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A B S T R A C T

This paper presents an offline iterative scheme to efficiently obtain a fixed controller for larger-
scale active noise control systems. The approach reduces the computational complexity of the
scheme by applying preconditioning and prewhitening via the frequency domain, followed by
conversion of the filters to the time domain using the inverse Fourier transform. Although
the filters are not necessarily causal, causality is ensured by utilizing delay and truncation
techniques. The use of these filters in the iterative scheme leads to improved convergence,
lowering computational effort while also being memory efficient. Regularization is applied to
maintain convergence while allowing for larger step sizes between iterations. The controller
minimizes the reflected sound field, which is measured by the performance sensors. The signals
of the performance sensors are computed with the Kirchhoff–Helmholtz integral. The results
show that this allows for global control of the reflected sound field within the microphone
area. A simulation is shown of a noise control setup with 12 primary sources, 12 secondary
sources, 12 reference sensors, 12 error sensors and 37 performance sensors. Although the delay
of the filters in the direct path is reflected in the filter coefficients, this delay can be truncated to
obtain filter coefficients without any delay. Despite the truncation resulting in an average loss
in performance of 1.6 dB, the control system without any delays is able to reduce the average
reflected sound at the performance sensors by 13.8 dB, when the reference signal is known.

. Introduction

Acoustic anechoic chambers are designed to absorb acoustic waves at its boundaries, effectively creating a free space environment
hat simulates an infinitely large chamber. These chambers are commonly used for transfer function measurements, sensor
alibration, certification of machinery and more [1–3].

In the ideal case, all acoustic waves are absorbed at the walls, eliminating the presence of reflections. However, passive absorption
easures have limitations, resulting in low-frequency sound waves reflecting off the walls [4,5], in some cases even above the cut-off

requency the chamber is designed for. This was demonstrated in a study by [4], where an anechoic chamber designed with a cut-off
requency of 75 Hz showed perturbations in the 110 to 160 Hz frequency range, increasing the cut-off frequency to about 200 Hz.
esign principles of an acoustic anechoic chamber are described in [6–8], which highlight the design efforts required to lower the
ut-off frequency.
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Active noise control is effective at lower frequencies, which makes this a promising addition to the passive wall absorption
o extend the operable frequency range of an acoustic anechoic chamber. A detailed overview of research directions in active
oise control is presented in [9]. The problem of input shaping for a known or estimated plant is solved in other relevant fields,
xamples are optimal tracking [10,11], model predictive control [12] and inverse system control [13]. A physical approach to
xpand a finite-size laboratory with a virtual domain using active boundary control, utilizing immersive boundary conditions is
hown by [14]. However, this method relies on ideal sources, requiring calibration for which a method is not shown. The immersive
oundary conditions have been extended to cloaking and holography [15] and elastic immersive wave experimentations [16,17].
ctive control in an anechoic room is shown in [18], active control of scattered acoustic radiation in [19] and real-time active
uppression of scattered acoustic radiation in [20]. The methods in [18–20] apply scattering filters to estimate the reflected sound
ield. The use of scattering filters introduces difficulties, for which solution strategies are suggested. Furthermore, in [19,20] it is
tated that the performance is limited by the number of channels that is manageable by today’s standards, and thus call for efficient
ethods to solve larger-scale systems.

The use of measured transfer functions eliminates a calibration stage and enables the design of a system with ordinary sources
nd sensors, thus reducing the cost. Assuming that the reference signals are stationary in time and that all involved systems are
inear time invariant (LTI), a typical approach that incorporates measured transfer functions of the secondary path is to solve the

iener filtering problem [21], to find an 𝐻2 optimal fixed time domain filter. This requires solving a system of linear equations
ontaining a Toeplitz-block matrix. Efficient algorithms exploit knowledge about the matrix structure to reduce the computational
omplexity. The Levinson algorithm [22] is well-known, which solves the system with (𝑛2) complexity, where 𝑛 is the size of the
oeplitz-block matrix.

Low-rank approximation methods such as sequentially semi-separable [23] and Hierarchically semi-separable [24] show
romising efficiency enhancements for different structured matrices. However, it is unknown whether this can be generalized to
lock-structured Toeplitz matrices [23]. The optimal control problem can also be expressed in the frequency domain, which is
omputationally advantageous, but not necessarily causal [21].

Solving the Wiener filtering problem in an iterative manner with the preconditioned conjugate gradient method (PCG) is shown
sing circulant preconditioning for Toeplitz-block matrices [25]. For single-channel systems, this approach has a complexity of
(𝑛log(𝑛)). Other preconditioners have been introduced as well [26,27]. Despite being efficient, the PCG method requires storing

he first columns and rows of the blocks within the Toeplitz-block matrix, resulting in increasing memory requirements for growing
ystem sizes.

The filtered-reference least mean squares and the filtered-error least mean squares (FeLMS) algorithms [21] are well-known
daptive algorithms in the time domain. These algorithms assume that the reference signals are stationary in time and that all
nvolved systems are LTI. Provided these adaptive algorithms are stable, they will converge to the optimal Wiener filter in the
teady-state [28]. The memory consumption of these adaptive algorithms scales well with growing system sizes. Between these
wo, the FeLMS algorithm has a significant lower computational complexity in case of systems with multiple reference- or error-
ignals. The convergence speed of the FeLMS algorithm can be a challenge [28], requiring preconditioning methods. A method
o prewhiten the reference signals and apply preconditioning and decoupling to the system using filters derived in the frequency
omain is shown in [29]. Constructing these filters in the frequency domain results in a lower computational complexity, with
he downside of non-guaranteed causality. To mitigate the causality problem, the filters are delayed and truncated in the time
omain, ensuring causality. This approach is similar to an approach shown in [30] where a cyclic shift of the time domain samples
s applied after the Fourier Transform. A modified FeLMS algorithm is shown in [31], which applies preconditioning using inner–
uter factorization, regularization of the system and a method to compensate the delay for improved convergence. However, the
nner–outer factorization is costly for systems with a higher number of channels. Furthermore, the inner–outer factorization requires
state–space model that is not always available.

