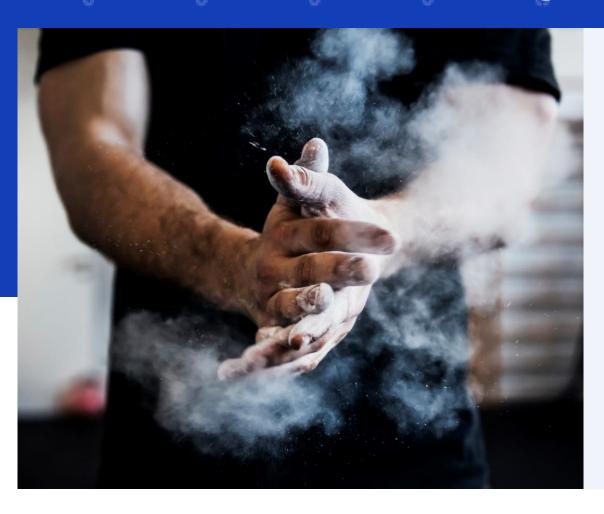
Smart sensors for a healthy and safe working environment

Eelco Kuijpers, PhD | Stockholm, PEROSH



About me

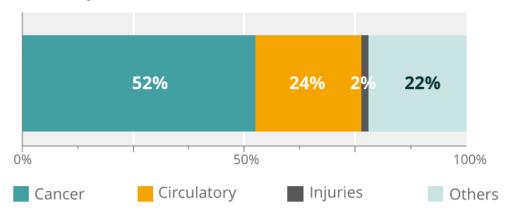
- Background in Occupational & Environmental health
- Living and working in Utrecht
- Since 2012 at TNO
- Finished PhD in 2018 at Utrecht University
- Focus: The use of new technologies for the prevention of occupational diseases.

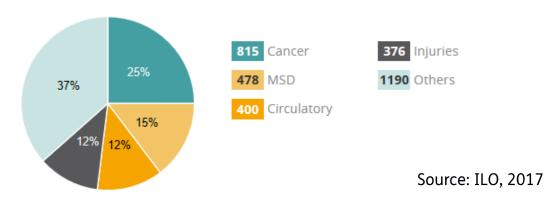
Agenda

- 1. The start of a journey....
- 2. 10 years of applied research
 - a. From concept
 - b. To vision
 - c. Realising the vision by developing tooling
 - d. Guidelines
 - e. Involving stakeholders for implementing
- 3. How the journey continues.....

The start of a journey....

- Henk
- 45 years old
- Works at a construction site
 - Silica exposure, wood dust, welding fumes, diesel
 - Some older colleagues are sick
- Employer:
 - All exposures well below limits (according to yearly measurements)
 - Believes behaviour of workers causing high exposures

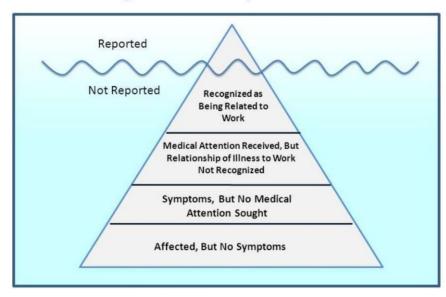



Henk is one of many workers at risk

- Occupational diseases in EU countries have a large impact:
 - Deaths: 5-7% related to work circumstances
 - Loss of total work-years: 3.3%
 - Costs: 2-6% GDP
- Ongoing new challenges:
 - Ageing workforce
 - Changing nature of work
 - Dealing with lower and lower exposure limits
- More effective prevention still much needed.

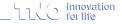
Percentage of all work-related deaths:

Percentage of all work-related DALY per 100,000 workers:

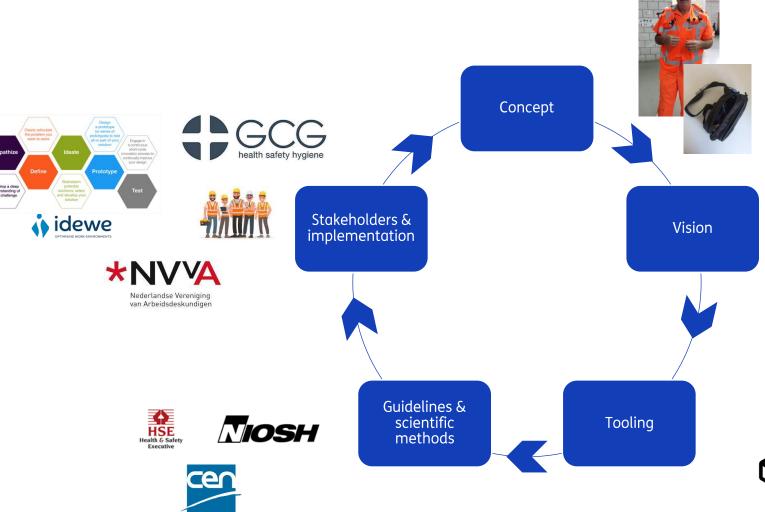


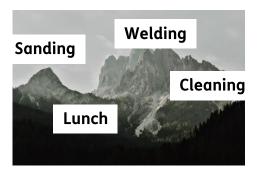
innovation for life

What is hampering more effective prevention?


- Occupational diseases are underrepresented in statistics due to:
 - Poor diagnosis
 - Lack of acknowledgement and understanding relationship disease and working conditions (latency time often 10 - 30 years)
 - Lack of historical personal exposure data
- As a consequence, awareness by employers and employees is often relatively low.
- Occupational hygiene:
 - Regulatory driven
 - Limited amount of measurements
 - Often focus on average concentrations
 - Information becomes available long after exposures occured
- Data driven insights collected with new technology help e.g. HSE managers, employers and occupational physicians to focus more and earlier on prevention of occupational diseases.

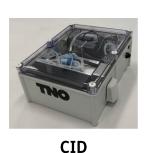
The "iceberg" of Occupational Diseases

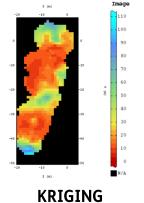

Source: Braeckman et al. 2012


The start of our research.

Overview

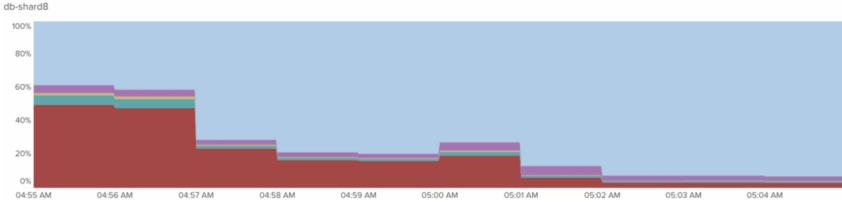
10 years of applied research

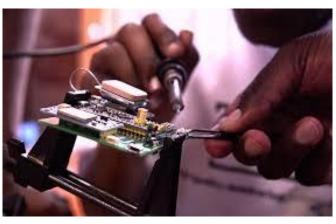



Ann Work Expo Health 2021 Apr 22;65(3):246-254. doi: 10.1093/annweh/wxaa102

Future Prospects of Occupational Exposure Modelling of Substances in the Context of Time-Resolved Sensor Data

Henk Goede ¹, Eelco Kuijpers ¹, Tanja Krone ¹, Maaike le Feber ¹, Remy Franken ¹, Wouter Fransman ¹, Jan Duyzer ², Anjoeka Pronk ¹



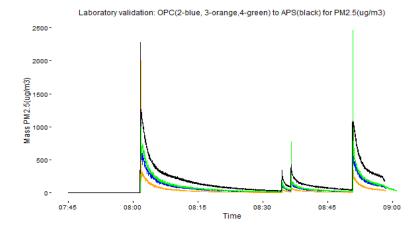


Why low-cost sensors?

