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Reinforcement learning (RL) algorithms interact with their environment in a trial-and-error fashion.

Such interactions can be expensive, inefficient, and timely when learning on a physical system rather

than in a simulation. This work develops new runtime verification techniques to predict when the

learning phase has not met or will not meet qualitative and timely expectations. This paper presents

three verification properties concerning the quality and timeliness of learning in RL algorithms. With

each property, we propose design steps for monitoring and assessing the properties during the sys-

tem’s operation.

1 Introduction

Reinforcement learning (RL) [16] is a bio-inspired approach to machine learning which formalizes the

notion of “trial-and-error” and ”learn-by-doing”. RL enables systems to learn during operation based

on sequential interactions with the environment. During their learning phase, RL algorithms encourage

decisions that led to good results in the past while avoiding detrimental choices. This simple concept is

at the base of some stunning results in robotics automation [14], natural language processing [7], and

computerised gaming, such as the Atari [10], StarCraft [19] video games, and the ancient tabletop games

of Chess, Shogi, and Go [13].

Due to the runtime and interactive nature of RL algorithms, there has been an increasing demand

for guarantees about their learning; e.g., that it will be concluded within a certain amount of time or

interactions when done in an operational environment. It is also necessary to guarantee the agent learned

its solution space well enough during the learning phase. Offering such guarantees for RL algorithms is a

challenging task. Traditional testing is often not possible due to the difficulty of acquiring a representative

set of operating conditions [6]. Formal testing methods do not yet scale well, and many RL algorithms

use “black box” components [4], such as artificial neural networks. The underlying models for these

algorithms are uninformative and highly dimensional; and the individual effect of their many parameters

on the overall performance is not apparent nor easy to assess.

This work proposes new Runtime Verification(RV) techniques for checking properties of the learning

phase of RL algorithms. RV is an engineering discipline concerned with checking a system behaviour

during its execution [2]. Many RL algorithms’ properties require such a runtime verification approach.

Safety, timeliness, and robustness properties, for example, can become invalid when RL algorithms en-

gage in learning during operation. This happens because properties observed in the system during design

time might no longer hold as the system changes by learning from new data. Timeliness properties, such

as the duration of the learning phase, depend on the order and variety of interactions presented to the RL

agent.

The specific contributions of this paper are:

http://dx.doi.org/10.4204/EPTCS.395.15
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• We propose formal specifications for three verification properties related to the learning phase of

RL algorithms:

Quality of learning This property measures how well has the agent learned its environment. It is

related to the variety and frequency of experiences presented to an agent during the learning

phase.

Distance to optimal policy This property assesses how far the current learned policy is from the

optimal policy.

Time to learn A property that estimates the the amount of interactions the learning process will

need to evaluate a (new) policy.

• Along with each property, we propose the design of an RV monitor able to assess the property from

observations and during the learning phase. We discuss which information should be observable

from the learning phase, how to collect it systematically, and how to use observations to assess

the properties. We propose ideas for the monitor’s implementation and how it can be efficiently

instrumented in an RL-based system.

The paper is organized as follows. Section 2 provides a short review of related and relevant work.

Section 3 introduce basic concepts of RL and RV we need to derive the verification properties. Section 4

derives formal specifications for the properties, proposes monitoring techniques and examples. Section

5 discusses our conclusions and further work.

2 Related Work

Verification of RL safety properties has received the main priority in the literature because RL algorithms

obviously need to explore in a safe way [3, 11, 22] if they are to learn in real-world setups. Pathak et

al. [11] and Zhu et al. [22] go beyond system checks and specify how the result of their verification

procedure can be used to enforce the safety constraints after a system re-design. Other specific RL

frameworks [1, 5, 9] use monitors to guide the system preventing the agent from violating the properties

specified. Safety is an important aspect and has received significant attention in research. In this work

however, we focus on other two important runtime properties of RL algorithms: learning quality and

timeliness.

Verification of properties for quality of learning has received less attention than safety properties

in research. There are guarantees of convergence for specific algorithms, such as Q-learning [20] and

SARSA [15]. But this only means that such an algorithm will eventually learn. We differ in which we

provide explicit ways to assess how much a system already learned after a set of experiences. Like us,

Van Wesel and Goodloe [18] propose off-line and online verification techniques for quality-of-learning

properties. However, their approach does not leverage from knowledge of the inner structure of the

algorithm. Xin et al. [21] introduce the concept of exploration entropy to guide the learning until the

final policy is of sufficient quality; their approach differs from proper verification in that it steers, and

thus interferes with, the learning process.