The Kirchhoff–Helmholtz integral can be used to compute the sound field from the measured acoustic pressure and the particle
elocity on an enclosed contour [32,33]. In case of a sound source positioned within the enclosed contour, the inverse Kirchhoff–
elmholtz integral should be used. On the other hand, if the sound source is positioned outside of the enclosed contour, the forward
irchhoff–Helmholtz integral should be used [34], which is the case with sound waves reflecting from the walls. This method allows

o separate the direct sound field from the reflected sound field, which is a necessity for active suppression of the sound reflected
rom the walls.

The contribution of this paper is a scheme in which the prewhitening and preconditioning filters are derived in the frequency
omain, combining the work of [29,31]. Besides the application of a cross-talk cancellation system as shown in [29], this paper
hows that the proposed frequency domain approach can also be applied in active control applications. This results in an algorithm
ith low computational complexity and small memory consumption to compute a finite impulse response (FIR) control filter, using
easured transfer functions. The algorithm acquires the performance signals computed with the Kirchhoff–Helmholtz integral, which

llows for global control of the reflected sound field within the microphone area. The proposed method is applied to a multichannel
ctive noise control system to show both the achievable performance and the efficiency of the proposed scheme compared to existing
lgorithms. The simulation demonstrates a method to attenuate the reflected sound field, in an effort to work towards an active
coustic anechoic chamber.
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Fig. 1. Block-scheme of a feedforward active noise control system [21].

Fig. 2. Regularized modified filtered-error adaptive control scheme [31].

Fig. 3. Regularized modified filtered-error scheme with preconditioning- and prewhitening-filters which are derived in the frequency domain.

2. Method

A block diagram of the feedforward system to attenuate the reflections from the walls is shown in Fig. 1. In this scheme 𝐱(𝑛)
is the 𝐾-by-𝑃 reference signal in which 𝐾 denotes the number of reference sensors, 𝑃 denotes the number of primary sources, 𝑛
denotes the sample number and 𝑧 denotes the unit-delay forward shift operator. The noise signal is denoted by 𝐝(𝑛), which is of
dimensions 𝐿-by-𝑃 in which 𝐿 denotes the number of error sensors. The goal of the system is to minimize 𝐞(𝑛) = 𝐝(𝑛) + 𝐲(𝑛), in
which 𝐲(𝑛) is the secondary signal. The secondary signal 𝐲(𝑛) is the controller 𝐖(𝑧) output signal 𝐮(𝑛) filtered by the secondary path
𝐆(𝑧), which has the dimensions 𝐿-by-𝑀 in which 𝑀 denotes the number of secondary sources.

The controller 𝐖(𝑧) is computed using a preconditioned adaptive scheme to reduce computational complexity and memory
consumption. The starting point is the FeLMS algorithm [21], which suffers from poor convergence due to the delays and frequency-
dependent transfer functions in the adaptation loop. Therefore, a scheme that incorporates preconditioning using inner–outer
factorization is proposed in [31] and shown in Fig. 2. The filter 𝐆̄−1

𝑜 is the inverse of the minimum-phase part of the secondary
path, and the filter 𝐆̄∗

𝑖 is the adjoint of the all-pass part of 𝐆̄. Furthermore, this scheme incorporates regularization of the secondary
path, reducing the controller output at frequencies where the secondary path has low amplification values.

The inner–outer factorization is computationally expensive for systems with a high number of sources and sensors. Therefore,
this approach is replaced by a method to derive the filters via the frequency domain. Furthermore, a prewhitening and decorrelation
filter is applied to improve convergence speed in case of correlated and colored reference signals, which is also computed via the
frequency domain [29]. The proposed scheme is shown in Fig. 3.

The signal 𝐝(𝑛) is obtained from the signal 𝐬(𝑛) by the 𝐿-by-𝑃 dimensional transfer function matrix 𝐏(𝑧), named the primary
path. The signal 𝐱(𝑛) is obtained from the signal 𝐬(𝑛) by the 𝐾-by-𝑃 dimensional transfer function matrix 𝐗(𝑧) and prewhitened
and decorrelated by the filter ̂̄𝐅𝑤(𝑧) with dimensions 𝐾-by-𝐾, resulting in the reference signal 𝐯(𝑛). The secondary path 𝐆(𝑧) is
preconditioned by the filter ̂̄𝐆 (𝑧) of dimensions 𝑀-by-𝑀 . The error signal is filtered by the adjoint filter ̂̄𝐆 (𝑧) of dimensions
3
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𝑀-by-(𝐿 +𝑀) to obtain 𝐞′(𝑛). The signal 𝐯′(𝑛) is a delayed version of 𝐯(𝑛), written as:

𝐯′(𝑛) = 𝛥ai(𝑧)𝐯(𝑛), (1)

in which 𝛥ai(𝑧) is the simulation delay operator corresponding to the delay of 𝛥ai samples in the filter ̂̄𝐆ai(𝑧). Similarly, the signal
′(𝑛) is a delayed version of the controller output, written as:

𝐲′(𝑛) = 𝛥ai(𝑧)𝐂(𝑧)𝐯(𝑛). (2)

he secondary path 𝐆(ej𝜔) is regularized to reduce the controller output at frequencies where the secondary path has small values
o prevent large amplifications, resulting in the augmented filter 𝐆̄(𝑧) of dimensions (𝐿 +𝑀)-by-𝑀 .

