
1.  Introduction
Vast amounts of computational resources are required to model phenomena in the Earth sciences. This includes 
complex models of atmospheric composition that couple a large number of properties and processes (Brasseur & 
Jacob, 2017). Data-driven approaches, including machine learning (ML), are an emerging set of techniques for 
decreasing the computational burden of Earth System Models (ESMs) by using more efficient parameterizations, 
but have documented challenges such as unstable error growth and physical inconsistency when predicted recur-
rently (Kelp et al., 2018) or when interacting with other processes in the context of larger models (Brenowitz & 
Bretherton, 2019; Rasp et al., 2018). One approach towards data-driven ML models that can stably interact with 
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to represent the formation of secondary organic aerosol (SOA) in the atmosphere. Inclusion of the VBS 
approximately doubles the dimensionality of LOTOS-EUROS and slows computation of the advection 
operator by a factor of two. This complexity limits SOA representation in operational forecasts. We develop a 
mass-conserving dimensionality reduction method based on matrix factorization to find latent patterns in the 
VBS tracers that correspond to a smaller set of superspecies. Tracers are reversibly compressed to superspecies 
before transport, and the superspecies are subsequently decompressed to tracers for process-based SOA 
modeling. This physically interpretable data-driven method conserves the total concentration and phase of the 
tracers throughout the process. The superspecies approach is implemented in LOTOS-EUROS and found to 
accelerate the advection operator by a factor of 1.5–1.8. Concentrations remain numerically stable over model 
simulation times of 2 weeks, including simulations at higher spatial resolutions than the data-driven models 
were trained on. The reversible compression of VBS tracers enables detailed, process-based SOA representation 
in LOTOS-EUROS operational forecasts in a computationally efficient manner. Beyond this case study, the 
physically consistent data-driven approach developed in this work enforces conservation laws that are essential 
to other Earth system modeling applications, and generalizes to other processes where computational benefit 
can be gained from a two-way mapping between detailed process variables and their representation in a 
reduced-dimensional space.

Plain Language Summary  The chemical composition of the atmosphere is a complex system 
involving many physical processes. Computer models can be used to improve our understanding of how these 
processes interact, as well as simulate hypothetical scenarios to support scientifically-informed climate and 
air quality policies. However, complicated models with many variables can take a lot of time to run. The 
LOTOS-EUROS model spends a large fraction of time and computational resources on simulating the transport 
of chemical species, like particulate matter, by wind. We combine data-driven approaches with domain 
knowledge to reduce the number of variables while ensuring essential properties are conserved: we model 
representative combinations of chemical species that are transported all at once, rather than transport each 
species individually. This leads to faster and cheaper simulations without loss of scientific detail or internal 
consistency.
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other model processes is online training: parameter optimization of neural network surrogates while running the 
entire model (Kelp et al., 2022; Rasp, 2020).

Other recent efforts have aimed to constrain data-driven approaches using domain knowledge to ensure physically 
consistent results. One strategy for physically consistent data-driven models reposes the learning targets: rather 
than estimate important properties or their tendencies, instead estimate fluxes between the properties. The fluxes 
can then be related to tendencies in a way that balances mass, energy, or atoms (Sturm & Wexler, 2020, 2022; 
Yuval, O'Gorman, et al., 2021). Custom neural network architectures can also obey conservation laws by incorpo-
rating hard constraints in their hidden layers (Beucler et al., 2021), such as flux balances (Sturm & Wexler, 2022): 
this can also improve the physical interpretability of the inner working of neural networks. Though physical 
consistency is an important result by itself, imposed constraints do not necessarily improve accuracy of such 
tools beyond adherence to whichever physical law(s) the constraints enforce. For example, Harder et al. (2022) 
found the accuracy of a neural network surrogate model of aerosol microphysics was not improved when adding 
a completion constraint during training, where a chosen variable was reassigned to the sum of all other variables' 
tendencies to conserve mass. However, constraints can be implemented in ways that add domain knowledge 
to the data-driven algorithm: Sturm and Wexler (2022) found that by adjusting a feed-forward neural network 
archi tecture to include a flux-tendency constraint during training, the overall prediction accuracy of chemical 
species concentrations improved. Kelp et al. (2020) motivated ML model architectures with built-in assumptions 
about the physical system as a future research direction. In the approach in Sturm and Wexler (2022) the constraint 
gives information on the graph relational structure of a chemical mechanism, that is, how different chemical 
species interact. Recent work toward physically consistent data-driven tools in the Earth sciences, and acknowl-
edgment of their importance (Keller & Evans, 2019; Sturm & Wexler, 2020; Yuval, Pritchard, et al., 2021) has 
motivated the mass-conserving dimensionality reduction method in this paper.

Within the field of atmospheric chemistry modeling, Kelp et al. (2020) have made progress towards a stable neural 
network emulating a box model of chemistry and aerosol microphysics processes, through training parameters on 
the accuracy of multiple future timesteps after predicting in a lower-dimensional latent space. Kelp et al. (2020) 
pose a future research direction: how the low-dimensional representation of chemical species might interact with 
other processes, such as advection, in the context of a larger model. The scope of the present study is informed by 
this direction: we develop and assess a physically consistent data-driven method that compresses the high dimen-
sional set of organic aerosol (OA) tracers to reduce the computational cost of advection in the LOTOS-EUROS 
chemical transport model (CTM) (Manders et al., 2017). LOTOS-EUROS is a state-of-the-art model that has 
been compared to the WRF-Chem, CAMx, CMAQ, and EMEP models in several international model intercom-
parison studies such as AQMEII (Im et al., 2015) and EURODELTA-Trends (Colette et al., 2017) and is part of 
the European Copernicus Atmospheric Monitoring (CAMS) model ensemble. The advection operator consumes 
a significant amount of wall time in LOTOS-EUROS, from about 20% of total wall time in sequential runs (only 
chemistry and sometimes deposition calculations take longer) to over 50% of total wall time in parallel runs 
using domain decomposition. Wall time of advection can double with the inclusion of organic aerosol tracers 
(Sturm, 2021). Therefore, the current default in LOTOS-EUROS is to include only one passive tracer for organic 
aerosol, which is one of the reasons for an underestimation of total particulate matter (Timmermans et al., 2022).

Organic aerosol forms an important contribution to particulate matter (Jimenez et al., 2009). OA can be emitted 
to the atmosphere as semi-volatile primary organic aerosol (POA) through various direct sources, including 
vehicle exhaust, wildfire smoke, and residential wood combustion. OA can also be formed in the atmosphere 
as secondary organic aerosol (SOA) through gas-phase reactions of volatile organic compounds (VOCs), which 
tend to form less volatile products: intermediate volatility organic compounds (IVOC) and semi-volatile organic 
compounds (SVOC), referred to together as siVOC. SVOC can partition appreciably to the particle phase under 
ambient conditions. Both anthropogenic sources, like industrial activity, and biogenic sources, such as forests, 
emit precursors of SOA. Another source of SOA is the partial evaporation of POA to siVOCs, which in turn 
react and partition to form SOA (Robinson et  al.,  2007). This SOA from evaporated and aged POA is often 
chemically distinct from POA, showing a higher degree of oxidation (Jimenez et al., 2009), and can be tracked 
separately in models. SOA can form a significant fraction of the total OA concentration (de Gouw et al., 2005; 
Heald et al., 2005).

Due to the large number of distinct organic species in the atmosphere, organic aerosols are often lumped together 
into volatility bins according to the magnitude of their saturation vapor pressures (Donahue et al., 2006). This 
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modeling approach is called the volatility basis set (VBS) and accounts for the tendency of compounds to 
become less volatile as they are oxidized. The partitioning between gas and particle phase in each volatility bin 
is governed by its corresponding saturation vapor pressure and the total OA concentration. A 2D-VBS extension 
has been developed that includes oxygen to carbon ratio along another dimension (Donahue et al., 2011; Jimenez 
et al., 2009), which can account for fragmentation of larger compounds and estimation of hygroscopicity (Jimenez 
et al., 2009). A 1D-VBS approach is commonly applied in chemical transport models, including separate basis 
sets for different classes of OA precursors (Bergström et al., 2012; Hayes et al., 2015; Janssen et al., 2017; Jiang 
et al., 2019). Use of multiple VBS classes enables distinct properties per class and can give insight into differ-
ent aerosol systems contributing to total OA. Recent SOA modeling work has concentrated on several topics: 
(a) further specification of IVOC emissions from specific sources like gasoline and diesel (Jathar et al., 2014; 
Lu et al., 2020; Ots et al., 2016) and biomass burning (Ciarelli et al., 2017; Jiang et al., 2019; Theodoritsi & 
Pandis, 2019), (b) effect of aerosol water content on OA partitioning (Pye et al., 2017), (c) the role of SVOC 
deposition (Knote et al., 2015) and (d) other OA formation pathways, such as reactive uptake of isoprene epoxides 
(Marais et al., 2016; Nagori et al., 2019; Pye et al., 2013). Hodzic et al. (2016) and Pai et al. (2020) provide a 
global scale synthesis of some of these ideas.