Verification of timeliness of the learning phase is even less prominent. Szepesvari [17] investigates

the rate of convergence of Q-learning, and Potapov and Ali [12] analyze the influence of learning param-

eters on the convergence speed. But none of them provide an approach to verify if an RL algorithm will

be able to learn within a desired number of interactions. This work differs from the aforementioned pre-

vious work by (1) providing formal specifications for quality and timeliness of the RL learning process

and (2) providing monitoring techniques to check such properties at runtime. The monitors we propose

do not modify the behaviour of the learning phase.
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This work drives from the analysis of Markov decision processes in Mannor et al. [8]. We use their

approach on the calculation of estimates for the RL value function and its bias and variance estimates.

We extend many of their results to define formal verification properties. And we show how to monitor

the RL algorithm during the learning phase to check these properties on-line.

3 Fundamentals

3.1 Reinforcement learning

Reinforcement Learning is a class of machine learning (ML) algorithms that solves control and decision

problems. This work targets RL variants which can be modelled as finite Markov decision processes

(MDP) such as Q-learning [20]. We use the finite MDP problem structure to formally derive verifica-

tion properties, and later, to design the verification monitor. An MDP problem is defined by a tuple

{S,A,T,R,γ}, where S is a set possible of environment states. A is a set of actions an agent can take at

each state and T := S×A×S → [0,1] is a probabilistic state transition function. R := S×A×S → R is

a reward function attributing a payoff for each state transition and action. γ ∈ [0,1) is a discount factor

over past rewards.

During the execution of the RL algorithm, an agent operates in a sequence of distinct steps. During

the nth step, the agent observes the current state sn ∈ S, chooses and performs an action a ∈ A. The

action is chosen according to a (probabilistic) policy π := S×A → [0,1] . This causes the environment

to transition to a subsequent state sn+1 ∈ S according to T . For its action and the new state achieved, the

agent receives an instantaneous reward r according to R. Rewards obtained from state s following policy

π are accrued into the so-called value function:

V π(s) := E[
N

∑
n=0

γnR(sn,π(sn),T (sn,a))] (1)

where γn is the nth power of γ , and sn is the nth state encountered after starting in s = s0. A policy is

optimal (indicated as π∗) if it maximizes V π∗
(s) for all states. Note that the expectation operator in Eq. 1

is due to the potential stochasticity of π and T . In many cases, it is convenient to define the action value

function

Qπ(s,a) = E[R(s,a,T (s,a))+ γV π(T (s,a))] (2)

indicating the value obtainable in s by taking action a and following the policy thereafter.

Temporal difference(TD) [16] is a method to solve RL problems when functions T and R are un-

known. In this method, the value function is randomly initialized and a policy π is followed. The reward

observed at every transition is used to correct the value function, with a chosen learning rate α dictating

the speed of correction. TD learning is proven to converge to a fixed value function V π , given the agent

has had enough and representative interactions with the environment. In section 4, we will use this fact

as an intuitive notion for the quality of learning.

To define RV properties and monitors, we will use two results from Mannor et al. [8]. First, estimates

T̂ and R̂ (of transition and reward functions T and R, respectively) can be reconstructed from observing

transitions during the learning phase. As a consequence, it is also possible to produce a value function

estimate V̂ π directly via Eq. 1. Second, estimators for the bias and variance of the this value function

estimate can be obtained as follows. Under the assumption that all state action combinations are visited

at least once:
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bias(V̂ π) = γ2XQV π + γXB+o(
1

mins,aN(s,a)
)≈ γ2XQV̂ π + γXB; (3)

cov(V̂ π) = XWXT +o(
1

mins,aN(s,a)
)≈ XWXT (4)

where X , Q, W and B are matrices computed from transitions and from T̂ and R̂. The derivation and

interpretation of these matrices is out of scope for this paper; the interested reader is referred to [8]. That

being said, this result provides the bias and variance of the value function, which reflect the uncertainty

of the agent due to lack of data. This is confirmed by the fact that bias(V̂ π) and cov(V̂ π) tend to zero by

construction [8] if mins,aN(s,a)→ ∞. Thus estimates T̂ , R̂ and V̂ π will converge to their true value with

more transitions.

