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Reinforcement learning (RL) algorithms interact with their environment in a trial-and-error fashion.
Such interactions can be expensive, inefficient, and timely when learning on a physical system rather
than in a simulation. This work develops new runtime verification techniques to predict when the
learning phase has not met or will not meet qualitative and timely expectations. This paper presents
three verification properties concerning the quality and timeliness of learning in RL algorithms. With
each property, we propose design steps for monitoring and assessing the properties during the sys-
tem’s operation.

1 Introduction

Reinforcement learning (RL) [[16] is a bio-inspired approach to machine learning which formalizes the
notion of “trial-and-error” and “’learn-by-doing”. RL enables systems to learn during operation based
on sequential interactions with the environment. During their learning phase, RL algorithms encourage
decisions that led to good results in the past while avoiding detrimental choices. This simple concept is
at the base of some stunning results in robotics automation [14], natural language processing [7]], and
computerised gaming, such as the Atari [10]], StarCraft [19] video games, and the ancient tabletop games
of Chess, Shogi, and Go [13].

Due to the runtime and interactive nature of RL algorithms, there has been an increasing demand
for guarantees about their learning; e.g., that it will be concluded within a certain amount of time or
interactions when done in an operational environment. It is also necessary to guarantee the agent learned
its solution space well enough during the learning phase. Offering such guarantees for RL algorithms is a
challenging task. Traditional testing is often not possible due to the difficulty of acquiring a representative
set of operating conditions [6]]. Formal testing methods do not yet scale well, and many RL algorithms
use “black box” components [4], such as artificial neural networks. The underlying models for these
algorithms are uninformative and highly dimensional; and the individual effect of their many parameters
on the overall performance is not apparent nor easy to assess.

This work proposes new Runtime Verification(RV) techniques for checking properties of the learning
phase of RL algorithms. RV is an engineering discipline concerned with checking a system behaviour
during its execution [2]. Many RL algorithms’ properties require such a runtime verification approach.
Safety, timeliness, and robustness properties, for example, can become invalid when RL algorithms en-
gage in learning during operation. This happens because properties observed in the system during design
time might no longer hold as the system changes by learning from new data. Timeliness properties, such
as the duration of the learning phase, depend on the order and variety of interactions presented to the RL
agent.

The specific contributions of this paper are:

M. Farrell, M. Luckcuck, M. Schwammberger, and

M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 205-219] doi{10.4204/EPTCS.395.15

© T. Mannucci, J. de Oliveira Filho


http://dx.doi.org/10.4204/EPTCS.395.15

206 Runtime verification of learning properties for reinforcement learning algorithms

* We propose formal specifications for three verification properties related to the learning phase of
RL algorithms:

Quality of learning This property measures how well has the agent learned its environment. It is
related to the variety and frequency of experiences presented to an agent during the learning
phase.

Distance to optimal policy This property assesses how far the current learned policy is from the
optimal policy.

Time to learn A property that estimates the the amount of interactions the learning process will
need to evaluate a (new) policy.

* Along with each property, we propose the design of an RV monitor able to assess the property from
observations and during the learning phase. We discuss which information should be observable
from the learning phase, how to collect it systematically, and how to use observations to assess
the properties. We propose ideas for the monitor’s implementation and how it can be efficiently
instrumented in an RL-based system.

The paper is organized as follows. Section 2| provides a short review of related and relevant work.
Section [Blintroduce basic concepts of RL and RV we need to derive the verification properties. Section 4]
derives formal specifications for the properties, proposes monitoring techniques and examples. Section
[Sdiscusses our conclusions and further work.

2 Related Work

Verification of RL safety properties has received the main priority in the literature because RL algorithms
obviously need to explore in a safe way [3,[11,122] if they are to learn in real-world setups. Pathak et
al. [11] and Zhu et al. [22]] go beyond system checks and specify how the result of their verification
procedure can be used to enforce the safety constraints after a system re-design. Other specific RL
frameworks [[1,15,9]] use monitors to guide the system preventing the agent from violating the properties
specified. Safety is an important aspect and has received significant attention in research. In this work
however, we focus on other two important runtime properties of RL algorithms: learning quality and
timeliness.

