United States Patent [19]

Schöyer et al.

[11] Patent Number:

4,950,341

[45] Date of Patent:

Aug. 21, 1990

[54] HIGH-PERFORMANCE PROPELLANT COMBINATIONS FOR A ROCKET ENGINE

[75] Inventors: H. F. R. Schöyer, Zoetermeer; Paul A. O. G. Korting, Kwintsheul; J. M. Mul, Delft, all of Netherlands

[73] Assignee: European Space Agency, Paris,

France

[21] Appl. No.: 376,838

[22] Filed: Jul. 7, 1989

[30] Foreign Application Priority Data

Jul. 8, 1988 [NL] Netherlands 8801739

[56] References Cited

U.S. PATENT DOCUMENTS

3,345,821	10/1967	Magee 60/214
3,704,184	11/1972	Kuehl et al 149/1
3,730,783	5/1973	Pilipovich et al 148/285
4,405,762	9/1983	Earl et al 149/109.4

OTHER PUBLICATIONS

Dadieu et al., Raketentreibstoffe, pp. 109-112, 638, 675-676, Springer-Verlag, (1968).

Greleci et al., A.R.S. Journal, 32(8), 1189-1195, (1962), (especially 1190-1192.

Haberman, Chemical Engineering Progress, 68(7), 72-76, (1964).

Urbanski, Chemistry and Technology of Explosives, vol. 4, pp. 568-573.

Primary Examiner—Stephen J. Lechert, Jr. Attorney, Agent, or Firm—Michael N. Meller

[57] ABSTRACT

A solid high-performance propellant for a rocket engine is described. The propellant is constituted by a combination of polyglycidylazide (GAP) ([C₃H₅N₃O]_n) or poly-3,3-bis(azidomethyl)oxetane (BAMO) ([C₄H₆N₆O]_n) with boron, aluminum, or aluminum hydride (AlH₃) and a compound selected from the group consisting of hydrazinium nitroformate (N₂H₅C(NO₂)₃), nitronium perchlorate (NO₂ClO₄), or ammonium perchlorate (NH₄ClO₄), together with other conventional additives.

2 Claims, No Drawings

HIGH-PERFORMANCE PROPELLANT COMBINATIONS FOR A ROCKET ENGINE

This invention relates to propellant combinations for a rocket engine. More specifically, the invention relates 5 to a propellant combination having a high performance and which, prior to use, can be stored for a considerable time.

There is a great need for high-performance propel- 10 where lants which, whether or not in combination, can be stored for a considerable time, for example, in a spacecraft, and can be used not only to change the position of a spacecraft which is in space, but also for launching a spacecraft into space.

Storable combinations of propellants of the prior art, generally consisting of an oxidizer component and a fuel component, have performances inferior to those of conventional, cryogenic combinations.

with a combination of dinitrogen tetroxide (N2O4) and monomethylhydrazide (N₂H₃CH₃) is approximately 3000 m/sec, whereas cryogenic mixtures of liquid oxygen and hydrogen offer a specific impulse of more than 4000 m/sec.

The effect of specific impulse on spacecraft payload capabilities is dramatic. If, for example, a velocity of 2000 m/sec is required for bringing a spacecraft into orbit, or for changing a given orbit, then with a specific impulse of 2943 m/sec, half of the spacecraft launch 30 mass would consist of propellant. Raising the specific impulse to 4415 m/sec would reduce the propellant mass to 37.5%. As the mass of the propulsion system itself would not have to be changed materially, this freely available mass of 12.5% could be used com- 35 pletely for orbiting means of telecommunication etc. For a spacecraft of 2000 kg, this means an increase in payload by 250 kg.

The invention is based on the proposition of developing a propellant combination that can be stored for a prolonged period of time prior to use and is capable of providing a specific impulse which is at least equal to, or exceeds that obtainable by known combinations. The search was directed in particular to solid propellant combinations.

The combustion pressure and ex ratio between the throat and the mouth of the nozzle

for present, (pressure-fed) rocket engines are (approximately) as follows:

Combustion pressure							
Propeilant	MPa	Expansion ratio					
liquid	1	125					
solid	10	100					
hybrid	1	125					

For new rocket engines to be developed, a (pumpfed) combustion chamber pressure of 15 MPa and an expansion ratio of 750 are foreseen.

The search for the novel combinations was carried out with particular regard to the above operating conditions.