The inclusion of such detailed, high-dimensional process-based OA models in 3D models is limited by their 
increased computational burden, for example, to chemical transport models like LOTOS-EUROSv2.2.1 (Manders 
et al., 2017). Next to an implementation with a single passive organic aerosol tracer, LOTOS-EUROS has an 
implementation with four VBS classes based on the configuration from Bergström et al. (2012).

Though this approach does not resemble the modern state of the science as discussed in the previous paragraph, 
it strikes a balance between complexity and level of realism of OA processes: a four-class VBS approach has a 
higher level of realism than the two-product model (SORGAM) (Odum et al., 1996; Schell et al., 2001) used 
by other models in air quality forecasts for Europe (Mircea et al., 2019). New developments tend to increase 
the complexity of the VBS (e.g., by adding specific basis sets for emission sources such as diesel, gasoline, or 
biomass burning, or by adding more explicit IVOC oxidation). The current VBS module in LOTOS-EUROS 
v2.2.1 is not used by default, and when included, significantly increases wall time of simulations. The inclusion 
of VBS tracers adds computation time to other operators in the model relatively more than OA-specific calcula-
tions themselves.

Most notably, the high dimensionality caused by adding 58 VBS tracers adds a computational burden to the advec-
tion operator in LOTOS-EUROS v2.2.1, which is based on the mixing-ratio conserving scheme in Walcek (2000). 
When using the VBS module, the number of advected tracers increases from 46 to 104. Model timing experiments 
in Sturm (2021) found that wall time for the advection operator can double when using the VBS module. Advec-
tion is a bulk process and does not perform OA-specific calculations. This motivates dimensionality reduction for 
a more parsimonious representation of OA in transport processes: we use unsupervised data-driven approaches to 
find characteristic regimes of VBS tracers, which are used to form lower-dimensional combinations interpreted 
as superspecies that require fewer transport calculations. Rather than advecting each tracer separately, we instead 
advect a smaller set of superspecies, which are subsequently mapped back to the OA tracer space after advection. 
Constraints are applied when compressing to and decompressing from the reduced-dimension space to conserve 
mass to machine precision. We compare the linear and additive method of non-negative matrix factorization to 
a nonlinear and more complex neural network autoencoder, and make a model selection after evaluating several 
configurations based on reconstruction accuracy and physical consistency. Though demonstrated for compression 
of OA and related compounds during transport to accelerate air quality forecasts over the European continent, the 
methods developed in this work generalize to other Earth system applications, enabling use of high-dimensional 
process models whose variables can be reversibly compressed to a physically consistent reduced-dimension 
representation for use in other processes.

Section 2 outlines the VBS configuration in LOTOS-EUROS and develops four data-driven approaches. These 
four approaches are tested in Section 3: first, they are trained on the volatility distributions from LOTOS-EUROS 
model output, then evaluated on reconstruction accuracy of the volatility distributions and physical consistency. 
One approach from Section 3 is chosen to be implemented in LOTOS-EUROS, with results from various experi-
ments shown in Section 4. More specifically, Section 4 investigates the accuracy of using the superspecies, gener-
alizability of the converged model to other seasons and different spatial resolutions, and corresponding speedup 
in the 3D model. Section 5 contains a summary of the methods and key results.
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2.  Methods
This section develops four data-driven approaches to reversibly compress VBS-specific tracers. Section  2.1 
describes the VBS approach in LOTOS-EUROS v2.2.1. Section 2.2 summarizes several other methods for tracer 
compression. Section 2.3 details the model configuration used for experiments, as well as the model output used 
to train the various data-driven approaches. Sections 2.4, 2.5, and 2.6 develop four approaches that are summa-
rized in Section 2.7.

2.1.  VBS Approach in LOTOS-EUROS

The chemical transport model LOTOS-EUROS v2.2.1 uses a VBS scheme visualized in Figure  1 based on 
Bergström et al. (2012). This scheme has 4 distinct VBS classes: (a) POA, (b) SOA from siVOCs that are chem-
ically aged after evaporating from semi-volatile POA emissions, (abbreviated as siSOA), and SOA from (c) 
anthropogenic and (d) biogenic gaseous VOCs, abbreviated as aSOA and bSOA respectively.

Figure 1 provides an overview of the 58 tracers specific to the VBS module. Primary organic material (POM) 
emissions are modeled using a 9-bin VBS approach: the logarithmically distributed bins represent semi- and 
intermediate-volatile organics with effective saturation concentrations ranging from 10 −2–10 6 μg m −3 at 298 K. 
The reported mass of primary emissions is distributed over the lower 4 volatility bins. As in previous work 
(Shrivastava et al., 2008), an additional 1.5 times this mass is distributed over the highest 5 volatility bins to 
represent non-reported intermediate volatility organic compounds (IVOCs). The factor of 1.5 for the VBS in 
LOTOS-EUROS v2.2.1 is an oversimplification: alternative approaches exist for estimating IVOC emissions 
from specific sources (e.g., Ciarelli et al., 2017; Jiang et al., 2019; Lu et al., 2020; Ots et al., 2016) and further 
specification of the VBS in future versions of LOTOS-EUROS could include explicit IVOC emissions per source, 
adding complexity and underscoring the need for reversible compression for use in transport processes. Only a 
fraction of the emitted primary material remains in the particle phase: the fraction that evaporates is assumed to 
be SVOC with effective saturation concentrations on the order of 1 < C* < 10 3μg m −3 or IVOC with saturation 
concentrations on the order of 10 4 < C* < 10 6 μg m −3, defined at 298 K. The S/IVOCs undergo oxidation by the 
hydroxyl radical OH and enter the distinct siSOA VBS class. As material moves from the POA VBS to the siSOA 

Figure 1.  Schematic representation of the VBS approach in LOTOS-EUROS v2.2.1, including the 4 VBS classes with 58 
tracers, and their thermodynamic and chemical relationships. This diagram was inspired by the schematic in Shrivastava 
et al. (2008).
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VBS, it also moves to lower volatility bins, as shown in Figure 1. The total siSOA is represented by an 8-bin VBS 
using effective saturation concentrations from 10 −2–10 5 μg m −3 (defined at 298 K). Each bin uses two tracers, 
one aerosol and one gas, to represent the partitioning: this results in 18 tracers for the POA VBS class and 16 
tracers for the siSOA VBS class. Formation of SOA from anthropogenic VOCs is represented with a 6-bin VBS 
class, defined using effective saturation concentrations of 10 −2 to 10 3 μg m −3 at 298 K. This results in 12 tracers 
(6 in the gas phase and 6 in the particle phase). VOCs such as aromatics, alkenes and alkanes are classified in 
LOTOS-EUROS as anthropogenic precursors of secondary organic aerosols and upon oxidation are distributed 
over the 4 highest volatility bins as done by Tsimpidi et al. (2010), linearly interpolating between a low-NOx and 
high-NOx case as originally suggested by Lane et al. (2008).

An analogous 6-bin VBS class is used to model SOA formation from the biogenic VOCs in LOTOS-EUROS: 
monoterpene and isoprene. Yields from biogenic gaseous precursors are distributed over the 4 highest volatility 
bins according to Tsimpidi et  al.  (2010), with yields calculated by a branching ratio continuously dependent 
on NOx (Lane et  al.,  2008). Unlike the anthropogenic VBS class, ageing between bins is turned off for the 
biogenic VBS in LOTOS-EUROS v2.2.1, as in prior work (Matsui, 2017; Murphy & Pandis, 2009; Tsimpidi 
et al., 2010, 2014). This is informed by the low sensitivity of biogenic SOA concentration to oxidative ageing 
(Donahue et al., 2012; Ng et al., 2006), thought to arise from fragmentation effects that balance out functionali-
zation effects on volatility (Murphy et al., 2012). For this reason, material never enters the 2 lowest volatility bins 
in LOTOS-EUROS v2.2.1, rendering the 4 corresponding tracers effectively inert. However, in LOTOS-EUROS 
v2.2.1 with the VBS module on, these 4 tracers are still dealt with by the model, contributing to the computational 
burden on processes such as advection.

2.2.  Tracer Compression Methods

A method for tracer compression for transport in the GEOS-Chem global CTM is given by Liao et al. (2007), 
where various oxidation products are lumped together by phase and class, and assumed to behave similarly in 
transport. The relative compositions from each grid cell's previous time step are used to distribute the lumped 
tracers back to individual products after transport. This can be thought of as compression to a single lumped 
superspecies with one degree of freedom (the superspecies concentration) and a fixed composition dictated by 
the grid cell before the advection operator. Another approach for OA tracers given by Matsui (2017) compresses 
VBS tracers in a global aerosol model from 106 to 26 (a compression factor of approximately 4) by using fewer 
volatility bins. This effectively lowers the bin resolution and combines material across a wider range of satura-
tion vapor pressures. Analogously, Matsui (2017) converts between high-resolution and low-resolution bins in a 
sectional aerosol model for use in processes not directly related to aerosols. An example of tracer compression for 
advection in a 2D-VBS is given by Zhao et al. (2020) who sum tracers along the O:C axis, resulting in a 1D-VBS 
for decreased dimensionality in advection.