CPU Utilization

- Advantages low-cost sensors:
 - Relatively cheap
 - Easy-to-use
 - More (high-resolution) data
 - Data directly available (direct feedback)

The first testing (2014)


- Aim: to evaluate low cost PM sensors in laboratory conditions and at industrial workplaces.
- Laboratory: $R^2 = 0.38 0.84$ (variation between and within sensors)

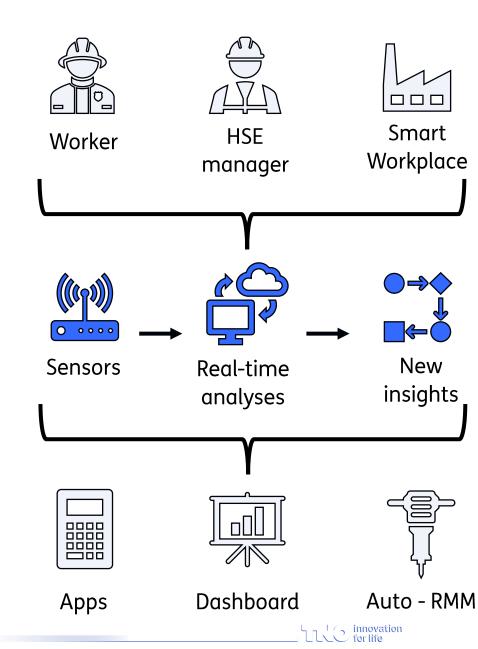

• In field:

Experiment/population	Number of measurement days	Activities
Road workers	13	Cutting grass in cabins, commuting along locations
Desk workers	8	Desk work, meeting, lunch
Construction workers	9	Drilling, welding, working with bitumen, concrete, rockwool, installations

Conclusions:

- Low-cost sensors have large potential and given the costs do relatively well compared to traditional methods.
- Data can be used for indicative purposes.
- More technology is needed to translate real-time data into meaningful (near)real-time feedback.

Source: Cserbik et al. 2015

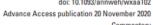


The start of VOHA

- The virtual occupational hygiene assistant (VOHA) is a digital real time system for monitoring and management of occupational risks/exposures, that can assist workers, HSE manager and occupational hygienists in improving workplace conditions and reducing the workplace related burden of disease.
- VOHA is not a (single) product/method but a vision on how to realise more effective prevention of occupational diseases.

VOHA elements:

- Flexible and modular system for sensors and other non-invasive technologies
- Focused on individual workers or a group of workers
- Real time risk management
- Stimulating behavioural changes
- Dummy proof interventions
- Data protection/privacy



Vision to inspire

- **VOHA video**
- Two peer-reviewed articles on modelling (making use of sensor data) and ethics/privacy considerations
- ~ 15 articles in applied journals, newsletters, websites etc.
- Wide range of organisations, companies and individuals showed their interest, which is still ongoing.

Annals of Work Exposures and Health, 2021, Vol. 65, No. 3, 246-254

Commentary

Future Prospects of Occupational Exposure Modelling of Substances in the Context of **Time-Resolved Sensor Data**

Henk Goede^{1,*}, Eelco Kuijpers¹, Tanja Krone¹, Maaike le Feber¹, Remy Franken^{1,o}, Wouter Fransman¹, Jan Duyzer² and Anjoeka Pronk¹

¹Netherlands Organisation for Applied Scientific Research (TNO), Risk Assessment for Products in Development (RAPID), Princetonlaan 6, 3584 CB Utrecht, The Netherlands; 2Netherlands Organisation for nalysis (EMSA), Princetonlaan 6,

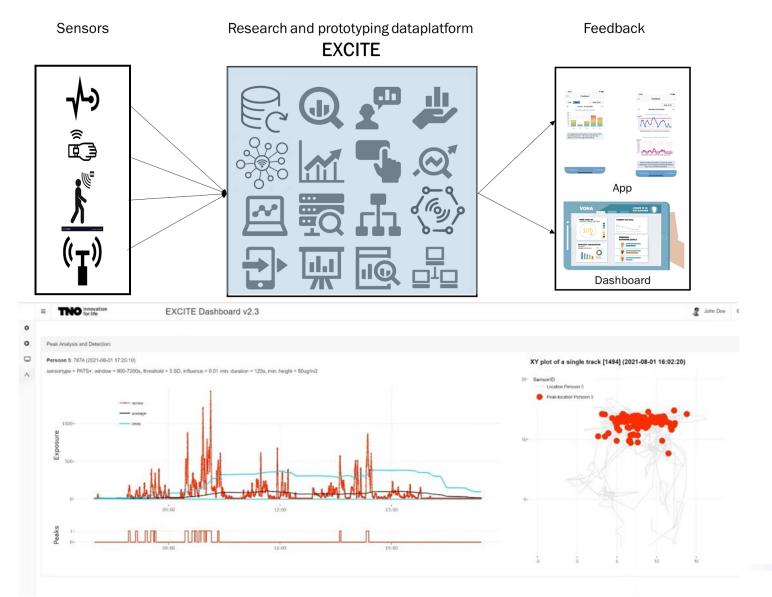
Annals of Work Exposures and Health, 2021, Vol. 65, No. 1, 3-10 doi: 10.1093/annweh/wxaa093 Advance Access publication 15 October 2020

