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1 Introduction 

For a long time, the industry trend was (and to some extent still is) to improve and optimise 
individual systems to their extremes. However, the actual performance of a system does not 
only depend on the system itself, but also on the context in which it operates. System 
performance improvements (throughput, imaging, overlay, etc.) can still be increased by 
looking at the interactions of a system in its context by moving to a systems-of-systems 
performance engineering approach. 
 
The AIMS program considers the performance of automated production systems of systems. 
These are facilities composed of multiple production systems connected via (manual or 
automated) transportations systems. 

1.1 Approach 
In 2023, AIMS has developed a domain-driven methodology to quickly and accurately 
predict the timing behaviour of tightly coupled production systems of systems. In these 
systems, production systems are connected via an automated transport system, e.g. a 
conveyor belt. 
 
The methodology involves a modular domain model for the specification of the (tightly 
coupled) production system-of-systems and the work that is to be executed by it. This 
domain model involves four domain-specific languages, which are organised according to 
the Y-chart pattern [1]: 
 The Material language specifies the materials to be handled by a production system and 

the operations that can be performed on these materials. 
 The Equipment language describes the topology of a production system in terms of the 

processing stations and their connections. 
− Per station, the Equipment language specifies which operations it can perform and 

how much time is needed for the preparation and execution of these operations. 
− Per connection, the Equipment language specifies the transportation duration. 

 The Job language specifies the batch of work to be performed by the production system 
in terms of products and their (sub)parts. 

 The Allocation language specifies how the work is assigned to the available processing 
stations and the order in which the work is to be executed. 

 
The specification of the production system and the work to be performed can automatically 
be translated into a constraint graph. This is graph-based analysis model, which specifies the 
relative timing constraints between events, and which can be used to predict the timing 
behaviour of the production system, e.g. the duration of the production of a batch of 
products. 

1.2 Outline 
This report is outlined as follows. In Chapter 2, the domain model to specify production 
systems-of-systems and their jobs is described using an illustrative example production 
system. Chapters 3 and 4 describe transformations from domain model instances to 
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constraint graph models and the corresponding constraint graph analyses. Chapter 5 
describes how the tooling realising the domain model can be installed and used. A summary 
of the report and possible directions for future work can be found in Chapter 6. Detailed 
information on the domain model’s languages can be found in Appendix A. 
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2 Domain model 

In this chapter, we present the domain model used to specify (the timing behaviour of) 
manufacturing systems. Such a specification consists of four elements (the green blocks in 
Figure 2.1): 
1. A material model describes the materials that are handled by a production system and 

the operations that can be performed on the materials. 
2. An Equipment model describes the components of the production system and their 

capabilities and connections to other components. The component capabilities are 
described as timing information that is based on a Material model’s materials and 
operations.  

3. A Job model describes the work to be performed in terms of a Material model’s materials 
and operations. 

4. An Allocation model describes the assignment of the work specified in a Job model onto 
the components described in an Equipment model. This includes the order in which work 
is to be performed. 

 
A full specification is used to generate a constraint model for timing prediction (see Figure 
2.1). This generation is explained in Chapter 3. 
 

 
Figure 2.1: Production system domain model 

To illustrate the domain modelling approach, we use a running example. This example is 
presented in Section 2.1. In Sections 2.2, 2.3, 2.4 and 2.5, we present the four elements of 
the specification of the running example. Details on the underlying syntax of the domain 
model’s languages and the additional validation rules can be found in Appendix A. 

2.1 Running example 
The running example used to illustrate the domain model is a fictitious printer consisting of 
an input unit, a printer unit and a stapler unit. This fictitious printer is depicted in Figure 2.2. 
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 The input unit has two input trays, which are connected via a switch to the printer unit. 
 The printer unit has a printer station which is capable of printing sheets on the fly, i.e. the 

sheets are printed as they travel through the printer. 
 The stapler unit has a buffer where sheets to be stapled are collected, a stapler that can 

staple stacks of sheets, and an output tray where stapled stacks of sheets are collected. 
 

 
Figure 2.2: Fictitious modular printer example 

Between the units, there are handover points, which can be used for modular timing 
analysis. This is explained in Chapter 4. Such an analysis may be particularly useful if 
modules are developed by different manufacturers. 

2.2 Material model 
A Material model consists of three elements, all specified in a single file with a .machine 
extension: 
1. A specification of the material types, 
2. A specification of the material instances, and 
3. A specification of the operations on the materials. 
 
These elements are described in more detail in Sections 2.2.1, 2.2.2 and 2.2.3. 

2.2.1 Material types 
Material types represent classes of similar materials. We distinguish basic and composed 
material types. The composed material types represent aggregates of other material types. 
The basic material types cannot be decomposed. 
 