A partitioning-based compression technique for advection of 1D-VBS tracers could be developed based on parti-
tioning, where the compressed tracers themselves contain all the information needed to decompress to the VBS 
tracer space without loss of accuracy. This technique advects total concentration for each volatility bin as well 
as total OA concentration, reducing the 58 phase-specific tracers to 29 combined phase tracers and an additional 
tracer to keep track of total organic aerosol concentration. After advection, total OA along with the saturation 
vapor concentration determines the partitioning between phase in each volatility bin. However, this theoretical 
strategy applied to the VBS tracers would yield a compression factor of only approximately 2 (compressing 58 
tracers to 30). This would reduce the total number of advected tracers from 104 to 76. We seek a compression 
technique that can reduce the number of tracers further, leveraging data-driven approaches optimized on a large 
amount of representative model output, to reversibly compress VBS distributions with minimal accuracy lost.

2.3.  Model Configuration and Output

To find latent patterns for a reduced order representation of the 58 VBS tracers, we use LOTOS-EUROS version 
2.2.1 (Manders et al., 2017; Manders-Groot et al., 2021) with the optional VBS module. The model is used in 
its default configuration using 5 levels, the first one being a 25 m surface layer, the second layer reaching the top 
of the mixing layer, and the other three layers being reservoir layers up to 5 km altitude. The horizontal domain 
covers 15°W to 35°E and 35–70°N on a lonxlat grid of 0.5 × 0.25°. This grid is termed the MACC (Monitoring 
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Atmospheric Composition and Change) grid, a predecessor of the current CAMS (Copernicus Atmospheric 
Monitoring Service). Meteorology is taken from ECMWF IFS 12-hr operational forecasts, using hourly surface 
values and 3-hr 3D fields interpolated to hourly values. The LOTOS-EUROS advection scheme is based on 
Walcek (2000). The advection operator does not only refer to bulk horizontal transport by wind, but rather advec-
tion in 3 directions: the vertical flux is calculated from the net horizontal flux and continuity. Convection is not 
implemented as an explicit operator. Instead, the impact of convection is implied by changes in the vertical layer 
of the model with the first two layers together covering the boundary layer. Other vertical transport is represented 
by an entrainment and detrainment operator where the vertical structure of the grid is adjusted to mixing layer 
depth then the pollutant concentrations are linearly interpolated, and a separate vertical diffusion operator. For 
gas-phase chemistry, a condensed and slighty modified version of CBM-IV is used (Gery et  al.,  1989). Wet 
deposition includes in-cloud and below-cloud scavenging as described in Seinfeld and Pandis (2006), deposition 
of gases is calculated using DEPAC (Zanten et al., 2010), and deposition of particles follows Zhang (2001). The 
model includes tree-specific biogenic isoprene and terpene emissions as described in Beltman et al. (2013) using 
a high-resolution tree-species database (Köble & Seufert, 2001) that are combined with land cover data from 
CORINE2000 (EEA, 2005). Anthropogenic emissions are CAMS emissions for 2015 (CAMS regional air pollut-
ants as delivered in 2018) with a bottom-up estimation for residential wood combustion emissions, providing the 
best estimate of organic carbon emissions (Denier van der Gon et al., 2015). Wildfire emissions are taken from 
the MACC global fire assimilation system (Kaiser et al., 2012). Initial and boundary conditions for most species 
are taken from CAMS near real-time. For organic matter these boundary conditions are not used since they were 
found to be unrealistically high at some instances. Instead, boundary conditions for OA species were set to zero. 
With prevailing westerly flow, the assumption of very clean conditions from the western boundary with zero 
boundary conditions can be justified for most situations and locations not too close to the eastern boundary. In 
the studied case, boundary conditions act only as a sink.

To generate the model output used in this work, we ran short simulations of 14 days in the last two weeks of 
February and July 2018 with 5 days of spin-up, the subsequent 5 days for training data-driven models and the 
last 4 days for evaluation of the converged data-driven models based on their reconstruction error of the volatility 
distributions. Evaluation of the simulations with observations is outside the scope of the present paper, as the 
model is regularly evaluated in model validation reports, as well as CAMS ensemble and model evaluations, and 
peer-reviewed publications, for example, Timmermans et al. (2022). With the first 5 days (February 15 through 19) 
disregarded as spin-up, 9 days were left for training and testing. With hourly output of surface VBS distributions 
over 216 hr, and 100 latitudinal grid lines by 140 longitudinal grid lines on the European MACC grid, there are 
approximately 3 million multi-dimensional data points for each VBS class. The data points range from 12 dimen-
sional from the anthropogenic and biogenic VBS classes to 16- or 18-dimensional for the siSOA and POA VBS 
classes respectively. Model output from 5 days over February 20 through 24, approximately 1.7 million data points, 
was used as training data to optimize the parameters of the data-driven models with the objective to compress and 
reconstruct VBS distributions as accurately as possible. Model output from 4 days over February 25 through 28, 
approximately 1.3 million data points, was used to evaluate how much reconstruction error each approach intro-
duces: this is detailed in Section 3, which concludes with a selection of the most promising approach.

Section 4 presents the results of implementing the selected approach in LOTOS-EUROS to compress tracers to 
superspecies before the advection operator and decompress to the VBS tracer distributions after the advection 
operator. All 3D experiments in Section 4 are run for periods of 2 weeks, more than double the length of the 
training time horizon. The operator time splitting step in LOTOS-EUROS is chosen dynamically based on wind 
conditions to satisfy the Courant-Friedrichs-Lewy criterion (Courant et al., 1928, 1967) varying from 1 to 10 min 
(Manders et al., 2017) with the advection operator called twice in each time step (Manders-Groot et al., 2021). 
With the advection operator called at a minimum of 12 times an hour for 2-week simulations, the superspecies 
compression/decompression step is done over 4,000 times for each grid cell. Grid cells interact with each other 
via transport processes: over the whole MACC domain with 100 longitudinal grid lines, 140 latitudinal grid 
lines, and 5 levels, superspecies are advected over 280 million times. Section 4 quantifies the effect of advecting 
superspecies to a baseline run of LOTOS-EUROS advecting all VBS tracers, with model configuration remaining 
otherwise identical. Also investigated is how well the superspecies optimized on the last 2 weeks of February 
(winter conditions in Europe) on the MACC grid generalize to (a) the last 2 weeks of July (summer conditions 
in Europe) with different continental spatial patterns as well as temporal patterns over forested areas and (b) a 
higher-resolution domain of 0.1°by 0.1°used in CAMS forecasting.
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2.4.  Linear Approach

A linear approach could be used to project the tracer space into a lower dimensional subspace allowing linear 
combinations of the tracers to be passed to the advection operator. Principal component analysis is a common 
linear projection method but is mean-centered and can lead to negative values, which are less readily interpreta-
ble as concentrations. Non-negative matrix factorization (NMF), also called positive matrix factorization, is an 
unsupervised data-driven approach chosen in applications where values must remain non-negative, for example, 
pixel values in image compression (Lee & Seung, 1999) or concentrations in the physical sciences (Paatero & 
Tapper, 1994). Given a matrix of non-negative data 𝐴𝐴 𝐕𝐕 ∈ ℝ

𝑚𝑚×𝑛𝑛 with m dimensions and n data points, NMF returns 
two non-negative approximate factors of V according to an objective function

argmin

𝐖𝐖,𝐇𝐇

‖𝐕𝐕 −𝐖𝐖𝐖𝐖‖ 𝑠𝑠𝑠𝑠𝑠𝑠 𝐖𝐖,𝐇𝐇 ≥ 0� (1)

where 𝐴𝐴 𝐖𝐖 ∈ ℝ
𝑚𝑚×𝑟𝑟

≥0
 is a mapping from the m dimensional space to a lower dimensional latent space with r features, 

and 𝐴𝐴 𝐇𝐇 ∈ ℝ
𝑟𝑟×𝑛𝑛

≥0
 is the latent space representation of each data point. The inequality is interpreted as an element-

wise constraint. We use the Frobenius norm in the objective function, which is the default NMF norm in the 
scikit-learn Python package (Pedregosa et al., 2011). For our application, m is the number of tracers for each 
class, n the total number of grid cells multiplied by the number of time steps, and r the number of superspecies 
(a hyperparameter selected in Section 3.1). Each row of V corresponds to a tracer for each VBS class, and each 
column the tracer distribution for a given grid cell and time step. H can be physically interpreted as the concentra-
tion of r superspecies representing the tracer concentrations of that VBS class: each column of H corresponds to 
the grid cell and time step in V. W acts as a mapping from the superspecies representation back to the VBS  tracer 
concentrations: a given column of W can be physically interpreted as the concentration profile of one super-
species, with each element representing the relative composition of a VBS tracer in that superspecies. We use 
NMF to converge on a W for each VBS class that contains superspecies with characteristic volatility distribution 
shapes. These superspecies are linearly combined in ways that capture the variation of VBS distributions over all 
grid cells as well as possible. The coefficients determining the linear combination are the concentrations of each 
superspecies.

