the domain. All data collapse to a single
curve, showing that the effect of solid friction can be
accounted for using the maximum flowable packing fraction.
The values of the maximum flowable packing fraction that
we find are ¢, = 0.70, ¢,, = 0.66, and ¢,, = 0.64 for the
cases with u. =0, p.=0.2, and u, = 0.39, respectively.
These values are somewhat higher than those of the experi-
mental datasets from the literature but are in line with the
values reported in the numerical studies of Yeo & Maxey [22]

35 : . . - —
—4—hydro, p =0 | |
30 - — = —contact, B = 0 | I H
hydro, hy =02 ] |
251 contact, p, = 0.2 | I
—4—hydro, . =0.39 1 q

o 20 — = —contact, u, =0.39 5 ! H
<\§ ----- Batchelor & Green (1972) / )

and Gallier et al. [23]. It is worthwhile to note that the values
for ¢,, do not change significantly when the cases with ¢, =
0.5 are excluded from the fit, indicating that the core region of
these cases is not affected by wall-induced layering.

Figure 12 shows the decomposition of the relative viscos-
ity into the hydrodynamic and contact components, where
the hydrodynamic part is the sum of the contribution from
the viscous stress and the hydrodynamic contribution to the
particle stress. The lines show the relative viscosity derived
from the frictional rheology model and will be discussed
later. In Fig. 12(a), it can be seen that for low volume frac-
tions the hydrodynamic component accounts for the largest
part of the viscosity. With increasing volume fraction the
contact part becomes more important and accounts for the
strong diverging nature close to the maximum flowable
packing fraction. The effect of friction is not visible in the
hydrodynamic part, for which the data overlap in the range
of volume fractions considered here. For the contact part, it
becomes clear that friction causes a divergence of the relative
viscosity at a lower volume fraction. For the frictionless case,
it is interesting to note that the hydrodynamic contribution is
the largest over the entire range of volume fractions investi-
gated. On the contrary, for the cases with friction the contact
contribution exceeds the hydrodynamic for ¢,>0.45. This
figure also shows that the breakdown of the diverging trend
for the high volume fractions originates primarily from the
contact contribution, which decreases for the cases with pro-
nounced layering in the core region. We again included the§
analytical expression of Batchelor and Green [13], Eq. (4),§
for reference as the dashed-dotted line. The close agreement%
between the our data and this relation at ¢, < 0.2 indicates §
that at low volume fractions the hydrodynamic contribution 8
can be described using this relation. Additionally, this close &
agreement suggests that the hydrodynamic contribution
scales with ¢, rather than ¢,/¢,,. Figure 12(b) shows the
decomposition of the relative viscosity as a function of the
normalized volume fraction. The normalization causes a col-
lapse of the contact part up to ¢,/ ¢,, = 0.7, while the effect
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FIG. 12. Decomposition of the relative viscosity into the hydrodynamic and contact contribution as a function of the volume fraction (a) and the volume frac-
tion normalized by the maximum flowable packing fraction (b). The markers show the DNS results, where the open markers indicate the cases with ¢, > 0.55,
exhibiting pronounced particle layering. The lines show the relative viscosity derived from the frictional rheology model defined in Eq. (30) using 1, = u/I,.
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of the friction coefficient now becomes apparent in the
hydrodynamic part of the relative viscosity. This shows that
although the relative viscosity collapses with ¢,/ ¢,,, the sep-
arate contributions do not completely collapse.