Figure 2.3 contains the material types for the running example. The purple text represents 
the keywords of the language. The black text is instance specific; these may involve user-
defined names/properties (e.g. the first occurrence of the word sheet is the user-defined 
name of the material) or references to user-defined names (e.g. the second occurrence of 
the word sheet refers to the first occurrence). This material model specifies that the running 
example distinguishes two material types: the material type sheet is a basic material, and 
the material type stack is a composed material type containing sheets. Note that we do not 
distinguish between unstapled and stapled stacks of sheets.1 
 
 
_______ 
1 The constraint graph generation and analysis explained in Chapters 3 and 4 do not use material composition; this 

may be used for future validation of specifications. 
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basic material type sheet 
 
composite material type stack composed of sheet 

Figure 2.3: Material types 

2.2.2 Material instances 
The material instances of a Material specification involve instances of material types. Like for 
the material types, we distinguish basic and composed material instances. Composed 
materials are assumed to be homogeneous, i.e. they consist of one material.1 
 
Figure 2.4 specifies the materials of the running example. These are instances of the 
material types introduced in Section 2.2.1. We distinguish two instances of sheets, A4 sheets 
and A3 sheets. Moreover, the materials of the running example include two composite 
materials: stacks of both instances of sheets. This results in a total of four material 
instances. The specification in Figure 2.4 also shows the dimensions of the different 
materials.2 
 
basic material A4 type sheet 
dimensions 
 length = 0.297 m 
 width = 0.210 m 
 
basic material A3 type sheet 
dimensions 
 length = 0.297 m 
 width = 0.420 m 
 
composite material stackA4 type stack composed of A4 
dimensions 
 length = 0.297 m 
 width = 0.210 m 
 
composite material stackA3 type stack composed of A3 
dimensions 
 length = 0.297 m 
 width = 0.420 m 

Figure 2.4: Materials 

2.2.3 Operations 
The last part of the Material specification describes the operations that can be performed on 
the specified material types and the corresponding material instances. 
 
Figure 2.5 shows that the running example has two sheet operations, releaseSheet and 
collectSheet, and three stack operations, releaseStack, stapleStack and collectStack. It is 
assumed that operations do not change the material: e.g. a stapled stack is also stack. 
 
 
 
_______ 
2 The constraint graph generation and analysis explained in Chapters 3 and 4 do not use material dimensions; these 

may be relevant for more refined timing analyses.  
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sheet operation releaseSheet 
 
sheet operation collectSheet 
 
stack operation releaseStack 
 
stack operation stapleStack 
 
stack operation collectStack 

Figure 2.5: Material operations 

2.3 Equipment model 
An Equipment model describes the components of the fictitious printer. An Equipment 
model consists of three parts, all specified in a single file: 
1. The nodes in the equipment and their capabilities, 
2. The segments connecting the equipment nodes, and 
3. Common paths through the equipment. 

2.3.1 Nodes 
The nodes in an Equipment model correspond the locations that material visits and where 
operations are performed. The equipment nodes of the running example are shown in 
Figure 2.6. The domain model distinguishes three types of nodes: input nodes, output 
nodes, and internal nodes. This example only includes internal nodes. The nodes in the 
model correspond one-to-one to the nodes visualised in Figure 2.2. If one would like to 
model the fictitious printer’s units separately, then the handover nodes between them 
would become input nodes of the upstream unit(s) and output nodes of the downstream 
unit(s). This is explained in Chapter 4. 
 
An equipment node can support multiple operations. The Equipment model specifies these 
operations; the keyword operation is used for this. The duration of the operation is specified 
for all relevant material instances. As performing an operation may require some 
preparation, the operation’s recovery and setup times are also specified using the keyword 
setup. Note that these recovery and setup times may depend on the previous material 
instance and the current material instance. To define the state of a node’s operation, the 
time and material instance of the last completion of an operation can be specified using the 
keyword committed. 
 
Beside preparation for node operations, an equipment node may also need to prepare to 
receive a certain material. This is also specified using the setup keyword, but now used 
within the scope of an equipment node. An Equipment model specifies how much time an 
equipment node needs to change from one material instance to another. This duration is 
the minimum time between one piece of material leaving the node and another arriving at 
the node.  
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equipment RunningExample 
 
node inTray1 type internal 
 operation releaseSheet 
  material A4 duration 0.5 s 
   after A4 setup 0.5 s 
   after A3 setup 60.0 s 
  material A3 duration 1.0 s 
   after A4 setup 60.0 s 
   after A3 setup 1.0 s 
 
node inTray2 type internal 
 operation releaseSheet 
  material A4 duration 0.5 s 
   after A4 setup 0.5 s 
   after A3 setup 60.0 s 
  material A3 duration 1.0 s 
   after A4 setup 0.5 s 
   after A3 setup 60.0 s 
 
node traySwitch type internal 
 
node handover1 type internal 
 
node handover2 type internal 
   
node printer type internal 
 setup 
  material A4 
   after A4 setup 0.5 s 
   after A3 setup 0.5 s 
  material A3 
   after A4 setup 0.5 s 
   after A3 setup 0.5 s 
 
node sheetBuffer type internal 
 setup 
  material A4 
   after A4 setup 0.5 s 
   after A3 setup 60.0 s 
   after stackA4 setup 0.5 s 
   after stackA3 setup 60.0 s 
  material A3 
   after A4 setup 60.0 s 
   after A3 setup 0.5 s 
   after stackA4 setup 60.0 s 
   after stackA3 setup 0.5 s 
 
 operation collectSheet 
  material A4 duration 0.5 s 
   after A4 setup 0.5 s 
   after A3 setup 1.0 s 
  material A3 duration 1.0 s 
   after A4 setup 1.0 s 
   after A3 setup 0.5 s 
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 operation releaseStack 
  material stackA4 duration 0.5 s 
   after stackA4 setup 0.5 s 
   after stackA3 setup 1.0 s 
  material stackA3 duration 1.0 s 
   after stackA4 setup 1.0 s 
   after stackA3 setup 0.5 s 
 
node stapler type internal 
 operation stapleStack 
  committed stackA4 finish time 0.0 s 
  material stackA4 duration 0.5 s 
   after stackA4 setup 0.5 s 
   after stackA3 setup 1.0 s 
  material stackA3 duration 0.5 s 
   after stackA4 setup 1.0 s 
   after stackA3 setup 0.5 s 
 
node outTray type internal 
 operation collectStack 
  material stackA4 duration 0.5 s 
   after stackA4 setup 0.5 s 
   after stackA3 setup 1.0 s 
  material stackA3 duration 1.0 s 
   after stackA4 setup 1.0 s 
   after stackA3 setup 0.5 s 