NMF operates on a data matrix, handling batches of observations all at once. For our application, compression 
of current concentrations of VBS tracers 𝐴𝐴 𝐴𝐴𝐴 ∈ ℝ

𝑚𝑚 in a given grid cell to a lower dimensional space needs to 
happen with each new time step. For the purpose of speeding computations, it might be counterproductive to 
perform the NMF algorithm online in every time step. If W is optimized using Equation 1 on sufficiently repre-
sentative training data, it can be used to decompress a set of superspecies 𝐴𝐴 ℎ⃗ 𝐴𝐴 ∈ ℝ

𝑟𝑟 to a set of tracers 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑 ∈ ℝ
𝑚𝑚 

approximating 𝐴𝐴 𝐴𝐴𝐴  . However, we still need to obtain the superspecies vector 𝐴𝐴 ℎ⃗ . Given a sufficiently representative 
W, we can use its Moore-Penrose pseudoinverse 𝐴𝐴 𝐖𝐖

+
∈ ℝ

𝑟𝑟×𝑚𝑚 to compress a new set of tracers 𝐴𝐴 𝐴𝐴𝐴  to a corre-
sponding set of new superspecies 𝐴𝐴 ℎ⃗ . W + may have negative elements for r > 1 (more than one superspecies, 
or degree of freedom), theoretically yielding negative values for superspecies or decompressed tracers. This 
potential limitation is quantified in Section 3.2. Instead of a Moore-Penrose pseudoinverse, a positive-valued 
compression matrix 𝐴𝐴 𝐁𝐁 ∈ ℝ

𝑟𝑟×𝑚𝑚

≥0
 can be obtained by similar non-negative matrix factorization methods, using the 

objective function:

argmin

𝐁𝐁

‖𝐇𝐇 − 𝐁𝐁𝐁𝐁‖2
𝐹𝐹

𝑠𝑠𝑠𝑠𝑠𝑠 𝐁𝐁 ≥ 0� (2)

The full approach to obtain non-negative compression and decompression matrices then becomes

1.	 �Given tracer data V, find H, W such that V − WH is minimized.
2.	 �Given tracer data V, and using H from the previous step, find B such that H − BV is minimized.
3.	 �Use B to compress subsequent observations of VBS tracers 𝐴𝐴 𝐴𝐴𝐴 to a non-negative vector of superspecies 𝐴𝐴 ℎ⃗ , and 

W to decompress 𝐴𝐴 ℎ⃗ to the original tracer space 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑 .

The compression and decompression matrices B and W are optimized for each VBS class, to avoid mixing differ-
ent classes of OA that have different properties (e.g., molar mass). An important hyperparameter of this approach 
is r, the size of the latent space (number of superspecies). This can be chosen by constructing an elbow plot of 
error metrics with varying r, while also considering compression factor and is done in Section 3.1.
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2.5.  Nonlinear Approach

We investigate whether a more complicated model than the pair of non-negative matrices is appropriate for 
compressing VBS tracers. Motivated by the recent success of artificial neural networks (NNs) in emulating 
models of atmospheric composition (Kelp et al., 2020; Schreck et al., 2022; Sturm & Wexler, 2022), we 
construct a neural network autoencoder that can reversibly compress the VBS tracers to a latent space. Anal-
ogously to Section 2.4, the NNs are trained on V for each VBS class over the entire domain and training time 
frame, with the goal of applying a single NN parameterization for each VBS class at all grid cells. Neural 
networks are connected networks of artificial neurons: each neuron calculates a linear combination of its 
input, adds a bias scalar, and feeds this result to a (usually non-linear) activation function (Marsland, 2014). 
Neurons performing this operation on the same input in parallel are designated as a layer within the neural 
network. Neural networks can have multiple such layers: vector output from neuron layers that are not final 
output of the NN are called hidden layers. A neural network autoencoder attempts to replicate the identity 
function via compression, where hidden layers compress the input to the NN to a smaller latent space of 
size r. For our application, the activation function chosen for each neuron is a rectified linear unit that 
outputs the maximum of its input and zero. This choice of activation function constrains output of both the 
hidden layer and the NN output to their respective positive half-spaces. In other words, like the non-negative 
compression/decompression matrices in Section 2.4, this activation function  ensures concentrations will not 
go below zero.

While matrix multiplication to a lower-dimensional space is also part of the linear approach in Section 2.4, the 
neural network adds complexity in its parameter space via multiple layers with weight parameters, as well as bias 
and activation functions between layers of neurons. Such complexity obscures physical interpretation: no one 
layer of the neural network can represent a set of superspecies with distinct compositions as W does in NMF. 
This model should be chosen if it significantly outperforms a linear method using the same size r. As the NNs are 
compared directly to the linear method, one NN per VBS class is chosen.

Training a neural network involves optimizing the coefficients of the linear combination and bias scalar for 
each perceptron through local minimization methods, often gradient descent. To prevent overfitting of the 
NNs, dropout layers are used to temporarily remove some neurons during training, and training of NNs is 
stopped when no further improvement in predictions on a set of validation data (10% of the 5 days training 
data) after a certain number of passes through the training data is obtained (Li et al., 2020). The neural network 
models are constructed and trained with the Keras library (Chollet, 2015) using a TensorFlow backend (Abadi 
et al., 2016).

2.6.  Physically Consistent Models: Conserving Mass and Phase

Sections  2.4 and  2.5 developed methods to ensure non-negativity of both the compressed superspecies and 
decompressed tracers. This section refines the linear method to preserve other physical information: concentra-
tion and phase.

An advantage of the linear method is that the direction of the decompressed tracer space is invariant to scaling 
of the superspecies space. In other words, the concentration of superspecies can be adjusted without changing 
the relative volatility distribution of the decompressed tracers. We can use a scaling factor after compression 
to ensure that the total concentration of superspecies is equal to the total concentration of the tracers for 
each VBS class. Similarly, after decompression, we can ensure that the total concentration of decompressed 
tracers is equal to the total concentrations of superspecies. This ensures that compression and decompression 
neither add nor remove mass. The scaling factor scom after using B to compress tracers 𝐴𝐴 𝐴𝐴𝐴  to the superspecies 
vector 𝐴𝐴 ℎ⃗ is

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 =

𝑚𝑚∑

𝑖𝑖=1

𝑣𝑣𝑖𝑖

𝑟𝑟∑

𝑗𝑗=1

ℎ𝑗𝑗

� (3)

After decompression to 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑 using W, the decompressed tracers can be scaled using a factor sdec, where
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𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 =

𝑟𝑟∑

𝑗𝑗=1

ℎ𝑗𝑗

𝑚𝑚∑

𝑖𝑖=1

𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

� (4)

Despite conserving total concentration of all tracers, the concentration of total organic aerosol (TOA) may not 
be conserved due to errors in the mass distribution over volatility bins after decompression. A variation of this 
method to conserve TOA instead of total concentration, as well as an alternative way to conserve total concen-
tration only using W from NMF, is explored in Sturm (2021). However, the compromise of conserving TOA 
versus total concentration is avoidable by adding another cross section: creating compression and decompression 
matrices B and W for each phase as well as VBS class, for example, one transformation for all biogenic gaseous 
VBS tracers and a separate transformation for all biogenic particle tracers. This phase-specific approach results 
in eight parameterizations instead of four used in Sections 2.4 and 2.5. The following section gives an overview 
of all four approaches: these approaches will be tested on their reconstruction accuracy in Section 3.

2.7.  Four Approaches

The methods developed in Sections 2.4–2.6 lead to the following four approaches.

•	 �Approach 1: NMF/Pseudoinverse linear approach: NMF to find an optimal decompression matrix W, and use 
its pseudoinverse (with potentially negative elements) W + as a compression matrix for each VBS class

•	 �Approach 2: Non-negative matrix factorization: NMF to find an optimal decompression matrix W and a 
non-negative compression matrix B for each VBS class

•	 �Approach 3: Non-negative neural network autoencoder: Create a more complicated neural network with ReLU 
activation functions in the superspecies and output layers, for each VBS class

•	 �Approach 4: Mass-conserving, non-negative matrix factorization with phase specific superspecies: Create W 
and a non-negative compression matrix B, for each phase in each VBS class

Section 3 investigates how well each approach can reconstruct volatility distributions of all four VBS distribu-
tions after compression. We select the most promising method in Section 3.3 based on reconstruction accuracy 
and physical consistency, to be incorporated into a 3D simulation.