Verification of properties for quality of learning has received less attention than safety properties
in research. There are guarantees of convergence for specific algorithms, such as Q-learning [20] and
SARSA [15]]. But this only means that such an algorithm will eventually learn. We differ in which we
provide explicit ways to assess how much a system already learned after a set of experiences. Like us,
Van Wesel and Goodloe [[18] propose off-line and online verification techniques for quality-of-learning
properties. However, their approach does not leverage from knowledge of the inner structure of the
algorithm. Xin et al. [21] introduce the concept of exploration entropy to guide the learning until the
final policy is of sufficient quality; their approach differs from proper verification in that it steers, and
thus interferes with, the learning process.

Verification of timeliness of the learning phase is even less prominent. Szepesvari [17] investigates
the rate of convergence of Q-learning, and Potapov and Ali [12]] analyze the influence of learning param-
eters on the convergence speed. But none of them provide an approach to verify if an RL algorithm will
be able to learn within a desired number of interactions. This work differs from the aforementioned pre-
vious work by (1) providing formal specifications for quality and timeliness of the RL learning process
and (2) providing monitoring techniques to check such properties at runtime. The monitors we propose
do not modify the behaviour of the learning phase.
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This work drives from the analysis of Markov decision processes in Mannor et al. [8]. We use their
approach on the calculation of estimates for the RL value function and its bias and variance estimates.
We extend many of their results to define formal verification properties. And we show how to monitor
the RL algorithm during the learning phase to check these properties on-line.

3 Fundamentals

3.1 Reinforcement learning

Reinforcement Learning is a class of machine learning (ML) algorithms that solves control and decision
problems. This work targets RL variants which can be modelled as finite Markov decision processes
(MDP) such as Q-learning [20]]. We use the finite MDP problem structure to formally derive verifica-
tion properties, and later, to design the verification monitor. An MDP problem is defined by a tuple
{S,A,T,R,y}, where S is a set possible of environment states. A is a set of actions an agent can take at
each state and 7 := S X A x § — [0, 1] is a probabilistic state transition function. R := S x A xS — R is
a reward function attributing a payoff for each state transition and action. y € [0, 1) is a discount factor
over past rewards.

During the execution of the RL algorithm, an agent operates in a sequence of distinct steps. During
the n'" step, the agent observes the current state s, € S, chooses and performs an action a € A. The
action is chosen according to a (probabilistic) policy 7 := S x A — [0, 1] . This causes the environment
to transition to a subsequent state 5,1 € S according to 7. For its action and the new state achieved, the
agent receives an instantaneous reward r according to R. Rewards obtained from state s following policy
7 are accrued into the so-called value function:

N
VE(s) = E[;)WR(Smﬂ(Sn),T(Sma))] (1)

where " is the n" power of ¥, and s, is the n’" state encountered after starting in s = so. A policy is
optimal (indicated as 7*) if it maximizes V™ (s) for all states. Note that the expectation operator in Eq.[T]
is due to the potential stochasticity of & and 7'. In many cases, it is convenient to define the action value
function

Q"(s,a) = E[R(s,a,T(s,a)) + YV (T(s,a))] 2)

indicating the value obtainable in s by taking action a and following the policy thereafter.

Temporal difference(TD) [16] is a method to solve RL problems when functions 7" and R are un-
known. In this method, the value function is randomly initialized and a policy 7 is followed. The reward
observed at every transition is used to correct the value function, with a chosen learning rate ¢ dictating
the speed of correction. TD learning is proven to converge to a fixed value function V7, given the agent
has had enough and representative interactions with the environment. In section 4] we will use this fact
as an intuitive notion for the quality of learning.

To define RV properties and monitors, we will use two results from Mannor et al. [8]]. First, estimates
T and R (of transition and reward functions 7 and R, respectively) can be reconstructed from observing
transitions during the learning phase. As a consequence, it is also possible to produce a value function
estimate V7 directly via Eq.[Il Second, estimators for the bias and variance of the this value function
estimate can be obtained as follows. Under the assumption that all state action combinations are visited
at least once:
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bias(V™) = ¥XQV™ + yXB + o(—

- Ve V7 .
mmwN(S’a)) YXOV”™ + yXB; (3)

cov(V™) = XWX 4 o( )~ XWXT “)

ming ,N(s,a)
where X, O, W and B are matrices computed from transitions and from T and R. The derivation and
interpretation of these matrices is out of scope for this paper; the interested reader is referred to [8]. That
being said, this result provides the bias and variance of the value function, which reflect the uncertainty
of the agent due to lack of data. This is confirmed by the fact that bias(V™) and cov(V™) tend to zero by
construction [8] if min, ,N(s,a) — co. Thus estimates T, R and V™ will converge to their true value with
more transitions.