Figure 2.6: Equipment nodes 

2.3.2 Segments 
The segments of an Equipment model describe the connections between equipment nodes. 
Figure 2.7 specifies the running example’s segments using the keyword segment. We 
assume that two nodes are connected by at most one segment. For each segment, an 
Equipment model defines the segment’s source and target node(s) and the transport 
duration of the segment. We assume that a segment’s transport duration is independent 
of the material instance being transported. 
 
The example system in Figure 2.2 involves a switch, which can alternate between the input 
trays. Switches are modelled with multiple source nodes and/or multiple target nodes. A 
switch represents multiple source-to-target paths, of which only one may be active. The 
time needed to switch between these paths is defined using the switch time keywords. We 
assume that the switch duration is independent of the switch’s position. Moreover, we 
assume that switching happens when the switch is not occupied, i.e. all materials have left 
the switch.  
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segment traySwitch 
source inTray1 inTray2 
target traySwitch 
duration 1.0 s 
switch time 1.0 s 
 
segment traySwitch_handover1 
source traySwitch 
target handover1 
duration 1.0 s 
 
segment handover1_printer 
source handover1 
target printer 
duration 2.0 s 
 
segment printer_handover2 
source printer 
target handover2 
duration 2.0 s 
 
segment handover2_sheetBuffer 
source handover2 
target sheetBuffer 
duration 2.0 s 
 
segment sheetBuffer_stapler 
source sheetBuffer 
target stapler 
duration 1.0 s 
 
segment stapler_outTray 
source stapler 
target outTray 
duration 1.0 s 

Figure 2.7: Equipment segments 

2.3.3 Paths 
A piece of material that runs through the equipment follows a path, i.e. a sequence of nodes 
connected by segments. We assume that such a path involves a single end-to-end activity, 
which is performed without being interrupted. 
 
Figure 2.8 shows the specification of predefined paths through the equipment including the 
operations that are performed along the path. This example only specifies one operation per 
node on a path, but one can also specify a sequence of operations to be performed at a 
single node.3 
 
 
 
 

_______ 
3 The equipment paths have been introduced for modelling convenience. By defining commonly used paths, the 

Allocation models (see Section 2.5) become more concise. 
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path stackPath 
 sheetBuffer:  releaseStack 
 stapler:    stapleStack 
 outTray:    collectStack 
 
path sheetPath1 
 inTray1:    releaseSheet 
 traySwitch: 
 handover1: 
 printer: 
 handover2: 
 sheetBuffer:  collectSheet 
 
path sheetPath2 
 inTray2:    releaseSheet 
 traySwitch: 
 handover1: 
 printer: 
 handover2: 
 sheetBuffer:  collectSheet  

Figure 2.8: Equipment paths 

2.4 Job model 
The Job model represents the work to be performed (by the equipment). The work is 
specified as a batch of products. Products are composed of parts, which are composed of 
subparts. The subparts are assumed to be atomic job elements. This means they are to be 
executed without interruption. 
 
We assume that products are independent of each other. This means that they can be 
created in any order. On the other hand, we assume that the order of the parts and subparts 
in a specification is fixed. The specified order of the parts and subparts can be seen as a 
recipe to create the product. 
 
Figure 2.9 specifies a Job model for the running example. It specifies two products, both 
consisting of two parts. For each part, the Job model specifies its subparts.4 The first part of 
both products involves creating a stack of two (printed) sheets, the second part involves 
stapling this stack and collecting it. The only difference between the products is the involved 
material instance. The first product is created from (stacks of) A4 sheets, the second from 
(stacks of) A3 sheets.  
 
 
 
 
 
 
 
 
 
 
 
_______ 
4 Note that the Job language does not have a subpart keyword. 
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batch RunningExample 
 
product leafletA4 
 part A4 sheets 
  A4 sheetA4_1: releaseSheet collectSheet 
  A4 sheetA4_2: releaseSheet collectSheet 
 part stackA4 leaflet 
  stackA4 stack1: releaseStack stapleStack collectStack 
   
product leafletA3 
 part A3 sheets 
  A3 sheetA3_1: releaseSheet collectSheet 
  A3 sheetA3_2: releaseSheet collectSheet 
 part stackA3 leaflet 
  stackA3 stack1: releaseStack stapleStack collectStack 

Figure 2.9: Job model 

2.5 Allocation model 
An Allocation model assigns the work defined in a Job model to the nodes and segments 
specified in an Equipment model. The Allocation model is based on the Equipment model’s 
path. Per subpart, it specifies which path through the equipment is to be followed including 
which operations are to be performed. 
 
