

Palynology of a cored Rijswijk and Rodenrijs Claystone interval from well MON-GT-02

Energy & Materials Transition www.tno.nl +31 88 866 42 56 info@tno.nl

TNO 2024 R10047 - 5 January 2024
Palynology of a cored Rijswijk and
Rodenrijs Claystone interval from
well MON-GT-02

Author(s) Roel Verreussel
Classification report TNO Public
Title TNO Public
Report text TNO Public

Number of pages 19 (excl. front and back cover)

Number of appendices 2
Project name GIP

Project number 060.56003/01.12.03

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint, microfilm or any other means without the previous written consent of TNO.

© 2024 TNO

Contents

Cont	ents	3
1	Introduction	4
2	Material and Methods	6
2.1	Abbreviations used	6
2.2	Sample processing and counting	6
2.3	Lithostratigraphy of the Lower Cretaceous from the West Netherlands Basin	
2.4	Methodology age assessment	8
2.5	Methodology paleoenvironmental interpretation	
3	Results	12
3.1	Description of the palynological results	12
3.2	Age interpretation	13
3.3	Paleoenvironmental interpretation	14
3.4	The base of the Rijswijk Mb	
3.5	Comparison with nearby well HON-GT-01	16
4	Conclusions	17
5	References	18
6	Signature	19

Appendices

Appendix 1 Photoplates

Appendix 2 Palynological distribution charts

2a Marine-terrestrial2b Dinoflagellate cysts

2c Sporomorphs

1 Introduction

In this report the results of a palynological analysis on a cored interval from well Monster-GT-02 (MON-GT-02) are presented. The well was drilled in 2023 by HVC Aardwarmte B.V. for the development of geothermal energy and is situated in Westland area, close to city of The Hague (Figure 1). Two cores were recovered across the transition from the Lower Cretaceous Rijswijk Member (Vlieland Sandstone Formation, Rijnland Group) to the Rodenrijs Claystone Member (Nieuwerkerk Formation, Schieland Group). The total length of the core is 60 meters along hole. The cored section ends in the lower part of the Rodenrijs Claystone Member, the core does not reach the geothermal aguifer of the Delft Sandstone Member.

The aim of the coring is to study the sealing capacity of the Rodenrijs Member. The aim of the palynological analyses is to document the age and palaeoenvironment of the selected interval. The Rijswijk Member and the Rodenrijs Claystone Member have been dated multiple times before, but never before on a continuous core. The availability of core samples also offers the opportunity to obtain reliable information on the depositional setting of the Rijswijk and Rodenrijs intervals.

The core samples were collected in close collaboration with the operator in June 2023 by Harmen Mijnlieff from TNO. The samples were processed in August 2023 by Nico Janssen from TNO and subsequently analysed and interpreted by Roel Verreussel from TNO. A litholog including the Gamma Ray trace (as image, not digital) and a preliminary lithostratigraphic interpretation of the studied interval was provided by the operator. Digital wireline logs were not available at the time of the analyses.

TNO Public 4/19

Figure 1 Location of well MON-GT-02. The olive-brown colours represent the greenhouses of the Westland area.

) TNO Public 5/19

2 Material and Methods

2.1 Abbreviations used

TNO's standard abbreviations as used in palynology reports are listed in Table 1.

CO	Core sample			
SC	Side-wall core sample			
CU	Cuttings sample			
m	Meter			
ft	Feet			
MD	Measured Depth			
LOD	Last Occurrence Datum			
FOD	First Occurrence Datum			
ND	Not Diagnostic			

Table 1 List of abbreviations

2.2 Sample processing and counting

A total of 61 core samples was collected from the tops of the one meter long cored intervals when these were still inside the steel barrel casings. From these 61 samples, 16 samples were selected for palynological analyses (Table 2). Because of the very low amounts of material, some samples were merged. Sample 2350.5m represent the merged raw sample material of samples 2350m and 2351m and sample 2359m represents the merged raw sample material of samples 2358m, 2359m and 2360m.

The samples were processed by Nico Janssen (TNO), using the standard sample processing procedures. This involves crushing and treatment with HCl to digest the carbonate. After that, the mineral bonds of the silicates are destroyed by applying HF, which releases the acid-resistant organic matter. The organic residue is then concentrated by sieving over a 7 micron mesh. The organic residue is put on a glass slide, fixed by a mounting medium such as glycerine jelly and covered by a thin glass cover slip. The palynological slides are studied using a transmitted light microscope with magnifications varying between 100 and 1000 microns. The dinoflagellate cysts and pollen and spores are identified on species level and counted up to 100 specimens (if possible). The occurrences of the different species are displayed on palynological distribution charts. These charts are the basic modules for the age and palaeoenvironmental interpretation (Appendix 2).

Table 2 (next page) Sample list. The lithostratigraphic assignments were provided by the operator.

