

Compositional
Performance Prediction
for Tightly Coupled
Manufacturing Systems

TNO Public TNO 2023 R12451
8 December 2023

ICT, Strategy & Policy
www.tno.nl
+31 88 866 50 00
info@tno.nl

 TNO Public

TNO 2023 R12451 – 8 December 2023

Compositional Performance
Prediction for Tightly Coupled
Manufacturing Systems

 TNO Public

Our partners

Author(s) Jacques Verriet
Classification report TNO Public
Title TNO Public
Report text TNO Public
Appendices TNO Public
Number of pages 41 (excl. front and back cover)
Number of appendices 1
Sponsor Canon Production Printing
Programme name AIMS
Project name AIMS 2023
Project number 060.55084/01.01

 TNO Public TNO 2023 R12451

 TNO Public

All rights reserved
No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

The research is carried out as part of the AIMS program under the responsibility of TNO-ESI
with Canon Production Printing as the carrying industrial partner. The AIMS research is
supported by the Netherlands Organisation for Applied Scientific Research TNO.

© 2023 TNO

 TNO Public TNO 2023 R12451

 TNO Public 3/41

Contents

Contents .. 3

1 Introduction ... 5
1.1 Approach .. 5
1.2 Outline ... 5
2 Domain model... 7
2.1 Running example .. 7
2.2 Material model .. 8
2.2.1 Material types .. 8
2.2.2 Materials ... 9
2.2.3 Operations .. 9
2.3 Equipment model ... 10
2.3.1 Nodes... 10
2.3.2 Segments .. 12
2.3.3 Paths .. 13
2.4 Job model ... 14
2.5 Allocation model ... 15
2.6 Summary .. 16
3 Monolithic constraint graph analysis ... 17
3.1 Constraint graphs ... 17
3.2 Constraint graph generation .. 17
3.3 Constraint graph analysis ... 21
4 Modular constraint graph analysis ... 22
4.1 Domain model ... 22
4.1.1 Running example .. 22
4.1.2 Equipment model ... 23
4.1.3 Allocation model ... 24
4.2 Constraint graph generation .. 25
4.3 Constraint graph analysis ... 26
5 Domain model usage .. 27
5.1 Installation ... 27
5.1.1 Repository ... 27
5.1.2 Installation ... 27
5.1.3 First use ... 27
5.2 Modelling .. 28
5.2.1 Starting .. 28
5.2.2 Existing project .. 28
5.2.3 New project .. 29
5.3 Model transformations .. 29
5.3.1 Equipment visualisation .. 29
5.3.2 Constraint graph visualisation ... 29
5.3.3 Constraint analyses .. 30
6 Conclusion .. 30
6.1 Summary .. 31

 TNO Public TNO 2023 R12451

 TNO Public 4/41

6.2 Directions for future work ... 31
6.2.1 Disassembly operations .. 31
6.2.2 Language parameterisation... 32
6.2.3 Language element reuse .. 32
6.2.4 Part/subpart dependencies .. 32
6.2.5 Node (cluster) capacities .. 32
6.2.6 Constraint graph analysis speedup .. 33
6.2.7 Loosely coupled systems .. 33
6.2.8 Optimisation .. 33
6.2.9 Gantt chart visualisation ... 34

References ... 35

Domain model language syntax and validation .. 36
A.1 Material language ... 36
A.2 Equipment language ... 38
A.3 Job language ... 40
A.4 Allocation language ... 40

 TNO Public TNO 2023 R12451

 TNO Public 5/41

1 Introduction

For a long time, the industry trend was (and to some extent still is) to improve and optimise
individual systems to their extremes. However, the actual performance of a system does not
only depend on the system itself, but also on the context in which it operates. System
performance improvements (throughput, imaging, overlay, etc.) can still be increased by
looking at the interactions of a system in its context by moving to a systems-of-systems
performance engineering approach.

The AIMS program considers the performance of automated production systems of systems.
These are facilities composed of multiple production systems connected via (manual or
automated) transportations systems.

1.1 Approach
In 2023, AIMS has developed a domain-driven methodology to quickly and accurately
predict the timing behaviour of tightly coupled production systems of systems. In these
systems, production systems are connected via an automated transport system, e.g. a
conveyor belt.

The methodology involves a modular domain model for the specification of the (tightly
coupled) production system-of-systems and the work that is to be executed by it. This
domain model involves four domain-specific languages, which are organised according to
the Y-chart pattern [1]:
 The Material language specifies the materials to be handled by a production system and

the operations that can be performed on these materials.
 The Equipment language describes the topology of a production system in terms of the

processing stations and their connections.
− Per station, the Equipment language specifies which operations it can perform and

how much time is needed for the preparation and execution of these operations.
− Per connection, the Equipment language specifies the transportation duration.

 The Job language specifies the batch of work to be performed by the production system
in terms of products and their (sub)parts.

 The Allocation language specifies how the work is assigned to the available processing
stations and the order in which the work is to be executed.

The specification of the production system and the work to be performed can automatically
be translated into a constraint graph. This is graph-based analysis model, which specifies the
relative timing constraints between events, and which can be used to predict the timing
behaviour of the production system, e.g. the duration of the production of a batch of
products.

1.2 Outline
This report is outlined as follows. In Chapter 2, the domain model to specify production
systems-of-systems and their jobs is described using an illustrative example production
system. Chapters 3 and 4 describe transformations from domain model instances to

 TNO Public TNO 2023 R12451

 TNO Public 6/41

constraint graph models and the corresponding constraint graph analyses. Chapter 5
describes how the tooling realising the domain model can be installed and used. A summary
of the report and possible directions for future work can be found in Chapter 6. Detailed
information on the domain model’s languages can be found in Appendix A.

 TNO Public TNO 2023 R12451

 TNO Public 7/41

2 Domain model

In this chapter, we present the domain model used to specify (the timing behaviour of)
manufacturing systems. Such a specification consists of four elements (the green blocks in
Figure 2.1):
1. A material model describes the materials that are handled by a production system and

the operations that can be performed on the materials.
2. An Equipment model describes the components of the production system and their

capabilities and connections to other components. The component capabilities are
described as timing information that is based on a Material model’s materials and
operations.

3. A Job model describes the work to be performed in terms of a Material model’s materials
and operations.

4. An Allocation model describes the assignment of the work specified in a Job model onto
the components described in an Equipment model. This includes the order in which work
is to be performed.

A full specification is used to generate a constraint model for timing prediction (see Figure
2.1). This generation is explained in Chapter 3.

Figure 2.1: Production system domain model

To illustrate the domain modelling approach, we use a running example. This example is
presented in Section 2.1. In Sections 2.2, 2.3, 2.4 and 2.5, we present the four elements of
the specification of the running example. Details on the underlying syntax of the domain
model’s languages and the additional validation rules can be found in Appendix A.

2.1 Running example
The running example used to illustrate the domain model is a fictitious printer consisting of
an input unit, a printer unit and a stapler unit. This fictitious printer is depicted in Figure 2.2.

 TNO Public TNO 2023 R12451

 TNO Public 8/41

 The input unit has two input trays, which are connected via a switch to the printer unit.
 The printer unit has a printer station which is capable of printing sheets on the fly, i.e. the

sheets are printed as they travel through the printer.
 The stapler unit has a buffer where sheets to be stapled are collected, a stapler that can

staple stacks of sheets, and an output tray where stapled stacks of sheets are collected.

Figure 2.2: Fictitious modular printer example

Between the units, there are handover points, which can be used for modular timing
analysis. This is explained in Chapter 4. Such an analysis may be particularly useful if
modules are developed by different manufacturers.

2.2 Material model
A Material model consists of three elements, all specified in a single file with a .machine
extension:
1. A specification of the material types,
2. A specification of the material instances, and
3. A specification of the operations on the materials.

These elements are described in more detail in Sections 2.2.1, 2.2.2 and 2.2.3.

2.2.1 Material types
Material types represent classes of similar materials. We distinguish basic and composed
material types. The composed material types represent aggregates of other material types.
The basic material types cannot be decomposed.

Figure 2.3 contains the material types for the running example. The purple text represents
the keywords of the language. The black text is instance specific; these may involve user-
defined names/properties (e.g. the first occurrence of the word sheet is the user-defined
name of the material) or references to user-defined names (e.g. the second occurrence of
the word sheet refers to the first occurrence). This material model specifies that the running
example distinguishes two material types: the material type sheet is a basic material, and
the material type stack is a composed material type containing sheets. Note that we do not
distinguish between unstapled and stapled stacks of sheets.1

1 The constraint graph generation and analysis explained in Chapters 3 and 4 do not use material composition; this

may be used for future validation of specifications.