Figure 2.10 shows the Allocation model for the running example. The first leaflet uses 
sheets from the first input tray and the second leaflet takes sheets from the second input 
tray. The sheets are collected in the stapler unit’s sheet buffer. From the sheet buffer, the 
collected sheets are handled as stacks; they are released from the sheet buffer, stapled at 
the stapling station, and collected at the output tray. 
 
batch RunningExample 
equipment RunningExample 
 
product leafletA4 
 part sheets 
  sheetA4_1 path sheetPath1 
  sheetA4_2 path sheetPath1 
 part leaflet 
  stack1 path stackPath 
   
 
product leafletA3 
 part sheets 
  sheetA3_1 path sheetPath2 
  sheetA3_2 path sheetPath2 
 part leaflet 
  stack1 path stackPath 

Figure 2.10: Allocation model 

In the running example, two sheets of A4 paper become a leaflet and two sheets of A3 
paper become a leaflet. It is the specifier’s responsibility that the paths followed by the 
materials matches this intention. The syntax and validation rules (see Appendix A) do not 
check whether the paths of the elements of a composite material, i.e. the individual sheets 
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in the running example, end at the same equipment node as where the path of the 
composite, i.e. a stack of sheets in the running example, starts. This is one of the possible 
extensions discussed in Chapter 6. 

2.6 Summary 
In this chapter, we have introduced the four elements of the manufacturing domain model 
using an illustrative running example. With the languages, we have described the underlying 
assumptions: 
 Material language assumptions 

− Composed materials are homogeneous, i.e. they consist of one material. 
− Material operations do not change the material. 

 Equipment language assumptions 
− Two nodes are connected by at most one segment. 
− A segment’s transport duration is independent of the material being transported. 
− The switch duration of a switch segment is independent of the switch’s position. 
− A switch may change position when it is not occupied, i.e. all materials have left the 

switch. 
 Job language assumptions 

− The subparts of a Job specification are atomic job elements. 
− An equipment path involves a single activity, which is performed without being 

interrupted. 
− Products in a Job specification are independent of each other. 
− The order of the parts and subparts in a Job specification is fixed. 

 
Most of these assumptions are used in the generation of analysis models, which is explained 
in Chapters 3 and 4. Some are there because of modelling convenience. More details on the 
languages’ syntax and validation rules are described in Appendix A. 
 



 

 

 TNO Public  TNO 2023 R12451 

 TNO Public 17/41 

3 Monolithic constraint 
graph analysis 

In Chapter 2, we have described the four languages to specify a production system. This 
chapter describes the generation of constraint graphs, which can be used to accurately 
predict the latency of work allocated to a production system. Section 3.1 introduces the 
constraint graph formalism. Section 3.2 describes the constraint graph generation using the 
running example introduced in Chapter 2. Section 3.3 describes how the constraint graphs 
can be used to predict the latency of allocated work. 

3.1 Constraint graphs 
Elmaghraby and Kamburowski [2] consider the analysis of generalised precedence relations. 
To describe these, they use graphs, which we call constraint graphs. Constraint graphs are 
constraint models containing relative timing constraints. A constraint graph is a directed 
graph 𝐺𝐺 = (𝑉𝑉, 𝐴𝐴) with a collection of nodes 𝑉𝑉 and a collection of arcs 𝐴𝐴 ⊆ 𝑉𝑉 × 𝑉𝑉. The nodes in 
𝑉𝑉 represent events to be scheduled and the arcs in 𝐴𝐴 represent the timing constraints 
between the events. 
 
The timing constraints are described by a function Δ: 𝐴𝐴 → ℝ. An arc 𝑎𝑎 = (𝑛𝑛1, 𝑛𝑛2) from node 𝑛𝑛1 
to node 𝑛𝑛2 specifies that event 𝑛𝑛2 should follow at least Δ(𝑛𝑛1, 𝑛𝑛2) time units after event 𝑛𝑛1. 
The timing constraint defines a release time for event 𝑛𝑛2. Note that the timing constraints 
are not limited to positive numbers; an arc 𝑎𝑎 = (𝑛𝑛1, 𝑛𝑛2) with a negative Δ(𝑛𝑛1, 𝑛𝑛2) specifies a 
due time for event 𝑛𝑛1: it must happen at most −Δ(𝑛𝑛1, 𝑛𝑛2) time units before event 𝑛𝑛2. 
 
The goal of scheduling is finding a function T: 𝑉𝑉 → ℝ that assigns an occurrence time to all 
events and that satisfies all timing constraints specified by a constraint graph’s arcs. 
Typically, one wants to minimise the makespan or latency of a schedule, i.e. max

𝑛𝑛∈ 𝑉𝑉
𝑇𝑇(𝑛𝑛). 

 
Note that one can create constraint graphs for which no feasible schedule exists. This is 
when the constraint graph contains a positive cycle, i.e. a cyclic path whose summed arc 
weights is positive. The simplest example is shown in Figure 3.1; it involves a graph with two 
nodes 𝑛𝑛1 and 𝑛𝑛2 and arcs 𝑎𝑎1 = (𝑛𝑛1, 𝑛𝑛2) and 𝑎𝑎2 = (𝑛𝑛2, 𝑛𝑛1) with weights Δ(𝑎𝑎1) = 2 and Δ(𝑎𝑎1) =
−1. In a feasible schedule for this graph, 𝑇𝑇(𝑛𝑛2) ≥ 𝑇𝑇(𝑛𝑛1) + Δ(𝑎𝑎1) ≥ 𝑇𝑇(𝑛𝑛2) + Δ(𝑎𝑎1) + Δ(𝑎𝑎2) =
𝑇𝑇(𝑛𝑛2) + 1, which is impossible. 
 