3.  Model Development and Selection
The four approaches developed in Sections 2.4–2.6, and outlined in Section 2.7, were trained on LOTOS-EUROS 
model output from February 20th through 24th using the model configuration detailed in Section 2.3. This 
section evaluates the four approaches on their ability to compress and reconstruct the volatility distributions 
of model output from a different set of days, February 25th through 28th. Section 3.1 uses Approach 1, the 
simplest approach, to investigate how dimensionality of the latent space r (number of superspecies), inversely 
related to compression factor, affects reconstruction accuracy. Section  3.2 deals with physical consistency: 
Section  3.2.1 investigates how Approach 1 can lead to negative concentration values, and motivates the 
non-negativity constraints in Approaches 2, 3, and 4. Section 3.2.2 demonstrates how Approach 4 conserves 
mass and phase when mapping tracers to superspecies and back. Finally, Section 3 compares the reconstruction 
error and physical consistency of all four compression approaches and selects the most promising approach to 
be implemented in LOTOS-EUROS.

3.1.  Compression Factor and Accuracy

To obtain a sense of error obtained by a maximum compression factor and the simplest model, we use NMF 
with a single superspecies (r = 1) per VBS class to obtain a decompression matrix (in this case a vector) W and 
calculate its pseudoinverse W + to be used for compression. This compression strategy is evaluated on recon-
struction accuracy of test model output of the entire domain and time period, using average bias and root mean 
square error (RMSE). While bias is an indicator of the total material that is introduced or removed artificially 
by compression, RMSE is an absolute metric that indicates how accurately the reconstructed VBS tracers 
reproduce the volatility distribution. Table 1 shows both reconstruction error metrics for the tracer set of each 
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class, as well as the reconstruction bias and RMSE's of total organic aero-
sol concentration (TOA) and total organic material (TOM) from summing 
across VBS classes. The mean concentrations for each VBS class, as well 
as TOA and TOM, are included for comparison. We also include normal-
ized root mean square error (NMRSE) and normalized mean bias (NMB) 
calculated by respectively dividing RMSE and bias by the mean.

Using one superspecies r = 1 in Approach 1 leads to high values of RMSE 
relative to the mean. Moreover, by the use of a single superspecies the tracers 
pass through a linear transformation of rank 1: the concentration distribution 
over the volality bins will always have the same shape, with grid cells and 
different time steps differing only in magnitude, as scaled by the superspecies 
concentration h. This means any spatiotemporal variability of the distribution 
shape will be lost after passing through a single-dimensional superspecies 
space. More complexity is needed to capture variation in volatility distribu-

tion. This motivates larger matrices that have more degrees of freedom r, which comes at the cost of compression 
factor. Figure 2 visualizes the effect of compression extent on accuracy, using W + to convert to superspecies and 
W to map back to tracers. Reconstruction accuracy is reported for the set of tracers in each class (both particle 
and gas) as well as TOA (total organic aerosol, calculated by summing the concentrations of particle tracers 
across classes).

Figure  2 shows RMSE monotonically decreasing with increasing number of superspecies, with diminishing 
returns after 3 superspecies. More superspecies to advect will increase the computational burden of the advection 
operator in LOTOS-EUROS without a substantial improvement in RMSE or bias. In light of the desire to maxi-
mize compression factor, the two elbow plots indicate that 3 superspecies strikes a good balance between dimen-
sion reduction and accuracy. Using 3 superspecies per class ranges from a compression factor of 4 (the aVOC and 
bVOC basis sets) to 6 (the POA basis set) with a significant improvement in accuracy from 2 superspecies and 
minimal improvement in accuracy when using 4 or more superspecies.

Figure 2.  Relationship between the number of superspecies and the RMSE and bias for the 4 VBS classes, as well as TOA. There are diminishing returns in accuracy 
after 3 superspecies per VBS class.

Table 1 
Test Reconstruction Error Metrics Using the NMF/Pseudoinverse Approach 
With 1 Superspecies per VBS Class

Mean 
(μg m −3)

RMSE 
(μg m −3) Bias (μg m −3)

NRMSE 
(%)

NMB 
(%)

aVOC 0.0043 0.0021 −3.9 × 10 −6 48.8 0.1

bVOC 0.0262 0.0061 2.9 × 10 −4 23.3 1.1

POA 0.0558 0.0441 −0.0021 79.0 −3.7

siSOA 0.0153 0.0205 6.4 × 10 −5 134.0 0.4

TOA 0.386 0.266 0.094 68.9 24.3

TOM 1.61 0.0978 −0.0328 6.1 −2.1
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Improved accuracy with number of superspecies comes from the increased degrees of freedom, as each subse-
quent column of W adds another basis direction. Each column of W, when normalized, can also be interpreted 
as a superspecies of unit concentration with elements corresponding to composition of VBS tracers. Each super-
species can also be interpreted as a different regime of organic aerosol, found through a data-driven method. 
Multiple superspecies can be combined in different amounts, corresponding to their concentrations, to form other 
distributions.

3.2.  Physical Consistency of Results

3.2.1.  Motivating Non-Negative Constraints

Section 2.4 raised the theoretical possibility of obtaining negative concentrations when using the pseudoinverse 
W + to compress tracers into superspecies. Negative elements in W + can lead to negative superspecies. Negative 
superspecies concentrations are not directly a problem, as the current advection scheme in LOTOS-EUROS 
v2.2.1 is based on that of Walcek (2000), which is able to handle negative tracer values. However, using the 
non-negative W to decompress negative superspecies concentrations back to the tracer space can lead to negative 
tracer values. Here, we quantify this limitation in practice using 3 superspecies.

Negative concentrations that are extremely small in magnitude can be approximated as zero. This tolerance can 
of course be set to a threshold, for example, −1 × 10 −8 μg m −3. However, using the test data of the POA VBS as 
an example, there are over 4.7 million cases in the test data where a POA VBS tracer is below −1 × 10 −8 μg m −3, 
which is more than 19% of the 24 million values in the test data for the POA VBS.

One could choose a more relative, less arbitrary tolerance: for instance, all concentrations that are more negative 
than the magnitude of the corresponding bias for each VBS. These “significantly negative” concentrations would 
be negative even after an additive bias correction. For the POA VBS, there were 855,083 such concentrations, 
about 3.5% of the total test data. Using this relative tolerance, other VBS classes showed even larger proportions 
of “significantly negative” concentrations: 4.2%, 5.6%, and 7.0% respectively for the siSOA, aSOA, and bSOA 
VBS classes (for the anthropogenic VBS and siSOA VBS, which had positive biases, the tolerance was chosen to 
be the negative magnitude of the corresponding bias).

Using the pseudoinverse W + for compressing VBS tracers (Approach 1) can result in a number of significantly 
negative values when using 3 superspecies per VBS class, which motivates the development of non-negative 
compression strategies. For each VBS class, we find a positive compression matrix B to replace W +, according 
to the objective function and constraints in Equation 2 (Approach 2).

We compare this matrix factorization approach (Approach 2) with a neural network autoencoder (Approach 3) for 
each VBS class. We construct and train a 5-layer neural network autoencoder with rectified linear unit activation 
functions in the superspecies and output layers to ensure non-negativity of both superspecies and decompressed 
VBS tracers. In other hidden layers, a sigmoidal activation function, hyperbolic tangent, is used. In training, a 
dropout rate of 0.1 is used for every layer except for the superspecies layer. For the autoencoder of each VBS 
class, the center superspecies layer is chosen to have 3 values: the value of this hyperparameter is chosen for 
comparison to the linear matrix factorization approach. Section 3.3 compares all four approaches based on how 
well they reconstruct the VBS tracers after decompression.

3.2.2.  Conserving Mass and Phase

Section 2.6 proposed a method for conserving total concentration of the VBS tracers in both the superspecies 
representation and in subsequent reconstruction to decompressed tracers. Approach 4 applies this method to the 
cross-sections of VBS class and phase (particle or gas) to ensure that the superspecies transformation does not 
add or remove mass artificially in the gas and particle phases of every class: this results in conservation of total 
gas concentration, total aerosol concentration, and concentration of total organic material (TOM). Phase-specific 
superspecies are composed of entirely gas or entirely particle tracers, conserving information on phase while in 
the latent space representation.

Phase-specific superspecies require adding another cross-section, halving the number of tracers to be compressed 
and decompressed by each pair of B and W, respectively. For this reason, continuing to use 3 superspecies for 
each phase within each VBS class would reduce the compression factor to slightly over 2.4, not much better than 
the compression factor of around 2 when using the partitioning-based compression approach. However, using 
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only 1 superspecies per phase per class would fix each corresponding set of tracers to a single shape upon recon-
struction, as discussed in Section 3.1. To ensure that this method captures spatiotemporal variability of volatility 
distributions while maintaining a useful compression factor, we choose to use 2 superspecies per phase per VBS 
class. This design choice results in a compression factor of approximately 3.6. Its accuracy is compared to the 
other strategies in the model selection process in Section 3.3.

Figure 3 demonstrates the mass-conserving properties of Approach 4 using representative examples of the primary 
organic aerosol VBS distribution at two different atmospheric monitoring sites: the Cabauw Experimental Site 
for Atmospheric Research in the Netherlands, and Mace Head Atmospheric Research Station in Ireland. Mace 
Head is a more pristine and remote station (O'Dowd et  al.,  2014). The legend in Figure  3 shows that POA 
concentration at Cabauw is two orders of magnitude higher than that at Mace Head, 4.984 μg m −3 compared to 
0.032 μg m −3.