on accepted 1 October 2020

Commentary

Ethics and Privacy Considerations Before Deploying Sensor Technologies for Exposure Assessment in the Workplace: Results of a Structured Discussion Amongst Dutch **Stakeholders**

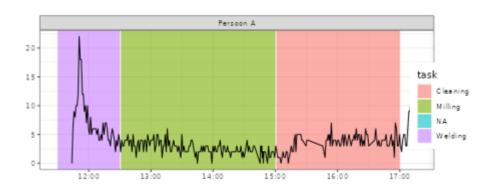
Maaike le Feber*, Trishala Jadoenathmisier, Henk Goede, Eelco Kuijpers and Anjoeka Pronk

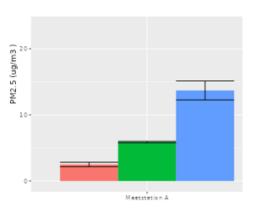

Dutch Institution of Applied Science, TNO, Department Risk Analysis (RAPID) - Team Exposure Assessment and Risk Management, Princetonlaan 6, 3584 CB Utrecht, Netherlands

*Author to whom correspondence should be addressed. Tel: +31-646966077; e-mail: maaike.lefeber@tno.nl

Submitted 7 April 2020: revised 16 July 2020: editorial decision 26 August 2020: revised version accepted 3 September 2020

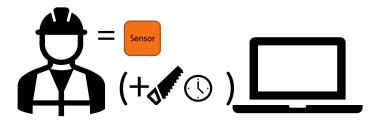
EXCITE


EXCITE


- **Data infrastructure** for in (near) real time collection, storage, interpretation and feedback of high resolution digital data.
- For research and prototyping to optimize real-time risk management
- Algorithms to automate:
 - Cleaning data
 - Peak detection
 - Comparison with limit values
 - Location tracking
 - Interpretation contextual information

Toolbox for research and characterizing exposure (TRACE)

- Applying low-cost sensors can be technically difficult.
- Researchers often can overcome these challenges and appreciate the technical flexibility of the technology.
- But, end-users (workers, HSE managers) usually need a simple and 'plug and play' system.
- TRACE was developed:
 - To identify exposure sources and improve working processes
 - Cannot be compared with limit values or to validate control measures.



1. Measure using sensors

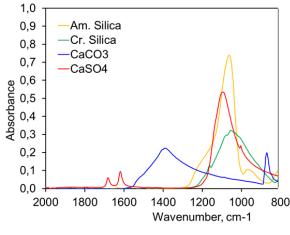
2. Connect sensors (end of workday)

3. Register employee (code)s & Tasks/workplaces

4. Visualization & analysis

Chemical identifier (CID) – crystalline silica

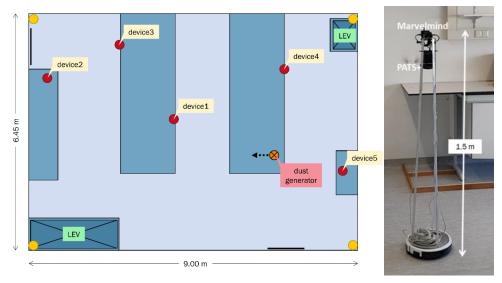
- Most low-cost sensors are not specific for a chemical, while regulation often is specific when comparing to a limit value.
- To enhance implementation specific methods with the advantages of low-cost sensors are much needed.
- Ambition: Develop a specific sensor for crystalline silica.