 
Figure 3.1: Infeasible constraint graph 

3.2 Constraint graph generation 
From a specification in our domain model, we can generate constraint graphs as introduced 
in Section 3.1. 

n1 n2
2

-1
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The constraint graph that is generated from the running example introduced in Chapter 2 is 
shown in Figure 3.2. The nodes in this graph represent an event at an equipment node. 
There are three types of event nodes: 
 Start nodes represent the start of a path of a piece of material. 
 Arrival nodes represent the arrival of a piece of material at an equipment node.  
 Operation nodes represent the completion of an operation of a piece of material at an 

equipment node. 
 
The arcs in the generated constraint graph have a matrix shaped: 
 Vertical paths represent the material view: the vertical paths are those that pieces of 

material follow through the equipment. 
 Horizontal paths represent the equipment view: they contain arrivals and operations at 

one equipment node. 
There are several types of arcs in the generated constraint graph. In Figure 3.2, they are 
distinguished by colour. 
 
The black arcs between the event nodes represent the paths of a piece of material as 
specified in the Allocation model. One can see that one such path consists of sequences of 
groups consisting of one arrival node followed by zero or more operation nodes. Note that 
all the arcs on such a path are bidirectional, with a weight equalling either a segment’s 
travel duration or an operation’s duration. Bidirectional arcs indicate that the time between 
the connected events must equal exactly the weight of the arc.5 This means that an arrival 
or the end of an operation coincides with the start of the next operation.6 
 
The blue arcs in the constraint graph represent operation recovery and setup. These 
horizontal arcs are unidirectional, and their weights equal the minimum time between two 
consecutive completions of the same operation. Note that the weights of these arcs include 
the setup time between the first and the second operation and the duration of the second 
operation.7 Both depend on the involved material instances as one can see in the Equipment 
model. 
 
The orange arcs in the constraint graph represent the setup times for arrival of a piece of 
material at an equipment node. The orange arcs start at the last event for one piece of 
material at an equipment node to the first event for the next piece of material at the same 
equipment node. These constraint graph source nodes are arrival nodes, if there are no 
operation nodes, otherwise they are operation nodes. These constraint graph target nodes 
are either arrival nodes or start nodes. 
 
The yellow arcs in the constraint graph represent constraints between consecutive events at 
an equipment node. The yellow arcs involve constraints between the end of the path of one 
piece of material and the start of the path of another piece of material. These are only 
included in the constraint graph if the one ends at the equipment node where the other 
path starts. In the example in Figure 3.2, the yellow arcs represent the aggregation of 
individual sheets into a stack of sheets. 
 

_______ 
5 A bidirectional arc is a shorthand for two unidirectional arcs, one with a positive weight and one with a negative 

weight, equal to the weight of the bidirectional arc. 
6 This is the reason why we decided not to include events for the starts of operations. 
7 This could have been captured differently by using diagonal arcs to the start of the operation. This would create a 

multi-graph, i.e. a graph in which two nodes are connected by more than one arc. 
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The grey arcs in the constraint graph represent the delay from changing the position of a 
switch. There is one such arc in Figure 3.2, which represents switching from the first to the 
second input tray between the leaflets. 



 

 

 TNO Public  TNO 2023 R12451 

 TNO Public 20/41 

 
Figure 3.2: Constraint graph for running example 
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The creation of a constraint graph like the one in Figure 3.2, applies several rules. Every type 
of arc, indicated by the arc colours in Figure 3.2, has its own rule. These rules are based on 
the following assumptions: 
 The durations of operations and transportation are constant. 
 An equipment node can handle at most one piece of material at a time. 
 Pieces of material do not overtake each other. 
 The timing of an operation on a piece of material does not depend on future pieces of 

material. 
 
The last assumption makes that generated constraint graphs do not contain arcs leading 
“from right to left”: arcs follow the sequence of the pieces of material as specified in the 
Allocation model. 
 
Other assumptions influencing the constraint graph generation are mentioned as underlined 
text in the explanation of the domain model’s languages in Chapter 2. 

3.3 Constraint graph analysis 
In Section 3.2, we have illustrated how one can create a constraint graph from a domain 
model instance. This section explains how constraint graphs can be used for timing analysis. 
 
A constraint graph contains relative timing constraints between events. To use a constraint 
graph for timing prediction or for optimisation, absolute timing information is needed as 
well. For this, an additional node is added to the constraint graph, the zero node. This node 
represents an event at the absolute time zero, which occurs before all events in the 
constraint graph. Zero-weight arcs are added between the zero node and all nodes that 
correspond to the start events of all pieces of material. 
 
In the resulting constraint graph, the duration of the longest path from the zero node to an 
event in the constraint graph equals the earliest time at which this event can occur. From a 
constraint graph as the one shown in Figure 3.2, a schedule is created by computing the 
longest path tree from the zero node using the Bellman-Ford algorithm [3].8 
 

_______ 
8 The Bellman-Ford algorithm is a single-source shortest path algorithm, which can compute longest paths by 

changing the sign of all arc weights. 
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4 Modular constraint graph 
analysis 

In Chapter 3, we have considered the generation of one monolithic constraint graph and 
using that graph to create a schedule. Constraint graphs quickly become very large. As the 
Bellman-Ford algorithm is a quadratic algorithm [3], the running times of constraint graph 
analysis does not scale.  
 
In this chapter, we extend the constraint graph generation and analysis in two manners. 
They are meant to make constraint graph analysis more flexible and more scalable: 
1. Incremental analysis: When scheduling, not all work to be scheduled is known upfront. 

This means that one must perform constraint graph analysis multiple times. This can be 
achieved by a domain model specification that grows over time, but this is bad for 
scalability. We present an incremental method that keeps the constraint graph small. 