The update rule for the controller is:

𝐂𝑖(𝑛 + 1) = 𝐂𝑖(𝑛) − 𝛼𝐞′′(𝑛)𝐯′𝑇 (𝑛 − 𝑖), 𝑖 = 0,… , 𝐼 − 1, (3)

in which the superscript 𝑇 denotes the matrix transpose, 𝑖 denotes the tap-delay of the FIR coefficients, assuming a FIR filter length
and 𝛼 is the convergence coefficient defined as:

𝛼 =
𝛼0
𝑟̄
, (4)

such that 𝛼 is normalized by the input power and 𝛼0 should be ∼ 1. The normalization factor 𝑟̄ is computed as the norm of the
iltered-reference signal 𝐫(𝑛) following:

𝑟̄ = ‖𝐆̄(𝑧) ̂̄𝐆mi(𝑧) ̂̄𝐅𝑤(𝑧)𝐱(𝑛)‖2. (5)

After running the proposed algorithm, a controller 𝐂(𝑧) is obtained, which is converted to the desired controller 𝐖(𝑧) following:

𝐖(𝑧) ∶= ̂̄𝐆mi(𝑧)𝐂(𝑧) ̂̄𝐅𝑤(𝑧), (6)

uch that this controller can be implemented following the feedforward configuration as shown in Fig. 1.

.1. Frequency domain formulation of the prewhitening and decorrelation filter

Starting from 𝐾 discrete-time real-valued random reference signals which are assumed to be stationary but possibly correlated,
eing described by the matrix:

𝐱(𝑛) = [𝑥1(𝑛),… , 𝑥𝑘(𝑛)]𝑇 . (7)

The correlation matrix of the signal 𝑥(𝑛) can be written as:

𝐑xx(𝑚) = 𝐸[𝐱(𝑛 + 𝑚)𝐱𝑇 (𝑛)], −∞ < 𝑚 < ∞. (8)

Using the discrete-time Fourier transform, the correlation matrix can be written as the power spectral density (PSD) matrix [29]:

𝐒xx(ej𝜔) =
∞
∑

𝑚=−∞
𝐑xx(𝑚)e−j𝜔𝑚, j =

√

−1, (9)

which can be computed using the Welch method. The 𝐾-by-𝐾 power spectral density matrix 𝐒xx(ej𝜔) is a positive semi-definite
Hermitian matrix and therefore an eigenvalue decomposition (EVD) always exists [35], which can be computed for all frequencies:

𝐒xx(ej𝜔) = 𝐐(ej𝜔)𝐃(ej𝜔)𝐐𝐻 (ej𝜔), (10)

in which the superscript 𝐻 denotes the Hermitian transpose, 𝐃(ej𝜔) is a diagonal matrix containing the real eigenvalues and 𝐐(ej𝜔)
contains the normalized eigenvectors. The prewhitening and decorrelation filter can be written as [29]:

𝐅𝑤(ej𝜔) = 𝐃− 1
2 (ej𝜔)𝐐𝐻 (ej𝜔), (11)

which applied to the reference signals gives:

𝐯(ej𝜔) = 𝐅𝑤(ej𝜔)𝐱(ej𝜔), (12)

such that the signals 𝐱(ej𝜔) are whitened and decorrelated.
The conditions for 𝐃− 1

2 (ej𝜔) in Eq. (11) to exist, are mentioned in [29]. To improve the conditioning of the matrix 𝐃(ej𝜔),
egularization is applied:

𝐃̄(ej𝜔) = 𝐃(ej𝜔) + 𝛽𝐹 𝐈𝐾 , (13)

here 𝐈𝐾 is an identity matrix of size 𝐾-by-𝐾, with the regularization parameter 𝛽𝐹 . The regularization parameter 𝛽𝐹 improves the
onditioning of the matrix, but should typically be as small as possible because it changes the filter. Then the regularized filter is
efined as:

̄ j𝜔 ̄ − 1
2 (ej𝜔)𝐐𝐻 (ej𝜔). (14)
4
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2.2. Frequency domain formulation of the system’s preconditioning and decoupling filters

Similar to the prewhitening and decorrelation filter, a system can be decoupled by orthogonal transformations. Because a system
atrix is possibly non-square and in general not Hermitian, a singular value decomposition (SVD) is used instead of the EVD [29].
ssume that a stable MIMO linear time-invariant system with 𝑀 inputs and 𝐿 outputs is described by the 𝐿-by-𝑀 frequency response
atrix 𝐆(ej𝜔). Application of regularization results in the (𝐿 +𝑀)-by-𝑀 augmented plant 𝐆̄(ej𝜔) [31]:

𝐆̄(ej𝜔) =
[

𝐆(ej𝜔)
𝐆reg(ej𝜔)

]

, (15)

here the regularizing transfer function is defined as:

𝐆reg(ej𝜔) =
√

𝛽𝐺𝐈𝑀 , (16)

in which 𝛽𝐺 is the regularization parameter. The regularization parameter 𝛽𝐺 prevents high gains in ̂̄𝐆mi(ej𝜔) that might occur due
to the inverse and therefore prevents saturation of the control signal [31]. This parameter should be chosen in the range of expected
reduction levels.