The value function V7 can be used to iteratively improve the agent policy via the so-called policy
improvement:

Tt 1(s) = argmax E[R(s,a,T (s,a)) +V™(T (s,a))] = argmax,0™ (s,a) ®)

which converges during a proper learning experience to the optimal policy ©* yielding the optimal value
function V7 .

Replacing V™ with V™ will yield an estimate V* of the optimal value function V* . However,
such an estimate will be biased, as optimization will favor actions for which the expected cumulative
reward is overestimated. [8] recognizes the problem and proposes to divide the set of all transitions
into a calibration set and a validation set to mitigate this inconvenience. With this, compute calibrated
estimates T.yj, Rcq and V™« and apply policy improvement to obtain ;- From the validation set, obtain
the transition and reward function estimates 7., and Ry,;. Finally, compute Vel yia Eq.[d

3.2 Runtime verification

Runtime Verification(RV) is an engineering discipline that combines (semi-)formal methods and mon-
itoring of the system operation to check if a system’s behaviour conforms to requirements. Monitors
assess the system based on carefully collected observations of the system behaviour — called traces.
Traces must conform to formally specified properties. Therefore, Bartocci et al. [2] indicate three steps
to define an RV technique:

1. First, it is necessary to describe the property under verification using an unambiguous specifica-
tion. Mathematical or logical formulations which can be assessed on system traces are the most
common.

2. Second, it is necessary to design a monitor, which is a component able to collect and to assess
traces of the system. Assessment here means any analysis steps necessary to evaluate the trace
against the specified property.

3. Third, itis necessary to instrument the system. That is, insert observation mechanisms for correctly
collecting the system traces. Good instrumentation minimally interferes with the system behaviour
and performance.

This work follows these three steps for each of the proposed properties. For each property, we derive
a property specification, and provide monitoring steps to observe the system and calculate the property.
The monitor can be implemented to assess all the three properties concurrently and based on the same
observed traces.
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3.3 Use case: police patrol scheduling

We sketch a fictional but typical example for an RL-based learning system. In the remainder of the
paper, we will use this example to illustrate the defined properties and discuss aspects relevant to the RV
monitors and instrumentation.

A police department wants to use a new scheduling system for police night shifts in a city with
frequent crime. This system will use an RL module that learns the most effective patrol schedules
between three risk areas: the docks, the slums, and the bus station. Specifically, every hour between
00:00 am and 06:00 am, a patrol car is assigned to one of the three areas, for a total of six shifts per night.
The RL algorithm for such a system has a state set S := {(t,/oc)|loc € {docks, slums, station}, ¢ € [0,5]}
and an action set A := {docks, slums, station }.

For our approach, the underlying problem structure (S and A) must be known to the designer of the
RV monitor. Neither the system nor the monitor designer knows the transition function 7" and the reward
function R to be used. The transition function is not known because when a patrol car is sent to a location,
it may take more or less time to complete the patrol. As a consequence it may miss a shift or terminate a
shift early. The reward function cannot be estimated in advance as it is unknown which criminal activities
can be prevented and where. However, it is decided to assign a reward between 0 and 3 in proportion to
the severity of the spotted criminal activity, with O corresponding to no crime and 3 corresponding to a
Very severe crime.

4 Runtime Verification for quality and timeliness of RL Learning

In this section, we propose formal specifications for three verification properties related to the learning
phase of RL-algorithms: quality of learning, distance to optimal policy, and time to learn.