2. Modular analysis: The running example introduced in Chapter 2 was a product line 
consisting of three units. Instead of generating a single constraint graph for the whole 
production line, one can also generate and analyse a constraint graph per unit and 
combine the analysis outputs. This reduces the constraint graph size and makes the 
method more scalable. 

 
The extensions of the domain model for incremental and modular analysis are explained in 
Section 4.1. The updated constraint graph generation is explained in Section 4.2. Section 4.3 
explains the updated constraint graph analysis. 

4.1 Domain model 
In Chapter 2, we have used a monolithic production line as a running example. In this 
section, we show the domain model’s language concepts to describe incremental and 
modular scheduling and timing prediction. Section 4.1.1 explains the modular analysis using 
the running example. Section 4.1.2 and 4.1.3 explains the concepts of the Equipment 
language and the Allocation language needed to facilitate modular timing analysis. 

4.1.1 Running example 
We assume a single controller that is responsible for deploying work in a production system.  
In the running example introduced in Chapter 2, the input unit is responsible for the 
deployment: it decides when sheets are released from the input trays. Figure 4.1 shows the 
running example with the corresponding information flows. There is a flow of scheduling 
decisions downstream, i.e. from the input unit to the printer unit, and from the printer unit to 
the stapler unit. These decisions specify the times at which events occur. 
 
Figure 4.1 also shows an upstream information flow: the timing constraints of the stapler 
unit are communicated to the printer unit, and those of the printer unit are communicated 
to the input unit.  
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Figure 4.1: Running example with information flows 

To communicate (scheduling) decisions downstream, we need concepts to fix event timings. 
These concepts are introduced in the Equipment model; these concepts are explained in 
Section 4.1.2. To communicate timing constraints upstream, we need additional concepts in 
the Allocation model. These concepts are explained in Section 4.1.3. 
 
The Material and Job model do not require additional concepts for modular and incremental 
constraint graph analysis. The Material and Job language concepts as introduced in Chapter 
2 are sufficient. 

4.1.2 Equipment model 
The Equipment model as introduced in Chapter 2 specified the timing constraints of pieces 
of equipment with respect to arrivals of pieces of material and operations on pieces of 
material. The Equipment model example did specify the state of the equipment based on 
what the equipment has done in the past. To define the state of a node with respect to the 
last handled material, the time and material of the last node departure can be specified 
using the keyword committed. 
 
An example of the keyword committed is shown in Figure 4.2, which shows the specification 
of the stapler node of the stapler unit in Figure 4.1. The third line in Figure 4.2 specifies that 
the last stapling operation of the stapler node involved the material stackA4 and finished at 
time 12.0, i.e. 12 seconds after the zero node event. 
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node stapler type internal 
 operation stapleStack 
  committed stackA4 finish time 12.0 s 
  material stackA4 duration 0.5 s 
   after stackA4 setup 0.5 s 
   after stackA3 setup 1.0 s 
  material stackA3 duration 0.5 s 
   after stackA4 setup 1.0 s 
   after stackA3 setup 0.5 s 

Figure 4.2: Node specification with committed work 

What the example does not show is that the keyword committed can also be used to specify 
the material instance that last left the node and the time at which this material instance has 
left. Furthermore, the keyword state is used to specify the initial position of a switch. An 
example for the input unit is shown in Figure 4.3. 
 
segment inTray_traySwitch 
source inTray1 inTray2 
target traySwitch 
duration 1.0 s 
switch time 1.0 s 
state inTray1-traySwitch 

Figure 4.3: Switch node specification 

To allow modular constraint graph analysis, we create domain model specifications per unit. 
For this, we need to define the boundaries of the unit. These boundaries are represented by 
nodes that are shared by neighbouring units. An example for the stapler unit is shown in 
Figure 4.4. The keyword input indicates that node handover2 is an input for the stapler unit. 
It is also an output of the printer unit. To specify outputs, the keyword output is used. 
 
node handover2 type input 

Figure 4.4: Input node specification 

4.1.3 Allocation model 
To communicate timing constraints upstream, the Allocation model needs additional 
concepts. These concepts specify the constraints from downstream units. This is done using 
timing constraints for the arrival of pieces of material at output nodes, which are input 
nodes of downstream units. 
 
An example of such timing constraints is shown in Figure 4.5. Some constraints are between 
arrivals at consecutive pieces of material, e.g. the constraint between the arrivals of 
sheetA4_1 and sheetA4_2. Others are between non-consecutive nodes, e.g. the constraint 
between the arrivals of sheetA4_1 and sheetA3_1. 
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between sheetA4_1 @ handover2 and sheetA4_2 @ handover2 delay 1.0 s 
between sheetA4_1 @ handover2 and sheetA3_1 @ handover2 delay 62.0 s 
between sheetA4_1 @ handover2 and sheetA3_2 @ handover2 delay 63.5 s 
between sheetA4_2 @ handover2 and sheetA3_1 @ handover2 delay 61.0 s 
between sheetA4_2 @ handover2 and sheetA3_2 @ handover2 delay 62.5 s 
between sheetA3_1 @ handover2 and sheetA3_2 @ handover2 delay 1.5 s 

Figure 4.5: Output node constraint specification 

4.2 Constraint graph generation 
From a modular specification as introduced in Section 4.1, we also generate constraint 
graphs. The generated modular constraint graphs are similar to the generated monolithic 
constraint graphs as explained in Chapter 3. Figure 4.6 shows the generated constraint 
graph for the stapler unit of the running example.  