Figure 3 compares the primary VBS distribution to the reconstructed primary VBS distributions after mapping 
to phase-specific superspecies and back again using two sites: Cabauw and Mace Head, as representative exam-
ples. Comparing the legends of (a) with (c), it can be seen that total POA concentration, as well as total concen-
tration of tracers in the gas phase, is conserved to machine precision after passing through compression. The 
same holds for the total concentrations at Mace Head, (b) and (d), at orders of magnitude more dilute. With phase 
information and concentration conserved, the only source of error caused by compression to superspecies is in 
the shape of the distribution. This reconstruction error is more apparent at Mace Head in Figures 3b and 3d. The 
reconstructed distribution of Mace Head more closely resembles the constant primary organic emissions profile 
modeled by LOTOS-EUROS: during training, grid cells with high primary organic emissions are weighted 
heavily as they tend to have higher aerosol loading. Though the data-driven approaches applied to the primary 
VBS class are biased to reconstruct the volatility distribution of grid cells with high POA loading, the conser-
vation constraints in Approach 4 ensure that no material will be artificially introduced in more dilute condi-
tions. Though the gas/particle split is not guaranteed to be in equilibrium after reconstruction, the partitioning 
subroutine (which is not itself a computationally expensive component of the VBS approach) will subsequently 
determine the gas/particle split.

Figure 3.  Comparison of the volatility basis set distribution for POA near two sites: Cabauw and Mace Head at a snapshot in time on 26 February 2018. The top row in 
green shows the distributions as modeled by LOTOS-EUROS at Cabauw (a, b) Mace Head. The bottom row in maroon shows the distributions at Cabauw (c) and Mace 
Head (d) after the non-negative compression/decompression using phase-specific superspecies. Total concentrations are conserved when comparing the legends of the 
modeled distributions to the reconstructed distributions.
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3.3.  Model Selection

In this section, we compare the four approaches described thus far, and make 
a judgment about the most promising strategy, evaluated on reconstruction 
accuracy and physical consistency. The selected approach will be imple-
mented in LOTOS-EUROS v2.2.1 to accelerate the advection operator. The 
four approaches are restated here, including the number of superspecies used.

•	 �Approach 1: NMF/Pseudoinverse linear approach: NMF to find an opti-
mal decompression matrix W, and use its pseudoinverse (with negative 
elements) W + as a compression matrix using 3 superspecies per VBS 
class

•	 �Approach 2: Non-negative matrix factorization: NMF to find an opti-
mal decompression matrix W and a non-negative compression matrix B 
using 3 superspecies per VBS class

•	 �Approach 3: Non-negative neural network autoencoder: Create a more 
complicated neural network with ReLU activation functions in the super-
species and output layers, using 3 superspecies per VBS class

•	 �Approach 4: Mass-conserving, non-negative matrix factorization with phase specific superspecies: Create W, 
as well as a non-negative compression matrix B using 2 superspecies per phase per VBS class

Tables 2 and 3 show RMSE and bias of the tracers for each VBS class for the 4 approaches, as well as total organic 
aerosol (TOA) and total organic material (TOM) concentrations.

Approach 2 uses non-negative B and W to linearly combine tracers into three superspecies and shows lower 
RMSE values than the NN autoencoder in Approach 3, with the exception of TOA concentration. This indi-
cates that matrix factorization is probably suitable for VBS tracer compression. Using the pseudoinverse W +for 
compression resulted in lower RMSE for all the VBS classes, but has the critical weakness of producing a signif-
icant amount of negative concentrations for superspecies and subsequently reconstructed tracers as explored 
in Section  3.2.1. Though the phase-specific superspecies approach does not have as low of RMSE for each 
VBS class as the pseudoinverse approach, it outperforms the other two non-negative approaches. Moreover, 
it conserves absolute metrics on compression, ensuring that material will stay in each class and each phase, 
and no material will be added or removed by compression: for this reason, all biases are negligible to machine 
precision. Preserving information on phase during compression to superspecies has another advantage. This 
approach can be used in other processes such as dry deposition, which handles particle and gas tracers separately. 
Because the phase-specific superspecies method (Approach 4) is physically consistent while quite accurate in 
reconstruction error, and is readily extended to other phase-specific processes, it is chosen for implementation in 
LOTOS-EUROS v2.2.1.

4.  Results: Superspecies Implementation in LOTOS-EUROS
The phase-specific, matrix factorization superspecies method (Approach 4) chosen in Section 3.3 was imple-
mented in LOTOS-EUROS v2.2.1. This section explores the accuracy and speedup of replacing VBS tracers with 

superspecies in advection, as well as the generalizability of the superspecies 
to different seasonal conditions and spatial resolutions. Additional tracers for 
superspecies were added to the LOTOS-EUROS tracer list. Subroutines were 
added to the VBS module to load the parameterizations, as well as  perform 
the compression and decompression operations. When running with the 
superspecies method, the subroutines are called in the driver program as 
follows:

1.	 �The initialization subroutine loads offline-optimized W and B for each 
phase and class before the time loop starts.

2.	 �Within the time loop, directly before the call to the advection operator, 
the compression subroutine is called to map VBS tracers to superspecies 
concentrations using B, overwriting the current superspecies values. The 
advection operator skips VBS tracers and advects superspecies instead.

Table 2 
Evaluation RMSE of Selected Approaches

Approach 1 Approach 2 Approach 3 Approach 4

aVOC VBS 4.4 × 10 −4 0.0010 0.0021 0.0011

bVOC VBS 0.0026 0.0078 0.0181 0.0042

POA 0.0109 0.0285 0.0306 0.0142

siSOA 0.0050 0.0086 0.0094 0.0057

TOA 0.0173 0.133 0.101 6.9 × 10 −13

TOM 0.0547 0.240 0.328 1.0 × 10 −12

Note. All values reported in μg m −3.

Table 3 
Evaluation Bias of Selected Approaches

Approach 1 Approach 2 Approach 3 Approach 4

aVOC VBS 2.6 × 10 −5 1.2 × 10 −4 −3.9 × 10 −4 2.8 × 10 −20

bVOC VBS −1.6 × 10 −4 3.8 × 10 −4 −0.0051 −1.6 × 10 −16

POA −4.2 × 10 −4 0.0050 −0.0075 −8.8 × 10 −18

siSOA −9.9 × 10 −5 7.7 × 10 −4 −0.0022 1.2 × 10 −19

TOA 0.0015 0.0657 −0.0346 −1.3 × 10 −15

TOM −0.00763 0.108 −0.237 −2.1 × 10 −15

Note. All values reported in μg m −3.
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3.	 �Within the time loop, directly after the call to the advection operator, the decompression routine is called to 
transform superspecies into VBS tracers using W, overwriting previous VBS tracer values.

After offline training on data from February 20th through 24th, 2018, the selected superspecies parameterization 
was loaded into LOTOS-EUROS and used in the advection operator for a run from February 15th through 28th. 
The results of this run are compared with a control run advecting VBS tracers to directly assess the error from 
advecting superspecies. Small errors caused by advecting superspecies change subsequent VBS tracer concen-
trations such that the period of February 20th through 24th differs from the training data set. In that time period, 
however, meteorological conditions and other processes independent of the VBS and superspecies parameteri-
zation are identical to that of the offline training data set. For the sake of comparison, the superspecies run and 
control run are evaluated on February 25th through 28th, even though the superspecies run has the chance to 
accumulate error and diverge from the control run from the beginning of the simulation on February 15th.

Figure 4.  Average TOA for February 25th through 28th 2018, during a 2-week simulation from February 15th through 28th using superspecies matrices optimized 
offline on winter conditions from February 20th through 24th.
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Advecting superspecies reproduces the spatial patterns of average TOA 
across the entire domain. Figure 4 shows average TOA of the control run 
and the superspecies run, from February 25th through February 28th. This 
test time period is well into the model run, 10 days after the beginning of 
the simulation. During this time period and over the entire domain, average 
bias of TOA of the superspecies run compared to the control run is small 
and slightly negative, −0.0095  μg  m −3. Small average bias is not in itself 
indicative of low error, as positive and negative bias cancellations throughout 
the domain and time period are possible. RMSE, an absolute metric, was 
larger at 0.217 μg m −3. Figure 4 shows total OA, though the VBS classes have 
partly compensating biases: for example, the positive bias in northern Spain 

was mainly caused by a positive bias from the siSOA class, of which the corresponding gas-phase species have a 
longer lifetime than those of the POA class. The north of Spain is less densely populated than other parts of the 
domain and composition is more affected by long-range transport, as are the ocean parts. Back trajectory analysis 
of this region revealed both stagnant and long-range trajectories for the averaging period (25–28 February), with 
long-range transport from more polluted  areas in the northeast of the domain. Further analysis revealed that for 
northern Spain siSOA caused a positive bias for TOA. The condensable gases of the siSOA class have a longer 
lifetime than those of the POA due to differences in their deposition velocities (arising from different Henry 
coefficient values). However, the general spatial patterns of total OA across the entire domain are preserved when 
advecting superspecies.