The value function V π can be used to iteratively improve the agent policy via the so-called policy

improvement:

πk+1(s) = argmaxaE[R(s,a,T (s,a))+V πk(T (s,a))] = argmaxaQπk(s,a) (5)

which converges during a proper learning experience to the optimal policy π∗ yielding the optimal value

function V π∗
.

Replacing V πk with V̂ πk will yield an estimate V̂ π∗
of the optimal value function V π∗

. However,

such an estimate will be biased, as optimization will favor actions for which the expected cumulative

reward is overestimated. [8] recognizes the problem and proposes to divide the set of all transitions

into a calibration set and a validation set to mitigate this inconvenience. With this, compute calibrated

estimates T̂cal, R̂cal and V̂ πcal , and apply policy improvement to obtain π∗
cal. From the validation set, obtain

the transition and reward function estimates T̂val and R̂val. Finally, compute V̂ πcal via Eq. 1.

3.2 Runtime verification

Runtime Verification(RV) is an engineering discipline that combines (semi-)formal methods and mon-

itoring of the system operation to check if a system’s behaviour conforms to requirements. Monitors

assess the system based on carefully collected observations of the system behaviour – called traces.

Traces must conform to formally specified properties. Therefore, Bartocci et al. [2] indicate three steps

to define an RV technique:

1. First, it is necessary to describe the property under verification using an unambiguous specifica-

tion. Mathematical or logical formulations which can be assessed on system traces are the most

common.

2. Second, it is necessary to design a monitor, which is a component able to collect and to assess

traces of the system. Assessment here means any analysis steps necessary to evaluate the trace

against the specified property.

3. Third, it is necessary to instrument the system. That is, insert observation mechanisms for correctly

collecting the system traces. Good instrumentation minimally interferes with the system behaviour

and performance.

This work follows these three steps for each of the proposed properties. For each property, we derive

a property specification, and provide monitoring steps to observe the system and calculate the property.

The monitor can be implemented to assess all the three properties concurrently and based on the same

observed traces.
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3.3 Use case: police patrol scheduling

We sketch a fictional but typical example for an RL-based learning system. In the remainder of the

paper, we will use this example to illustrate the defined properties and discuss aspects relevant to the RV

monitors and instrumentation.

A police department wants to use a new scheduling system for police night shifts in a city with

frequent crime. This system will use an RL module that learns the most effective patrol schedules

between three risk areas: the docks, the slums, and the bus station. Specifically, every hour between

00:00 am and 06:00 am, a patrol car is assigned to one of the three areas, for a total of six shifts per night.

The RL algorithm for such a system has a state set S := {(t, loc)|loc ∈ {docks,slums,station}, t ∈ [0,5]}
and an action set A := {docks,slums,station}.

For our approach, the underlying problem structure (S and A) must be known to the designer of the

RV monitor. Neither the system nor the monitor designer knows the transition function T and the reward

function R to be used. The transition function is not known because when a patrol car is sent to a location,

it may take more or less time to complete the patrol. As a consequence it may miss a shift or terminate a

shift early. The reward function cannot be estimated in advance as it is unknown which criminal activities

can be prevented and where. However, it is decided to assign a reward between 0 and 3 in proportion to

the severity of the spotted criminal activity, with 0 corresponding to no crime and 3 corresponding to a

very severe crime.

4 Runtime Verification for quality and timeliness of RL Learning

In this section, we propose formal specifications for three verification properties related to the learning

phase of RL-algorithms: quality of learning, distance to optimal policy, and time to learn.

4.1 How well has the agent learned its environment?

The first question is how to estimate if the agent has learned “enough” from its environment. Intuitively,

a TD learning agent has learned enough if the current value function V π(s) is close to its converged value

(for all states). This choice is justified by the fact that the value function is related to both environmental

stochastic functions T and R, as well as to the fact that correctly estimating V π means correctly estimating

the performance of the agent’s policy as well 1. Unfortunately, due to the stochasticity of both policy and

environment, analizing the value function error in time can lead to premature convergence assessments.