4.1 How well has the agent learned its environment?

The first question is how to estimate if the agent has learned “enough” from its environment. Intuitively,
a TD learning agent has learned enough if the current value function V*(s) is close to its converged value
(for all states). This choice is justified by the fact that the value function is related to both environmental
stochastic functions 7 and R, as well as to the fact that correctly estimating V™ means correctly estimating
the performance of the agent’s policy as well[l. Unfortunately, due to the stochasticity of both policy and
environment, analizing the value function error in time can lead to premature convergence assessments.
Instead, we propose using bias and covariance of the value function estimate V. Since these reflect
the lack of gathered data of the agent, they can be used to assess when enough transitions have been
accumulated by the agent to learn from, even if the agent does not make direct use of the estimates 7" and
R, but relies on another method to solve the MDP problem, e.g., TD learning. The procedure, based on
Eq.[Bland Eq.[l is as follows:

1. query the policy of the system 7;
2. read traces, assumed in the form {s,a,r,s'}, i.e., the MDP transitions;

3. compute off-policy estimates 7' and R based on observed transitions, as well as on-policy estimates
T7(s,s') :=T(s,m(s),s") and R*(s) := R(s,n(s),T (s, 7(s));

! Assuming that 7 and T act ergodically concerning S and A, i.e., that all state-action combinations are visited with non-zero
probability.



210 Runtime verification of learning properties for reinforcement learning algorithms

4. compute value V” via Eq.
5. compute matrices X, W, B and Q from T and R;

6. compute bias and covariance, ignoring in first approximation the o( ! G a)) term;

ming , N
7. compute relative bias bias,.; := bias(V™(s))/V™(s) and relative variance G, := &(V*(s))/V*(s);

8. compare relative bias and variance with predefined upper thresholds; if for all states the two are
below their respective thresholds, the property is satisfied.

The procedure is straightforward to follow and implement but presents a few limitations as well.
First, the monitor must have the memory to store past traces to be able to recompute the estimates 7%
and R*. Second, the monitor must have access to the policy of the system. This is different than observing
a signal trace in that the policy is not a signal, but a function utilized internally by the system. In case
the policy is not observable within the system, it would be recommendable to use an estimate & from
the observed actions in the trace. In this case, however, some error in the estimated bias and covariance
can be expected given that the policy is an estimate in itself. Third, the procedure described here is not
incremental, i.e., it does not provide for a method to update the estimates of bias and covariance at time
k+ 1 given the trace at time k+ 1 and previous estimates of bias and covariance at time k; however, the
calculations can be repeated by storing the previous traces. Finally, the method as presented requires that
all state-action combinations are visited at least once (i.e., min;,N(s,a) > 0). If this condition is not
verified, then the bias and covariance cannot be computed.

Example

Looking back at the example sketched in Sec[3.3] imagine the RL scheduling system has been provided
with an initial exploratory policy assumed to perform decently, so as not to waste the patrolling effort
while the RL system gathers information. How long should information be gathered with this policy? To
answer this question, a monitor is designed, following the given procedure, to verify the property

max biasy (s) < 0.05/\max Orel(s) < 0.02 6)
S S

which indicates that the bias and variance are small, respectively 2% and 5% of the estimated value,
and therefore the epistemic uncertainty on the value function is low (note that these thresholds are for
illustration purposes). The monitor shall inform whether this property is violated, or unveriﬁe(ﬂ, or
satisfied at each moment. Note that the monitor will not be able to predict when the property will be
satisfied, it can only say if it is so at the current time. Furthermore, the fact that the property is initially
unsatisfied does not mean that it cannot be satisfied eventually.

After a sufficient amount of traces is collected, so that min, N(s,a) > 0, the initial estimates of bias
and variance can be generated. However, 7' and R will initially be poor estimates of 7 and R, so the
corresponding bias and variance are likely to be outside of the ranges provided by Eq. [6l Therefore, the
monitor will produce a “property violated” result. The longer the trace, however, the more 7" and R will
resemble the true matrices. Accordingly, bias and variance will reduce, until eventually Eq. [@ will be
true. The monitor will then produce a “property satisfied” response.

2It might appear unsound that the monitor shall be able to report that the property is unverified since the inequality formu-
lation of the property can in theory be always verified. However, at the start of the exploration, the condition ming ,N(s,a) > 0
will not be verified for the applicability of the method. Therefore, the monitor will produce a “property unverified” response.
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Figure 1: Evolution of relative bias and variance in the RL value function (estimates). The vertical
dashed line indicates the moment of convergence after which all bias,.; and G,.; are below the limits set
by the property, and the property is satisfied.