TNO Public 6/19

		CORE				
Well	core	CORE	small	lithostrat	Merged	Palynological
weii	number	depth	amount	litnostrat	samples	Analyses
		[m]		·	2252	
MON-GT-02	#1	2350	*	Rijswijk	2350	2252.5
MON-GT-02	#1	2351		Rijswijk	2351	2350,5
MON-GT-02	#1	2352	*	Rijswijk		
MON-GT-02	#1	2353	*	Rijswijk		
MON-GT-02	#1	2354		Rijswijk		2354
MON-GT-02	#1	2355	*	Rijswijk		
MON-GT-02	#1	2356	*	Rijswijk		
MON-GT-02	#1	2357	*	Rijswijk		
MON-GT-02	#1	2358	*	Rijswijk	2358	
MON-GT-02	#1	2359	*	Rijswijk	2359	2359
MON-GT-02	#1	2360		Rijswijk	2360	
MON-GT-02	#1	2361	*	Rijswijk		
MON-GT-02	#1	2362	*	Rijswijk		
MON-GT-02	#1	2363	*	Rijswijk		
MON-GT-02	#1	2364	*	Rijswijk		2364
MON-GT-02	#1	2365		Rijswijk		2365
MON-GT-02	#1	2366		Rodenrijs		
MON-GT-02	#1	2367	*	Rodenrijs		2367
MON-GT-02	#2	2368		Rodenrijs		2368
MON-GT-02	#2	2369	*	Rodenrijs		
MON-GT-02	#2	2370	*	Rodenrijs		
MON-GT-02	#2	2371	*	Rodenrijs		
MON-GT-02	#2	2372	*	Rodenrijs		
MON-GT-02	#2	2373	*	Rodenrijs		2373
MON-GT-02	#2	2374	*	Rodenrijs		
MON-GT-02	#2	2375	*	Rodenrijs		
MON-GT-02	#2	2376	*	Rodenrijs		
MON-GT-02	#2	2377	*	Rodenrijs		
MON-GT-02	#2	2378	*	Rodenrijs		
MON-GT-02	#2	2379		Rodenrijs		2379
MON-GT-02	#2	2380		Rodenrijs		
MON-GT-02	#2	2381		Rodenrijs		
MON-GT-02	#2	2382	*	Rodenrijs		
MON-GT-02	#2	2383		Rodenrijs		
MON-GT-02	#2	2384		Rodenrijs		2384
MON-GT-02	#2	2385		Rodenrijs		
MON-GT-02	#2	2386		Rodenrijs		
MON-GT-02	#2	2387		Rodenrijs		2387
MON-GT-02	#2	2388		Rodenrijs		2307
MON-GT-02	#2	2389	<u> </u>	Rodenrijs		
MON-GT-02	#2	2390	<u> </u>	Rodenrijs		2390
MON-GT-02	#2	2391	*	Rodenrijs		2330
MON-GT-02	#2	2392	<u> </u>	Rodenrijs		2392
MON-GT-02	#2	2393	*	Rodenrijs		2332
MON-GT-02	#2	2394	*	Rodenrijs		
MON-GT-02	#2	2395		Rodenrijs		
MON-GT-02	#2	2396	*	Rodenrijs		
MON-GT-02	#2	2397		Rodenrijs		2397
MON-GT-02	#2	2398	*	Rodenrijs		2331
MON-GT-02	#2	2399	*	Rodenrijs		
MON-GT-02	#2	2400	1	Rodenrijs		
MON-GT-02	#2	2400	1	Rodenrijs		
MON-GT-02	#2	2401		Rodenrijs		2402
MON-GT-02	#2	2402	*	Rodenrijs		Z4UZ
			*			
MON-GT-02	#2	2404	*	Rodenrijs		
MON-GT-02	#2	2405	-	Rodenrijs		
MON-GT-02	#2	2406	-	Rodenrijs		
MON-GT-02	#2	2407		Rodenrijs		
MON-GT-02	#2	2408	<u> </u>	Rodenrijs		
MON-GT-02	#2	2409	 	Rodenrijs		2446
MON-GT-02	#2	2410	ļ	Rodenrijs		2410

) TNO Public 7/19

2.3 Lithostratigraphy of the Lower Cretaceous from the West Netherlands Basin

The Rodenrijs Claystone Member is the uppermost member of the Nieuwerkerk Formation (Figure 2) that belongs to the predominant non-marine Schieland Group. The overlying Rijswijk Member belongs to the (marine) Vlieland Sandstone Formation of the Rijnland Group. A small erosional hiatus is generally assumed between these two units (Verreussel et al. in press).

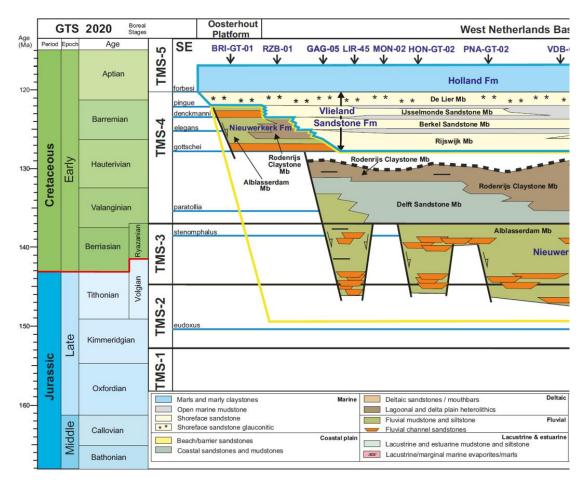
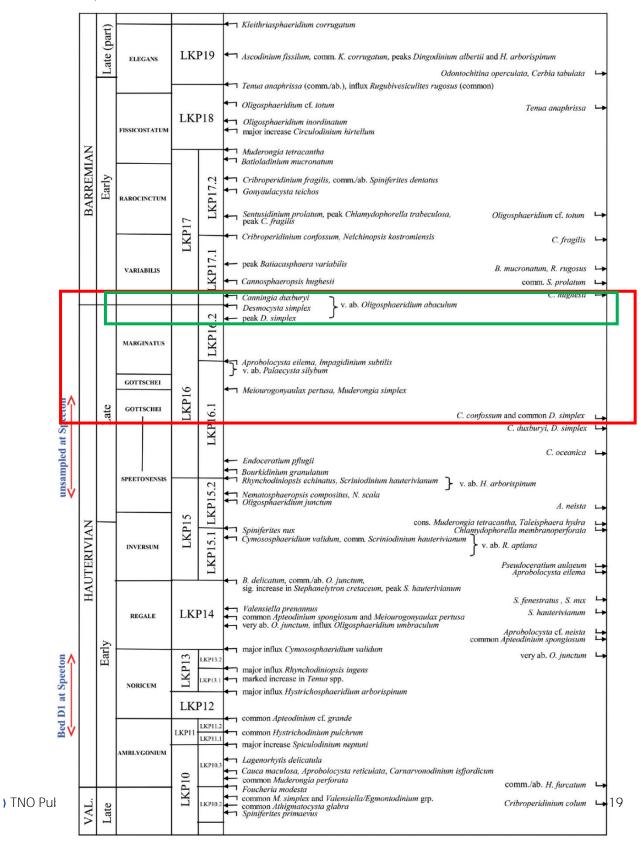


Figure 2 Lithostratigraphy of the Upper Jurassic-Lower Cretaceous from the West Netherlands Basin after Verreussel et al. (in press).