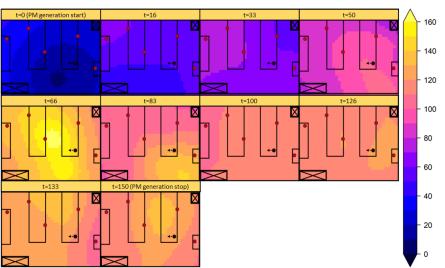

Portable solution:

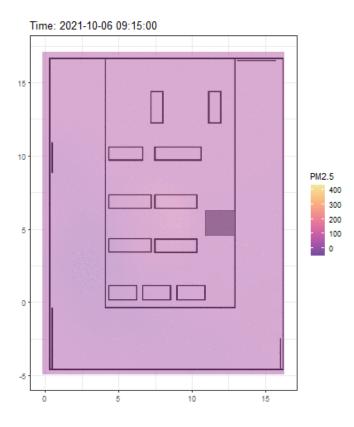

- 3 components: micro-cyclone, hollow waveguide (IR), IR analyser.
- Specific for crystalline silica but technology can be adapted to other materials.

Wearable solution:

- Specific for crystalline silica (prototype)
- Application of prototype illustrated in a <u>video</u>.

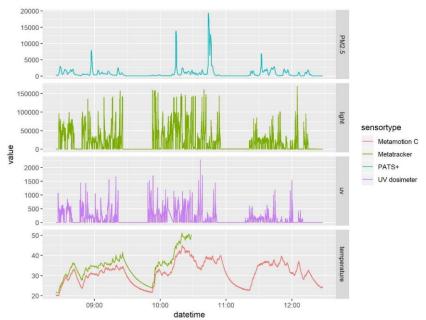


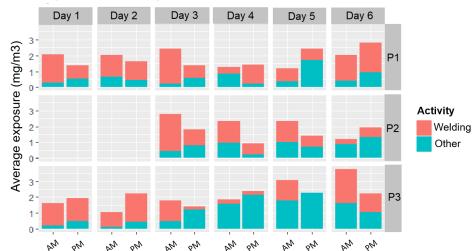



Tooling

KRIGING

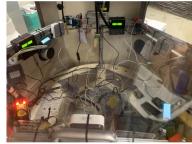
- Sensor data can be overwhelming. Visualisation and modelling can help translation the data into useful information.
- Kriging in time and place was explored to help users to identify exposure sources and locations with the highest exposures.




PM exposure and tasks

- Contextual information relevant for the interpretation of exposure data is often collected with observations or questionnaires.
- UV sensor estimated welding activities most accurate compared to the traditional method
- As an exploration, we showed the contribution of welding(fumes) to the total exposure measured.

Exposure to welding and other activities


Guidelines

Evaluation of sensors

- Before using low-cost sensors in the field, a proper evaluation is needed to ensure their successful and correct use.
- Guidelines are needed for:
 - Variables and criteria to be tested
 - Experimental conditions and environment
 - Inter-comparability between test locations
 - Calibration
 - Validation
- Draft guidelines for lab evaluation based on a round-robin study (together with NIOSH/HSE)
- CEN standard (in preparation) on the use of low-cost sensors for NOAA

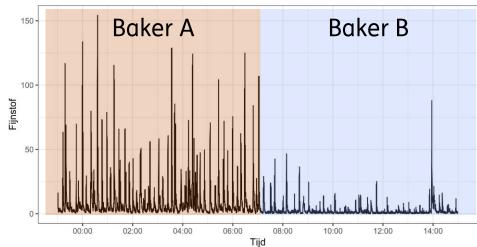
> Int J Environ Res Public Health. 2020 Nov 19;17(22):8602. doi: 10.3390/ijerph17228602.

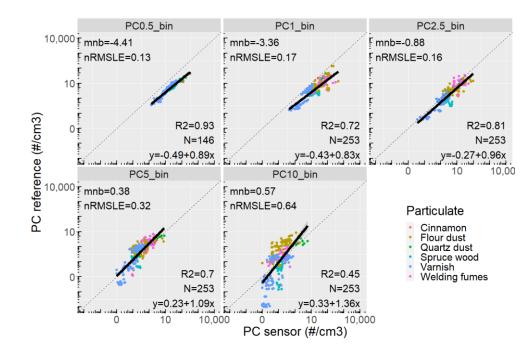
Exploring Evaluation Variables for Low-Cost Particulate Matter Monitors to Assess Occupational Exposure