Figure 1 shows the relative bias and standard deviation of Eq. 6l (plotted in logarithmic scale). It can
be seen how both bias and standard deviation decay to zero, in agreement with the theory. The vertical
dashed line indicates the iteration at which the property is satisfied. It is possible to empirically verify
the correctness of the monitor response by confronting the value function obtainable from the actual

matrices 7 and R versus the one that can be computed from estimates 7' and R at different iterations of

V(s)=V(s)
V(s)

is initially very high, indicating that 7 and R are bad estimates. However, the error reduces sensibly with

the increase in iterations. At the iteration for which the property is positively validated, it can be seen

that the absolute error at such iteration is lower than the estimated bias, confirming the indication of the

monitor that both 7" and R are reasonably learned.

the monitoring. Figure 2 shows the relative error for all 18 states. It can be seen that this error

4.2 How far from the optimum is the current policy?

If the optimal value function V* was known, one could compute how well 7 is faring compared to 7*.
Unfortunately, the optimal value function is not available before learning is concluded. However, it is
possible to use the estimate V* as given in Sec. [3in first approximation.

To simplify the exposition, assume the case of positive definite reward: R(s,a,s’) > 0. In this case,
both V7 and V7 are positive by construction, so that an optimality ratio 1(s) := ‘Y;((?) can be defined:

if the ratio is sufficiently high for all states, this indicates that the policy is “almost optimal”.

Under the assumption that both value functions V* and V™ ~ V™ are normally distributed, it is
possible to bound the optimality ratio of 7. Given that the i*" diagonal elements 6 of the covariance
matrix cov(V*) coincide with the variance of the value V7*(s;) for the i’ state s;, a 95% confidence
interval in V* can be computed.
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Figure 2: Relative error between V (s) and V(s) (left); detail when the property is verified (right). This
relative error is an indicator of how well the agent has learned the transition function 7" and the reward
function R.

|V7] :=max(0,V™ — bias(V") —26(V™)); [V] := max(0,V™ — bias(V") +205(V7™)), 7

and similarly for V7 :

|[VZ | :=max(0,V™ —bias(V™ ) —26(V™)); [V® | := max(0,V™ ) —bias(V* ) +25(V™)), (8)

and thus 7 is bounded as <1 <7, with

n=V*I/[V"]: W =min(1, [VF]/[VT ), ©)
again within a 95% confidence interval. Omitting the dependency from s for legibility, the procedure is
as follows.

1. divide the trace into a calibration set and a validation set;

2. utilize the calibration set to obtain the transition and reward function estimates 7.y and Rey:
3. obtain the optimal policy 7, via iterated policy improvement;

4. utilize the validation set to obtain the transition and reward function estimates Ty and Ryy;
5

. compute the value function V™, as well as the bias bias(V ™) and covariance matrix cov(V ™)
substituting T and Ry, for T and R;

6. compute upper and lower bounds |V*|, [V*] and |V* |, [V ], for all states;
7. compute upper and lower bounds on the optimality ratio 1) and 7, again for all states;

8. compare 1 and 7 with predefined lower thresholds; if for all states the two are above their respec-
tive thresholds, the property is satisfied.
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Figure 3: Optimality boundaries 1 and 7, including property thresholds (horizontal dashed lines) and
convergence iterations (vertical dot-dashed lines).

Example

Consider once more the recurring use case example of police patrol. Initially, the system has been
provided with a sensible exploratory policy. This is not likely to be the optimal one, but it could be close
enough to optimality to not be worth changing. Conversely, it could be so suboptimal to warrant a change
of policy. This loose intuition of “distance from optimum” is encoded in the property:

n(s) >50% N\ 7(s) > 70% Vs (10)

which guarantees that 7 is not too far from the optimum (based on 1) as well as indicating that 7 is
potentially close to the optimum (based on 77). To this must be added the condition

Vsmax biasy(s) < 0.05/\max Crel(s) < 0.02, (11)
N S

on both V¥ and V™', to ensure that all estimates of T and R, which are necessary to compute the bounds
on 1), are accurate.