 

 
Figure 4.6: Generated modular constraint graph 
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The modular constraint graph structure differs from the monolithic constraint graphs in 
several ways: 
 There is a (blue) zero node, which represents an event occurring at time zero. 
 There are (yellow) unidirectional arcs from the zero node to every start node of a subpart 

path. These arcs have weight zero. 
 There are (blue) nodes representing the events that having been committed. 
 There are (black) bidirectional arcs between the zero node and the committed event 

nodes. The weights of these arcs equal the times at which the events occur. 
 There are (blue) unidirectional arcs from the committed event nodes to the first 

uncommitted arrival and operation nodes. The weight of these arcs is calculated in the 
same way as the weights between uncommitted operation and arrival events. 

 
Note that the example in Figure 4.6 does not include any committed arrival event nodes 
and the corresponding arcs to uncommitted arrival nodes. 

4.3 Constraint graph analysis 
Using a constraint graph as explained in Section 4.2, we can create a schedule by computing 
the longest paths from the zero node to all events in the constraint graph. This is identical to 
the (monolithic) analysis explained in Chapter 3. 
 
The modular analysis that we aim for involves computing the constraints between the input 
nodes of a constraint graph. These are the red nodes in the constraint graph in Figure 4.6. 
These are computed by applying the Bellman-Ford algorithm [3] for the zero node and every 
input node. The result is a matrix containing the lengths of the longest paths between all 
pairs of input nodes. The matrix for the constraint graph in Figure 4.6 is shown in Table 4.1. 

Table 4.1: Longest paths lengths between input nodes 

 Zero Sheet 1.1 Sheet 1.2 Sheet 2.1 Sheet 2.2 
Zero 0.0 8.5 9.5 70.5 72.0 
Sheet 1.1 -∞ 0.0 1.0 62.0 63.5 
Sheet 1.2 -∞ -∞ 0.0 61.0 62.5 
Sheet 2.1 -∞ -∞ -∞ 0.0 1.5 
Sheet 2.2 -∞ -∞ -∞ -∞ 0 

 
The cells of the table contain the minimum duration between arrival events at the input 
node. For example, the delay between the second sheet of the first leaflet and the first sheet 
of the second leaflet is at least 61 seconds. This long delay is because of the setup time 
needed between A4 sheets and A3 sheets. 
 
The value -∞ indicates that there is no constraint between two events. Table 4.1 confirms 
that a sheet’s arrival timing does not depend on future sheets’ arrivals: all values below the 
matrix’ diagonal equal -∞. 
 
This analysis collapses all constraints in a constraint graph into the constraints between its 
input nodes. The input nodes of one unit are the output nodes of another unit. The 
constraints between these output nodes can be included in the constraint graph for the 
upstream unit. An example of this inclusion is shown using the Allocation language in Figure 
4.5. Note that the timing of Figure 4.5 corresponds to that in Table 4.1. 
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5 Domain model usage 

This chapter describes how to get started with the domain model. Section 5.1 describes the 
installation needed to get started. Section 5.2 describes the actions needed before one can 
start modelling and the actual modelling. Section 5.3 explains the model transformations 
that are performed when creating a domain model instance. 

5.1 Installation 
This section describes the steps needed to install the software needed. Section 5.1.1 explains 
how to clone the GitLab environment of the domain model. Section 5.1.2 describes how to 
install the software needed to obtain a working environment. Section 5.1.3 explains how to 
prepare the working environment for modelling. 

5.1.1 Repository 
Clone the repository https://ci.tno.nl/gitlab/aims1/aims-production-line-domain-model.git in 
a folder of choice, e.g. using TortoiseGit.9 

5.1.2 Installation 
The following steps are to be taken to install the software needed to set up a working 
environment: 
 Download and install the latest Java 17 version from https://adoptium.net/. 
 Download Eclipse IDE for Java and DSL developers version 2023-09 from 

https://www.eclipse.org/downloads/packages/ and unzip it in a folder of choice.10 
 Download and install GraphViz from https://graphviz.org/ or download and install 

Microsoft Visual Studio Code from https://code.visualstudio.com/ and install its Graphviz 
(dot) language support for Visual Studio Code plugin. 

 Download JGraphT from http://prdownloads.sourceforge.net/jgrapht/jgrapht-
1.5.2.zip?download. Copy the jar files in this zip file to the 
Languages/nl.tno.esi.aims.allocation/lib folder in the cloned repository. 

5.1.3 First use 
To create a working environment, one needs to generate Java classes from the Xtext 
syntaxes of the domain model. This involves the following steps: 
 Start Eclipse by double clicking the eclipse.exe executable in the folder where you 

unzipped the Eclipse IDE. 
 When asked, specify a workspace folder; next select "Launch". 
 From the menu bar, select "File -> Import...". The "Import Dialog" opens. 
 Select "General -> Existing Projects into Workspace" and click "Next". 
 Click the "Browse..." button and select the folder "Languages" in the cloned repository 

and press "OK". 
 Click the "Select All" button and select "Finish". 

_______ 
9 TortoiseGit can be downloaded from https://tortoisesvn.net/. 
10 A later version of the Eclipse IDE will probably also work. 

https://ci.tno.nl/gitlab/aims1/aims-production-line-domain-model.git
https://adoptium.net/
https://www.eclipse.org/downloads/packages/
https://graphviz.org/
https://code.visualstudio.com/
http://prdownloads.sourceforge.net/jgrapht/jgrapht-1.5.2.zip?download
http://prdownloads.sourceforge.net/jgrapht/jgrapht-1.5.2.zip?download
https://tortoisesvn.net/
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 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.material -> src -> 
nl.tno.esi.aims.material".  