Instead, we propose using bias and covariance of the value function estimate V̂ . Since these reflect

the lack of gathered data of the agent, they can be used to assess when enough transitions have been

accumulated by the agent to learn from, even if the agent does not make direct use of the estimates T̂ and

R̂ , but relies on another method to solve the MDP problem, e.g., TD learning. The procedure, based on

Eq. 3 and Eq. 4, is as follows:

1. query the policy of the system π;

2. read traces, assumed in the form {s,a,r,s′}, i.e., the MDP transitions;

3. compute off-policy estimates T̂ and R̂ based on observed transitions, as well as on-policy estimates

T̂ π(s,s′) := T̂ (s,π(s),s′) and R̂π(s) := R̂(s,π(s), T̂ (s,π(s));

1Assuming that π and T act ergodically concerning S and A, i.e., that all state-action combinations are visited with non-zero

probability.
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4. compute value V̂ π via Eq. 1.

5. compute matrices X , W , B and Q from T̂ and R̂;

6. compute bias and covariance, ignoring in first approximation the o( 1
mins,aN(s,a)) term;

7. compute relative bias biasrel := bias(V̂ π(s))/V̂ π(s) and relative variance σrel := σ(V̂ π(s))/V̂ π(s);

8. compare relative bias and variance with predefined upper thresholds; if for all states the two are

below their respective thresholds, the property is satisfied.

The procedure is straightforward to follow and implement but presents a few limitations as well.

First, the monitor must have the memory to store past traces to be able to recompute the estimates T̂ π

and R̂π . Second, the monitor must have access to the policy of the system. This is different than observing

a signal trace in that the policy is not a signal, but a function utilized internally by the system. In case

the policy is not observable within the system, it would be recommendable to use an estimate π̂ from

the observed actions in the trace. In this case, however, some error in the estimated bias and covariance

can be expected given that the policy is an estimate in itself. Third, the procedure described here is not

incremental, i.e., it does not provide for a method to update the estimates of bias and covariance at time

k+1 given the trace at time k+1 and previous estimates of bias and covariance at time k; however, the

calculations can be repeated by storing the previous traces. Finally, the method as presented requires that

all state-action combinations are visited at least once (i.e., mins,a N(s,a) > 0). If this condition is not

verified, then the bias and covariance cannot be computed.

Example

Looking back at the example sketched in Sec.3.3, imagine the RL scheduling system has been provided

with an initial exploratory policy assumed to perform decently, so as not to waste the patrolling effort

while the RL system gathers information. How long should information be gathered with this policy? To

answer this question, a monitor is designed, following the given procedure, to verify the property

max
s

biasrel(s)< 0.05
∧

max
s

σrel(s)< 0.02 (6)

which indicates that the bias and variance are small, respectively 2% and 5% of the estimated value,

and therefore the epistemic uncertainty on the value function is low (note that these thresholds are for

illustration purposes). The monitor shall inform whether this property is violated, or unverified2, or

satisfied at each moment. Note that the monitor will not be able to predict when the property will be

satisfied, it can only say if it is so at the current time. Furthermore, the fact that the property is initially

unsatisfied does not mean that it cannot be satisfied eventually.

After a sufficient amount of traces is collected, so that mins,a N(s,a)> 0, the initial estimates of bias

and variance can be generated. However, T̂ and R̂ will initially be poor estimates of T and R, so the

corresponding bias and variance are likely to be outside of the ranges provided by Eq. 6. Therefore, the

monitor will produce a “property violated” result. The longer the trace, however, the more T̂ and R̂ will

resemble the true matrices. Accordingly, bias and variance will reduce, until eventually Eq. 6 will be

true. The monitor will then produce a “property satisfied” response.

2It might appear unsound that the monitor shall be able to report that the property is unverified since the inequality formu-

lation of the property can in theory be always verified. However, at the start of the exploration, the condition mins,a N(s,a)> 0

will not be verified for the applicability of the method. Therefore, the monitor will produce a “property unverified” response.
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Figure 1: Evolution of relative bias and variance in the RL value function (estimates). The vertical

dashed line indicates the moment of convergence after which all biasrel and σrel are below the limits set

by the property, and the property is satisfied.