To verify this property (under this condition), it is necessary to first estimate the range of the optimum
V™ . In this example, the monitor utilizes a random calibration set equal to 5% of the total traces to
estimate the optimum policy. The remainder of 95% of the traces are utilized to estimate the value
function V* as well as the bias and variance following the procedure introduced in this section. After
that, it is possible to compute the optimality ratio boundaries 1 and 7].

Figure 3 shows the optimality ratio boundaries computed at different times during a sample run of
the system. The optimality boundaries are indicated via vertical error bars. The dashed horizontal lines
indicate the 50% and 70% optimality thresholds of in Eq. The vertical lines indicate at which iteration
the value function bias and standard deviation satisfy the property in Eq. [0l for the policy value function
V7 (left) and for the optimal value function V* (right) respectively. The example shows that Eq. [[0]is
punctually verified after Eq. [I1lis satisfied.

As can be seen from Figure 3, bounds on 7 shrink with the trace duration; this is due both to the
reduction in bias and variance of the estimated optimal value function, as well as due to an actual im-
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provement of the calibrated policy 7., due to additional learning. This continuous improvement also
explains why error bars at a given iteration are not always contained within the error bars of the previous
iterations.

4.3 How long will it take to evaluate a (new) policy?

We consider three scenarios when an RL system must learn or update a policy:
1. the system attempts to introduce a new policy 7’ for the same functionality;
2. the system functionality change, so that a new unknown reward function R’ takes effect;
3. the system environment changes, so that a new unknown transition function 7" takes effect.

Estimating how long this will take might be relevant, especially if there is a finite amount of resources
to do so. This section determines an upper bound to the required number of iterations. For all cases, we
assume that both policy and learning rate ¢ are stationary. We also assume that the reward function R is
bounded and deterministic. To derive this property, we assume an on-policy RL algorithm is used. And
our monitor design needs an estimate of the transition function 7. We discuss this assumption in details
when illustrating the third case.

4.3.1 New policy

We analyze first the case when the system desires to implement a different policy, but neither the func-
tionality nor the environment is any different. Estimates 7" and R are still valid and refer to a well-learned
environment. To predict the learning time, it is necessary to predict how long V* will take to converge to
its new value. Consider first the case in which the entire value function V7 or action value function Q%
can be re-estimated in updates, with each update covering the full state space or state-action space, until
convergence. This can be done if both R and T are known. In this case, it can be demonstrated that for
an on-policy value update, such as a SARSA [16], the expected consecutive difference A := Q7. | — Of
before and after an update decays by a factor ¥ = 1 — a(1 — ¥) at each update iteration (see Appendix for
details). Furthermore, assuming R is not stochastic, the decay bound holds at every iteration. Defining
convergence as ||A|| < &, it can be seen that for an on-policy update, Q will converge in M,, updates, if

log (¢ [[A]])

PA| < € = My, = ceil( T
log?

) 12)

where ceil (x) is the ceiling function of x, and A is an upper estimate of the initial consecutive difference.
This is maximum in case V{(s) = Qf (s,a) = Ryin/(1 —7y) and V¥ (s) = QF (s,a) = Ruax/(1 — 7), Vs, a.
Therefore, a rigorous upper bound on convergence can be found when this is re-estimated via full state
or state-action update

However, such updates seldom apply in practice, with state visits determined by the stochasticity
of w and T. In this case, it is necessary to reduce the above estimation in terms of M, updates to a
different boundary M, in terms of state transitions. During updates all states or state-action combinations
are visited equally often, which is not true for state transitions. However, one could make the rough
assumption that if M, updates are necessary to converge then the same convergence can be reached when

3Note that, even though the derivation of M, makes use of both 7 and R, we do not imply that the RL agent being monitored
will make direct use of these quantities.
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each state is visited M, times (whether or not this assumption is valid will be discussed in due time).
Following this first assumption, it is possible to convert the previous bound into

M, = M, max t(s,a|T, T, Sinit ), (13)
s,a

where 7(s,a) indicates the period, i.e., the number of transitions between two consecutive visits of state s
in which action a is selected (also known as the revisit time). It is immediate to see that in the most general
case, the revisit time is an unbounded stochastic variable; a first approximation of T can nonetheless be
obtained from the steady-state state probabilities p of the stochastic transition matrix 7. This can be
found as the solution to the following eigenvector problem:

N
pP:= {p(S0)7 ---,p(SN)} =p= Tpv Zp(sl) = 17p(si) > 0. (14)
i=0
Note that to compute such steady-state probability it is necessary to know T'. That being said, Eq.[13]can
be rewritten in first approximation as:

M, :Muns}a}lx[p(s)ﬂ(s,a)]_l. (15)

Note that the naive assumption of Eq. [L3| that M,, visits at each state-action pair are equivalent to
M,, updates does not hold in general. Indeed, updates not only guarantee an equal visit count among all
states but also an equal “mixing” of visits, so that the entire value or action value function is re-estimated
evenly. That being said, in the absence of pathological graphs induced by T (e.g., with absorbing states),
one can utilize Eq.[15]as a first upper bound estimate.

Also note that Eq.[I3yields M; — oo in case either p(s) — 0 or 7(s,a) — 0, i.e., if a state is not reach-
able or an action for a reachable state is never selected by the policy. In both cases, the limitation is more
theoretical than practical. Consider the case p(§) = 0 and assume for simplicity that the environment
is not in § at the start of exploration: since § (or (§,a) ) cannot be reached, this never affects the value
computation in Eq. [[lexcept for V() (or Q(§,a)), and § can be effectively ignored. The same considera-
tions apply for 7(s,a) = 0. By extension, a state-action couple for which p(s)m(s,a) is smaller than an
arbitrarily small negligibility threshold w > O will also have a negligible effect on the policy evaluation
and can also be ignored. Hence, the new upper bound for convergence in terms of state transitions is

M, =M, (m)axg[p(s)n(s,a)]_l, where Q := {(s,a)|p(s)7(s,a) > o}. (16)
s,a)e

Finally, Eq. [16l estimates the transitions required to evaluate the new policy. Selecting a proper ® > 0

is not an immediate choice but requires some insight into the problem at hand. In the absence of this, a

conservative estimate can be made by selecting @ = 0, thus ensuring that M, will be finite.
Summarizing, the procedure is as follows:

1. select arbitrarily small coefficients € and ®;
compute bound M,,;
solve eigenvalue problem of Eq.[14 given T';

compute bound M, from M,, p and 7;

ok v

if M, is lower than a predefined upper threshold, the property is verified.
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4.3.2 New reward

The case of a new reward is identical to the case of a new policy. Indeed, Eq.[I6]can be directly reutilized,
with the caveat that M,, must be estimated according to the new values R,,;;,, and R, if these differ from
the previous.

4.3.3 New environment

When considering a new environment, 7' can change from what was previously estimated by the mon-
itor. In principle, this means that the approach investigated in this section is no longer valid due to the
unknown state probability p(s). Therefore, the monitor will first need to reestimate 7' (as per the first
property discussed). Before that, no estimation can be provided.

That being said, a very conservative, worst-case estimation can still be given if one were to provide
a positive negligibility @ on state-action visits. In that case, a worst-case estimation can be provided in
the form:

— 1
M[ZMMB ZM[ (17)

To apply the previous estimate M, for runtime monitoring, it is important to make a few observations.
First, the convergence and negligibility constants € and @ must be provided to the monitor (to use in
Eq.[I2land Eq.[16). Second, the monitor computes the steady-state probability p of Eq.[14]by replacing
T with T'. If such an estimate is missing, the monitor can either provide an immediate response using the
worst-case estimate of Eq.[I7] or return an unverified response until the property in Eq.[@lis verified.

Example

Consider once more the police patrol case, and assume that informants notify police authorities of ru-
moured changes in the location and time of criminal activities. As a result, the initial policy & might
no longer be satisfactory, due to the unspecified change of the reward function R, and reestimating its
value will take time. Police officials want to know if the time it will take for the RL system to reestimate
correctly the value of 7 is acceptable, i.e., if the following property holds:

M, < M™, (18)

where M"®* can be derived from, e.g., a time constraint. A monitor is then deployed to evaluate the
property: this must have access to the estimate 7' (since 7' is unchanged, the estimate is still valid); as
well as to the potentially new quantities R,;;,, and R,;,y.