2.4 Methodology age assessment

Note that many palynological studies on the Nieuwerkerk Formation were published in reports (Munsterman 2012; 2015; 2017; 2018; 2019a; 2019b), but most of these were based on cuttings samples, which limits the accuracy of the age datings since only last occurrences (LOD's) of palynomorphs can be used.

) TNO Public 8/19

For the age assessments, recent publications on the Valanginian to Barremian interval from Stan Duxbury proved to be most useful (Duxbury, 2018; 2019; 2023). His zonation for the Hauterivian – Barremian that was published in 2023 is included in this report (Figure 3).

Figure 3 Palynological zonal scheme for the Hauterivian-Barremian of the North Sea Region (Dubxbury, 2023). In red is indicated the age envelope for the studied interval, in green the most probable age interpretation.

2.5 Methodology paleoenvironmental interpretation

Palynologists study acid-resistant organic matter from sedimentary rocks. Organic matter is classified into palynomorphs (organic microfossils within a certain size range) and palynodebris (all other organic material such as plant-tissue, wood fragments, amorphous organic matter etc.). The combination of palynomorphs and palynodebris is called palynofacies or organofacies. Within the palynomorph category, two groups are considered the most important: the dinoflagellate cysts, or dinocysts, and the pollen and spores, or sporomorphs. Because palynology straddles both the marine and the terrestrial realm, it is ideally suited for the study of shallow- to non-marine sedimentary rocks. Palynomorphs and palynodebris are always subject to transport, the palynology-based depositional environment is therefore broader than the depositional setting such as derived from *in-situ* sedimentological, geochemical or paleontological features and parameters. The link between depositional setting and palynology-based depositional environment is display in Figure 3. A summary of the most relevant environmental interpretations based on palynology are listed below:

Open marine

Dominance of dinoflagellate cysts indicates open marine environments, in particular when the dinoflagellate cyst assemblages are highly diverse (many species).

Restricted marine

Dinoflagellate cyst associations of the type High Dominance – Low Diversity indicate a restricted marine environment, such as a lagoon, embayment or estuary.

Non-marine

Absence or near-absence of dinoflagellate cysts generally indicates non-marine or marginal marine environments.

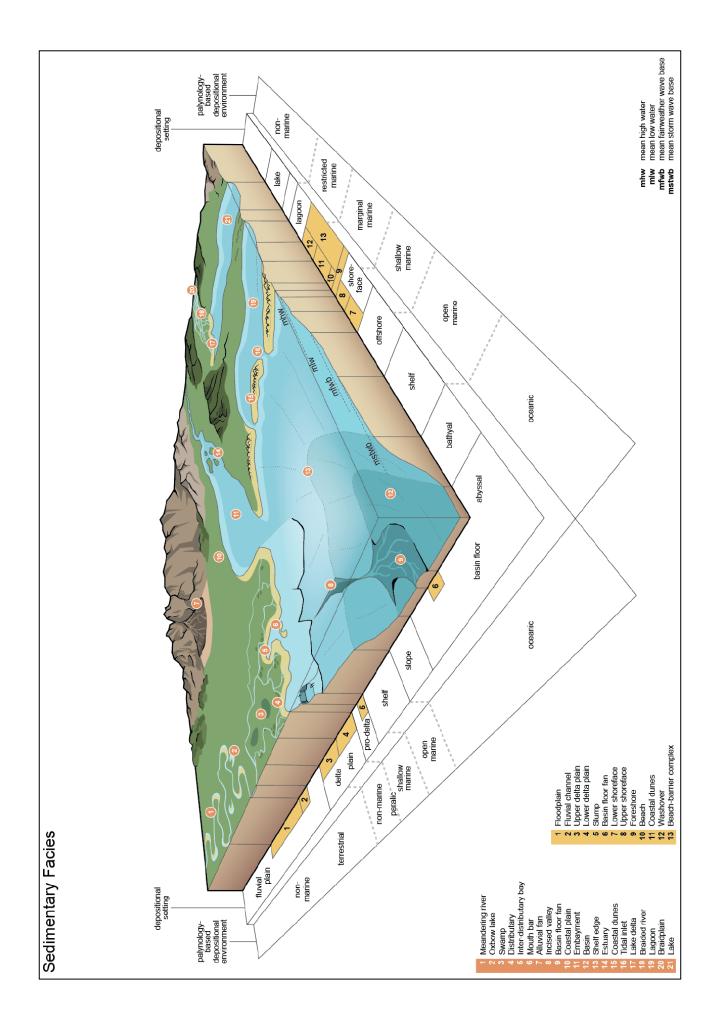
Transgression

An increase in the ratio between dinoflagellate cysts and pollen and spores indicates a sea level rise.

Regression

A decrease in the ratio between dinoflagellate cysts and pollen and spores indicates a sea level fall.

Low energy conditions


Excellent physical preservation of palynomorphs and other organic matter particles may indicate low energy conditions such as for instance a lagoon or a lake.

High energy conditions

Poor physical preservation of palynomorphs may indicate high energy conditions such as for instance a river channel, basin floor fan or a beach.

Figure 4 (next page) Depositional environments inferred from palynolgical analyses compared to depositional settings inferred from sedimentology.

TNO Public

3 Results

The palynological recovery of the studied samples varies substantially. The uppermost samples from the Rijswijk Member are very poor, whereas the samples from the interval 2387m – 2364m are very rich. The palynological recovery of the samples from the interval 2402m – 2390m is quite poor. The preservation of the palynomorphs is in general quite reasonable. The organofacies (all organic matter) is characterized by a balanced mixture of wood fragments, dinoflagellate cysts and sporomorphs (pollen and spores).

Based on the results of the palynological analyses, a threefold subdivision was established for the studied interval.

Nine photo-plates with micro-photographs of palynomorphs and organofacies are added as Appendix 1. Palynological distribution charts are added as Appendices 2a, 2b and 2c.