Sander Ruiter ¹, Eelco Kuijpers ¹, John Saunders ², John Snawder ³, Nick Warren ², Jean-Philippe Gorce ², Marcus Blom ¹, Tanja Krone ¹, Delphine Bard ², Anjoeka Pronk ¹, Emanuele Cauda ³

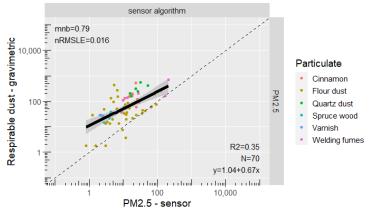
In-field testing (1/2)

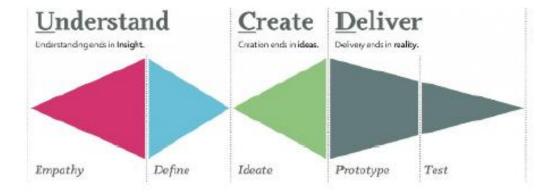
- Measurement campaigns in wide variety of industries:
- Industrial bakeries, welding shops, wood processing industry, tile manufactory, construction industry, spice processing
- Average study population size per industry: 8 10
- Particulate Matter (PM)
 - Personal and stationary measurements
- Low-cost sensors, high-end monitors and gravimetric samples
- Total measurement duration: sensors 200 hr, gravimetrical 431 hr
- Contextual information (also high resolution data):
 - Location
 - Temperature/UV/light




In-field testing (2/2)

Results


- Low cost sensors **perform reasonably** well compared to APS and gravimetric (calibrations enhance performance).
- Semi quantitative assessments also possible: rank correlations exposure levels tasks or individuals.
- Identification of exposure sources and **good (and bad) working procedures** possible.
- Calibration of low-cost sensors for quantitative use is being explored.
- 'Playbook' in preparation for correct application of sensors.


Stationary and personal measurements



Co-creation

- Step 1: Stakeholder mapping and understanding the needs
- Step 2: Validate needs and prioritize
- Step 3: Generate new ideas
- Step 4: Designing a prototype
- Step 5: Testing and refining
- Step 6: implementation

Ongoing co-creation

- Construction companies on the CID development for crystalline silica.
- Dutch labour inspection on how low-cost sensors will change their work (and needs).
- Dutch branch organisation for occupational hygiene on the use of low-cost sensors in their daily work (which is often regulatory driven).

EPHOR project on the development of a toolbox to stimulate the use of low-cost sensors by OSH professionals.

Guidance

Hardware

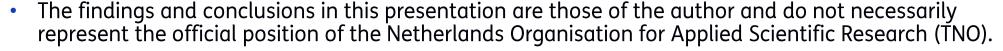
Together with IDEWE on the link between exposures and health outcomes.

Exposome passport

KU LEUVEN

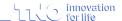
General conclusions:

- Sensors are more and more a welcome addition for awareness and early warning.
- People tend to prefer to use sensors for campaigns (short periods with clear goals), not continuously.
- Decide together about the goals and which info to share with whom and how to prevent negative side effects from the low-cost sensor data.


Next steps

- Low-cost sensors have large potential but wide implementation is still far from realized.
- More research is needed in the following directions:
 - Sharing and discussion on good practices using low-cost sensors: we currently explore the start of a community of practice together with NIOSH, HSE and IOHA. Join us in our journey.
 - Calibration of low-cost sensors: explore the quantitative use of data becoming an alternative for traditional methods.
 - Exploring the use of sensors in different contexts:
 - Within EPHOR we explore the use of these sensors in the epidemiological context (respiratory diseases and shift work)
 - Other stressors like heat
 - Combining with other new technologies like ChatGPT and ML.
- Altogether, sensors empower workers and should ensure Henk and many other colleagues can do their work in a more healthy environment.

- Special thanks to my TNO colleagues:
 - Anjoeka Pronk
 - Henk Goede
 - Jody Schinkel
 - Joe Trimboli
 - Maaike le Feber
 - Paulien Bongers
 - Sander Ruiter
 - Wouter Fransman
- Our partners for collaborating and funding organisations;
- And PEROSH for inviting me.



Thank youFOR YOUR ATTENTION

EELCO.KUIJPERS@TNO.NL