As is well known, the theoretical performance of a propellant or propellant combination can generally be expressed by the following formula:

$$Isp = \sqrt{2\gamma \cdot (\gamma - 1)^{-1} \cdot R_o \cdot T_c \cdot M^{-1} \left[1 - \left(\frac{Pe}{Pc} \right) \frac{\gamma - 1}{\gamma} \right]}$$

 γ is the specific heat ratio, Cp/Cv,

Ro is the universal gas constant,

 T_c is the flame temperature,

M is the mean molar mass of combustion products,

 P_c is the combustion chamber pressure, and

 P_e is the nozzle exit pressure.

This equation shows that the specific impulse is directly proportional to the square root of the chamber temperature and inversely proportional to the square Thus the specific impulse (Isp) of a rocket engine fed 20 root of the mean molecular mass of the combustion products, while the Cp/Cv ratio also affects the specific

The combustion chamber temperature is primarily determined by the energy released during the combustion of the propellant components and the specific heat of the combustion products:

$$T_c = \frac{\Delta H}{C_n}$$

$$\frac{C_p}{C_v} = \frac{C_v = \frac{R_o}{M}}{C_v} = \frac{C_p}{C_p - \frac{R_o}{M}}$$

the most important parameters affecting the performance of the propellant are M, C_p and ΔH . One of the specific objects of the present invention is to provide a solid propellant combination, the use of which leads to the combination of these parameters having an optimum value while neither the starting materials, nor the reaction products involve inacceptable risks for men and the environment. The solid propellant combination according to this invention is constituted by a combination of polyglycidyl azide $([C_3H_5N_3O]_n)$ or poly-3,3-bis-(azidomethyl)oxetane $([C_4H_6N_6O]_n)$ with boron, aluminium, or aluminium hydride and a compound selected from the group consisting of hydrazinium nitro-50 formate (N₂H₅C(NO₂)₃), nitronium perchlorate (NO₂-ClO₄) or ammonium perchlorate (NH₄ClO₄).

The compounds referred to will also be designated by the following acronyms hereinafter:

Dinitrogen tetroxide: NTO

Tetranitromethane: TNM Polyglycidyl azide: GAP

Poly 3,3-bis(azidomethyl)oxetane: BAMO

Hydrazinium nitroformate: HNF Nitronium perchlorate: NP

Ammonium perchlorate: AP Hydroxy-terminated polybutadiene: HTPB

Monomethylhydrazine: MMH

The proportions of the components, i.e. oxydizer and fuel component, in the propellant combinations according to this invention are not critical. Generally speaking, the components are mixed with each other prior to the reaction in such proportions that the mixing ratios are around the stoichiometric ratio. In the solid propel3

lant combinations according to the invention, generally speaking an amount of no more than 20%, calculated on the total mixture, of the energetic binder (BAMO or GAP) is included.

Preferred propellant combinations according to the 5 invention are the following:

 $(N_2H_5C(NO_2)_3(70-80\%)+B(10\%)+GAP \text{ or BAMO}$ (10-20%)

NO₂ClO₄ (66-76%)+B (14%)+GAP or BAMO (10-20%)

 NH_4ClO_4 (68-78%)+B (12%)+GAP or BAMO (10-20%)

 $N_2H_5C(NO_2)_3$ (59-69%)+A1 (21%)+GAP or BAMO (10-20%)

Rocket performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273, Interim Revision, March 1976) and using the thermodynamic data of the reactants and reaction products (cf. D.R. Stull and H. Prophet, JANAF Thermochemical Tables, Second Edition, NSRDS-NBS 37, 1971 and JANAF supplements; I. Barin, O Knacke and O. Kubaschewski, Thermochemical properties of inorganic substances, Springer-Verlag, 1977) the performances of the propellant combinations were verified. Calculations were made for both chemical equilibrium (ef) and for a "frozen flow" condition in space after the combustion chamber (ff). The values obtained are summarized in the following Table 1.

TABLE 1

Theoretical maximum performance of a number of solid					
propellant combinations according to this invention. The					
specific impulse shown is 92% of the known value. Percentages are by weight.					

		P_c	A_e/A_t	max. Isp (m/s)		max. gain in Isp (m/s)	
Oxidizer	Fuel	(MPa)	(-)	ef	ff	. ef	ff
76% NH ₄ ClO ₄	13% Al	10	100	2946.5			
70% HNF	11% HTPB 10% B	10	100	2940.3	_		0
66% NO2ClO4	20% GAP 14% B	10	100	3042.3	2772.5	95.8	_
	20% GAP	10	100	3067.0	2798.2	120.5	
68% NH ₄ ClO ₄	12% B 20% GAP	10	100	2911.0	2672.5	-35.5	_
59% HNF	21% Al 20% GAP	10	100	3160.9	<u>.</u>	214.4	
61% NO ₂ ClO ₄	19% AI		•				
57% NH4ClO4	20% GAP 23% Al	10	100	2962.6		16.1	_
	20% GAP	10	100	3027.4		80.9	_