3.1 Description of the palynological results

Unit A 2410m – 2384m 7 CORE samples

Sporomorphs dominate over dinoflagellate cysts in the lower part of Unit A but this changes abruptly towards the top of the unit (Appendix 2a). Samples 2387m – 2384m from the top of Unit A yield very rich dinoflagellate cyst assemblages. The dinoflagellate cyst assemblages are dominated by *Cribroperidium* (Appendix 2b). The supposed freshwater-tolerant type *Vesperopsis* sp. A is common throughout the entire interval. The sporomorph assemblages are characterized mainly by bisaccate pollen and psilatrilete spores (Appendix 2c). *Cicatricosisporites* and *Gleicheniidites* are common in sample 2402m. Reworked spores from the Paleozoic occur regularly.

The organofacies is characterized by balanced mix between wood fragments and palynomorphs (Appendix 1, Plate 8). The wood fragments are in the same size range as the palynomorphs. Amorphous organic matter is absent.

Unit B 2379m – 2359m 6 CORE samples

Dinoflagellate cysts dominate over sporomorphs and the brackish water green algae *Botryococcus* is common in almost every sample (Appendix 2a). The dinoflagellate cyst assemblages are dominated by *Subtilisphaera*, while *Oligosphaeridium perforatum* ssp. *perforatum* is common throughout the entire interval (Appendix 2b). The sporomorph assemblages are dominated by bisaccate pollen and psilatrilete spores (Appendix 2c). Reworked spores from the Paleozoic were not encountered.

The organofacies is characterized by balanced mix between wood fragments and palynomorphs (Appendix 1, Plate 8). The wood fragments are bigger in size than the palynomorphs. Amorphous organic matter is absent.

TNO Public 12/19

Unit C 2354m – 2350.5m 2 CORE samples

Sample 2354m is very poor in palynomorphs, sample 2354m is completely barren. The overall state of preservation of the palynomorphs is poor.

The organofacies of this unit is characterized by small opaque particles (Appendix 1, Plate 8). Traces of oil emerged during the processing of the samples.

3.2 Age interpretation

Based on the events listed below, a Late Hauterivian to earliest Barremian age is inferred for the cored units A and B with a high degree of confidence.

Age-diagnostic dinocyst events:

- FOD and LOD Canningia duxburyi, in sample 2410mCORE
- FOD Oligosphaeridium perforatum ssp. perforatum, in sample 2410mCORE
- FOD Cribroperidinium confossum, in sample 2367mCORE
- LOD Muderongia simplex, in sample 2410mCORE
- FOD Subtilisphaera terrula, in sample 2379mCORE

Age-diagnostic sporomorph events:

- FOD Aequitriradites tilchaensis, in sample 2392mCORE
- FOD Aequitriradites spinulosus in sample 2372mCORE
- Continuous presence of *Pilosisporites trichopapillosus*
- Complete absence of Classopollis

The LOD of the widespread accepted marker species *Canningia duxburyi* in sample 2410m indicates an age older than earliest Barremian. Duxbury (2023) recorded the <u>youngest</u> occurrence of *Canningia duxburyi* just above the base of the Barremian Stage. In his zonation, this event is near the base of Zone LKP17. The FODs of *Canningia duxburyi* and *Cribroperidinium confossum* are in the Late Hauterivian, in the middle of Duxbury's palynofloral Zone LKP16.1, correlating to the Gottschei ammonite Zone. The FOD consistent of *Subtilisphaera terrula* is in bed C4C in Speeton, correlating to the Late Hauterivian Gottschei ammonite Zone. Therefore, a Late Hauterivian to earliest Barremian age is inferred for the cored units A and B with a high degree of confidence (indicated with a red box in Figure 3). The age-diagnostic sporomorphs are in agreement with this age interpretation.

Possibly, the age range may be narrowed down to latest Hauterivian to earliest Barremian based on the FOD of *Oligosphaeridium perforatum* ssp. *perforatum*. (indicated with a green box in Figure 3). The FOD of this type was recorded in Speeton is in Bed C2D, correlating to the top of the Marginatus ammonite Zone, very close to the Hauterivian – Barremian boundary (Duxbury, 2023).

Note that several markers that were expected, such as *Aprobolocysta eilema* and *Desmocyst plekta* were not recorded in the cored interval. Possibly, this is related to the rather restricted marine facies that characterize the Rodenrijs Claystone Member (see section 3.3).

TNO Public

3.3 Paleoenvironmental interpretation

Unit A

The dominance of sporomorphs over dinoflagellate cysts, in combination with the observed reworking and in combination with the common occurrence of freshwater dinocysts, indicates <u>a marginal marine environment</u> with strong terrestrial influence, possibly a deltaic setting. The sudden dominance of dinoflagellate cysts in the sample at 2387m indicates a marine flooding event.

Unit B

The dominance of dinoflagellate cysts over sporomorphs indicates a decrease in terrestrial influence, compared to Unit A. The sudden dominance of the dinflagellate cyst *Subtilisphaera*, in combination with common occurrences of the brackish-water green algae *Botryococcus*, indicates a restricted marine environment, i.e., a nutrient-rich embayment with a poor connectivity to the open sea.

Unit C

The small rounded particles and poor preservation are in line with a high energy environment, such as e.g. an upper shoreface. Note however that any palaeoenvironmental interpretation will be tentative at best, due to the poor preservation and the lack of diagnostic palynomorphs.

3.4 The base of the Rijswijk Mb

The lithostratigraphy that was provided by the operator place the base of the Rijswijk Member at the shift in GR that occurs at 2365mMD. The shift likely reflects a transition from fine-grained dominated sediments to sandstones. The palynological results (Appendix 2a and 2b and particularly the distribution chart of the dinoflagellate cysts do not display a significant change at that depth (2365m). In fact, the palynological record shows a distinct change in palaeoenvironment between sample 2359m and 2354m, the boundary between palynological unit B and C. As a consequence, it seems more logical, at least from a paleoenvironmental perspective, to place the base of the Rijswijk Member at approximately 2357m (see Figure 5).