Printer unit

Printer
Switch

Input unit

In Tray 2

In Tray 1

Stapler unit

Out Tray

Sheet
buffer

Stapler

 TNO Public TNO 2023 R12451

 TNO Public 9/41

basic material type sheet

composite material type stack composed of sheet

Figure 2.3: Material types

2.2.2 Material instances
The material instances of a Material specification involve instances of material types. Like for
the material types, we distinguish basic and composed material instances. Composed
materials are assumed to be homogeneous, i.e. they consist of one material.1

Figure 2.4 specifies the materials of the running example. These are instances of the
material types introduced in Section 2.2.1. We distinguish two instances of sheets, A4 sheets
and A3 sheets. Moreover, the materials of the running example include two composite
materials: stacks of both instances of sheets. This results in a total of four material
instances. The specification in Figure 2.4 also shows the dimensions of the different
materials.2

basic material A4 type sheet
dimensions
 length = 0.297 m
 width = 0.210 m

basic material A3 type sheet
dimensions
 length = 0.297 m
 width = 0.420 m

composite material stackA4 type stack composed of A4
dimensions
 length = 0.297 m
 width = 0.210 m

composite material stackA3 type stack composed of A3
dimensions
 length = 0.297 m
 width = 0.420 m

Figure 2.4: Materials

2.2.3 Operations
The last part of the Material specification describes the operations that can be performed on
the specified material types and the corresponding material instances.

Figure 2.5 shows that the running example has two sheet operations, releaseSheet and
collectSheet, and three stack operations, releaseStack, stapleStack and collectStack. It is
assumed that operations do not change the material: e.g. a stapled stack is also stack.

2 The constraint graph generation and analysis explained in Chapters 3 and 4 do not use material dimensions; these

may be relevant for more refined timing analyses.

 TNO Public TNO 2023 R12451

 TNO Public 10/41

sheet operation releaseSheet

sheet operation collectSheet

stack operation releaseStack

stack operation stapleStack

stack operation collectStack

Figure 2.5: Material operations

2.3 Equipment model
An Equipment model describes the components of the fictitious printer. An Equipment
model consists of three parts, all specified in a single file:
1. The nodes in the equipment and their capabilities,
2. The segments connecting the equipment nodes, and
3. Common paths through the equipment.

2.3.1 Nodes
The nodes in an Equipment model correspond the locations that material visits and where
operations are performed. The equipment nodes of the running example are shown in
Figure 2.6. The domain model distinguishes three types of nodes: input nodes, output
nodes, and internal nodes. This example only includes internal nodes. The nodes in the
model correspond one-to-one to the nodes visualised in Figure 2.2. If one would like to
model the fictitious printer’s units separately, then the handover nodes between them
would become input nodes of the upstream unit(s) and output nodes of the downstream
unit(s). This is explained in Chapter 4.

An equipment node can support multiple operations. The Equipment model specifies these
operations; the keyword operation is used for this. The duration of the operation is specified
for all relevant material instances. As performing an operation may require some
preparation, the operation’s recovery and setup times are also specified using the keyword
setup. Note that these recovery and setup times may depend on the previous material
instance and the current material instance. To define the state of a node’s operation, the
time and material instance of the last completion of an operation can be specified using the
keyword committed.

Beside preparation for node operations, an equipment node may also need to prepare to
receive a certain material. This is also specified using the setup keyword, but now used
within the scope of an equipment node. An Equipment model specifies how much time an
equipment node needs to change from one material instance to another. This duration is
the minimum time between one piece of material leaving the node and another arriving at
the node.

 TNO Public TNO 2023 R12451

 TNO Public 11/41

equipment RunningExample

node inTray1 type internal
 operation releaseSheet
 material A4 duration 0.5 s
 after A4 setup 0.5 s
 after A3 setup 60.0 s
 material A3 duration 1.0 s
 after A4 setup 60.0 s
 after A3 setup 1.0 s

node inTray2 type internal
 operation releaseSheet
 material A4 duration 0.5 s
 after A4 setup 0.5 s
 after A3 setup 60.0 s
 material A3 duration 1.0 s
 after A4 setup 0.5 s
 after A3 setup 60.0 s

node traySwitch type internal

node handover1 type internal

node handover2 type internal

node printer type internal
 setup
 material A4
 after A4 setup 0.5 s
 after A3 setup 0.5 s
 material A3
 after A4 setup 0.5 s
 after A3 setup 0.5 s

node sheetBuffer type internal
 setup
 material A4
 after A4 setup 0.5 s
 after A3 setup 60.0 s
 after stackA4 setup 0.5 s
 after stackA3 setup 60.0 s
 material A3
 after A4 setup 60.0 s
 after A3 setup 0.5 s
 after stackA4 setup 60.0 s
 after stackA3 setup 0.5 s

 operation collectSheet
 material A4 duration 0.5 s
 after A4 setup 0.5 s
 after A3 setup 1.0 s
 material A3 duration 1.0 s
 after A4 setup 1.0 s
 after A3 setup 0.5 s

 TNO Public TNO 2023 R12451

 TNO Public 12/41

 operation releaseStack
 material stackA4 duration 0.5 s
 after stackA4 setup 0.5 s
 after stackA3 setup 1.0 s
 material stackA3 duration 1.0 s
 after stackA4 setup 1.0 s
 after stackA3 setup 0.5 s

node stapler type internal
 operation stapleStack
 committed stackA4 finish time 0.0 s
 material stackA4 duration 0.5 s
 after stackA4 setup 0.5 s
 after stackA3 setup 1.0 s
 material stackA3 duration 0.5 s
 after stackA4 setup 1.0 s
 after stackA3 setup 0.5 s

node outTray type internal
 operation collectStack
 material stackA4 duration 0.5 s
 after stackA4 setup 0.5 s
 after stackA3 setup 1.0 s
 material stackA3 duration 1.0 s
 after stackA4 setup 1.0 s
 after stackA3 setup 0.5 s

Figure 2.6: Equipment nodes

2.3.2 Segments
The segments of an Equipment model describe the connections between equipment nodes.
Figure 2.7 specifies the running example’s segments using the keyword segment. We
assume that two nodes are connected by at most one segment. For each segment, an
Equipment model defines the segment’s source and target node(s) and the transport
duration of the segment. We assume that a segment’s transport duration is independent
of the material instance being transported.

The example system in Figure 2.2 involves a switch, which can alternate between the input
trays. Switches are modelled with multiple source nodes and/or multiple target nodes. A
switch represents multiple source-to-target paths, of which only one may be active. The
time needed to switch between these paths is defined using the switch time keywords. We
assume that the switch duration is independent of the switch’s position. Moreover, we
assume that switching happens when the switch is not occupied, i.e. all materials have left
the switch.

 TNO Public TNO 2023 R12451

 TNO Public 13/41

segment traySwitch
source inTray1 inTray2
target traySwitch
duration 1.0 s
switch time 1.0 s

segment traySwitch_handover1
source traySwitch
target handover1
duration 1.0 s

segment handover1_printer
source handover1
target printer
duration 2.0 s

segment printer_handover2
source printer
target handover2
duration 2.0 s

segment handover2_sheetBuffer
source handover2
target sheetBuffer
duration 2.0 s

segment sheetBuffer_stapler
source sheetBuffer
target stapler
duration 1.0 s

segment stapler_outTray
source stapler
target outTray
duration 1.0 s

Figure 2.7: Equipment segments

2.3.3 Paths
A piece of material that runs through the equipment follows a path, i.e. a sequence of nodes
connected by segments. We assume that such a path involves a single end-to-end activity,
which is performed without being interrupted.

Figure 2.8 shows the specification of predefined paths through the equipment including the
operations that are performed along the path. This example only specifies one operation per
node on a path, but one can also specify a sequence of operations to be performed at a
single node.3

3 The equipment paths have been introduced for modelling convenience. By defining commonly used paths, the

Allocation models (see Section 2.5) become more concise.

 TNO Public TNO 2023 R12451

 TNO Public 14/41

path stackPath
 sheetBuffer: releaseStack
 stapler: stapleStack
 outTray: collectStack

path sheetPath1
 inTray1: releaseSheet
 traySwitch:
 handover1:
 printer:
 handover2:
 sheetBuffer: collectSheet

path sheetPath2
 inTray2: releaseSheet
 traySwitch:
 handover1:
 printer:
 handover2:
 sheetBuffer: collectSheet

Figure 2.8: Equipment paths

2.4 Job model
The Job model represents the work to be performed (by the equipment). The work is
specified as a batch of products. Products are composed of parts, which are composed of
subparts. The subparts are assumed to be atomic job elements. This means they are to be
executed without interruption.