As discussed in the Introduction section, an alternative way
to describe the shear rheology of suspensions is using the fric-
tional rheology description, where the macroscopic friction
coefficient u is expressed as a function of the viscous number
I,. These can be determined from our simulations using the
viscous shear stress over the wall-normal particle stress
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R 12 0z
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x

I, = (26)

for the viscous number and the total shear stress over the
wall-normal particle stress
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for the macroscopic friction coefficient. Figure 13(a) shows
the macroscopic friction coefficient as a function of the
viscous number. Our data are denoted by the colored
markers, the colored lines present a model description of our
data, and the black lines are models from the literature
[19,23,27,33]. Comparing our data to the models from the lit-
erature shows good agreement at low viscous number (high
solid volume fraction); however, at high I,, there is only a
qualitative agreement between our data and the models. At
these high viscous numbers, our simulations give a consis-
tently higher macroscopic friction than the models predict,
for which the model of Gallier et al. [23] is the closest
match. The deviation of our data from the models might be
caused by the choice for the particle pressure when calculat-
ing the viscous number and macroscopic friction coeffi-
cient. In the experiments of Boyer et al. [19], a constant
particle pressure is imposed; however, it is not entirely clear
whether this corresponds to the full normal particle stress or
only the contact contribution. Gallier et al. [23] noticed that
the agreement between their simulations and the model by
Boyer et al. [19] is better when using only the contact
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FIG. 13. Frictional rheology with (a) the macroscopic friction coefficient, (b) the normalized volume fraction, (c) the hydrodynamic part of the macroscopic
friction coefficient, and (d) the contact part of the macroscopic friction coefficient as a function of the viscous number. Colored lines show fits to the data, and
black lines show models from the literature [19,23,27,33]. Open markers indicate the cases exhibiting pronounced particle layering in the core and were

excluded from fits.
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TABLE II. Fitting coefficients for the frictional rheology model compared to the coefficients found in the literature.

1.=0 1e.=02 1.=0.39 Boyer et al. [19] Gallier et al. [23] Chevremont et al. [27]
b 0.72 0.69 0.67 0.585 0.64 )
n 0.3664 0.3421 0.3309 0.5 04 0.5
[n] 3.53 3.27 3.07 2.5 24 25
iy 0.2 0.3 0.36 0.32 0.32 0.36
s 0.71 0.88 1.04 0.7 0.7 0.7
Iy 0.0194 0.0368 0.0584 0.005 0.005 0.0133

contribution to the normal stress. To check the effect on the
frictional rheology modeling, we tried using the complete
wall-normal stress, the wall-normal particle stress, and the
contact contribution to the wall-normal particle stress. We
decided to use the wall-normal particle stress, based on the
results shown in the Appendix. Finally, we note that the
deviation seen for high viscous number from the model of
Gallier et al. [23] might also be related to subtle differences
in the contact modeling; both u and /, are normalized with
the wall-normal particle stress, which becomes small for
high I, and, hence, is sensitive to how particle contact is
dealt with.

A slight deviation from literature models is also present
for the relation between the solid volume fraction and the
viscous number, as shown in Fig. 13(b). Here, the model of
Gallier et al. [23] matches the closest to our data; however,
there is still a slight deviation that increases with increasing
friction coefficient and is more visible toward the high and
low end of the viscous number range. The relations used by
Lecampion and Garagash [33], and Chevremont et al. [27]
are identical to the original model proposed by Boyer et al.
[19], defined in Eq. (8). To model our results, we start with
this relation between the viscous number and the solid
volume fraction, which we determine by fitting the relation
used by Gallier et al. [23] to our data

b= P 28)

Here, ¢,, and n are the fitting parameters. To see how well
the viscous number collapses the data, we fit Eq. (28) to each
friction coefficient separately. The fits are shown in
Fig. 13(b) as the colored solid lines, and the fitting coeffi-
cients are listed in Table II. The results for all three friction
coefficients can be modeled very well separately using this
relation, giving values for ¢,, (see Table II) that are slightly
higher than those determined using the Maron—Pierce corre-
lation [15] for the relative viscosity [see legend of
Fig. 11(b)]. However, the similarity in fitting coefficient n
indicates that our data might also be modeled using a single
value for n.