TNO Public 14/19

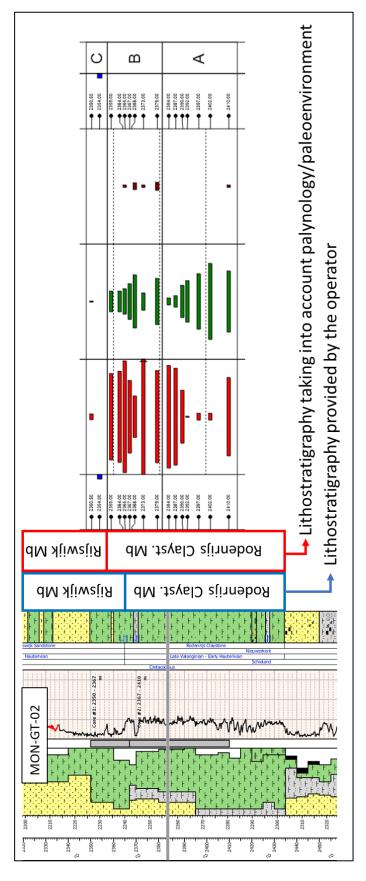


Figure 5 The base of the Rijswijk Mb as provided by the operator versus the base of the Rijswijk Mb taking into account the depositional setting.

) TNO Public 15/19

3.5 Comparison with nearby well HON-GT-01

A comparison of Well MON-GT-02 with the nearby well HON-GT-01 shows a strong similarity in the overall thicknesses and in the GR trends of the Rijwijk and Rodenrijs Claystone members (Figure 6). The marine flooding that was observed close to the top of Unit A at 2387m in well MON-GT-02, possibly correlates to a change in the sonic log at 2505mMD in well HON-GT-01.

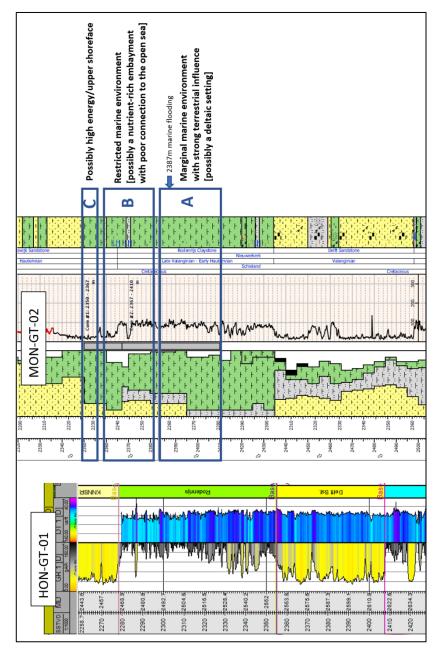


Figure 6 Comparison of well MON-GT-02 with nearly well HON-GT-01

) TNO Public 16/19

4 Conclusions

Based on the palynological analyses of the cored interval 2350m – 2410m from well MON-GT-02, the following conclusions are reached:

- The age of the Rodenrijs Claystone interval is Late Hauterivian to earliest Barremian with a high degree of confidence. Possibly, the age may be narrowed down to latest Hauterivian to earliest Barremian.
- The lower part of the cored Rodenrijs Claystone interval (2410m 2384m) displays a marginal marine palaeoenvironment with strong terrestrial influence, possibly reflecting a deltaic setting. A marine flooding is postulated at 2387m.
- The upper part of the cored Rodenrijs Claystone interval (2379m 2359m) displays a restricted marine palaeoenvironment, possibly reflecting a nutrient-rich embayment with a poor connection to the open sea.
- From a paleoenvironmental perspective, it is preferred to draw the base of the Rijswijk Member at approximately 2357m

TNO Public 17/19

5 References

Duxbury, S., 2018.

Berriasian to lower Hauterivian palynostratigraphy, UK onshore and Outer Moray Firth. *Micropaleontology*, 64(3).

Duxbury, S., 2019.

Organic-walled marine microplankton from the Barremian and Aptian of the North Sea Region - biostratigraphy and taxonomy. *Micropaleontology*, 65(3).

Duxbury, S., 2023.

Organic-walled marine microplankton from the Hauterivian and early Barremian of the North Sea Region-biostratigraphy and taxonomy. *Micropaleontology*, 69(2).

Munsterman, D.K., 2012. TNO-060-UT-2011-02200/B. De resultaten van het palynologische onderzoek naar de ouderdom van de Onder Krijt successie in boring Van den Bosch-04 (VDB-04), interval 925-2006m.

Munsterman, D.K., 2015. TNO-rapport 2015 R11740 (confidentieel). De resultaten van het palynologisch onderzoek naar de ouderdom van de geothermieboringen Honselersdijk-1 (HON-GT-01) en Pijnacker-2 (PNAGT-02).

Munsterman, D.K., 2016. TNO report 2016 R10482. Results of the palynological analysis of geothermal well Pijnacker 2 (PNA-GT-02), interval 2440-2850m.

Munsterman, D.K., 2017. TNO report 2017 R10085. De resultaten van het palynologisch onderzoek naar de ouderdom en facies van de geothermieboring Honselersdijk-02 (HON-GT-02).

Munsterman, D.K., 2018. TNO-rapport xxxx. De resultaten van palynologisch onderzoek naar de ouderdom en facies van de geothermie boring Lansingerland (LSL-GT-01), interval 1980-2690m.

Munsterman, D.K.,2019a. TNO report 2019 R10566. De resultaten van het palynologische onderzoek naar het Onder-Krijt van de geothermische boringen Brielle-GT-01 (BRI-GT-01) en Maasland-GT-01 (MLD-GT-01).

Munsterman, D.K.,2019b. TNO report 2019 R11510. De resultaten van het palynologische onderzoek naar de kernen van de Rijswijk Member in boring Monster-02 (Westland).

Verreussel R., Houben, S., Munsterman, D., Janssen, N. and Kerstholt-Boegehold, S., 2015. TNO report 2015 R10343. JUSTRAT Project; New stratigraphic framework for the Upper Verreussel R. and Houben, A., 2023. TNO report 2023 R12113. Results of stable isotope analyses on the Nieuwerkerk Formation, West Netherlands Basin.

Verreussel, R.M.C.H., Bouroullec, R., Houben, A.J.P. and Munsterman D.K., *in press.* Late Jurassic – Early Cretaceous. In: Geology of the Netherlands, eds. J. Ten Veen & G-J. Vis.