We assume that products are independent of each other. This means that they can be
created in any order. On the other hand, we assume that the order of the parts and subparts
in a specification is fixed. The specified order of the parts and subparts can be seen as a
recipe to create the product.

Figure 2.9 specifies a Job model for the running example. It specifies two products, both
consisting of two parts. For each part, the Job model specifies its subparts.4 The first part of
both products involves creating a stack of two (printed) sheets, the second part involves
stapling this stack and collecting it. The only difference between the products is the involved
material instance. The first product is created from (stacks of) A4 sheets, the second from
(stacks of) A3 sheets.

4 Note that the Job language does not have a subpart keyword.

 TNO Public TNO 2023 R12451

 TNO Public 15/41

batch RunningExample

product leafletA4
 part A4 sheets
 A4 sheetA4_1: releaseSheet collectSheet
 A4 sheetA4_2: releaseSheet collectSheet
 part stackA4 leaflet
 stackA4 stack1: releaseStack stapleStack collectStack

product leafletA3
 part A3 sheets
 A3 sheetA3_1: releaseSheet collectSheet
 A3 sheetA3_2: releaseSheet collectSheet
 part stackA3 leaflet
 stackA3 stack1: releaseStack stapleStack collectStack

Figure 2.9: Job model

2.5 Allocation model
An Allocation model assigns the work defined in a Job model to the nodes and segments
specified in an Equipment model. The Allocation model is based on the Equipment model’s
path. Per subpart, it specifies which path through the equipment is to be followed including
which operations are to be performed.

Figure 2.10 shows the Allocation model for the running example. The first leaflet uses
sheets from the first input tray and the second leaflet takes sheets from the second input
tray. The sheets are collected in the stapler unit’s sheet buffer. From the sheet buffer, the
collected sheets are handled as stacks; they are released from the sheet buffer, stapled at
the stapling station, and collected at the output tray.

batch RunningExample
equipment RunningExample

product leafletA4
 part sheets
 sheetA4_1 path sheetPath1
 sheetA4_2 path sheetPath1
 part leaflet
 stack1 path stackPath

product leafletA3
 part sheets
 sheetA3_1 path sheetPath2
 sheetA3_2 path sheetPath2
 part leaflet
 stack1 path stackPath

Figure 2.10: Allocation model

In the running example, two sheets of A4 paper become a leaflet and two sheets of A3
paper become a leaflet. It is the specifier’s responsibility that the paths followed by the
materials matches this intention. The syntax and validation rules (see Appendix A) do not
check whether the paths of the elements of a composite material, i.e. the individual sheets

 TNO Public TNO 2023 R12451

 TNO Public 16/41

in the running example, end at the same equipment node as where the path of the
composite, i.e. a stack of sheets in the running example, starts. This is one of the possible
extensions discussed in Chapter 6.

2.6 Summary
In this chapter, we have introduced the four elements of the manufacturing domain model
using an illustrative running example. With the languages, we have described the underlying
assumptions:
 Material language assumptions

− Composed materials are homogeneous, i.e. they consist of one material.
− Material operations do not change the material.

 Equipment language assumptions
− Two nodes are connected by at most one segment.
− A segment’s transport duration is independent of the material being transported.
− The switch duration of a switch segment is independent of the switch’s position.
− A switch may change position when it is not occupied, i.e. all materials have left the

switch.
 Job language assumptions

− The subparts of a Job specification are atomic job elements.
− An equipment path involves a single activity, which is performed without being

interrupted.
− Products in a Job specification are independent of each other.
− The order of the parts and subparts in a Job specification is fixed.

Most of these assumptions are used in the generation of analysis models, which is explained
in Chapters 3 and 4. Some are there because of modelling convenience. More details on the
languages’ syntax and validation rules are described in Appendix A.

 TNO Public TNO 2023 R12451

 TNO Public 17/41

3 Monolithic constraint
graph analysis

In Chapter 2, we have described the four languages to specify a production system. This
chapter describes the generation of constraint graphs, which can be used to accurately
predict the latency of work allocated to a production system. Section 3.1 introduces the
constraint graph formalism. Section 3.2 describes the constraint graph generation using the
running example introduced in Chapter 2. Section 3.3 describes how the constraint graphs
can be used to predict the latency of allocated work.

3.1 Constraint graphs
Elmaghraby and Kamburowski [2] consider the analysis of generalised precedence relations.
To describe these, they use graphs, which we call constraint graphs. Constraint graphs are
constraint models containing relative timing constraints. A constraint graph is a directed
graph 𝐺𝐺 = (𝑉𝑉, 𝐴𝐴) with a collection of nodes 𝑉𝑉 and a collection of arcs 𝐴𝐴 ⊆ 𝑉𝑉 × 𝑉𝑉. The nodes in
𝑉𝑉 represent events to be scheduled and the arcs in 𝐴𝐴 represent the timing constraints
between the events.

The timing constraints are described by a function Δ: 𝐴𝐴 → ℝ. An arc 𝑎𝑎 = (𝑛𝑛1, 𝑛𝑛2) from node 𝑛𝑛1
to node 𝑛𝑛2 specifies that event 𝑛𝑛2 should follow at least Δ(𝑛𝑛1, 𝑛𝑛2) time units after event 𝑛𝑛1.
The timing constraint defines a release time for event 𝑛𝑛2. Note that the timing constraints
are not limited to positive numbers; an arc 𝑎𝑎 = (𝑛𝑛1, 𝑛𝑛2) with a negative Δ(𝑛𝑛1, 𝑛𝑛2) specifies a
due time for event 𝑛𝑛1: it must happen at most −Δ(𝑛𝑛1, 𝑛𝑛2) time units before event 𝑛𝑛2.

The goal of scheduling is finding a function T: 𝑉𝑉 → ℝ that assigns an occurrence time to all
events and that satisfies all timing constraints specified by a constraint graph’s arcs.
Typically, one wants to minimise the makespan or latency of a schedule, i.e. max

𝑛𝑛∈ 𝑉𝑉
𝑇𝑇(𝑛𝑛).

Note that one can create constraint graphs for which no feasible schedule exists. This is
when the constraint graph contains a positive cycle, i.e. a cyclic path whose summed arc
weights is positive. The simplest example is shown in Figure 3.1; it involves a graph with two
nodes 𝑛𝑛1 and 𝑛𝑛2 and arcs 𝑎𝑎1 = (𝑛𝑛1, 𝑛𝑛2) and 𝑎𝑎2 = (𝑛𝑛2, 𝑛𝑛1) with weights Δ(𝑎𝑎1) = 2 and Δ(𝑎𝑎1) =
−1. In a feasible schedule for this graph, 𝑇𝑇(𝑛𝑛2) ≥ 𝑇𝑇(𝑛𝑛1) + Δ(𝑎𝑎1) ≥ 𝑇𝑇(𝑛𝑛2) + Δ(𝑎𝑎1) + Δ(𝑎𝑎2) =
𝑇𝑇(𝑛𝑛2) + 1, which is impossible.

Figure 3.1: Infeasible constraint graph

3.2 Constraint graph generation
From a specification in our domain model, we can generate constraint graphs as introduced
in Section 3.1.

n1 n2
2

-1

 TNO Public TNO 2023 R12451

 TNO Public 18/41

The constraint graph that is generated from the running example introduced in Chapter 2 is
shown in Figure 3.2. The nodes in this graph represent an event at an equipment node.
There are three types of event nodes:
 Start nodes represent the start of a path of a piece of material.
 Arrival nodes represent the arrival of a piece of material at an equipment node.
 Operation nodes represent the completion of an operation of a piece of material at an

equipment node.

The arcs in the generated constraint graph have a matrix shaped:
 Vertical paths represent the material view: the vertical paths are those that pieces of

material follow through the equipment.
 Horizontal paths represent the equipment view: they contain arrivals and operations at

one equipment node.
There are several types of arcs in the generated constraint graph. In Figure 3.2, they are
distinguished by colour.