To model the relation between the macroscopic friction
coefficient and the viscous number, the macroscopic friction
coefficient is decomposed into its separate contributions. The
hydrodynamic part 4" is shown in Fig. 13(c), together with
the corresponding contribution of the literature models. Here,
we can see that the model of Gallier et al. [23] shows the

best agreement to our data, especially for low [7,. With
increasing viscous number, we see that the hydrodynamic
contribution is underestimated by all models. Using the
model of Gallier et al. [23], as defined in Eq. (9), we can fit
the hydrodynamic contribution to the macroscopic friction
coefficient ,uh. Here, ¢,, and n are already determined,
leaving [n] as the only fitting coefficient. This fit gives the
values of [n] for all three solid friction coefficients, which
are also listed in Table II. The colored solid lines in
Fig. 13(c) show that these fits provide a very good descrip-
tion of our data. It is interesting to note that the effect of fric-
tion plays a role in the hydrodynamic contribution at low
viscous numbers, showing that the hydrodynamic part of the
particle shear stress decreases with increasing friction coeffi-
cient. At high viscous numbers, the fits overlap and show
that solid friction does not affect the hydrodynamic contribu-
tion in the dilute limit, as expected. The contact part u¢ is
shown in Fig. 13(d), which only shows weak dependence on
the viscous number over the range investigated in this work.
However, the plateau that exists at high viscous number
depends on the Coulomb coefficient of sliding friction .. <
This contradicts the results of Chévremont et al. [27], who S
found a plateau value of 0.7 irrespective of the solid friction.
They did observe a deviation from the master curve for cases
with a low g, at lower viscous numbers. There is a limited
agreement between our data and the models, which seem to
have the right shape but not the right coefficients to describe
our data. Our data on the contact contribution show a depen-
dence on the solid friction coefficient, which was also found
by Cheévremont et al. [27] but dismissed in their modeling.
To be able to fit the contact contribution defined as

02 20z Aeniged 0z
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¢ = Kac L 29
u #1+1+10/Iv (29)

we need to choose appropriate values for y; as we have no
data at very low viscous numbers. To do this, we used the
result of Chevremont et al. [27] by looking at the low I,
plateau in the contact contribution. The values we chose are
#; =0.2, u; = 0.3, and u; = 0.36 for the cases with u, = 0,
H.=0.2, and u, = 0.39, respectively. The resulting fits are
shown in Fig. 13(d), and the fitting coefficients u, and /) are
listed in Table II. The figure shows that Eq. (29) is able to
describe our data very well with fitting coefficients that are
of the same order as those found in the literature. Adding the
two contributions together provides a description of the com-
plete macroscopic friction coefficient as shown in Fig. 13(a).
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The colored solid lines are the result of fitting the separate
contributions to the contact and hydrodynamic parts, which
shows very good agreement to the data. The model, which is
essentially the one proposed by Boyer et al. [19] with
adjusted coefficients, only shows dependence on the solid
friction coefficient in the limit of low viscous numbers. The
decomposition of u shows that the effect of friction is present
in both the hydrodynamic and contact contributions, whereas
the total does not show this dependence due to compensating
effects of friction that cancel each other.

Using Egs. (9), (28), and (29), we can derive a relation for
the relative viscosity based on the frictional rheology model

et Hy

Hy — Hy
Ny 1,

- -
(¢m/¢ - l)l/n (¢1n/¢ - l)l/n + ]O

-1
+1+[n]¢<1 —%)

(30)

This results in a relative viscosity that is not only a function
of ¢/¢,, but also depends on the model coefficients that are,
in turn, a function of the solid friction. Equation (30) does,
however, provide a very good description of the relative vis-
cosity as a function of the solid volume fraction, as can be
seen from the dashed lines in Fig. 11(a). At low volume frac-
tions, Eq. (30) nearly coincides with the Batchelor and Green
relation [13], shown by the dashed-dotted line, although in
the limit of ¢¢ — 0 our model does overpredict the Einstein
viscosity since [n] > 2.5. Normalizing the volume fraction
by ¢,, found by the Maron—Pierce fit to the data also shows
a collapse for Eq. (30); however, this does not result in a
single curve for different solid friction coefficients, as is
shown by the dashed lines in Fig. 11(b), although the differ-
ence is small.