 NO_2ClO_4 (61-71%)+Al (19%)+GAP or BAMO 35 (10-20%)

NH₄ClO₄ (57-67%)+Al (23%)+GAP or BAMO (10-20%)

NO₂ClO₄+AlH₃+GAP or BAMO NO₄ClO₄+AlH₃+GAP or BAMO

Generally speaking, minor proportions, specifically up to no more than a few percent by weight, of substances such as nitrogen monoxide, phthalates, stearates, copper or lead salts, carbon black etc., are added to the propellant combinations according to the inven-45 tion. These additives are known to those skilled in the art and serve to increase stability, keeping characteristics and combustion characteristics, etc. of the propellant as well as to promote their anti-corrosion properties.

The propellant combinations according to the invention are stored prior to use, using known per se techniques, with the components generally being in admixture.

tion are distinct from known combinations by their high performance.

Propellant combinations based on hydrazinium nitroformate (HNF), aluminium and an energetic binder such as GAP or BAMO, exhibit an improvement of the 60 K. Klager, Hydrazine perchlorate as oxidizer for solid specific impulse relative to conventional ammonium perchlorate propellants of 214 m/sec. In addition, the combustion gases are much cleaner, because HNF does not contain chlorine and the environment is not burdened with hydrogen chloride gas.

By means of a computer calculation (cf. S. Gordon and B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions,

It is noted that the substances constituting the components of the propellant combinations according to the invention, and some of which are known per se as a propellant component, have been described in the literature as regards both their preparation and their chemical and physical properties.

In this connection particular reference is made to the following publications:

- B. Siegel and L. Schieler, Energetics of Propellant Chemistry, J. Wiley & Sons Inc., 1964.
- S.F. Sarner, Propellant Chemistry, Reinhold Publishing Corporation, 1966.
- R.C. Weast, Handbook of Chemistry and Physics, 59th Edition, CRC press, 1979.
- 50 A. Dadieu, R. Damm and E.W. Schmidt, Raketentreibstoffe, Springer-Verlag, 1968.
 - G.M. Faeth, Status of Boron Combustion Research, U.S. Air Force Office of Scientific Research, Washington D.C. (1984).
- The propellant combinations according to the inven- 55 R.W. James, Propellants and Explosives, Noyes DATA Corp., 1974.
 - G.M. Low and V.E. Haury, Hydrazinium nitroformate propellant with saturated polymeric hydrocarbon binder, United States Patent, 3,708,359, 1973.
 - propellants, Jahrestagung 1978, 359-380.
 - L.R. Rothstein, Plastic Bonded Explosives Past, Present and Future, Jahrestagung 1982, 245-256.
 - M.B. Frankel and J.E. Flanagan, Energetic Hydroxyterminated Azido Polymer, U.S. Pat. No. 4,268,450, 1981.
 - G.E. Manser, Energetic Copolymers and method of making some, U.S. Pat. No. 4,483,978, 1984.

M.B. Frankel and E.R. Wilson, Tris (2 - axidoehtyl) amine and method of preparation thereof, U.S. Pat. No. 4,449,723, 1985.

What we claim is:

1. A solid propellant combination for a rocket engine, comprising a combination of polyglycidylazide (GAP) ($[C_3H_5N_3O]_n$) or poly-3,3-bis(azidomethyl)oxetane (BAMO) ($[C_4H_6N_6O]_n$) with boron, aluminium, or aluminium hydride (A1H₃) and a compound selected from the group consisting of hydrazinium nitroformate ($N_2H_5C(NO_2)_3$), nitronium perchlorate (NO_2C1O_4), and ammonium perchlorate (NH_4C1O_4),.

2. A solid propellant combination as claimed in claim 1, selected from the group consisting of

N₂H₅C(NO₂(3 (70-80%) +(10%) +GAP or BAMO (10-20%)

(10-20%), NO₂C1O₄ (66-76%) +B (14%) +GAP or BAMO (10-20%),

NH₄C1O₄ (68-78%) +B (12%) +GAP or BAMO (10-20%), N₂H₅C(NO₂)₃ (59-69%) +A1 +(21%) +GAP or BAMO (10-20%), NO₂C1O₄ (61-71%) +A1 (19%) +GAP or BAMO (10-20%), NH₄C1O₄ (57-67%) +A1 (23%) +GAP or BAMO (10-20%), NO₂C1O₄ A1H₃ +GAP or BAMO, and NO₄C1O₄ +A1H₃ +GAP or BAMO.

15

20

25

30

35

40

45

50

55

60