TNO Public 18/19

6 Signature

Name and signature reviewer

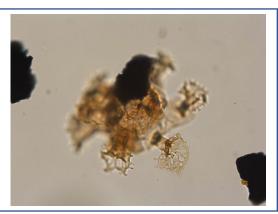
Dr. MSc A.J.P. Houben

Signature Authorisation of release

Drs. R.M.C.H. Verreussel Author

Drs. D. Maljers Research manager

TNO Public


TNO report 2024 R10047

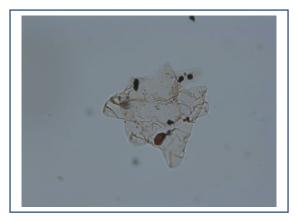
Appendix 1

Photoplates

Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2410mCORE 40x

Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2410mCORE 40x

Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2365mCORE 40x


Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2365mCORE 40x Operculum 4 apical plates

Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2367mCORE 40x UF

Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2367mCORE 40x LF

Vesperopsis sp. A

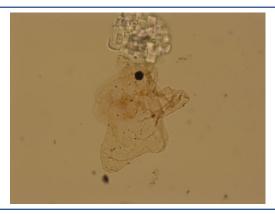
MON-GT-02 2410mCORE

40x UF ventral

Vesperopsis sp. A

MON-GT-02 2410mCORE

40x MF Note the apical archeopyle

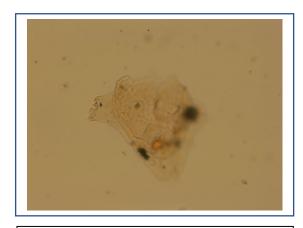

Vesperopsis sp. A

MON-GT-02 2384mCORE

40x UF dorsal

Vesperopsis sp. A
MON-GT-02 2384mCORE
40x LFF ventral

Vesperopsis sp. A

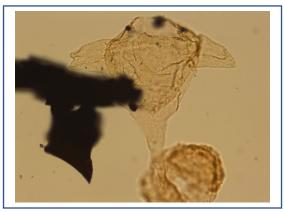

MON-GT-02 2390mCORE

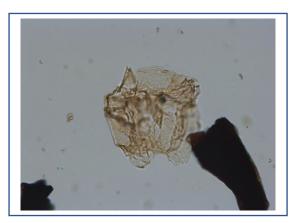
40x

Vesperopsis sp. A

MON-GT-02 2379mCORE

40x




Muderongia perforata
MON-GT-02 2379mCORE

40x UF

Muderongia perforata
MON-GT-02 2379mCORE

40x LI

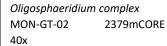
Muderongia simplex

MON-GT-02 2379mCORE

40x LF ventral

Senoniasphaera sp.

MON-GT-02 2365mCORE
40x

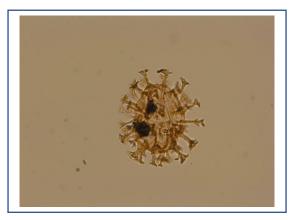

Pseudoceratium solocispinum MON-GT-02 2387mCORE

40x

Ctenidodinium elegantulum MON-GT-02 2387mCORE

40x

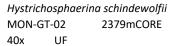
Oligosphaeridium asterigerum MON-GT-02 2387mCORE 40x



Cribroperidinium sp.
MON-GT-02 2387mCORE
40x UF ventral

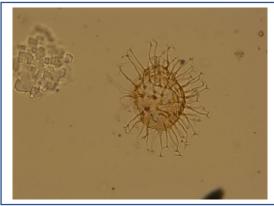
Cribroperidinium sp.

MON-GT-02 2387mCORE
40x LF dorsal

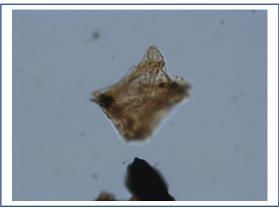


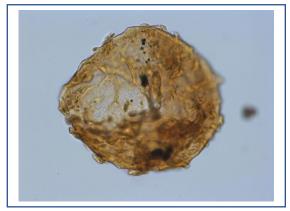

Taleisphaera/Kiokansium cpx. MON-GT-02 2390mCORE 40x

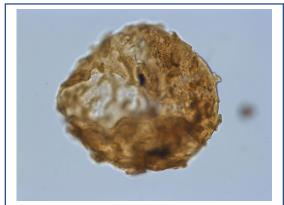
Taleisphaera/Kiokansium cpx. MON-GT-02 2410mCORE 40x



Hystrichosphaerina schindewolfii MON-GT-02 2379mCORE 40x LF

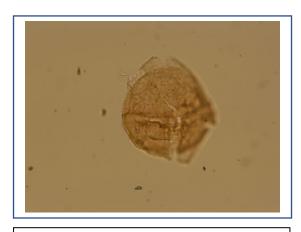

Kleithriasphaeridium corrugatum MON-GT-02 2367mCORE 40x

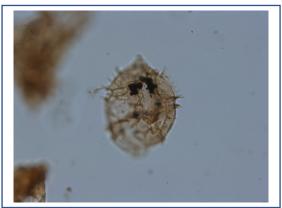

Impletosphaeridium multifurcillatum MON-GT-02 2379mCORE 40x



Callaiosphaeridium asymetricum MON-GT-02 2367mCORE 40x

Occisucysta duxburyi
MON-GT-02 2365mCORE
40x



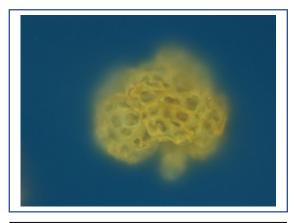

Cassiculosphaeridia magna MON-GT-02 2367mCORE

40x UF

Cassiculosphaeridia magna MON-GT-02 2367mCORE

40x LF

Subtilisphaera terrula MON-GT-02 2379mCORE 40x


Wrevittia helicoidea
MON-GT-02 2365mCORE
40x



Aequitriradites tilchaensis MON-GT-02 2392mCORE 63x

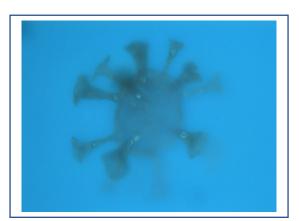
Pilosisporites trichopapillosus MON-GT-02 2368mCORE 40x