Figure 1 shows the relative bias and standard deviation of Eq. 6 (plotted in logarithmic scale). It can

be seen how both bias and standard deviation decay to zero, in agreement with the theory. The vertical

dashed line indicates the iteration at which the property is satisfied. It is possible to empirically verify

the correctness of the monitor response by confronting the value function obtainable from the actual

matrices T and R versus the one that can be computed from estimates T̂ and R̂ at different iterations of

the monitoring. Figure 2 shows the relative error
V (s)−V̂(s)

V̂(s)
for all 18 states. It can be seen that this error

is initially very high, indicating that T̂ and R̂ are bad estimates. However, the error reduces sensibly with

the increase in iterations. At the iteration for which the property is positively validated, it can be seen

that the absolute error at such iteration is lower than the estimated bias, confirming the indication of the

monitor that both T and R are reasonably learned.

4.2 How far from the optimum is the current policy?

If the optimal value function V π∗
was known, one could compute how well π is faring compared to π∗.

Unfortunately, the optimal value function is not available before learning is concluded. However, it is

possible to use the estimate V̂ π∗
as given in Sec. 3 in first approximation.

To simplify the exposition, assume the case of positive definite reward: R(s,a,s′) ≥ 0. In this case,

both V̂ π and V π∗
are positive by construction, so that an optimality ratio η(s) := V̂ π(s)

V π∗ (s)
can be defined:

if the ratio is sufficiently high for all states, this indicates that the policy is “almost optimal”.

Under the assumption that both value functions V̂ π and V̂ πcal ≈ V̂ π∗
are normally distributed, it is

possible to bound the optimality ratio of π . Given that the ith diagonal elements σ 2 of the covariance

matrix cov(V̂ π) coincide with the variance of the value V̂ π(si) for the ith state si, a 95% confidence

interval in V π can be computed.
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Figure 2: Relative error between V (s) and V̂ (s) (left); detail when the property is verified (right). This

relative error is an indicator of how well the agent has learned the transition function T and the reward

function R.

⌊V π⌋ := max(0,V̂ π −bias(V̂ π)−2σ(V̂ π)); ⌈V π⌉ := max(0,V̂ π −bias(V̂ π)+2σ(V̂ π)), (7)

and similarly for V̂ π∗
:

⌊V π∗
⌋ := max(0,V̂ π∗

−bias(V̂ π∗
)−2σ(V̂ π∗

)); ⌈V π∗
⌉ := max(0,V̂ π∗

)−bias(V̂ π∗
)+2σ(V̂ π∗

)), (8)

and thus η is bounded as η ≤ η ≤ η , with

η = ⌊V π⌋/⌈V π∗
⌉; η = min(1,⌈V π⌉/⌊V π∗

⌋), (9)

again within a 95% confidence interval. Omitting the dependency from s for legibility, the procedure is

as follows.

1. divide the trace into a calibration set and a validation set;

2. utilize the calibration set to obtain the transition and reward function estimates T̂cal and R̂cal;

3. obtain the optimal policy π∗
cal via iterated policy improvement;

4. utilize the validation set to obtain the transition and reward function estimates T̂val and R̂val;

5. compute the value function V̂ πcal , as well as the bias bias(V̂ πcal ) and covariance matrix cov(V̂ πcal )
substituting T̂val and R̂val for T̂ and R̂;

6. compute upper and lower bounds ⌊V π⌋, ⌈V π⌉ and ⌊V π∗
⌋, ⌈V π∗

⌉, for all states;

7. compute upper and lower bounds on the optimality ratio η and η , again for all states;

8. compare η and η with predefined lower thresholds; if for all states the two are above their respec-

tive thresholds, the property is satisfied.
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Figure 3: Optimality boundaries η and η , including property thresholds (horizontal dashed lines) and

convergence iterations (vertical dot-dashed lines).

Example

Consider once more the recurring use case example of police patrol. Initially, the system has been

provided with a sensible exploratory policy. This is not likely to be the optimal one, but it could be close

enough to optimality to not be worth changing. Conversely, it could be so suboptimal to warrant a change

of policy. This loose intuition of “distance from optimum” is encoded in the property:

η(s)≥ 50%
∧

η(s)≥ 70%∀s (10)

which guarantees that π is not too far from the optimum (based on η) as well as indicating that π is

potentially close to the optimum (based on η). To this must be added the condition

∀smax
s

biasrel(s)< 0.05
∧

max
s

σrel(s)< 0.02, (11)

on both V π and V π∗
, to ensure that all estimates of T and R, which are necessary to compute the bounds

on η , are accurate.