The black arcs between the event nodes represent the paths of a piece of material as
specified in the Allocation model. One can see that one such path consists of sequences of
groups consisting of one arrival node followed by zero or more operation nodes. Note that
all the arcs on such a path are bidirectional, with a weight equalling either a segment’s
travel duration or an operation’s duration. Bidirectional arcs indicate that the time between
the connected events must equal exactly the weight of the arc.5 This means that an arrival
or the end of an operation coincides with the start of the next operation.6

The blue arcs in the constraint graph represent operation recovery and setup. These
horizontal arcs are unidirectional, and their weights equal the minimum time between two
consecutive completions of the same operation. Note that the weights of these arcs include
the setup time between the first and the second operation and the duration of the second
operation.7 Both depend on the involved material instances as one can see in the Equipment
model.

The orange arcs in the constraint graph represent the setup times for arrival of a piece of
material at an equipment node. The orange arcs start at the last event for one piece of
material at an equipment node to the first event for the next piece of material at the same
equipment node. These constraint graph source nodes are arrival nodes, if there are no
operation nodes, otherwise they are operation nodes. These constraint graph target nodes
are either arrival nodes or start nodes.

The yellow arcs in the constraint graph represent constraints between consecutive events at
an equipment node. The yellow arcs involve constraints between the end of the path of one
piece of material and the start of the path of another piece of material. These are only
included in the constraint graph if the one ends at the equipment node where the other
path starts. In the example in Figure 3.2, the yellow arcs represent the aggregation of
individual sheets into a stack of sheets.

5 A bidirectional arc is a shorthand for two unidirectional arcs, one with a positive weight and one with a negative

weight, equal to the weight of the bidirectional arc.
6 This is the reason why we decided not to include events for the starts of operations.
7 This could have been captured differently by using diagonal arcs to the start of the operation. This would create a

multi-graph, i.e. a graph in which two nodes are connected by more than one arc.

 TNO Public TNO 2023 R12451

 TNO Public 19/41

The grey arcs in the constraint graph represent the delay from changing the position of a
switch. There is one such arc in Figure 3.2, which represents switching from the first to the
second input tray between the leaflets.

 TNO Public TNO 2023 R12451

 TNO Public 20/41

Figure 3.2: Constraint graph for running example

Sh1.1 Sh2.2Start @ In Tray 1

In Tray 2
Sheet release time

(1.0 s)

Start @ Sheet Buffer

Release @ Sheet Buffer

Arrival @ Stapler

Staple @ Stapler

Sh1.1

In Tray 1
Sheet release time

(0.5 s)

Sh1.2
Release sheet
Sheet interval

(0.5 + 0.5 s)

Sh1.2

In Tray 1
Sheet release time

(0.5 s)

Sh2.1

Sh2.1

In Tray 2
Sheet release time

(1.0 s)

St1

St1

Sheet buffer
Stack release time

(0.5 s)

Sh2.2

St2

St2

Sheet buffer
Stack release time

(0.5 s)

Gather sheet
Sheet interval

(1.0 + 1.0 s)

Release stack
Stack interval
(1.0 + 1.0 s)

Leaflet 1 (A4) Leaflet 2 (A3)

Release Sheet @ In Tray 1

In Tray 1
Setup time

(0.0 s)

Sheet buffer
Setup time

(0.0 s)

St1

Travel time
Sheet buffer-Stapler

(1.0 s)

St2

Travel time
Sheet buffer-Stapler

(1.0 s)

(0.0 s) (0.0 s)

St1

Stapler
Staple time

(0.5 s)

Stapler
Staple time

(0.5 s)

Stapler
Staple interval

(1.0 + 1.0 s)

Arrival @ Out Tray

Collect @ Out Tray

St1 St2

St1 St2
Out Tray

Collect interval
(1.0 + 1.0 s)

Travel time
Stapler-Out Tray

(1.0 s)

Travel time
Stapler-Out Tray

(1.0 s)

Out Tray
Collect time

(0.5 s)

Out Tray
Collect time

(1.0 s)

Stapler
Setup time

(0.0 s)

Out Tray
Setup time

(0.0 s)

St2

Arrival @ Tray Switch Sh1.1

Travel time
In Tray 1-Tray Switch

(1.0 s)

Arrival @ Handover 1
Sh1.1

Travel time
Tray Switch-Handover 1

(1.0 s)

Sh1.1

Travel time
Handover 1-Printer

(2.0 s)

Arrival @ Printer

Arrival @ Handover 2 Sh1.1

Travel time
Printer-Handover 2

(2.0 s)

Arrival @ Sheet Buffer Sh1.1

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Collect @ Sheet Buffer Sh1.1

Sheet Buffer
Collect Sheet time

(0.5 s)

Sh1.2

Travel time
In Tray 1-Tray Switch

(1.0 s)

Sh1.2

Travel time
Tray Switch-Handover 1

(1.0 s)

Sh1.2

Travel time
Handover 1-Printer

(2.0 s)

Sh1.2

Travel time
Printer-Handover 2

(2.0 s)

Sh1.2

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Sh1.2

Sheet Buffer
Collect Sheet time

(0.5 s)

Sh2.1

Sh2.1

Travel time
Tray Switch-Handover 1

(1.0 s)

Sh2.1

Travel time
Handover 1-Printer

(2.0 s)

Sh2.1

Travel time
Printer-Handover 2

(2.0 s)

Sh2.1

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Sh2.1

Sheet Buffer
Collect Sheet time

(1.0 s)

Sh2.2

Sh2.2

Travel time
Tray Switch-Handover 1

(1.0 s)

Sh2.2

Travel time
Handover 1-Printer

(2.0 s)

Sh2.2

Travel time
Printer-Handover 2

(2.0 s)

Sh2.2

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Sh2.2

Sheet Buffer
Collect Sheet time

(1.0 s)

Travel time
In Tray 1-Tray Switch

(1.0 s)

Travel time
In Tray 1-Tray Switch

(1.0 s)

Sheet Buffer
Collect interval

(0.5 + 0.5 s)

Sheet Buffer
Collect interval

(1.0 + 1.0 s)

Sheet Buffer
Collect interval

(0.5 + 1.0 s)

Printer
Setup time

(0.5 s)

Printer
Setup time

(0.5 s)

Printer
Setup time

(0.5 s)

Tray Switch
Setup time

(0.0 s)

Tray Switch
Setup time

(0.0 s)

Tray Switch
Setup time

(0.0 s)

Handover 1
Setup time

(0.0 s)

Handover 1
Setup time

(0.0 s)

Handover 1
Setup time

(0.0 s)

Handover 2
Setup time

(0.0 s)

Handover 2
Setup time

(0.0 s)

Handover 2
Setup time

(0.0 s)

Sheet Buffer
Setup time

(0.5 s)

Sheet Buffer
Setup time

(60.0 s)

Sheet Buffer
Setup time

(0.5 s)

Start @ In Tray 2

Release Sheet @ In Tray 2
Tray Switch
Switch time

(1.0 s)

 TNO Public TNO 2023 R12451

 TNO Public 21/41

The creation of a constraint graph like the one in Figure 3.2, applies several rules. Every type
of arc, indicated by the arc colours in Figure 3.2, has its own rule. These rules are based on
the following assumptions:
 The durations of operations and transportation are constant.
 An equipment node can handle at most one piece of material at a time.
 Pieces of material do not overtake each other.
 The timing of an operation on a piece of material does not depend on future pieces of

material.

The last assumption makes that generated constraint graphs do not contain arcs leading
“from right to left”: arcs follow the sequence of the pieces of material as specified in the
Allocation model.

Other assumptions influencing the constraint graph generation are mentioned as underlined
text in the explanation of the domain model’s languages in Chapter 2.

3.3 Constraint graph analysis
In Section 3.2, we have illustrated how one can create a constraint graph from a domain
model instance. This section explains how constraint graphs can be used for timing analysis.

A constraint graph contains relative timing constraints between events. To use a constraint
graph for timing prediction or for optimisation, absolute timing information is needed as
well. For this, an additional node is added to the constraint graph, the zero node. This node
represents an event at the absolute time zero, which occurs before all events in the
constraint graph. Zero-weight arcs are added between the zero node and all nodes that
correspond to the start events of all pieces of material.

In the resulting constraint graph, the duration of the longest path from the zero node to an
event in the constraint graph equals the earliest time at which this event can occur. From a
constraint graph as the one shown in Figure 3.2, a schedule is created by computing the
longest path tree from the zero node using the Bellman-Ford algorithm [3].8

8 The Bellman-Ford algorithm is a single-source shortest path algorithm, which can compute longest paths by

changing the sign of all arc weights.

 TNO Public TNO 2023 R12451

 TNO Public 22/41

4 Modular constraint graph
analysis

In Chapter 3, we have considered the generation of one monolithic constraint graph and
using that graph to create a schedule. Constraint graphs quickly become very large. As the
Bellman-Ford algorithm is a quadratic algorithm [3], the running times of constraint graph
analysis does not scale.