The relative viscosity derived from the frictional rheology
model can also be decomposed into two separate contribu-
tions, with the first two terms in Eq. (30) accounting for the
contacts while the final two terms account for the hydrody-
namic contribution. The result of that decomposition is
shown as the lines in Fig. 12. The good agreement between
the model and the data show that the frictional rheology and
viscous rheology are equivalent with regard to the relative
shear viscosity; since 7, = /I, and ¢/ ¢, is a monotonically
decreasing function in /,, which is only weakly affected by
U., the two frameworks are actually interchangeable.
Moreover, the decomposition shows that the hydrodynamic
contribution can be described using Eq. (4) for low volume
fractions. Nevertheless, a more detailed investigation on the
effect of the Coulomb coefficient of sliding friction on the
frictional rheology model is needed. Specifically, investigat-
ing how the fitting coefficients change for different Coulomb
coefficient of sliding friction.

Having concluded that the frictional rheology and viscous
rheology are equivalent with regard to the relative shear
viscosity, we turn our attention to the normal stresses.
Looking at all three normal stress components, we observe
non-Newtonian phenomena that occur in suspensions, which

are the anisotropy in the normal stresses and the related
anisotropy in the microstructure. Figure 14 shows the mean
normal particle stresses in the core region of the channel nor-
malized by the mean total shear stress and plotted as a func-
tion of the normalized solid volume fraction. The chosen
normalizations are consistent with the viscous rheology
framework, noting that the total shear stress scales with the
viscous shear stress times a function of ¢./¢,, as found
above from the shear rheology analysis. Looking at the three
different components of the normal stress, (6,11), (0p22),
and (0,33) in Figs. 14(a)-14(c), respectively, it becomes
clear that the normal particle stresses are anisotropic. The
effect of friction does not seem to be accounted for in the
normalization of the solid volume fraction, ¢./¢,,, as the
data of the three friction coefficients does not collapse to a
single curve, except for the wall-normal particle stress
(0p22). Plotting the normal stresses as a function of the
viscous number would also not result in a collapse of the
data with different solid friction coefficients, due to the
monotonic relation between ¢./¢,, and I, that is only
weakly dependent on u,. as observed from Fig. 13(b). We
remark that the normalization of the normal stresses with the
total shear stress is also consistent with the frictional rheol-
ogy framework, as the total shear stress scales with the wall-
normal particle stress times a function of [, as earlier found
from the shear rheology analysis. The effect of layering in
the domain is best visible in Fig. 14(a) for the streamwise
particle stress (o, 11), where the cases with ¢, > 0.55, indi-§
cated by the open markers, show a clear deviation from the &
trend. The lines in the figure represent polynomial fits to the%
data based on the work of Badia et al. [31] who used these §
correlations to describe the normal contact stresses in a con- 8
tinuum modeling approach for the suspension rheology. The &
correlations are defined as

()

(op2) _{opn) [, ) e b(d%)z
iy (1+ L v ) D

(31a)

(9p33) _ {p11) b <ﬂ)4
o) o) <c1 + &, +c3 . . (31c)

The fitting parameters used to describe our data are shown in
Table III for each of the friction coefficients together with the
parameters used by Badia et al. [31] to fit data from the litera-
ture. There is some deviation from the coefficients found by
Badia et al. [31], which might be caused by the fact that we use
the total particle stresses, whereas the original authors used the
correlations for the contact part of the stresses. This should only
amount to a slight difference as we have seen that, for
¢, = 0.4, the particle stress is almost completely governed by
the contact contribution. Figure 14(d) shows the normal stress
ratios A, = (0,2)/(c,11) and A3 = (6,33)/(0p11) as a
function of the normalized volume fraction. This figure shows
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FIG. 14. Mean normal stresses (o, ;) normalized by the mean total shear stress and plotted as a function of the normalized volume fraction. Lines show fits of ]
Eqgs. (31a)-(31c) to the data. Open markers indicate the cases with where the open markers indicate the cases with ¢, > 0.55, exhibiting strong particle layering

in the core and were excluded from the fits.