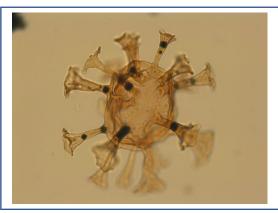
Botryococcus MON-GT-02

MON-GT-02 2379mCORE 63x incident Ultra-Violet light

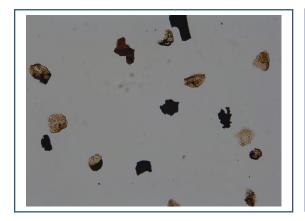
Botryococcus

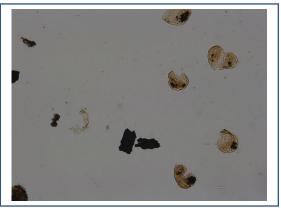
MON-GT-02 2379mCORE


63x

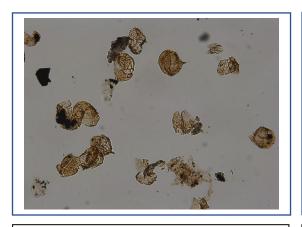


Subtilisphaera perlucida MON-GT-02 2379mCORE 40x incident Ultra-Violet light

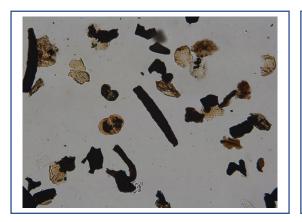

Subtilisphaera perlucida MON-GT-02 2379mCORE 40x

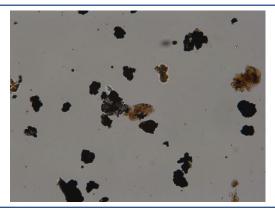


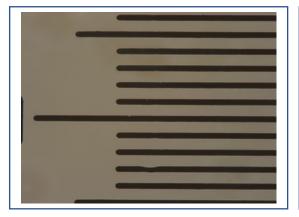
Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2379mCORE 40x incident Ultra-Violet light


Oligosphaeridium perforatum ssp. perforatum MON-GT-02 2379mCORE 40x

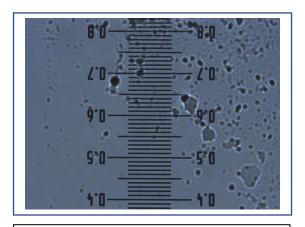
Palynofacies overview with 10x objective MON-GT-02 2410mCORE Rodenrijs Claystone Mb of the Nieuwerkerk Fm


Palynofacies overview with 10x objective
MON-GT-02 2392mCORE
Rodenrijs Claystone Mb of the Nieuwerkerk Fm


Palynofacies overview with with 10x objective MON-GT-02 2384mCORE Rodenrijs Claystone Mb of the Nieuwerkerk Fm


Palynofacies overview with 10x objective MON-GT-02 2373mCORE Rodenrijs Claystone Mb of the Nieuwerkerk Fm

Palynofacies overview with 10x objective MON-GT-02 2365mCORE Rodenrijs Claystone Mb of the Nieuwerkerk Fm


Palynofacies overview with 10x objective MON-GT-02 2350mCORE + 2351mCORE Rijswijk Mb of the Vlieland Sandstone Fm

Micrometer scale with 40x objective 1 bar = 10μ

Micrometer scale with 63x objective 1 bar = 10μ

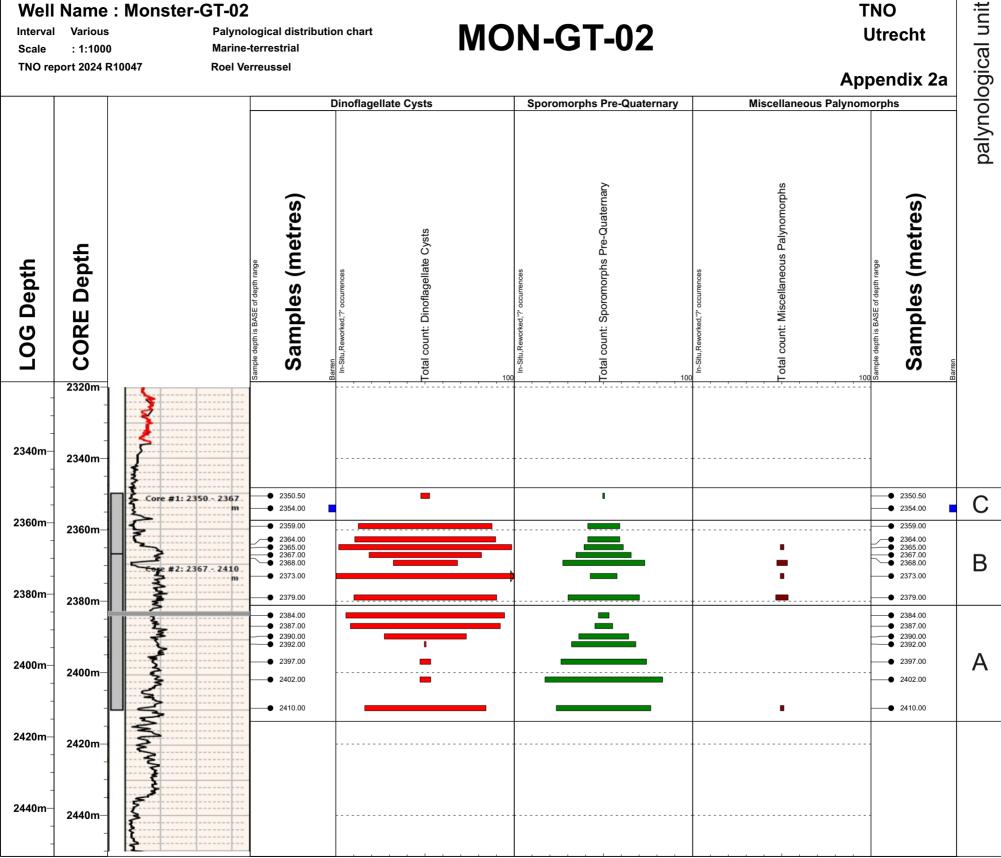
Micrometer scale with 10x objective 1 bar = 10μ