To verify this property (under this condition), it is necessary to first estimate the range of the optimum

V π∗
. In this example, the monitor utilizes a random calibration set equal to 5% of the total traces to

estimate the optimum policy. The remainder of 95% of the traces are utilized to estimate the value

function V π∗
as well as the bias and variance following the procedure introduced in this section. After

that, it is possible to compute the optimality ratio boundaries η and η .

Figure 3 shows the optimality ratio boundaries computed at different times during a sample run of

the system. The optimality boundaries are indicated via vertical error bars. The dashed horizontal lines

indicate the 50% and 70% optimality thresholds of in Eq. 10. The vertical lines indicate at which iteration

the value function bias and standard deviation satisfy the property in Eq. 6 for the policy value function

V π (left) and for the optimal value function V π∗
(right) respectively. The example shows that Eq. 10 is

punctually verified after Eq. 11 is satisfied.

As can be seen from Figure 3, bounds on η shrink with the trace duration; this is due both to the

reduction in bias and variance of the estimated optimal value function, as well as due to an actual im-
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provement of the calibrated policy πcal due to additional learning. This continuous improvement also

explains why error bars at a given iteration are not always contained within the error bars of the previous

iterations.

4.3 How long will it take to evaluate a (new) policy?

We consider three scenarios when an RL system must learn or update a policy:

1. the system attempts to introduce a new policy π ′ for the same functionality;

2. the system functionality change, so that a new unknown reward function R′ takes effect;

3. the system environment changes, so that a new unknown transition function T ′ takes effect.

Estimating how long this will take might be relevant, especially if there is a finite amount of resources

to do so. This section determines an upper bound to the required number of iterations. For all cases, we

assume that both policy and learning rate α are stationary. We also assume that the reward function R is

bounded and deterministic. To derive this property, we assume an on-policy RL algorithm is used. And

our monitor design needs an estimate of the transition function T̂ . We discuss this assumption in details

when illustrating the third case.

4.3.1 New policy

We analyze first the case when the system desires to implement a different policy, but neither the func-

tionality nor the environment is any different. Estimates T̂ and R̂ are still valid and refer to a well-learned

environment. To predict the learning time, it is necessary to predict how long V π will take to converge to

its new value. Consider first the case in which the entire value function V π or action value function Qπ

can be re-estimated in updates, with each update covering the full state space or state-action space, until

convergence. This can be done if both R and T are known. In this case, it can be demonstrated that for

an on-policy value update, such as a SARSA [16], the expected consecutive difference ∆ := Qπ
k+1 −Qπ

k

before and after an update decays by a factor γ̂ = 1−α(1− γ) at each update iteration (see Appendix for

details). Furthermore, assuming R is not stochastic, the decay bound holds at every iteration. Defining

convergence as ‖∆‖< ε , it can be seen that for an on-policy update, Q will converge in Mu updates, if

γ̂Mu‖∆‖< ε ⇒ Mu = ceil(
log( 1

ε ‖∆‖)

log 1
γ̂

), (12)

where ceil(x) is the ceiling function of x, and ∆ is an upper estimate of the initial consecutive difference.

This is maximum in case V π
0 (s) = Qπ

0 (s,a) = Rmin/(1− γ) and V π
1 (s) = Qπ

1 (s,a) = Rmax/(1− γ), ∀s,a.

Therefore, a rigorous upper bound on convergence can be found when this is re-estimated via full state

or state-action updates3.

However, such updates seldom apply in practice, with state visits determined by the stochasticity

of π and T . In this case, it is necessary to reduce the above estimation in terms of Mu updates to a

different boundary Mt in terms of state transitions. During updates all states or state-action combinations

are visited equally often, which is not true for state transitions. However, one could make the rough

assumption that if Mu updates are necessary to converge then the same convergence can be reached when

3Note that, even though the derivation of Mu makes use of both T and R, we do not imply that the RL agent being monitored

will make direct use of these quantities.
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each state is visited Mu times (whether or not this assumption is valid will be discussed in due time).