that the normal stress ratios are similar for all friction coeffi-
cients, but do not completely collapse on a single curve.
Additionally, 1, shows an increase with increasing volume frac-
tion for all three friction coefficients, whereas A3 is more or less
constant around a value of 0.5 with a slight increase at high
volume fractions.

TABLE III. Fitted coefficients of the correlations for the mean normal
stresses given by Eqs. (31a)—(31c). The columns show the results for . =0,
U-=0.2, and u.=0.39 and reference values from Badia et al. [31].

1£e=0 1£e=02 1£e=0.39 Badia et al. [31]
a ~2.3022 ~2.3305 —2.3648 —2.4247
a 27915 2.9724 3.0688 4.1280
b 0.9717 0.5938 0.3792 0.3750
b, —2.0377 —0.2760 0.4415 0.0366
bs 2.5687 0.9074 0.3524 0.4846
a 0.5895 0.4977 0.3361 2.1446
e ~0.5932 -0.3755 —0.0983 —2.7234
e 1.8373 1.2661 1.0189 1.5759

A common way to describe the anisotropy in the normal
particle stresses is using the mean normal stress difference

Ny = (op11) — (0p22)s (32a)

Ny, =

—~

O',,,22> — <O'p,33>. (32b)

Figure 15 shows the mean normal stress differences, normal-
ized by the mean total shear stress and plotted as a function
of the normalized solid volume fraction, together with data
and models from the literature. The dashed lines show the
mean normal stress differences computed from the fits of
Egs. (31a)—(31c) to our data. The first normal stress differ-
ence, shown in Fig. 15(a), is slightly negative for volume
fractions up to ¢./¢,, ~ 0.8 after which there is a strong
increase to high positive values. For low volume fractions,
our data show good agreement with numerical results from
the literature [23,26] and qualitative agreement to the polyno-
mial description of Badia et al. [31] represented by the solid
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FIG. 15. Mean normal stress differences N; (a) and N, (b), both normalized by the mean total shear stress and plotted as a function of the normalized solid
volume fraction ¢,/¢,,. Our data are shown by the colored markers, and the dashed lines are the normal stress differences calculated from the fits of Eq. (31).
Black markers indicate data from the literature [23,26,31], and the solid line gives a polynomial fit used by Badia et al. [31].

black line. The shift toward positive values is also present for
the literature data and the model; however, the strong
increase in our data is caused by the particle layering in the
domain at high volume fractions affecting (o, 11). The first
normal stress difference computed from the normal stress
fits, shown by the dashed lines, shows good agreement with
our data and clearly highlights the effect of friction. With
increasing Coulomb friction coefficient, N; becomes less
negative and the upswing toward positive values is less
strong. The second normal stress difference, shown in
Fig. 15(b), shows a clear trend toward negative values for
high volume fractions. The effect of friction is clearly
visible, resulting in a more negative N, with increasing fric-
tion coefficient, which is stronger at higher volume fractions.
This is in good agreement with the data from the literature
[23]. Furthermore, the data for the cases with i, = 0.39 coin-
cide with the polynomial description of Badia et al. [31],
shown by the solid black line, up to the point where the
model shows an upswing. The volume fraction at which this
happens corresponds to our cases exhibiting a strong layering
effect, preventing a good comparison to the model this close
to the maximum packing fraction. The second normal stress
difference, computed from the normal stress fits and shown
by the dashed lines, also shows good agreement with our
data. The upswing in the model at high volume fractions is
outside the range of our data; however, this upswing is
similar to that of the fit of Badia et al. [31] and shifts to
lower volume fraction for lower friction coefficient.