Computing the singular value decomposition of the secondary path at each frequency:

𝐆̄(ej𝜔) = 𝐔̄(ej𝜔)Σ̄(ej𝜔)𝐕̄𝐻 (ej𝜔), (17)

where the dimensions of 𝐔̄(ej𝜔) are (𝐿+𝑀)-by-𝑀 , the dimensions of Σ̄(ej𝜔) are 𝑀-by-𝑀 and the dimensions of 𝐕̄(ej𝜔) are 𝑀-by-𝑀 .
The preconditioner of the direct path is written as:

𝐆̄mi(ej𝜔) = 𝐕̄(ej𝜔)Σ̄−1(ej𝜔), (18)

hich results in the preconditioned direct path:

𝐆̄(ej𝜔)𝐆̄mi(ej𝜔) =

𝐔̄(ej𝜔)Σ̄(ej𝜔)𝐕̄𝐻 (ej𝜔)𝐕̄(ej𝜔)Σ̄−1(ej𝜔) =

𝐔̄(ej𝜔). (19)

The decoupling of the system is achieved by choosing

𝐆̄ai(ej𝜔) = 𝐔̄𝐻 (ej𝜔), (20)

uch that

𝐆̄ai(ej𝜔)𝐆̄(ej𝜔)𝐆̄mi(ej𝜔) = 𝐔̄𝐻 (ej𝜔)𝐔̄(ej𝜔) = 𝐈̃, (21)

here 𝐈̃ ≈ 𝐈, such that the system is diagonalized.

.3. Time domain formulation of the frequency domain filters

The frequency response matrices can be converted to impulse response matrices using the inverse discrete-time Fourier transform.
he discrete Fourier transform could introduce wrap-around effects, and together with the truncation effects this might result in
on-causality of the time domain filters. Causality of the filters must be ensured by introducing appropriate delay and truncation.
hese procedures are required for both the prewhitening and preconditioning filters.
∙ Prewhitening filter:

1. Having the frequency response matrix 𝐅̄𝑤(ej𝜔), taking the inverse discrete Fourier transform results in the impulse response
matrix 𝐅̄𝑤(𝑧), with reference to the symmetry property of the frequency response matrix: 𝐅̄𝑤(e−j𝜔) = 𝐅̄∗

𝑤(ej𝜔), in which the
superscript ∗ denotes the complex conjugate.

2. Delay 𝐅̄𝑤(𝑧) with an appropriate number of sample delays denoted by 𝛥𝐹 to ensure causality of all entries of the impulse
response matrix, to obtain a new impulse response matrix ̃̄𝐅𝑤(𝑧).

3. Truncate the non-causal part of ̃̄𝐅𝑤(𝑧) to obtain the coefficients of FIR filters ̂̄𝐅𝑤(𝑧) of length 𝑂.

∙ Preconditioning filters:

1. Convert the frequency response matrices 𝐆̄mi(ej𝜔) and 𝐆̄ai(ej𝜔) to the impulse response matrices 𝐆̄mi(𝑧) and 𝐆̄ai(𝑧) by
taking the inverse discrete Fourier transform, with reference to the symmetry property of the frequency response matrices:
𝐆̄mi(e−j𝜔) = 𝐆̄∗

mi(e
j𝜔) and 𝐆̄ai(e−j𝜔) = 𝐆̄∗

ai(e
j𝜔).

2. Delay 𝐆̄mi(𝑧) with 𝛥mi samples to obtain ̃̄𝐆mi(𝑧).
3. The delay 𝛥mi should be incorporated in 𝐆̄ai(𝑧) but time-reversed, since it is based on the adjoint, and the Hermitian in the

frequency domain, of the product 𝐆̄(ej𝜔)𝐆̄ (ej𝜔).
5
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Fig. 4. Comparing the computational complexity and memory consumption of the proposed algorithm (circles) with the PCG method (squares) and the FeLMS
algorithm (diamonds). Computational complexity is indicated by the solid lines (corresponding to the left axis), memory consumption is indicated by the dashed
lines (corresponding to the right axis). It is assumed that the solution using the proposed algorithm can be obtained within 𝑛proposed = 4𝑒4 LMS iterations, using
the PCG method within 𝑛PCG = 100 iterations and using the FeLMS algorithm within 𝑛LMS = 4𝑒5 iterations. Furthermore it is assumed that 𝐼 = 𝐽 = 𝑂 = 𝑁fft = 512,
with an assumed FFT cost of 𝑛𝑙𝑜𝑔(𝑛). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Computational complexity of the proposed algorithm, compared to the PCG method with circulant preconditioning. The variable 𝑁fft corresponds to the number
of frequency bins in the frequency-response matrices and 𝑛 indicates the number of iterations of the proposed algorithm. The cost of a Fourier Transform applied
on a vector of length 𝑛 is denoted as 𝐹𝐹𝑇 (𝑛).

Proposed algorithm PCG with circulant preconditioning [25] FeLMS [21]

Setup cost 𝐹𝐹𝑇 (𝑁fft)(𝐾2+3𝑀2+2𝐿𝑀)+𝐹𝐹𝑇 (𝑛)𝐾2+
𝑁fft(𝐾2 + 3𝐾3 + 2𝑀2 + 3𝑀3 +𝐿𝑀 +𝐿𝑀2)

(𝑀𝐾)2𝐼 + (𝑀𝐾)2 ⋅ 𝐹𝐹𝑇 (𝐼) +𝑀𝐾𝐼 + 𝐼 ⋅
𝐹𝐹𝑇 (𝑀𝐾)

None

Per-iteration cost 𝑂𝐾2 + 3𝑀𝐾𝐼 + 𝐽𝑀2 + 2𝐽 (𝐿 +𝑀)𝑀 𝑀𝐾𝐼 + 2𝐼 ⋅ 𝐹𝐹𝑇 (𝑀𝐾) + 2𝑀𝐾 ⋅ 𝐹𝐹𝑇 (𝐼) (𝐼𝐾 + 𝐽𝐿)𝑀

Memory consumption 𝑂𝐾2 +𝑀𝐾𝐼 + 𝐽𝑀2 + 2𝐽 (𝐿 +𝑀)𝑀 (2𝐼 − 1)(𝑀𝐾)2 𝑀𝐾𝐼 + 𝐽𝑀𝐿

4. Thereafter 𝐆̄ai(𝑧) should be delayed by 𝛥ai samples. Therefore, the filters can be written as:
̃̄𝐆mi(𝑧) = 𝛥mi(𝑧)𝐆̄mi(𝑧),

̃̄𝐆ai(𝑧) = 𝛥ai(𝑧)𝛥−
mi(𝑧)𝐆̄ai(𝑧),

(22)

where 𝛥−
mi represents a negative delay.