4.1.  Seasonal Superspecies

The winter test period from February 25th through 28th directly followed the training test period from February 
20th through 24th and had relatively similar conditions to what the superspecies transformation matrices were 
optimized for. A run in summer from July 20th through August 1st was chosen to assess the robustness of the 
winter-optimized superspecies to different seasons and weather patterns. Summer conditions differ from winter 
conditions in Europe for several reasons. One, biogenic precursor gases make up a larger contribution to forma-
tion of secondary organic aerosol in the summer, partially due to emissions from forests. Two, average tempera-
tures are higher, affecting the partitioning of the VBS by changing the volatility basis set values C*. The different 
conditions lead to different modeled compositions of total organic aerosol (TOA). Table 4 compares the modeled 
average composition of OA for February 25th through 28th to that for July 29th through August 1st.

Though siSOA is on average the largest component of TOA in the run from July 29th through August 1st this 
is not the full picture, and underscores the importance of bSOA under some conditions. The maximum concen-
tration of surface siSOA over the entire domain over the entire period from July 29th through August 1st was 
15.0 μg m −3 and 99th percentile 1.3 μg m −3, compared to the maximum bSOA concentration of 100.3 μg m −3 and 
99th percentile 9.4 μg m −3. This indicates that although siSOA may dominate in background conditions and when 
TOA is low, bSOA is the dominant component of TOA in other conditions.

4.1.1.  Domain-Wide Assessment

Figure 5 shows average surface TOA, as predicted by the control run (a), the run with superspecies advected (b), 
and the bias and relative bias of the superspecies run with regards to the control, (c) and (d) respectively. The 
spatial patterns of TOA are visually different from the winter conditions in Figure 4. Primary organic emissions 
corresponding to POA are often the largest contributor to winter TOA, and for the time period in Figure 4, TOA is 
most concentrated in the Po Valley, Czechia, and Poland. The winter superspecies run is able to recreate these large 
regions of high TOA, as well as other smaller but distinct pockets of TOA, such as Madrid (the most populous city in 
Spain) and northwestern Portugal, a region with heavy industrial activity. In contrast, summer TOA is concentrated 
around southern Germany, Switzerland, Austria, and Slovenia. Many places in this region are forested, and contrib-
ute to TOA via emission of biogenic precursors of bSOA. The superspecies run shown in (b) is able to capture these 
spatial patterns, but with a strong bias. For this reason, other regions with high biogenic emissions become visually 
apparent in (b), such as southern Sweden, Finland Proper, and northwestern Russia, which are all heavily forested. 
Woodland regions are accounted for in LOTOS-EUROS via land use maps and tree-species emissions (Manders 
et al., 2017).

Table 4 
Average TOA Composition in the Control Runs for February and July

OA type February July

aSOA 0.8% 9.5%

bSOA 4.5% 34.8%

POA 61.2% 12.5%

siSOA 33.5% 43.2%
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The superspecies optimized on winter conditions and tested on a 2-week run in July show a large positive bias 
over the areas with high average TOA, especially heavily forested regions. RMSE for TOA over the whole domain 
and time period is 2.12 μg m −3, with an average bias of 0.321 μg m −3. RMSE of the tracers from the biogenic 
VBS for all times and grid cells is 0.66 μg m −3, an order of magnitude higher than tracers from the other VBS 
classes: the class of tracers with the next highest RMSE value is the siSOA VBS class, at 0.062 μg m −3. The 
average bSOA bias (bias of total biogenic aerosol neglecting gaseous tracers) is 0.068 μg m −3, three orders of 
magnitude smaller than the maximum bSOA bias of 82.9 μg m −3. Overestimation of bSOA in the superspecies 
run under some conditions is likely due to errors in decompression, artificially shifting mass to lower volatility 
bins. However, the large positive bias in parts of the domain indicate that this tendency to overestimate bSOA 
only happens in certain conditions: namely, forested regions. The following section analyzes one grid cell in a 

Figure 5.  Average TOA for July 29th through 1 August 2018, during a 2-week simulation from July 19th through August 1st using superspecies matrices optimized 
offline on winter conditions from February 20th through 24th.
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forested region, and finds additional temporal patterns where bSOA is signif-
icantly overestimated, leading to overestimation of TOA.

4.1.2.  Case Study: Summer Night in a Forest

We choose a single grid cell over a forested area to investigate the super-
species tendency to overestimate bSOA. We study the LOTOS-EUROS grid 
cell containing the Schönbuch Natural Reserve in southwest Germany, which 
is 156 square kilometers and 85% forested. Figure  6a shows the temporal 
variation of TOA in the Schönbuch from July 29th through August 1st. This 
overestimation systematically occurs at night, with the night of July 30th to 
July 31st a particularly high TOA event showing the highest bias.

Examining Figure  6a, the peak overestimation occurs at 05:00 on July 
31st and overestimates total bSOA with a factor between 2 and 2.5 times 
that of the control run. The superspecies run has a bSOA concentration of 
32.9 μg m −3, which comprises 99% of total OA concentration for that grid 
cell and time. The control run concentration of bSOA is 14.1 μg m −3, about 
95% of TOA for that simulation. By 09:00 on July 31st, both runs return to 
a total bSOA concentration of less than 3.5 μg m −3. This night episode of 
high bSOA contains the largest overpredictions for that particular grid cell 
in the whole time period. However, it is illustrative of a failure mode of the 
winter-optimized superspecies to capture the total concentration of bSOA, 
and ultimately TOA due to the importance of bSOA contributions in this 
example. The spatial patterns and temporal patterns of the superspecies run 
compared to the control run show that the superspecies are limited in their 
ability to model conditions over forested areas on summer nights.

Given that winter-optimized superspecies showed limitations in capturing 
high bSOA events over forested areas at night, we investigate whether super-
species optimized on summer conditions and implemented online reproduce 
high bSOA conditions with more accuracy. Approach 4 was applied to model 
output from July 23rd through 28th, 2018, to obtain a superspecies parame-
terization optimized on summer conditions.

The superspecies approach optimized on summer conditions shows a much 
lower bias than the winter-optimized superspecies. The temporal behavior 
of summer-optimized superspecies from July 29th through August 1st after 
10 simulated days is shown in Figure 6b. Comparing Figures 6a to 6b, it can 

be seen that the spatiotemporal pattern of bSOA bias is addressed by using summer-optimized superspecies, 
which do not show the same nightly overestimation pattern of winter-optimized superspecies. Total bSOA is even 
slightly underestimated in the day when using summer-optimized superspecies.

Averaged over the entire domain and time period of July 29th through August 1st, the summer-optimized super-
species display a slightly negative average bias for bSOA of −0.023 μg m −3. Small pockets of TOA overestima-
tion (within 10 μg m −3) still occur in the same regions as the winter-optimized superspecies: over highly forested 
areas. The RMSE over the whole domain of time-averaged TOA was 0.98 μg m −3 when using summer-optimized 
superspecies, less than half of the RMSE of 2.12 μg m −3 when using winter-optimized superspecies. RMSE of the 
tracers from the biogenic VBS (both gas and particle phases) for all times and grid cells is reduced by a factor of 
2, at 0.32 μg m −3 compared to 0.66 μg m −3. However, in superspecies trained on either season, the biogenic VBS 
tracers in the summer show significantly higher error than the tracers of the other VBS classes, with the siSOA 
VBS class having the next highest RMSE value at 0.050 μg m −3. The limitation of winter-optimized superspecies 
and the subsequent improvement in accuracy when using summer-optimized superspecies indicates that this 
method might be best applied to different seasons: creating seasonal-specific superspecies results in higher accu-
racy. Analogously, Kelp et al. (2022) tested neural network surrogate models of atmospheric chemistry optimized 
online for 3-month seasons against neural networks trained online for a whole year, and concluded that ensembles 
of ML surrogate models specialized for specific seasons improve accuracy and stability.

Figure 6.  Temporal variation of TOA over Schönbuch from July 29th through 
August 1st using (a) winter-optimized superspecies and (b) summer-optimized 
species. The maroon points of TOA as predicted with when advecting 
superspecies are compared to the green line of TOA as modeled by the LE 
control run used as a baseline.
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4.2.  Towards Operational Forecasting on Higher-Resolution Domains

LOTOS-EUROS is one model in the ensemble used in the Copernicus Atmospheric Modeling Service (CAMS) 
operational forecasts, which requires all models to include SOA representation by 2023. The domain used in CAMS 
operational forecasts has a higher resolution and wider domain than the domain used by MACC: 0.1°by 0.1°for 
420 by 700 grid cells compared to the 0.50°by 0.25°used in the MACC domain, and extending past Moscow, 
Russia. The change of resolution and domain increases the number of grid cells by a factor of 20. One result of 
this is many more grid cells and computations. Another result is that the operator splitting timestep Δt needs to 
decrease in order to satisfy the Courant-Friedrichs-Lewy criterion as the grid cell distance is smaller. With a 
smaller operator splitting timestep, the advection operator as well as the compression and decompression steps are 
called more often. We investigate how the superspecies approach, optimized on model output from February 20th 
through 24th on the coarse-resolution MACC domain, generalizes to a 2-week run on the extended high-resolution 

Figure 7.  Time averaged TOA for the period of February 25th through 28th on the high-resolution domain used in CAMS operational forecasting, from control and 
superspecies runs, as well as bias and relative bias. The superspecies were optimized on model output from a simulation using the coarse-resolution MACC domain.
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CAMS domain. Figure 7 shows the time-averaged TOA concentration across the entire CAMS domain for the test 
period of 25th–28th February 2018, chosen for ease of comparison with the winter run on the MACC domain.