The viscous and frictional rheology frameworks fail to
collapse the data to a master curve for the normal stresses
and, therefore, the normal stress differences, as observed in
Fig. 15 and noting from Fig. 13(b) that the monotonic rela-
tion between ¢/¢,, and I, depends only weakly on the fric-
tion coefficient. Considering the normalized wall-normal
particle stress component (6 ,,2,)/(c12), we do observe from
Fig. 14 a well-nigh collapse as a function of normalized
volume fraction, ¢,/ @,,, for the three friction coefficients. In
passing, we remark that this is consistent with the collapse
for u as a function of [, in the frictional rheology framework,

as it = (012)/(0p22) is actually the inverse of the normalized
wall-normal particle stress. The other two normal stresses do
not collapse as a function of normalized volume fraction,
with (0 ,33) showing the largest effect of the Coulomb fric-
tion coefficient. The effect of friction on the normal stress
differences we observe matches with data from the literature
[23,26], where there is also no collapse with maximum flow-
able packing fraction. To complete the description of the sus- §
pension rheology, the effect of friction on the normal stress &
differences needs to be studied in more detail.

IV. CONCLUSIONS

10:1.2:02 ¥202 Aen

The particle-resolved simulations of dense suspensions in
plane Couette flow performed in this study give a detailed
insight into the microstructure and stresses that occur in these
suspensions. The effects of solid volume fraction and Coulomb
coefficient of sliding friction were shown while comparing the
data with experimental and numerical data from the literature.
Moreover, we commented on the use of the maximum flowable
packing fraction to account for particle characteristics and com-
pared this approach to the frictional rheology framework.

From our results, we can conclude that wall-induced parti-
cle layering extends into the entire domain for the cases with
volume fractions of ¢, > 0.55. This layering affects the rhe-
ology by changing the microstructure in a way that particles
can slide over each other more easily, lowering the relative
viscosity and breaking the diverging trend of the suspension
viscosity with increasing concentration. We observed that
increasing the solid friction coefficient partially mitigates the
layering, which we can see from both the concentration pro-
files and the PPDFs.

The total shear stress increases with increasing solid
volume fraction and increases with increasing friction coeffi-
cient. Considering the separate contributions to the total
shear stress, we can see that the particle stress accounts for
the largest part. This particle stress consists of two parts of
which the hydrodynamic part is larger for the low volume
fractions, while the contact part dominates for higher volume
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fractions. The volume fraction at which the contact part
becomes larger than the hydrodynamic part decreases with
increasing friction coefficient. This can also be seen in the
decomposition of the relative viscosity, where the divergence
at the lower volume fraction is caused by the increase in the
contact particle stress. The relative viscosity, which is in
good agreement with the literature, can be collapsed using
the maximum flowable packing fraction determined by
fitting the Maron—Pierce correlation [15].

The normal stresses show anisotropy leading to nonzero
normal stress differences. The normal particle stresses can be
described using polynomial fits used by Badia et al. [31] and
only show a collapse in ¢,/¢,, for the wall-normal direction.
The normal stress differences show good agreement with the
data from the literature, where N, is slightly negative for volume
fractions up to ¢,/¢,, ~ 0.8 after which it becomes positive
with a large magnitude due to pronounced wall-induced layer-
ing. Increasing the friction coefficient decreases the magnitude
of N; as was also observed in the literature. N, is negative over
the entire range investigated here and increases in magnitude
with volume fraction. The effect of friction is opposite for N,,
increasing the magnitude with increasing friction coefficient.