Thus, the monitor can employ Eq. [I6] to estimate M, and therefore to verify the property of Eq. 18]
before each policy improvement step. As an example, consider the case in which 7 dictates a fixed patrol
schedule in the form

slums ifr <1
n(t,loc) = { station ift =2 (19)
docks else.
The monitor can now estimate the number of transitions necessary to evaluate this policy. Given learning

parameters o = 0.75, v = 0.5, constants € = 0.05 and @ = 0, and assuming R,,;, and R, to be 0 and 3
once more, the monitor estimates 62 transitions necessary for convergence.
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Policy evaluation error

Norm of error

T T T T
60 80 100 120
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Figure 4: Norm of value function error ||A|| for all initial states. The horizontal dotted line indicates the
convergence threshold €, while the vertical dot-dashed line indicates the expected convergence time.

Figure 4 shows the actual amount of transitions necessary to estimate the policy value. The continu-
ous lines indicate the change in value function error ||Al| for each of the 18 initial states. It can be seen
that || A|| reduces as the number of transitions increases, albeit not monotonically. It can also be seen that
approximately at 30 transitions, the error for all initial states is below the threshold of € = 0.05, indicated
by the dashed horizontal line. Thus, the value M; for this example was indeed a conservative estimate.

5 Conclusions

In this paper, we propose three verification properties for the learning phase of reinforcement learning
(RL) agents. The first property relates to the quality of the learning phase. It expresses whether or not
the agent has learned from sufficiently enough and sufficiently varied experiences, to have a suitable
representation of its environment. We devise a runtime verification monitoring technique to assess this
property by estimating the variance and bias of the learned value function. This property enables the
verification of the second and third properties.

The second property measures the actual learned policy relative to the ideal optimum. We extend our
monitoring techniques to derive an optimality ratio 1. The verification monitor uses confidence intervals
of 7 to indicate upper and lower bounds on optimality. Our RV monitor can check whether the current
policy guarantees minimal satisfactory behaviour and whether the policy could potentially be close to
optimal.

The third property checks if the learning time falls within a desired number of interactions. It can be
used when a new policy is put in place, or when a known policy is applied to a new transition function T’
or a new reward function R. Verification of such property is relevant to systems that require estimating
the value induced by a new policy or new environment within a limited time. In this case, the evaluation
time is a rough estimate, due to the assumption of Eq.[13/on the equivalence between updates and state
transitions. In future work, we will improve this estimate by examining the mixing properties of the
graph induced by 7 on the transition matrix 7. For this property, we discuss the monitoring techniques
necessary to assess the property using the system’s runtime observations.
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Our future work includes incorporating these techniques into a runtime verification tool for au-
tonomous robots. We will also expand the formulation of our properties and monitoring techniques to-
wards Deep Reinforcement Learning algorithms (DRL). DRL algorithms typically use continuous state-
and action spaces, which our approach cannot yet cover.
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Appendix

First, observe that the action value update can be rewritten as

0F1(s,a) = (1—a)QF(s,a) + o Z T(s,a,s')[r(s,a,s") —I—}/Zﬂ(s/,a’)Q,’f(s’,a)].

s'es

Define now the matrix IT € RISLALIS ‘, whose entries are defined as:

- m(sjaiionya) G = DISIA] <@ < IS]A]
i,j — .
0 otherwise.

IT is the matrix obtained by staking |S| copies of the vector-wise policy 7 € RISLAI and setting to zero
each element of the resulting j™ column which does not contain the probabilities for the j state. Denote
as Q € RISV the column vector of values Q7 (s,a), as R € RISV the column vector of the expected
rewards Eycs[r(s,a,s')], and as T € RISHALSI the matrix corresponding to the transition function 7.
Then the value update can be written in matrix form as

Qis1 = 0R+ [ayTIT" + (1 — a)1]Qx = aR + BQy,

where I is the identity matrix. Note now that the square matrix B := [ayTII? + (1 — @)I] has norm
IB|| < ay+1—o0=1—a(l—7) by construction, because ¢,y < 1, and T,IT are stochastic matrices.

If we define the consecutive error vector as Ag := Qg1 — Qr. Then it follows that Ay = BA;
indicates a contraction since 1 — a(1 —7y) < 1.
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