Following this first assumption, it is possible to convert the previous bound into

Mt = Mu max
s,a

τ(s,a|T,π,sinit), (13)

where τ(s,a) indicates the period, i.e., the number of transitions between two consecutive visits of state s

in which action a is selected (also known as the revisit time). It is immediate to see that in the most general

case, the revisit time is an unbounded stochastic variable; a first approximation of τ can nonetheless be

obtained from the steady-state state probabilities p of the stochastic transition matrix T . This can be

found as the solution to the following eigenvector problem:

p := {p(s0), ..., p(sN )} ⇒ p = T p,
N

∑
i=0

p(si) = 1, p(si)≥ 0. (14)

Note that to compute such steady-state probability it is necessary to know T . That being said, Eq. 13 can

be rewritten in first approximation as:

Mt = Mu max
s,a

[p(s)π(s,a)]−1 . (15)

Note that the naive assumption of Eq. 13 that Mu visits at each state-action pair are equivalent to

Mu updates does not hold in general. Indeed, updates not only guarantee an equal visit count among all

states but also an equal “mixing” of visits, so that the entire value or action value function is re-estimated

evenly. That being said, in the absence of pathological graphs induced by T (e.g., with absorbing states),

one can utilize Eq. 15 as a first upper bound estimate.

Also note that Eq. 15 yields Mt → ∞ in case either p(s)→ 0 or π(s,a)→ 0, i.e., if a state is not reach-

able or an action for a reachable state is never selected by the policy. In both cases, the limitation is more

theoretical than practical. Consider the case p(s̃) = 0 and assume for simplicity that the environment

is not in s̃ at the start of exploration: since s̃ (or (s̃,a) ) cannot be reached, this never affects the value

computation in Eq. 1 except for V (s̃) (or Q(s̃,a)), and s̃ can be effectively ignored. The same considera-

tions apply for π(s,a) = 0. By extension, a state-action couple for which p(s)π(s,a) is smaller than an

arbitrarily small negligibility threshold ω ≥ 0 will also have a negligible effect on the policy evaluation

and can also be ignored. Hence, the new upper bound for convergence in terms of state transitions is

Mt = Mu max
(s,a)∈Ω

[p(s)π(s,a)]−1 , where Ω := {(s,a)|p(s)π(s,a) ≥ ω}. (16)

Finally, Eq. 16 estimates the transitions required to evaluate the new policy. Selecting a proper ω > 0

is not an immediate choice but requires some insight into the problem at hand. In the absence of this, a

conservative estimate can be made by selecting ω = 0, thus ensuring that Mt will be finite.

Summarizing, the procedure is as follows:

1. select arbitrarily small coefficients ε and ω ;

2. compute bound Mu;

3. solve eigenvalue problem of Eq. 14 given T ;

4. compute bound Mt from Mu, p and π;

5. if Mt is lower than a predefined upper threshold, the property is verified.
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4.3.2 New reward

The case of a new reward is identical to the case of a new policy. Indeed, Eq. 16 can be directly reutilized,

with the caveat that Mu must be estimated according to the new values Rmin and Rmax if these differ from

the previous.

4.3.3 New environment

When considering a new environment, T can change from what was previously estimated by the mon-

itor. In principle, this means that the approach investigated in this section is no longer valid due to the

unknown state probability p(s). Therefore, the monitor will first need to reestimate T̂ (as per the first

property discussed). Before that, no estimation can be provided.

That being said, a very conservative, worst-case estimation can still be given if one were to provide

a positive negligibility ω on state-action visits. In that case, a worst-case estimation can be provided in

the form:

Mt = Mu

1

ω
≥ Mt . (17)

To apply the previous estimate Mt for runtime monitoring, it is important to make a few observations.

First, the convergence and negligibility constants ε and ω must be provided to the monitor (to use in

Eq. 12 and Eq. 16). Second, the monitor computes the steady-state probability p of Eq. 14 by replacing

T with T̂ . If such an estimate is missing, the monitor can either provide an immediate response using the

worst-case estimate of Eq. 17 or return an unverified response until the property in Eq. 6 is verified.

Example

Consider once more the police patrol case, and assume that informants notify police authorities of ru-

moured changes in the location and time of criminal activities. As a result, the initial policy π might

no longer be satisfactory, due to the unspecified change of the reward function R, and reestimating its

value will take time. Police officials want to know if the time it will take for the RL system to reestimate

correctly the value of π is acceptable, i.e., if the following property holds:

Mt ≤ Mmax
t , (18)

where Mmax
t can be derived from, e.g., a time constraint. A monitor is then deployed to evaluate the

property: this must have access to the estimate T̂ (since T is unchanged, the estimate is still valid); as

well as to the potentially new quantities Rmin and Rmax.