In this chapter, we extend the constraint graph generation and analysis in two manners.
They are meant to make constraint graph analysis more flexible and more scalable:
1. Incremental analysis: When scheduling, not all work to be scheduled is known upfront.

This means that one must perform constraint graph analysis multiple times. This can be
achieved by a domain model specification that grows over time, but this is bad for
scalability. We present an incremental method that keeps the constraint graph small.

2. Modular analysis: The running example introduced in Chapter 2 was a product line
consisting of three units. Instead of generating a single constraint graph for the whole
production line, one can also generate and analyse a constraint graph per unit and
combine the analysis outputs. This reduces the constraint graph size and makes the
method more scalable.

The extensions of the domain model for incremental and modular analysis are explained in
Section 4.1. The updated constraint graph generation is explained in Section 4.2. Section 4.3
explains the updated constraint graph analysis.

4.1 Domain model
In Chapter 2, we have used a monolithic production line as a running example. In this
section, we show the domain model’s language concepts to describe incremental and
modular scheduling and timing prediction. Section 4.1.1 explains the modular analysis using
the running example. Section 4.1.2 and 4.1.3 explains the concepts of the Equipment
language and the Allocation language needed to facilitate modular timing analysis.

4.1.1 Running example
We assume a single controller that is responsible for deploying work in a production system.
In the running example introduced in Chapter 2, the input unit is responsible for the
deployment: it decides when sheets are released from the input trays. Figure 4.1 shows the
running example with the corresponding information flows. There is a flow of scheduling
decisions downstream, i.e. from the input unit to the printer unit, and from the printer unit to
the stapler unit. These decisions specify the times at which events occur.

Figure 4.1 also shows an upstream information flow: the timing constraints of the stapler
unit are communicated to the printer unit, and those of the printer unit are communicated
to the input unit.

 TNO Public TNO 2023 R12451

 TNO Public 23/41

Figure 4.1: Running example with information flows

To communicate (scheduling) decisions downstream, we need concepts to fix event timings.
These concepts are introduced in the Equipment model; these concepts are explained in
Section 4.1.2. To communicate timing constraints upstream, we need additional concepts in
the Allocation model. These concepts are explained in Section 4.1.3.

The Material and Job model do not require additional concepts for modular and incremental
constraint graph analysis. The Material and Job language concepts as introduced in Chapter
2 are sufficient.

4.1.2 Equipment model
The Equipment model as introduced in Chapter 2 specified the timing constraints of pieces
of equipment with respect to arrivals of pieces of material and operations on pieces of
material. The Equipment model example did specify the state of the equipment based on
what the equipment has done in the past. To define the state of a node with respect to the
last handled material, the time and material of the last node departure can be specified
using the keyword committed.

An example of the keyword committed is shown in Figure 4.2, which shows the specification
of the stapler node of the stapler unit in Figure 4.1. The third line in Figure 4.2 specifies that
the last stapling operation of the stapler node involved the material stackA4 and finished at
time 12.0, i.e. 12 seconds after the zero node event.

Printer unit

Print
Switch

Input unit

In Tray 2

In Tray 1

Stapler unit

Out Tray

Collect Staple

Decisions Decisions

ConstraintsConstraints

 TNO Public TNO 2023 R12451

 TNO Public 24/41

node stapler type internal
 operation stapleStack
 committed stackA4 finish time 12.0 s
 material stackA4 duration 0.5 s
 after stackA4 setup 0.5 s
 after stackA3 setup 1.0 s
 material stackA3 duration 0.5 s
 after stackA4 setup 1.0 s
 after stackA3 setup 0.5 s

Figure 4.2: Node specification with committed work

What the example does not show is that the keyword committed can also be used to specify
the material instance that last left the node and the time at which this material instance has
left. Furthermore, the keyword state is used to specify the initial position of a switch. An
example for the input unit is shown in Figure 4.3.

segment inTray_traySwitch
source inTray1 inTray2
target traySwitch
duration 1.0 s
switch time 1.0 s
state inTray1-traySwitch

Figure 4.3: Switch node specification

To allow modular constraint graph analysis, we create domain model specifications per unit.
For this, we need to define the boundaries of the unit. These boundaries are represented by
nodes that are shared by neighbouring units. An example for the stapler unit is shown in
Figure 4.4. The keyword input indicates that node handover2 is an input for the stapler unit.
It is also an output of the printer unit. To specify outputs, the keyword output is used.

node handover2 type input

Figure 4.4: Input node specification

4.1.3 Allocation model
To communicate timing constraints upstream, the Allocation model needs additional
concepts. These concepts specify the constraints from downstream units. This is done using
timing constraints for the arrival of pieces of material at output nodes, which are input
nodes of downstream units.

An example of such timing constraints is shown in Figure 4.5. Some constraints are between
arrivals at consecutive pieces of material, e.g. the constraint between the arrivals of
sheetA4_1 and sheetA4_2. Others are between non-consecutive nodes, e.g. the constraint
between the arrivals of sheetA4_1 and sheetA3_1.

 TNO Public TNO 2023 R12451

 TNO Public 25/41

between sheetA4_1 @ handover2 and sheetA4_2 @ handover2 delay 1.0 s
between sheetA4_1 @ handover2 and sheetA3_1 @ handover2 delay 62.0 s
between sheetA4_1 @ handover2 and sheetA3_2 @ handover2 delay 63.5 s
between sheetA4_2 @ handover2 and sheetA3_1 @ handover2 delay 61.0 s
between sheetA4_2 @ handover2 and sheetA3_2 @ handover2 delay 62.5 s
between sheetA3_1 @ handover2 and sheetA3_2 @ handover2 delay 1.5 s

Figure 4.5: Output node constraint specification

4.2 Constraint graph generation
From a modular specification as introduced in Section 4.1, we also generate constraint
graphs. The generated modular constraint graphs are similar to the generated monolithic
constraint graphs as explained in Chapter 3. Figure 4.6 shows the generated constraint
graph for the stapler unit of the running example.

Figure 4.6: Generated modular constraint graph

Start @ Sheet Buffer

Release @ Sheet Buffer

Arrival @ Stapler

Staple @ Stapler

St1

St1

Sheet buffer
Stack release time

(0.5 s)

St2

St2

Sheet buffer
Stack release time

(0.5 s)

Release stack
Stack interval
(1.0 + 1.0 s)

Leaflet 1 (A4) Leaflet 2 (A3)

St1

Travel time
Sheet buffer-Stapler

(1.0 s)

St2

Travel time
Sheet buffer-Stapler

(1.0 s)

(0.0 s) (0.0 s)

St1

Stapler
Staple time

(0.5 s)

Stapler
Staple time

(0.5 s)

Stapler
Staple interval

(1.0 + 1.0 s)

Arrival @ Out Tray

Collect @ Out Tray

St1 St2

St1 St2
Out Tray

Collect interval
(1.0 + 1.0 s)

Travel time
Stapler-Out Tray

(1.0 s)

Travel time
Stapler-Out Tray

(1.0 s)

Out Tray
Collect time

(0.5 s)

Out Tray
Collect time

(1.0 s)

Stapler
Setup time

(0.0 s)

Out Tray
Setup time

(0.0 s)

St2

Arrival @ Handover 2 Sh1.1

Arrival @ Sheet Buffer Sh1.1

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Collect @ Sheet Buffer Sh1.1

Sheet Buffer
Collect Sheet time

(0.5 s)

Sh1.2

Sh1.2

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Sh1.2

Sheet Buffer
Collect Sheet time

(0.5 s)

Sh2.1

Sh2.1

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Sh2.1

Sheet Buffer
Collect Sheet time

(1.0 s)

Sh2.2

Sh2.2

Travel time
Handover 2-Sheet Buffer

(2.0 s)

Sh2.2

Sheet Buffer
Collect Sheet time

(1.0 s)

Sheet Buffer
Collect interval

(0.5 + 0.5 s)

Sheet Buffer
Collect interval

(1.0 + 1.0 s)

Sheet Buffer
Collect interval

(0.5 + 1.0 s)

Sheet Buffer
Setup time

(0.5 s)

Sheet Buffer
Setup time

(60.0 s)

Sheet Buffer
Setup time

(0.5 s)

Committed

Zero

(0.0 s) (0.0 s) (0.0 s) (0.0 s)

Comm

Comm

Comm

Comm

Committed time
(13.5 s)

Committed time
(12.0 s)

Committed time
(10.5 s)

Committed time
(10.5 s)

Sheet Buffer
Collect interval

(0.5 + 0.5 s)

Release stack
Stack interval
(0.5 + 0.5 s)

Stapler
Staple interval

(0.5 + 0.5 s)

Out Tray
Collect interval

(0.5 + 0.5 s)

Handover 2
Setup time

(0.0 s)

Handover 2
Setup time

(0.0 s)

Handover 2
Setup time

(0.0 s)

 TNO Public TNO 2023 R12451

 TNO Public 26/41

The modular constraint graph structure differs from the monolithic constraint graphs in
several ways:
 There is a (blue) zero node, which represents an event occurring at time zero.
 There are (yellow) unidirectional arcs from the zero node to every start node of a subpart

path. These arcs have weight zero.
 There are (blue) nodes representing the events that having been committed.
 There are (black) bidirectional arcs between the zero node and the committed event

nodes. The weights of these arcs equal the times at which the events occur.
 There are (blue) unidirectional arcs from the committed event nodes to the first

uncommitted arrival and operation nodes. The weight of these arcs is calculated in the
same way as the weights between uncommitted operation and arrival events.