The superspecies run has a positive bias for TOA of 0.019 μg m −3, with visible overestimation in the area near 
Moscow, Russia, which is not in the MACC grid used to optimize the compression/decompression matrices. 
The colorbar limits of Figures 7a–7c were adjusted for visual comparison with Figure 4. For this reason, colors 
at the upper or lower limits should be interpreted as greater or equal to the limit. Though the maximum grid 
cell concentration of time-averaged TOA from both the superspecies run and the control run was 28.2 μg m −3, 
99.85% of the grid cells had a time-averaged TOA under 7.6 μg m −3, which was chosen as the upper limit of the 
colorbar. This means that only 0.15% of the grid cells in Figures 7a and 7b exceed the limit shown in the color-
bar. Neglecting the highest 0.15% of average TOA, the spatial patterns of the CAMS control run in Figure 7a are 
visually very similar to those of the that the CAMS superspecies run in Figure 7b. Both show spatial patterns 
similar to the simulations performed on the MACC grid for the same time period. The same approach is done 
for the bias shown in Figure 7c, with very few grid cells in the CAMS simulation exceeding the maximum error 
of time-averaged TOA on the MACC grid. The maximum absolute error of time-averaged TOA between the 
superspecies run and the control run was 8.9 μg m −3, but 99.2% of all grid cells had an absolute error of less 
than 0.70 μg m −3. Less than 1% of the grid cells in Figure 7c exceed the colorbar limit. The largest instantaneous 
bias for TOA was 89 μg m −3at a grid cell in northwestern Spain near Ponferrada during a high TOA event on 
February 25th at 19:00. This grid cell also showed the highest time-averaged TOA concentration of 32.0 μg m −3 
for the superspecies run, compared to 19.4 μg m −3 for the control run. At the highest positive bias of 89 μg m −3, 
TOA concentration as modeled by the superspecies run was 206.4 μg m −3 while the control run TOA concen-
tration was 117.4 μg m −3. TOA during  this event was composed almost wholly of primary material: the super-
species run modeled a POA concentration of 205.9 μg m −3 (99.78% of TOA concentration) while the control 
run POA concentration was 117.1 μg m −3 (99.75%). Rather than error compounding and leading to divergence 
from the control run, the superspecies run restabilized without error accumulation for the rest of the simulation: 
TOA  concentration in the superspecies run converged to that of the control run.

4.3.  Speed Improvement

The advection operator has an outer for-loop over all tracers that are transported. Using superspecies instead of 
VBS tracers reduces the number of passes through the outer for-loop. With the superspecies selected in Section 3, 

Figure 8.  Use of the 58 VBS tracers approximately doubles the wall time spent on advection calculations. Advecting 
superspecies takes 56% and 66% of the time compared to advecting VBS tracers on the MACC and CAMS domains, 
respectively.
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16 superspecies (two gas and two particle superspecies for each of the four VBS classes) are advected rather than 
the 58 VBS tracers, reducing the total number of advected tracers from 104 to 62. The MACC run on the small 
domain was run sequentially on one computational node. Figure 8 shows wall time for the advection operator 
when advecting superspecies rather than VBS tracers was 6,790 s, 56% of the time of (1.8 times faster than) the 
12,073 s to advect all tracers in the control run. The high resolution required for CAMS operational forecasts 
increases the computational intensity of the simulations which were performed using domain decomposition 
over 24 computing nodes with each node computing a subdomain of 175 by 70 grid cells. Using the VBS on 
the CAMS domain, advection wall time more than doubled from 34959 to 74,762 s. With superspecies advected 
instead of VBS tracers, wall time for the advection operator was then reduced to 49,473 s. Advecting superspecies 
on the CAMS domain took about 66% of the time that advecting all the VBS tracers took, a speedup of approx-
imately 1.5.

The timing results suggest that advection wall time depends linearly on number of tracers, which is expected 
behavior given the structure of the advection operator: an outer for-loop over all tracers. Compared to a run with 
no OA, inclusion of 58 VBS tracers increases the total number of advected tracers from 42 to 104 and more than 
doubles the computation time of the advection operator. Advecting 16 superspecies in place of 58 VBS tracers 
brings the total number of advected tracers down to 62: the proportion of 62/104 yields an expected 59% speed 
up, in between the speedup results on the MACC and CAMS domains.

5.  Conclusions
Modeling of organic aerosol processes via four VBS classes is high-dimensional and computationally expen-
sive in LOTOS-EUROS v2.2.1, slowing the advection operator down by a factor of 2. This work developed 
data-driven methods to reduce the dimension of VBS tracers to a set of superspecies and reduce the computational 
burden on the advection operator. These methods were refined to ensure physical consistency, including 
semi-positive constraints, mass conservation, and information on phase. Multiple approaches were compared in 
Section 3 and non-negative matrix factorization additionally constrained to conserve mass and phase (Approach 
4), after being evaluated on reconstruction accuracy and physical consistency, was selected to be implemented 
in LOTOS-EUROS v2.2.1 in Section  4. Approach 4 creates 16 phase-specific, class-specific superspecies, a 
compression factor of 3.6, while preserving phase and conserving total concentration to machine precision. The 
superspecies parameterization ran stably without runaway error for a model simulation of 2 weeks, exceeding 
the training time horizon. Higher bias of total OA concentration was shown when the superspecies, optimized 
to reconstruct winter OA patterns, were used for a 2-week run in the summer. During the summer run, the bias 
showed a clear spatiotemporal pattern, with biogenic SOA overestimated over forests at night. The superspe-
cies were retrained on model output from summer conditions and implemented in LOTOS-EUROS v2.2.1 to 
reduce high bias. The resuts of this case study indicate that the superspecies might work best when optimized for 
season-specific conditions.

We found that the superspecies trained on the coarse-resolution MACC domain performed well when used on 
the fine-resolution domain used in CAMS operational forecasts for a period of 2 weeks. In an analysis period 
of 4 days performed at the end of the 2-week CAMS run, over 99% of all grid cells showed an absolute bias of 
time-averaged TOA within the maximum error of the MACC grid. Evaluating a grid cell that exceeded the maxi-
mum average error, we found that high overestimation of total OA concentration occurred at a high OA event, 
and converged back to the baseline simulation as time progressed rather than displaying continued error growth.

Advecting superspecies reduced the wall time spent on the advection operator: advecting superspecies took 
56%–66% of the time that it took to advect VBS tracers. Timing experiments indicate a linear dependence of 
wall time on number of tracers to advect, an expected relation from the structure of the advection operator, which 
uses a for-loop over all advected tracers. With linear dependence demonstrated, the design choice of compression 
factor (number of superspecies) can already give an estimate of theoretical speedup.

The use of physically consistent data-driven methods to find superspecies allows for inclusion of organic aero-
sol processes without doubling the computational burden on the advection operator. Though this approach has 
been demonstrated for 2-week forecasts on lower and higher resolutions, more work would have to be done to 
assess this method on longer timescales, including other seasons or seasonal transitions. This case study has 
not explored how the superspecies method might interface with other tracer compression methods such as the 
partitioning-based compression method in Section  2.2, or how the superspecies may perform when used in 
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other processes. However, preserving information on phase of the superspecies allows for their future use in 
phase-specific processes such as dry deposition, which can be computationally intensive in LOTOS-EUROS. 
Though demonstrated on organic aerosol species in a regional CTM as a case study, the focus of this approach on 
physical consistency and interpretability is relevant to other tracers, processes, and models. As physical consist-
ency and computational efficiency are widely desired aspects of numerical modeling in the physical sciences, this 
approach could be adapted for use in comprehensive Earth system models with the purpose of providing forecasts 
of global atmospheric composition, for example, GEOS-CF (Keller et al., 2021). More generally, this approach 
contributes additional physical consistency to a widely used dimensionality reduction technique (non-negative 
matrix factorization) that can be used to reversibly map between high and low detail in Earth system models.

Data Availability Statement
The open source, most current version of LOTOS-EUROS is available online as detailed in Manders et al. (2017). 
The exact version of LOTOS-EUROS v2.2.1 used to generate the model output in this work, including the super-
species extension, as well as all Python code used for developing the data-driven approaches, analysis of model 
output, and figure generation, is available at Sturm (2022): https://doi.org/10.5281/zenodo.6601166.
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