Our data can be described using the frictional rheology
model from Gallier ef al. [23] with adapted fitting coefficients.
Additionally, the solid friction coefficient should be taken into
account when using the frictional rheology model, and further
investigation is needed to incorporate this into the model. The
effect of friction is visible when the macroscopic friction coef-
ficient is decomposed into the hydrodynamic and contact
parts. These are modeled individually and show that friction
slightly lowers the hydrodynamic contribution while it
increases the contact contribution. Therefore, the total macro-
scopic friction coefficient shows the collapse of the data, due
to compensating effects of friction on the two individual con-
tributions, with a slight deviation at very low viscous
numbers. The relative viscosity derived from the frictional rhe-
ology model gives a very good agreement with our DNS data.
This indicates that the viscous and frictional rheology frame-
works are largely equivalent, primarily because the relative
volume fraction ¢,./¢,, is a monotonic function of I, and
depends only weakly on the friction coefficient. Both frame-
works capture the effect of solid friction on the shear rheol-
ogy. This is, however, not the case for the streamwise and
spanwise normal particle stresses as well as the normal particle
stress differences, which still show a significant dependency
on the friction coefficient that is not yet fully understood.
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APPENDIX: ON THE NORMALISATION WITH THE
NORMAL STRESS IN THE FRICTIONAL RHEOLOGY
FRAMEWORK

The deviation of our DNS results for the frictional rheol-
ogy from models proposed in the literature might be par-
tially explained by the different choices made in the
literature for the normalization with the wall-normal particle
stress. In the experiments of Boyer et al. [19], a constant
particle pressure is imposed; however, it is not entirely clear
whether this corresponds to the full normal particle stress or
only the contact contribution. Gallier et al. [23] noticed that
the agreement between their simulations and the model by
Boyer et al. [19] is better when using only the contact con-
tribution to the normal stress. To check the effect on the
frictional rheology modeling we tried using the full wall-
normal stress [given by Eq. (24)], the full wall-normal parti-
cle stress, and the contact contribution to the wall-normal
particle stress. Figure 16(a) shows the results for the volume
fraction in the core region, ¢,, as a function of viscous
number based on the three different choices for the wall-
normal stress. The colors represent the different stress con-§
tributions and different symbols are used to distinguish &
between frictionless and frictional particles. The figure3
shows that all stress contributions give comparable results.
The normalization of the viscous number with the full wall- 8
normal stress shows the closest match with the model of &
Boyer et al. [19]; however, toward low viscous number the
deviation increases. Using the wall-normal particle stress
results in a relatively good agreement with the model of
Gallier et al. [23] over the entire range of viscous numbers
investigated. The normalization of the viscous number with
the contact contribution to the wall-normal particle stress
shows the largest deviation from the models at both high
and low viscous numbers. At the low viscous number, the
deviation might be caused by the pronounced wall-induced
layering.

Figure 16(b) shows the macroscopic friction coefficient
as a function of the viscous number, where both u and I,
are defined based on either the full wall-normal stress, the
full wall-normal particle stress, or the contact contribution
to the wall-normal particle stress. Here, the contributions
again give similar results. The particle stress and the
contact contribution follow the same curve except at very
low I,. At the high viscous number, the best match with
the models is found when using the full wall-normal
stress.

Our comparison study shows that the wall-normal stress
contribution that is used to determine the frictional rheology
has an effect on the results for the frictional rheology,
although this effect is limited. Since the flow dynamics in
the DNS depends on the pressure gradient instead of pressure
itself, and the mean value of the pressure at the walls is

N
Q
N
=
N
Q
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FIG. 16. Core volume fraction (a) and macroscopic friction coefficient (b) as a function of the viscous number, based on different three choices for the normal-
ization of the wall-normal stress and shown for cases with u. = 0 and ., = 0.39. The different colors denote normalization with the full wall-normal stress, the
full wall-normal particle stress, and the contact contribution to the wall-normal particle stress, respectively. Dots and diamonds denote u. = 0 and u, = 0.39,
respectively. Only data for cases with ¢, = 0.1 — 0.5 is shown due to the pronounced wall-induced layering observed in the cases with ¢, > 0.55.

arbitrarily set to zero in our simulations for reference, we
have chosen not to use the full wall-normal stress but the
wall-normal particle stress in the definition of 1 and 1.
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