Note that the example in Figure 4.6 does not include any committed arrival event nodes
and the corresponding arcs to uncommitted arrival nodes.

4.3 Constraint graph analysis
Using a constraint graph as explained in Section 4.2, we can create a schedule by computing
the longest paths from the zero node to all events in the constraint graph. This is identical to
the (monolithic) analysis explained in Chapter 3.

The modular analysis that we aim for involves computing the constraints between the input
nodes of a constraint graph. These are the red nodes in the constraint graph in Figure 4.6.
These are computed by applying the Bellman-Ford algorithm [3] for the zero node and every
input node. The result is a matrix containing the lengths of the longest paths between all
pairs of input nodes. The matrix for the constraint graph in Figure 4.6 is shown in Table 4.1.

Table 4.1: Longest paths lengths between input nodes

 Zero Sheet 1.1 Sheet 1.2 Sheet 2.1 Sheet 2.2
Zero 0.0 8.5 9.5 70.5 72.0
Sheet 1.1 -∞ 0.0 1.0 62.0 63.5
Sheet 1.2 -∞ -∞ 0.0 61.0 62.5
Sheet 2.1 -∞ -∞ -∞ 0.0 1.5
Sheet 2.2 -∞ -∞ -∞ -∞ 0

The cells of the table contain the minimum duration between arrival events at the input
node. For example, the delay between the second sheet of the first leaflet and the first sheet
of the second leaflet is at least 61 seconds. This long delay is because of the setup time
needed between A4 sheets and A3 sheets.

The value -∞ indicates that there is no constraint between two events. Table 4.1 confirms
that a sheet’s arrival timing does not depend on future sheets’ arrivals: all values below the
matrix’ diagonal equal -∞.

This analysis collapses all constraints in a constraint graph into the constraints between its
input nodes. The input nodes of one unit are the output nodes of another unit. The
constraints between these output nodes can be included in the constraint graph for the
upstream unit. An example of this inclusion is shown using the Allocation language in Figure
4.5. Note that the timing of Figure 4.5 corresponds to that in Table 4.1.

 TNO Public TNO 2023 R12451

 TNO Public 27/41

5 Domain model usage

This chapter describes how to get started with the domain model. Section 5.1 describes the
installation needed to get started. Section 5.2 describes the actions needed before one can
start modelling and the actual modelling. Section 5.3 explains the model transformations
that are performed when creating a domain model instance.

5.1 Installation
This section describes the steps needed to install the software needed. Section 5.1.1 explains
how to clone the GitLab environment of the domain model. Section 5.1.2 describes how to
install the software needed to obtain a working environment. Section 5.1.3 explains how to
prepare the working environment for modelling.

5.1.1 Repository
Clone the repository https://ci.tno.nl/gitlab/aims1/aims-production-line-domain-model.git in
a folder of choice, e.g. using TortoiseGit.9

5.1.2 Installation
The following steps are to be taken to install the software needed to set up a working
environment:
 Download and install the latest Java 17 version from https://adoptium.net/.
 Download Eclipse IDE for Java and DSL developers version 2023-09 from

https://www.eclipse.org/downloads/packages/ and unzip it in a folder of choice.10
 Download and install GraphViz from https://graphviz.org/ or download and install

Microsoft Visual Studio Code from https://code.visualstudio.com/ and install its Graphviz
(dot) language support for Visual Studio Code plugin.

 Download JGraphT from http://prdownloads.sourceforge.net/jgrapht/jgrapht-
1.5.2.zip?download. Copy the jar files in this zip file to the
Languages/nl.tno.esi.aims.allocation/lib folder in the cloned repository.

5.1.3 First use
To create a working environment, one needs to generate Java classes from the Xtext
syntaxes of the domain model. This involves the following steps:
 Start Eclipse by double clicking the eclipse.exe executable in the folder where you

unzipped the Eclipse IDE.
 When asked, specify a workspace folder; next select "Launch".
 From the menu bar, select "File -> Import...". The "Import Dialog" opens.
 Select "General -> Existing Projects into Workspace" and click "Next".
 Click the "Browse..." button and select the folder "Languages" in the cloned repository

and press "OK".
 Click the "Select All" button and select "Finish".

9 TortoiseGit can be downloaded from https://tortoisesvn.net/.
10 A later version of the Eclipse IDE will probably also work.

https://ci.tno.nl/gitlab/aims1/aims-production-line-domain-model.git
https://adoptium.net/
https://www.eclipse.org/downloads/packages/
https://graphviz.org/
https://code.visualstudio.com/
http://prdownloads.sourceforge.net/jgrapht/jgrapht-1.5.2.zip?download
http://prdownloads.sourceforge.net/jgrapht/jgrapht-1.5.2.zip?download
https://tortoisesvn.net/

 TNO Public TNO 2023 R12451

 TNO Public 28/41

 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.material -> src ->
nl.tno.esi.aims.material".

 Right-click "material.mwe2" and select "Run As -> MWE2 Workflow". Messages stating
that the project contains errors may be ignored.

 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.equipment -> src ->
nl.tno.esi.aims.equipment".

 Right-click "equipment.mwe2" and select "Run As -> MWE2 Workflow". Messages stating
that the project contains errors may be ignored.

 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.job -> src ->
nl.tno.esi.aims.job"

 Right-click "job.mwe2" and select "Run As -> MWE2 Workflow". Messages stating that the
project contains errors may be ignored.

 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.allocation -> src ->
nl.tno.esi.aims.allocation".

 Right-click "allocation.mwe2" and select "Run As -> MWE2 Workflow". Messages stating
that the project contains errors may be ignored. After this step, the project should not
have any errors anymore.

 In the Eclipse main menu select "Run -> Run Configurations...". The "Run Configurations"
dialog opens.

 In the list on the left, right-click "Eclipse Application" and select "New".
 In the "name" text box type a name for this configuration.
 Click the "Apply" button.
 Click the "Close" button.

5.2 Modelling
This section explains how one can create instances of the domain model. Section 5.2.1
explains how to open the modelling environment. Section 5.2.2 describes how to import
existing project into the Eclipse modelling environment. Section 5.2.3 explains how to create
a new project and how the create language instances within the project.

5.2.1 Starting
The following steps should be taken to start the modelling environment:
 From the Eclipse menu bar select "Run -> Run Configurations..."; the "Run Configurations"

dialog opens.
 Select the run configuration that you created in section “Run configuration”.
 Click the "Run" button.

After the steps, one can import and adopt existing projects (see Section 5.2.2) and create
new projects (see Section 5.2.3).

5.2.2 Existing project
To import existing modelling projects into the modelling environment, the following steps
can be taken:
 From the Eclipse menu bar, select "File -> Import...". The "Import dialog" opens.
 Select the "General -> Existing Projects into Workspace" import wizard and click "Next".
 Click the "Browse..." button and select the folder "Instances" in the cloned repository and

click "OK".
 Click "Select All".
 Click "Finish".

 TNO Public TNO 2023 R12451

 TNO Public 29/41

After these steps, the project is visible in the project explorer. One can adapt the language
instances in the imported projects by double-clicking on the relevant file and making
changes in the text editor that will open.

5.2.3 New project
To create a new project with a domain model instance, one should perform the following
actions:
 From the menu-bar select "File -> New -> Project...". The "New Project" dialog opens.
 Under "Wizards" select "General -> Project" and click "Next".
 In the "Project name" text box enter the name for your project.
 Click the "Finish" button.