5. Truncate the non-causal parts of ̃̄𝐆mi(𝑧) and ̃̄𝐆ai(𝑧) to obtain the coefficients of FIR filters ̂̄𝐆mi(𝑧) and ̂̄𝐆ai(𝑧) of length 𝐽 .

The computational complexity and memory consumption of the algorithm is shown in Table 1. A graph of these quantities with
respect to the number of sources and sensors 𝐾 = 𝐿 = 𝑀 is shown in Fig. 4. The figure shows that from about 𝐾 = 𝐿 = 𝑀 = 200,
the proposed algorithm scales better than the PCG method in terms of computational complexity. The proposed algorithm scales
better than the FeLMS algorithm for any number of 𝐾, 𝐿 and 𝑀 . Furthermore, it can be seen that the memory consumption of the
proposed algorithm scales well with the problem size.

2.4. Computation of the reflected sound field using the Kirchhoff-Helmholtz integral

The Kirchhoff–Helmholtz integral is computed to obtain the reflected sound field. The integral can be derived by combining the
acoustic wave equation and the Green’s integral theorem. With reference to Fig. 5, considering a sound propagation in a volume 𝑉
enclosed by a surface 𝑆, the solution to the inhomogeneous wave equation describes the full sound field as the sum of the direct
sound field and the reflected sound field as [36]:

𝑝(𝑥, 𝜔) = ∫𝑉
𝑄vol(𝑥𝑠, 𝜔)𝐺(𝑥|𝑥𝑠, 𝜔)𝑑𝑉 +

∫𝑆

(

𝐺(𝑥|𝑥𝑠, 𝜔)𝛁𝑝(𝑥𝑠, 𝜔) − 𝑝(𝑥𝑠, 𝜔)𝛁𝐺(𝑥|𝑥𝑠, 𝜔)
)

⋅ 𝐧𝑑𝑆, (23)

in which 𝑥 and 𝑥𝑠 denote the position inside 𝑉 and on 𝑆 respectively, 𝜔 is the angular frequency, 𝐧 is the unit normal vector
pointing into 𝑉 , 𝐺(𝑥|𝑥𝑠, 𝜔) and 𝛁𝐺(𝑥|𝑥𝑠, 𝜔) are the Greens function and the gradient of the Greens function respectively, 𝑝(𝑥𝑠, 𝜔)
and 𝛁𝑝(𝑥 , 𝜔) are the acoustic pressure at 𝑆 and the gradient of the acoustic pressure at 𝑆 respectively. The direct sound field is
6
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Fig. 5. Parameters used for the Kirchhoff–Helmholtz integral.

described by the first term containing the volume integral, and the reflected sound field is described by the second term containing
the surface integral. By choosing the free-field Greens function and by setting 𝑄vol = 0 in Eq. (23), the integral will reduce to
the Kirchhoff–Helmholtz integral, which will return the reflected sound field, even with the presence of a sound source within
the volume 𝑉 . This is shown in [36], by a derivation using reciprocity of the Greens function. Without the direct sound field, the
Kirchhoff–Helmholtz integral computes the reflected sound field as [34]:

𝑝(𝑥, 𝜔) = 1
4𝜋 ∫𝑆

(

𝐺(𝑥|𝑥𝑠, 𝜔)
𝜕𝑝(𝑥𝑠, 𝜔)

𝜕𝑛
− 𝑝(𝑥𝑠, 𝜔)

𝜕𝐺(𝑥|𝑥𝑠, 𝜔)
𝜕𝑛

)

𝑑𝑆. (24)

The partial derivative of the pressure to the normal direction at 𝑆 can be written in terms of the particle normal velocity 𝑉𝑛 at
𝑆 following:

𝜕𝑝(𝑥𝑠, 𝜔)
𝜕𝑛

= j𝜌𝑐𝑘𝑉𝑛(𝑥𝑠, 𝜔), (25)

in which 𝑐 is the speed of sound, 𝑘 = 𝜔∕𝑐 is the wave number and 𝜌 is the density of the acoustic medium.
In this case, the two-dimensional (2D) free-field Greens function is considered, defined as:

𝐺(𝑥|𝑥𝑠, 𝜔) = −j𝜋𝐻 (2)
0 (𝑘|𝑥 − 𝑥𝑠|), (26)

in which 𝐻 (𝑏)
𝑎 is the Hankel function of kind 𝑏 and order 𝑎. Substitution of Eqs. (25) and (26) into Eq. (24) leads to the 2D forward

Kirchhoff–Helmholtz integral:

𝑝(2)(𝑥, 𝜔) =
−j𝑘
4 ∫𝑆

(

j𝜌𝑐𝑉𝑛(𝑥𝑠, 𝜔)𝐻
(2)
0 (𝑘|𝑥 − 𝑥𝑠|) +

𝑝(𝑥𝑠, 𝜔)𝐻
(2)
1 (𝑘|𝑥 − 𝑥𝑠|) ⋅ 𝐧

)

𝑑𝑆, (27)

Following the notation of Fig. 6, using a circular geometry with radius 𝑅, the equation is simplified and discretized [37]:

𝑝(2)(𝑥, 𝜔) =
−j𝑘
4

𝑁𝐿
∑

𝑖=1

(

j𝜌𝑐𝑉𝑛(𝑥𝑖𝑠, 𝜔)𝐻
(2)
0 (𝑘|𝑥 − 𝑥𝑖𝑠|) +

𝑝(𝑥𝑖𝑠, 𝜔)𝐻
(2)
1 (𝑘|𝑥 − 𝑥𝑖𝑠|) ⋅ 𝐧

)

𝑅𝛥𝜃, (28)

in which 𝛥𝜃 is the angle between the sensors on the surface, assuming the sensors are equidistantly distributed.
The particle velocity in the radial outward direction can be obtained by a difference quotient between the sound pressure levels

at 𝑟𝑖𝑠−ℎ = ‖𝑥𝑖𝑠‖ − ℎ and 𝑟𝑖𝑠+ℎ = ‖𝑥𝑖𝑠‖ + ℎ (in circular coordinates) following [34]:

𝑉𝑛(𝑥𝑖𝑠, 𝜔) =
𝑝(𝑟𝑖𝑠+ℎ, 𝜔) − 𝑝(𝑟𝑖𝑠−ℎ, 𝜔)

2jℎ𝜔𝜌 , (29)

in which ℎ is the distance between the sensors. In this equation, the sign deviates from [34], which is due to the positive direction
convention. The Kirchhoff–Helmholtz integral can be pre-computed such that it does not increase the real-time computational
7
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Fig. 6. Geometry used for the derivation of the Kirchhoff–Helmholtz integral in case of a circular microphone array.

Fig. 7. 2-dimensional system configuration of the 12-channel active noise control setup to attenuate acoustic reflections from the walls.. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

omplexity. The Kirchhoff–Helmholtz integral is computed at the augmented performance sensor locations. The signals of these
erformance sensors are the input of the control algorithm.

. Simulation

A simulation is performed for a multichannel system in which 𝐾 = 𝐿 = 𝑀 = 𝑃 = 12, where all sources are independent. The
number of sources and sensors is chosen equal, but do not need to be equal. The number of performance sensors is 𝐿perf = 37, which
are spatially distributed within the microphone surface with a distance of 0.06 m from each other, starting from the origin. The
configuration of the system is shown in Fig. 7, with the objective to attenuate the reflected sound field. A summary of the simulation
parameters is denoted in Table 2. The dimensions of the chamber and the number of sources and sensors in the simulation are based
on a small-scale active anechoic chamber which is being prepared for experimental testing. However, if it is possible to place sensors
directly on a sound radiating object in the room, this is favorable in terms of time-advantage and will probably result in a stronger
correlation with the noise signal.

The speed of sound is 𝑐 = 343 m∕s and the density of the air is 𝜌 = 1.21 kg/m3. The walls have the dimensions of 0.84 m square,
modeled using an impedance of 𝑍 = 10𝜌𝑐. The primary and secondary sources are modeled by monopole sources. The distance
between the secondary sources is 0.21 m and the primary sources is 0.075 m. The secondary sources are placed with a spacing of
0.05 m from the walls. The primary sources are placed at 0.12 m from the origin. The sensors are placed on a circle around the
origin with a radius of 𝑟 = 0.24 m. The reference sensors measure the pressure at the reference sensor locations. The performance
sensors measure the reflected sound field, computed using the Kirchhoff–Helmholtz integral based on measurements of the error
sensors.

The transfer functions between the source–sensor pairs are computed in Comsol 6.0 using at least 4 quadratic elements per
wavelength. The reference sensor transfer function matrix 𝐗(ej𝜔) is obtained by sampling in the frequency domain from 0 Hz to
8
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Fig. 8. First two channels of the decoupled plant impulse response matrix ̂̄𝐆ai(𝑧)𝐆̄(𝑧) ̂̄𝐆mi(𝑧). The other channels are similar and thus omitted.

Fig. 9. Prewhitening filter ̂̄𝐅𝑤(𝑧) corresponding to the first two channels, referring to inputs 1,2 and outputs 1,2. The other channels are similar and thus omitted.

600 Hz, which is single-sided, using a frequency-resolution of 1 Hz. The acoustic pressure at the error sensors using ℎ = 0.01 m, is
obtained by sampling in the frequency domain from 0 Hz to 600 Hz, which is single-sided, using a frequency-resolution of 1 Hz,
resulting in a sampling frequency of 𝑓𝑠 = 1200 Hz. Following Eq. (29), the normal particle velocity is computed at the error sensors.
Using the acoustic pressure and the normal particle velocity at the error sensors, the Kirchhoff–Helmholtz integral is computed, from
which the primary- and secondary-path transfer function matrices 𝐏(ej𝜔) and 𝐆(ej𝜔) are computed. The matrix 𝐏(ej𝜔) is the transfer
function matrix from the primary sources to the performance sensors, and the matrix 𝐆(ej𝜔) is the transfer function matrix from
the secondary sources to the performance sensors. Both 𝐏(ej𝜔) and 𝐆(ej𝜔) are filtered with (1) a second-order low-pass filter having

cut-off frequency at 480 Hz and with (2) a second-order high-pass filter having a cut-off frequency at 120 Hz. These two filters
re applied to minimize time domain artifacts that occur when transforming a pass-band with sharp cut-offs from the frequency- to
he time domain. The primary path transfer function matrix is converted from the frequency- to the time domain using the Fourier
ransform resulting in the matrix of impulse responses 𝐏(𝑧).