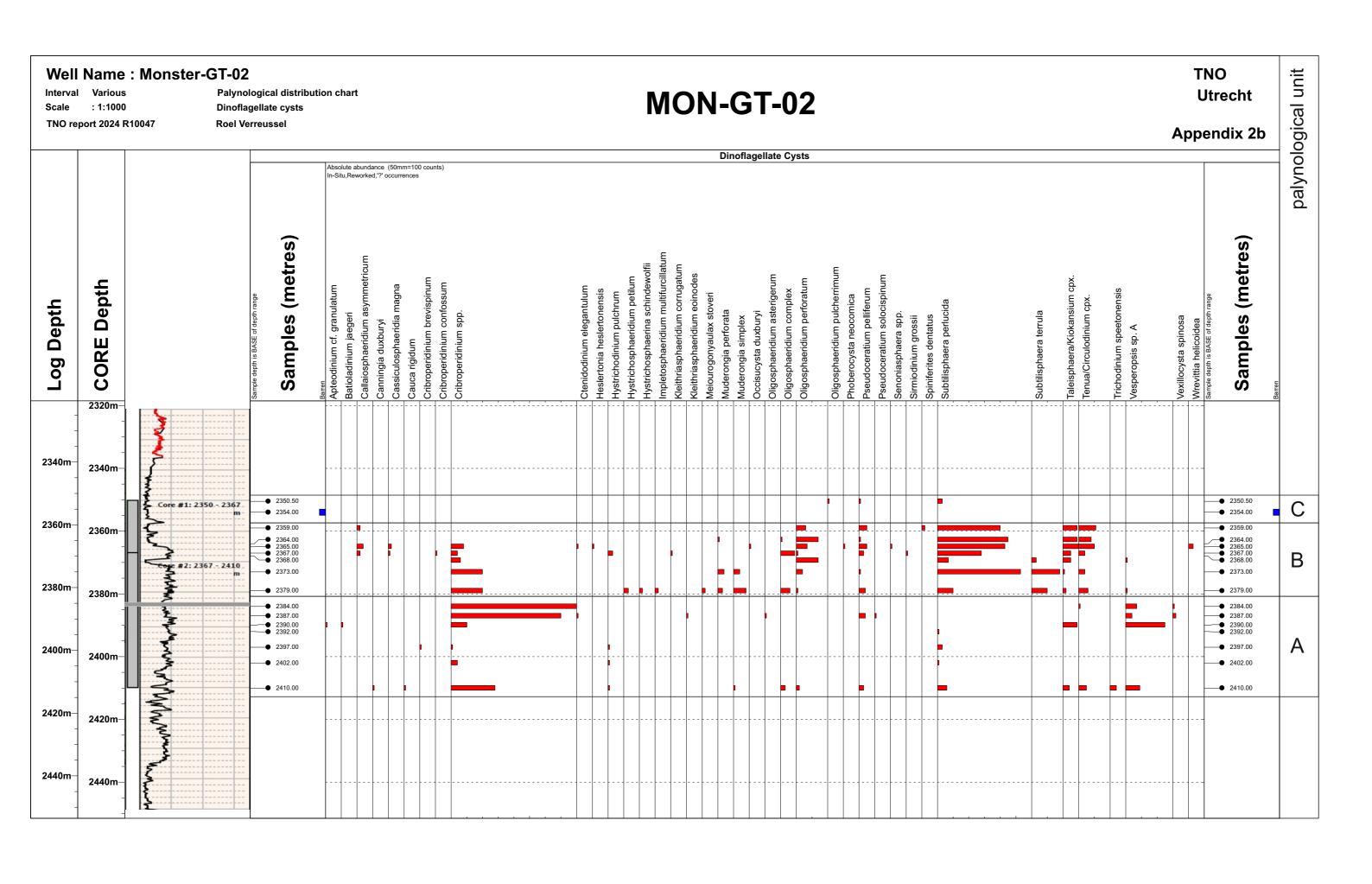
TNO report 2024 R10047

Appendix 2

Palynological distribution charts

Well Name: Monster-GT-02


Various Palynological distribution chart Interval


Marine-terrestrial Scale : 1:1000 TNO report 2024 R10047 **Roel Verreussel**

MON-GT-02

TNO Utrecht

Appendix 2a

palynological unit Well Name: Monster-GT-02 **TNO** Interval Various Palynological distribution chart MON-GT-02 Utrecht **Sporomorphs** : 1:1000 Scale TNO report 2024 R10047 **Roel Verreussel Appendix 2c** Sporomorphs Pre-Quaternary Absolute abundance (50mm=100 counts) In-Situ.Reworked.'?' occurrences Samples (metres) Samples (metres) Cerebropollenites mesozoicus Gleicheniidites conspiciendus Pilosisporites trichopapillosus **CORE Depth** Aequitriradiatus tilchaensis -ycopodiacidites irregularis Trilobosporites hannonicus Sample depth is BASE of depth range Perinopollenites elatoides Aequitriradites spinulosus Converrucosisporites spp. Concavissimisporites spp. Callialasporites trilobatus Callialasporites dampieri Log Depth Cicatricosisporites spp. Osmundacidites minor Contignisporites spp. Acanthotriletes spp. Densosporites spp. schyosporites spp. Psilatrilete spores Monosulcites spp. Plicatella cristata Bisaccates 2320m-2340m 2340m-Core #1: 2350 - 2367 **2350.50** - 2350.50 2354.00 2354.00 2360m 2359.00 2360m-#2: 2367 - 2410 2364.00 2365.00 2367.00 2368.00 - 2364.00 - 2365.00 - 2367.00 - 2368.00 В 2373.00 2373.00 2380m-2379.00 2379.00 2380m - 2384.00 - 2384.00 • 2387.00 2387.00 Α 2397.00 2397.00 2400m 2400m 2402.00 2402.00 **2410.00** 2410.00 2420m 2420m 2440m 2440m

Energy & Materials Transition

Princetonlaan 6 3584 CB Utrecht