The following steps are used to create a language instance in the newly created project.
These must be repeated for every file.
 Right-click the newly created project folder and select "New -> File...". The "New File"

dialog opens.
 In the "File name" text box enter a file name with an extension dependent on which kind

of model you want to make, either .material, .equipment, .job or .allocation.
 Click the "Finish" button. If the "Configure Xtext" dialog pops up, click the "yes" button.
 Edit the newly created file in the text editor and save the file afterwards.

Editing a language instance file may trigger one or more model transformations. These are
explained in Section 5.3.

5.3 Model transformations
After saving a (valid) language instance, one may automatically trigger one or more
transformations from the language instance to another format. These transformations are
explained in this section. Section 5.3.1 explains the generation of a visual representation of
an Equipment model. Section 5.3.2 explains the generation of a visual representation of a
constraint graph corresponding to an Allocation model. In Section 5.3.3, we describe the
different types of constraint graph analyses that are performed on Allocation models and
their output files.

5.3.1 Equipment visualisation
After saving a valid Equipment model, a transformation from the Equipment to a GraphViz
model is triggered. This transformation shows the nodes and segments of the equipment.
The nodes are labelled with their name and their type. The segments are labelled with their
duration, length, and velocity. The equipment visualisation file is generated in the
corresponding project’s src-gen folder, and it is named <equipment name>.dot, where
<equipment name> is the name specified in the first line of the Equipment model.

5.3.2 Constraint graph visualisation
From a valid Allocation model (including the underlying Material, Equipment and Job
models), we also create a GraphViz model. This GraphViz model contains a visual
representation of the constraint graph, which is used for all timing analyses. The constraint
graph file is called <batch name>_<equipment name>_constraintgraph.dot, where <batch
name> equals the batch name specified in the Job model and <equipment name> is the

 TNO Public TNO 2023 R12451

 TNO Public 30/41

name specified in the first line of the Equipment model. The generated constraint graph
visualisation is placed in the project’s src-gen folder.

5.3.3 Constraint analyses
The constraint graph created from a valid Allocation file is used for multiple timing analyses.
The results of these analyses are written in CSV files in the project’s src-gen. The following
CSV files are written:
 File <batch name>_<equipment name>_schedule.csv, where <batch name> equals the

batch name specified in the Job model and <equipment name> is the name specified in
the first line of the Equipment model, contains the schedule in which each event occurs
as early as possible. The timing of the event equals the length of the longest path from
the constraint graph’s zero node. This schedule is the results of the analysis explained in
Chapter 3.

 File <batch name>_<equipment name>_inputpathlength.csv, where <batch name>
equals the batch name specified in the Job model and <equipment name> is the name
specified in the first line of the Equipment model, contains the aggregated timing
constraints between the input nodes of the equipment. This is the outcome of the
analysis presented in Chapter 4.

 TNO Public TNO 2023 R12451

 TNO Public 31/41

6 Conclusion

This chapter provides a summary of this report in Section 6.1 and it lists possible directions
for future work in Section 6.2.

6.1 Summary
In this report, we have described a domain model for the timing behaviour of production
systems consisting of multiple connected units. The domain model consists of four domain-
specific languages:
 The Material language specifies the materials to be handled by a production system and

the operations that can be performed on these materials.
 The Equipment language describes the topology of a production system in terms of the

processing stations and their connections.
 The Job language specifies the batch of work to be performed by the production system

in terms of products, parts and subparts.
 The Allocation language specifies how the work is assigned to the available processing

stations and the order in which the work is to be executed.

The report describes a transformation from instances of the domain model to constraint
graphs, a constraint model involving relative timing constraints between events. These
constraint graphs can be used to derive a schedule for the allocated work. Constraint graph
analysis can also be used for a modular timing analysis: the constraints of one system unit
are combined into constraints for the arrivals of work at the unit’s inputs and these
constraints are added to the constraints of the upstream unit as constraints on the arrival at
the upstream unit’s outputs.

6.2 Directions for future work
This section lists some directions to extend (the expressiveness of) the domain model or to
extend its analysis capabilities beyond the current scheduling/timing prediction.

6.2.1 Disassembly operations
The domain model introduced in this report has been applied to several production systems
covering assembly operations. In the running example, sheets of paper become a leaflet.
Production systems may also have disassembly operations. For instance, a wooden log may
be cut into planks and a large sheet of paper may be cut into business cards. A Job model
(implicitly) assumes that a piece of material does not fundamentally change. This is not true
for inline disassembly, i.e. disassembly while material is moving: the disassembled pieces of
material may follow separate paths. The Equipment language’s input and output nodes are
used to model subpart paths with a moving start or end. A similar principle may be needed
to capture the start and end of material paths involving inline disassembly.

 TNO Public TNO 2023 R12451

 TNO Public 32/41

6.2.2 Language parameterisation
Equipment models may be very verbose. If an equipment node can handle many different
material instances, the timing of the node’s operations must be specified for each material
instance separately. Often the timing of an operation depends on the characteristics of the
material on which the operation is performed. In such cases, operation durations can be
specified in terms of the parameters of a material type instead of listing the durations for
each instance of that material type. This could greatly shorten an Equipment model.

Moreover, operations may depend on parameters that are not related to a material
instance. These could be introduced in the Equipment model to increase expressiveness of
the domain model.

These types of parameterisation require changes in the Material language and the
Equipment language. Both the Material and the Equipment language need to be extended
with user-defined (material or operation) properties and the Equipment language must be
extended with expressions using these properties.

6.2.3 Language element reuse
The Job language is used to specify the operations that need to be performed on pieces of
material. Such a list must be specified for every subpart separately. Similarly, an Allocation
model defines a path to each individual subpart. It is however not uncommon that multiple
subparts of one part require the same operations and even must follow the same path to
realise a certain production intent. For instance, this holds for the running example
introduced in Chapter 2. Job and Allocation models would be much shorter if one could
define the operations and path for a sequence of identical subparts. Job and Allocation
models can also be shortened by defining several identical products or identical parts at
once instead defining them individually.

The same applies to Equipment models. Production systems may have multiple instances of
the same machine. Instead of defining each machine individually, the Equipment language
could be extended by a machine template which can be instantiated multiple times.

6.2.4 Part/subpart dependencies
The Job language defines the work to be executed in terms of operations to be performed
on subparts. As explained in Chapter 2, the Allocation language does not provide any
support to check whether an allocation of a job matches a specifier’s intent. To allow such
checks, this intent should be captured. A first step in this direction would be to define
dependencies between parts and subparts. For the running example, individual sheets of
paper are collected and they continue as a stack of sheets. This could be introduced to the
Job language by specifying the subparts of a composite piece of material.

6.2.5 Node (cluster) capacities
The constraint graph generation has several assumptions. These main assumptions are the
following:
 There is at most one piece of material being handled at an equipment node.
 The number of pieces of material that can be stored at an (internal) equipment node is

unbounded.

 TNO Public TNO 2023 R12451

 TNO Public 33/41

 There may be multiple pieces of material on an equipment segment, but they do not
overtake each other.

These assumptions may be very restrictive. There may be equipment nodes that can handle
multiple pieces of material simultaneously. Moreover, any equipment node has a finite
storage capacity. These capacities could be added to the Equipment language by
introducing operation and storage capacities per node.

Adding these capacities will significantly influence the constraint graph construction. For
instance, an equipment node that can handle two pieces of material simultaneously can be
modelled by a constraint between an arrival of one piece of material and the arrival of the
piece of material after the next. This means that constraints are needed between non-
consecutive pieces of material. This also implies that the state of the equipment can no
longer be captured by the last material leaving/last operation finished: a history of multiple
arrivals/operations is needed.

6.2.6 Constraint graph analysis speedup
Recently, a single source shortest path algorithm has been developed with an expected
near-linear time computational complexity [4] [5]. Using this algorithm instead of the
quadratic Bellman-Ford algorithm could greatly improve the scalability of the timing analysis
using constraint graphs. Whether the new algorithm indeed improves scalability is a topic for
follow-up research.

6.2.7 Loosely coupled systems
Not all equipment in a manufacturing facility is mechanically coupled. Some pieces of
equipment are decoupled by buffers and manual or AGV-based transportation. With
changes to the timing specification in the Equipment language, such loosely coupled
systems can also be described by the domain model.

However, the constraint graph analyses presented in this report are not suited for the full
facility. Especially, the no-overtake assumption is too restrictive for loosely coupled
transportation. Instead, one can generate a discrete event simulation (DES) model from a
specification of a loosely coupled system.