The secondary path is regularized such that
√

𝛽𝐺 is at 20 dB below the largest frequency domain peak of 𝐆(ej𝜔), and truncated
fter 𝐽 = 256 samples such that 𝐆̄(𝑧) is obtained. The preconditioning and decoupling filters are computed using 𝑁𝑓𝑓𝑡 = 512 Fourier
ransform samples, resulting in 𝐆̄mi(𝑧) and 𝐆̄ai(𝑧). Adding a delay of 𝛥mi = 200 samples to 𝐆̄mi(𝑧) results in ̃̄𝐆mi(𝑧), which, after
runcation to length 𝐽 results in ̂̄𝐆mi(𝑧). Similarly, 𝐆̄ai(𝑧) is delayed by 𝛥−

mi = −200 samples, followed by a delay of 𝛥ai = 240 samples,
esulting in ̃̄𝐆ai(𝑧). Truncation of ̃̄𝐆ai(𝑧) to length 𝐽 results in ̂̄𝐆ai(𝑧). The decoupling of the plant is shown in Fig. 8, from which can
e seen that the plant is effectively decoupled, having a diagonal response with a pure delay that corresponds to 𝛥ai delay samples.
he delays 𝛥mi and 𝛥ai correspond to the length of the secondary path impulse response 𝐽 . In general, choosing 𝛥mi ≈ 0.8𝐽 and
ai ≈ 0.95𝐽 seems to be a good starting point, but this is dependent on the application. If those numbers are too far off from what
hey should be, the decoupling of the system is reduced.

The prewhitening and decorrelation filter is shown in Fig. 9. The filter is computed from the reference signals of length 𝑛 = 20000
sing Welch’s method with a Hamming window of length 80 samples having 50% overlap. A regularization is applied of

√

𝛽𝐹 which
is at 60dB below the largest eigenvalue of 𝐃(ej𝜔) in the frequency domain, resulting in 𝐅̄𝑤(𝑧). Because the PSD matrix is positive
emi-definite symmetric, a delay of 𝛥𝐹 = 512

2 + 1 = 257 samples is added, resulting in ̃̄𝐅𝑤(𝑧), followed by truncation to a length of
12 samples, resulting in ̂̄𝐅 (𝑧).
9
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Table 2
Summary of the simulation parameters.

Parameter Quantity Unit Description

𝐾 = 𝐿 = 𝑀 = 𝑃 12 - Number of sources and sensors
𝐿perf 37 - Number of performance sensors
𝑐 343 m/s Speed of sound
𝜌 1.21 kg/m3 Density of air
Room size 0.84 × 0.84 m Length x width
Z 10𝜌𝑐 pa s/m Impedance at the walls
𝑑ss 0.21 m distance between secondary sources
𝑑ps 0.075 m distance between primary sources
𝑑ss-wall 0.05 m distance between secondary sources and the wall
𝑟sens 0.24 m Radius of the circle on the origin at which the sensors are placed
𝑓start 0 Hz Start of range for frequency domain sampling
𝑓step 1 Hz Frequency resolution
𝑓end 600 Hz End of range for frequency domain sampling
𝑓𝑠 1200 Hz Sampling rate
√

𝛽𝐺 20 dB Regularization factor for secondary path
𝐽 256 samples Length of plant model
𝑁fft 512 samples Number of samples used in the Fourier transform
𝛥mi 200 samples Delay in the ̂̄𝐆mi(𝑧) filter
𝛥−

mi −200 samples Delay in the ̂̄𝐆ai(𝑧) filter
𝛥ai 240 samples Delay in the ̂̄𝐆ai(𝑧) filter
𝑛iter 2e4 samples Number of iterations in the algorithm
√

𝛽𝐹 60 dB Regularization factor of the prewhitening filter
𝛥𝐹 257 samples Delay in the ̂̄𝐅𝑤(𝑧) filter
𝛥art 50 samples Delay of the noise signal
𝐼 64 samples Control filter length
𝑂 512 samples Length of the prewhitening filter
𝛼0 4 – Step size of the algorithm
𝑛pwf 2𝑒4 – Length of the reference signals to compute ̂̄𝐅𝑤(𝑧)
𝑛window 80 – Length of the Hamming window to compute ̂̄𝐅𝑤(𝑧)
𝑛overlap 50% – Overlap between windows to compute ̂̄𝐅𝑤(𝑧)
𝑓clp 480 Hz Cutoff frequency of the low-pass filter applied on 𝐏(ej𝜔) and 𝐆(ej𝜔).
𝑓chp 120 Hz Cutoff frequency of the high-pass filter applied on 𝐏(ej𝜔) and 𝐆(ej𝜔).
ℎ 0.01 m Distance between microphones in radial direction.

Fig. 10. Coherence between a selected subset of reference signals. Blue shows the original reference signals. Red shows the reference signals after filtering with
̂̄𝐅𝑤(𝑧). Left upper figure: reference sensors 1 and 3, right upper figure: reference sensors 2 and 3, left lower figure: reference sensors 1 and 4, right lower figure:
reference sensors 2 and 4. The other channels show similar results, and are therefore omitted.. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

The coherence between the reference signals is shown in Fig. 10, showing that the signals are properly decorrelated.
The noise signal is a Gaussian white noise signal convolved with the primary path, which is filtered with an anti-aliasing filter

having a cutoff-frequency at 𝑓Nyq = 600 Hz. Upon running the proposed algorithm, the noise signal is delayed by 𝛥𝑑 = 𝛥𝐹 +𝛥mi+𝛥art
samples, with 𝛥art = 50 artificial delay samples. The performance of the proposed algorithm is shown in Fig. 11. The system is
imulated using 𝑛 = 2𝑒4 time samples, with a desired filter length of 𝐼 = 64 samples, requiring 12.2 s on a laptop with an Intel Core