Thus, the monitor can employ Eq. 16 to estimate Mt and therefore to verify the property of Eq. 18

before each policy improvement step. As an example, consider the case in which π dictates a fixed patrol

schedule in the form

π(t, loc) =











slums if t ≤ 1

station if t = 2

docks else.

(19)

The monitor can now estimate the number of transitions necessary to evaluate this policy. Given learning

parameters α = 0.75, γ = 0.5, constants ε = 0.05 and ω = 0, and assuming Rmin and Rmax to be 0 and 3

once more, the monitor estimates 62 transitions necessary for convergence.
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Figure 4: Norm of value function error ‖∆‖ for all initial states. The horizontal dotted line indicates the

convergence threshold ε , while the vertical dot-dashed line indicates the expected convergence time.

Figure 4 shows the actual amount of transitions necessary to estimate the policy value. The continu-

ous lines indicate the change in value function error ‖∆‖ for each of the 18 initial states. It can be seen

that ‖∆‖ reduces as the number of transitions increases, albeit not monotonically. It can also be seen that

approximately at 30 transitions, the error for all initial states is below the threshold of ε = 0.05, indicated

by the dashed horizontal line. Thus, the value Mt for this example was indeed a conservative estimate.

5 Conclusions

In this paper, we propose three verification properties for the learning phase of reinforcement learning

(RL) agents. The first property relates to the quality of the learning phase. It expresses whether or not

the agent has learned from sufficiently enough and sufficiently varied experiences, to have a suitable

representation of its environment. We devise a runtime verification monitoring technique to assess this

property by estimating the variance and bias of the learned value function. This property enables the

verification of the second and third properties.

The second property measures the actual learned policy relative to the ideal optimum. We extend our

monitoring techniques to derive an optimality ratio η . The verification monitor uses confidence intervals

of η to indicate upper and lower bounds on optimality. Our RV monitor can check whether the current

policy guarantees minimal satisfactory behaviour and whether the policy could potentially be close to

optimal.

The third property checks if the learning time falls within a desired number of interactions. It can be

used when a new policy is put in place, or when a known policy is applied to a new transition function T

or a new reward function R. Verification of such property is relevant to systems that require estimating

the value induced by a new policy or new environment within a limited time. In this case, the evaluation

time is a rough estimate, due to the assumption of Eq. 13 on the equivalence between updates and state

transitions. In future work, we will improve this estimate by examining the mixing properties of the

graph induced by π on the transition matrix T . For this property, we discuss the monitoring techniques

necessary to assess the property using the system’s runtime observations.
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Our future work includes incorporating these techniques into a runtime verification tool for au-

tonomous robots. We will also expand the formulation of our properties and monitoring techniques to-

wards Deep Reinforcement Learning algorithms (DRL). DRL algorithms typically use continuous state-

and action spaces, which our approach cannot yet cover.
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Appendix

First, observe that the action value update can be rewritten as

Qπ
k+1(s,a) = (1−α)Qπ

k (s,a)+α ∑
s′∈S

T (s,a,s′)[r(s,a,s′)+ γ ∑
a′

π(s′,a′)Qπ
k (s

′,a)].

Define now the matrix Π ∈ R
|S|,|A|,|S|, whose entries are defined as:

Πi, j =

{

π(s j,ai−( j−1)|A|) if( j−1)|S||A|< i ≤ j|S||A|

0 otherwise.

Π is the matrix obtained by staking |S| copies of the vector-wise policy π ∈ R
|S|,|A|, and setting to zero

each element of the resulting jth column which does not contain the probabilities for the jth state. Denote

as Q ∈ R
|S|,|A| the column vector of values Qπ(s,a), as R ∈ R

|S|,|A| the column vector of the expected

rewards Es′∈S[r(s,a,s
′)], and as T ∈ R

|S|,|A|,|S| the matrix corresponding to the transition function T .

Then the value update can be written in matrix form as

Qk+1 = αR+[αγTΠT +(1−α)I]Qk = αR+BQk,

where I is the identity matrix. Note now that the square matrix B := [αγTΠT + (1−α)I] has norm

‖B‖ ≤ αγ +1−α = 1−α(1− γ) by construction, because α ,γ ≤ 1, and T,Π are stochastic matrices.

If we define the consecutive error vector as ∆k := Qk+1 − Qk. Then it follows that ∆k+1 = B∆k

indicates a contraction since 1−α(1− γ)≤ 1.
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