If a production facility consists of a mixture of loosely and tightly coupled systems, a hybrid
model consisting of a DES model and constraint graph models can be generated. The DES
model sends material arrival events to the inputs of constraint graph models, and the latter
send material arrival events at their output node to the DES model. Here the assumption
that a piece of material can be allocated in a tightly coupled system without having to
consider future materials is an important strength of the constraint graph analysis.

6.2.8 Optimisation
The domain model described in this report consists of four domain-specific languages. The
analyses presented in Chapters 3 and 4 use instances of all languages to create constraint
graphs for scheduling/timing prediction of a fully specified scenario. A partial specification
can be used as a basis for optimisation:
 Given a specification of the material, the equipment, the job and the allocation, one can

optimise the order in which products should be allocated.

 TNO Public TNO 2023 R12451

 TNO Public 34/41

 Given a specification of the material, the equipment, and the job, one can find the
optimal allocation of products to equipment. This should consider the limitations
addressed in Section 6.2.4 and preferably have dealt with them before going for this kind
of optimisation.

Ideally, one would like to generate optimum Job and Allocation specifications from a
specification of the material and the equipment and a specification of the products to be
created. This is out of scope for the languages described in Chapter 2; these do not capture
sufficient information about the functional aspects of operations to derive recipes to create
desired products. Such recipes correspond to sequences of operations for the products’ parts
and subparts. A first step in this direction is possible by introducing available recipes per
product; then optimisation involves selecting recipes for all products and allocating them to
the equipment.

Constraint graph analysis, possibly combined with simulation, provides a prediction of the
timing behaviour of a production system. Other formalisms are required for optimisation.
The most promising concept seems constraint programming, which can capture all aspects
of (tightly and loosely coupled) manufacturing systems.

6.2.9 Gantt chart visualisation
The analyses presented in Chapters 3 and 4 produce a schedule, i.e. an assignment of a
timestamp to every event. This schedule is represented as a CSV file, which does not
(directly) provide insight in the schedule’s timing. To allow this insight directly, we propose
an additional transformation: from an Allocation specification and generated schedule, one
can generate a Gantt chart which shows the transports and operations of all subparts over
time and the dependencies between these actions.

 TNO Public TNO 2023 R12451

 TNO Public 35/41

References

[1] B. Kienhuis, E. Deprettere, K. Vissers en P. Van Der Wolf, „An approach for quantitative
analysis of application-specific dataflow architectures,” in IEEE International Conference
on Application-Specific Systems, Architectures and Processors, Zurich, 1997.

[2] S. E. Elmaghraby en J. Kamburowski, „The Analysis of Activity Networks under
Generalized Precedence Relations (GPRs),” Management Science, vol. 38, nr. 9, pp. 1245-
1263, 1992.

[3] R. Bellman, „On a routing problem,” Quarterly of Applied Mathematics, vol. 16, pp. 87-
90, 1958.

[4] A. Bernstein, D. Nonangkai en C. Wulff-Nilsen, „Negative-Weight Single-Source Short
Paths in Near-Linear Time,” in 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), Denver, CO, 2022.

[5] K. Bringmann, A. Cassis en N. Fischer, „Negative-Weight Single-Source Shortest Paths in
Near-Linear Time: Now Faster!,” arXiv, vol. 2304.05279, 2023.

 TNO Public TNO 2023 R12451 Appendix A

 TNO Public 36/41

Appendix A

Domain model language
syntax and validation

In Chapter 2, we have introduced the languages of the domain model using an example.
This appendix shows the underlying syntax of the languages and the validation rules to
restrict the allowed language instances.

A.1 Material language
The syntax of the Material language is shown in Figure A.1. The white nodes in the syntax
graph represent the language’s keywords. The grey nodes in this syntax graph correspond to
the language’s non-terminals and terminals. Each non-terminal has a corresponding part in
the syntax graph.

 TNO Public TNO 2023 R12451 Appendix A

 TNO Public 37/41

Figure A.1: Material language syntax

 TNO Public TNO 2023 R12451 Appendix A

 TNO Public 38/41

The syntax shown in Figure A.1 allow undesirable material definitions. The following
validation rules have been implemented to avoid these:
 Every material type has a unique name.
 Every material instance has a unique name.
 Every operation has a unique name.
 The dimensions of every material instance are positive.
 Basic material types do not have composite material types.
 Composite material types have composite material type.
 Basic material instances do not have composite material instances.
 Composite material instances have composite material instances.

A.2 Equipment language
The syntax of the Equipment language is shown in Figure A.2.

 TNO Public TNO 2023 R12451 Appendix A

 TNO Public 39/41

Figure A.2: Equipment language syntax

The following validation rules forbid Equipment specifications that the syntax in Figure A.2
allows:
 Each node has a unique name.
 Each segment has a unique name.

 TNO Public TNO 2023 R12451 Appendix A

 TNO Public 40/41

 Each path has a unique name.
 The state of the equipment does not have negative timestamps.
 All operation durations are positive.
 All switch durations are positive.
 All segment durations are non-negative.
 All setup delays are non-negative.
 Arrival setup timing is defined at most once for each pair of material instances.
 Operation setup timing is defined at most once for each pair of material instances.
 Switch states are only defined for switch segments.
 Switch durations are only defined for switch segments.
 The duration of a segment must match its length and speed (if defined).
 Switch segments do not have duplicate source nodes.
 Switch segments do not have duplicate target nodes.
 There are no segments from a node to itself.
 Input nodes do not have incoming segments.
 Output nodes do not have outgoing segments.
 There is at most one segment between every pair of nodes.
 Every path is connected.
 The operations on a path can be performed by the specified nodes.
 The equipment is fully connected.

A.3 Job language
The syntax of the Job language is shown in Figure A.3.

Figure A.3: Job language syntax

In addition, the following validation rules have been implemented for Job models:
 Each product has a unique name.
 Each part of a production has a unique name (within the scope of the product).
 Each subpart of a part has a unique name (within the scope of the part).

A.4 Allocation language
The syntax of the Allocation language is shown in Figure A.4.

 TNO Public TNO 2023 R12451 Appendix A

 TNO Public 41/41

Figure A.4: Allocation language syntax

In addition, the following validation rules have been implemented for Allocation models:
 Every product is allocated at most once.11
 If a product is allocated, all its parts and subparts are allocated exactly once, and their

order matches the order in the corresponding Job model.
 The equipment path to which a subpart is allocated provides the operations specified in

the Job model in the order specified in the Job model.
 Both events of an external constraint correspond to an arrival of a subpart at an output

node.
 There are no externals constraints between an event and itself.
 There is at most one external constraint between a pair of events.
 The value of an external constraint may not be negative (and should be positive).

11 It is allowed to not allocate all products.

ICT, Strategy & Policy

High Tech Campus 25
5656 AE Eindhoven
www.tno.nl

	Contents
	1 Introduction
	1.1 Approach
	1.2 Outline

	2 Domain model
	2.1 Running example
	2.2 Material model
	2.2.1 Material types
	2.2.2 Material instances
	2.2.3 Operations

	2.3 Equipment model
	2.3.1 Nodes
	2.3.2 Segments
	2.3.3 Paths

	2.4 Job model
	2.5 Allocation model
	2.6 Summary

	3 Monolithic constraint graph analysis
	3.1 Constraint graphs
	3.2 Constraint graph generation
	3.3 Constraint graph analysis

	4 Modular constraint graph analysis
	4.1 Domain model
	4.1.1 Running example
	4.1.2 Equipment model
	4.1.3 Allocation model

	4.2 Constraint graph generation
	4.3 Constraint graph analysis

	5 Domain model usage
	5.1 Installation
	5.1.1 Repository
	5.1.2 Installation
	5.1.3 First use

	5.2 Modelling
	5.2.1 Starting
	5.2.2 Existing project
	5.2.3 New project

	5.3 Model transformations
	5.3.1 Equipment visualisation
	5.3.2 Constraint graph visualisation
	5.3.3 Constraint analyses

	6 Conclusion
	6.1 Summary
	6.2 Directions for future work
	6.2.1 Disassembly operations
	6.2.2 Language parameterisation
	6.2.3 Language element reuse
	6.2.4 Part/subpart dependencies
	6.2.5 Node (cluster) capacities
	6.2.6 Constraint graph analysis speedup
	6.2.7 Loosely coupled systems
	6.2.8 Optimisation
	6.2.9 Gantt chart visualisation

	References
	Domain model language syntax and validation
	A.1 Material language
	A.2 Equipment language
	A.3 Job language
	A.4 Allocation language