i7-10750H @ 2.60 GHz CPU and 16 GB of RAM. The algorithm converged to a reduction of 12.8 dB, averaged over all performance
sensors. A step-size of 𝛼0 = 4 is used, which is the maximum allowable value for which the algorithm converges. Using the same
ettings, the normalized FeLMS algorithm converged to 3.3 dB averaged over all sensors. The normalized FeLMS algorithm required
ver 2𝑒5 iterations to obtain the same performance of 12.8 dB reduction averaged over all performance sensors, as compared to
10
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Fig. 11. Convergence of the first four channels of the proposed algorithm and the normalized FeLMS algorithm. The average reduction of the proposed algorithm
is 12.8 dB, while the average reduction of the normalized FeLMS algorithm is 3.3 dB; the signals are averaged using a window of 500 samples. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Delayed controller filter coefficients 𝐖𝛥(𝑧) of length 𝐼 = 𝛥art + 𝐼 which correspond to reference sensors 1,2 and secondary sources 1,2. The other
channels show a similar delay, although the response could be different. The other channels are omitted for the sake of readability.

the proposed algorithm. This shows that the preconditioning filters reduce the number of iterations by about a factor 10 for this
simulation with these parameters. Exporting the particle velocity directly from Comsol 6.0, without approximation using Eq. (29),
allows for higher reduction levels. This shows that the approximation of Eq. (29) introduces a small error, but allows the use of
microphones.

After running the iterative algorithm, the last updated set of filter coefficients 𝐂(𝑧) is converted to 𝐖𝛥(𝑧) using Eq. (6), where
subscript 𝛥 is used to indicate that this controller includes a delay. The delays 𝛥mi and 𝛥𝐹 are truncated from the filter coefficients
and the first two channels are shown in Fig. 12, still having a delay corresponding to 𝛥art.

For the system to be applicable in the real world, 𝛥art is truncated from the set of filter coefficients 𝐖𝛥(𝑧), resulting in the desired
set of filter coefficients 𝐖(𝑧) with length 𝐼 , of which the first two channels are shown in Fig. 13.

Both sets of control filter coefficients 𝐖𝛥(𝑧) and 𝐖(𝑧) are simulated, of which the frequency domain spectra are shown in Fig. 14.
Running the controller with the set of filter coefficients 𝐖𝛥(𝑧) with a noise signal that is delayed by 𝛥art samples, shows an average
performance of 15.4 dB. Running the controller with the set of filter coefficients 𝐖(𝑧) with a noise signal without any delay, shows
an average performance of 13.8 dB. Removal of the delay from the filter coefficients, shows an average loss in reduction of 1.6 dB
averaged at the performance sensors.
11
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Fig. 13. Controller filter coefficients 𝐖(𝑧) truncated to length 𝐼 which correspond to reference sensors 1,2 and secondary sources 1,2. The other channels are
omitted for the sake of readability.

Fig. 14. Spectral densities of the first four performance sensors. These results are obtained after running the configuration as shown in Fig. 1 using the delayed
controller 𝐖𝛥(𝑧) with the noise signal that is delayed by 𝛥art samples, compared to the controller 𝐖(𝑧) with a noise signal that is not delayed. The average
reduction over all channels is 15.4 dB, using the filter coefficients 𝐖𝛥(𝑧). The average reduction over all channels with the filter coefficients 𝐖(𝑧) is 13.8 dB;
the signals are averaged using a window of 500 samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 15. Kirchhoff–Helmholtz integral at 56.2 Hz, with the primary sources active, which are located at the black dots. The result is only valid inside the contour.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. As Fig. 15, but with the secondary sources active. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 17. Sum of Figs. 15 and 16. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. As Fig. 15, but at 161.7 Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. As Fig. 15, but with the secondary sources active, at 161.7 Hz. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 20. Sum of Figs. 18 and 19. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. As Fig. 15, but at 396.1 Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. As Fig. 15, but with the secondary sources active, at 396.1 Hz. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

The Kirchhoff–Helmholtz integral is computed, and the results are shown at 𝑓 = 56.2 Hz (Fig. 15 till Fig. 17), 𝑓 = 161.7 Hz (Fig. 18
till Fig. 20) and 𝑓 = 396.1 Hz (Fig. 21 till Fig. 23). It can be seen that at these frequencies, the sound field due to the secondary
sources approaches the inverse of the sound field due to the primary sources, such that the sum of both fields is minimized by the
controller. These figures also show that global control is achieved within the microphone area, which can be seen from the acoustic
pressure in the field surrounded by the microphones. It should be noted that the results of the Kirchhoff–Helmholtz integral are not
valid outside of the contour, but the full domain is shown for completeness.

4. Conclusion

A scheme is presented for the efficient computation of a fixed time domain controller. The scheme employs preconditioning
filters to enhance convergence speed. The filters are computed in the frequency domain to reduce computational complexity, but
may become non-causal after conversion to the time domain, necessitating the application of delay and truncation procedures.
Despite the introduction of delays via the preconditioning filters in the direct path, it is possible to truncate the delay from the
control filter coefficients. This allows for the computation of a fixed time domain control filter that is applicable on systems without
any delay in the primary noise signal. To maintain convergence, regularization is incorporated which allows for larger step-sizes and
improves reduction levels using a minimal number of iterations. The presented scheme is applied to the control of a square room in
which the reflected sound field is attenuated. The reflected sound field is pre-computed with the Kirchhoff–Helmholtz integral using
measurements at the error sensors. It is shown that using the performance sensors, global control of the reflected sound field within
the microphone area is achieved. Furthermore, it is shown that truncation of the delays from the control filter coefficients enables
implementation on the same system without delays. Although the truncation of the delay from the filter coefficients results in a loss
of 1.6 dB in performance, a reduction of the reflected sound field of 13.8 dB averaged over all performance sensors is achieved.
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Fig. 23. (Color online) Sum of Figs. 21 and 22.
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