 Right-click "material.mwe2" and select "Run As -> MWE2 Workflow". Messages stating 
that the project contains errors may be ignored. 

 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.equipment -> src -> 
nl.tno.esi.aims.equipment".  

 Right-click "equipment.mwe2" and select "Run As -> MWE2 Workflow". Messages stating 
that the project contains errors may be ignored. 

 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.job -> src -> 
nl.tno.esi.aims.job" 

 Right-click "job.mwe2" and select "Run As -> MWE2 Workflow". Messages stating that the 
project contains errors may be ignored. 

 In the Eclipse package explorer, navigate to "nl.tno.esi.aims.allocation -> src -> 
nl.tno.esi.aims.allocation". 

 Right-click "allocation.mwe2" and select "Run As -> MWE2 Workflow". Messages stating 
that the project contains errors may be ignored. After this step, the project should not 
have any errors anymore. 

 In the Eclipse main menu select "Run -> Run Configurations...". The "Run Configurations" 
dialog opens. 

 In the list on the left, right-click "Eclipse Application" and select "New". 
 In the "name" text box type a name for this configuration. 
 Click the "Apply" button. 
 Click the "Close" button. 

5.2 Modelling 
This section explains how one can create instances of the domain model. Section 5.2.1 
explains how to open the modelling environment. Section 5.2.2 describes how to import 
existing project into the Eclipse modelling environment. Section 5.2.3 explains how to create 
a new project and how the create language instances within the project.  

5.2.1 Starting 
The following steps should be taken to start the modelling environment: 
 From the Eclipse menu bar select "Run -> Run Configurations..."; the "Run Configurations" 

dialog opens. 
 Select the run configuration that you created in section “Run configuration”. 
 Click the "Run" button. 

 
After the steps, one can import and adopt existing projects (see Section 5.2.2) and create 
new projects (see Section 5.2.3). 

5.2.2 Existing project 
To import existing modelling projects into the modelling environment, the following steps 
can be taken: 
 From the Eclipse menu bar, select "File -> Import...". The "Import dialog" opens. 
 Select the "General -> Existing Projects into Workspace" import wizard and click "Next". 
 Click the "Browse..." button and select the folder "Instances" in the cloned repository and 

click "OK". 
 Click "Select All". 
 Click "Finish". 
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After these steps, the project is visible in the project explorer. One can adapt the language 
instances in the imported projects by double-clicking on the relevant file and making 
changes in the text editor that will open. 

5.2.3 New project 
To create a new project with a domain model instance, one should perform the following 
actions: 
 From the menu-bar select "File -> New -> Project...". The "New Project" dialog opens. 
 Under "Wizards" select "General -> Project" and click "Next". 
 In the "Project name" text box enter the name for your project. 
 Click the "Finish" button. 

 
The following steps are used to create a language instance in the newly created project. 
These must be repeated for every file. 
 Right-click the newly created project folder and select "New -> File...". The "New File" 

dialog opens. 
 In the "File name" text box enter a file name with an extension dependent on which kind 

of model you want to make, either .material, .equipment, .job or .allocation. 
 Click the "Finish" button. If the "Configure Xtext" dialog pops up, click the "yes" button. 
 Edit the newly created file in the text editor and save the file afterwards. 

 
Editing a language instance file may trigger one or more model transformations. These are 
explained in Section 5.3. 

5.3 Model transformations 
After saving a (valid) language instance, one may automatically trigger one or more 
transformations from the language instance to another format. These transformations are 
explained in this section. Section 5.3.1 explains the generation of a visual representation of 
an Equipment model. Section 5.3.2 explains the generation of a visual representation of a 
constraint graph corresponding to an Allocation model. In Section 5.3.3, we describe the 
different types of constraint graph analyses that are performed on Allocation models and 
their output files. 

5.3.1 Equipment visualisation 
After saving a valid Equipment model, a transformation from the Equipment to a GraphViz 
model is triggered. This transformation shows the nodes and segments of the equipment. 
The nodes are labelled with their name and their type. The segments are labelled with their 
duration, length, and velocity. The equipment visualisation file is generated in the 
corresponding project’s src-gen folder, and it is named <equipment name>.dot, where 
<equipment name> is the name specified in the first line of the Equipment model. 

5.3.2 Constraint graph visualisation 
From a valid Allocation model (including the underlying Material, Equipment and Job 
models), we also create a GraphViz model. This GraphViz model contains a visual 
representation of the constraint graph, which is used for all timing analyses. The constraint 
graph file is called <batch name>_<equipment name>_constraintgraph.dot, where <batch 
name> equals the batch name specified in the Job model and <equipment name> is the 
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name specified in the first line of the Equipment model. The generated constraint graph 
visualisation is placed in the project’s src-gen folder. 

5.3.3 Constraint analyses 
The constraint graph created from a valid Allocation file is used for multiple timing analyses. 
The results of these analyses are written in CSV files in the project’s src-gen. The following 
CSV files are written: 
 File <batch name>_<equipment name>_schedule.csv, where <batch name> equals the 

batch name specified in the Job model and <equipment name> is the name specified in 
the first line of the Equipment model, contains the schedule in which each event occurs 
as early as possible. The timing of the event equals the length of the longest path from 
the constraint graph’s zero node. This schedule is the results of the analysis explained in 
Chapter 3. 

 File <batch name>_<equipment name>_inputpathlength.csv, where <batch name> 
equals the batch name specified in the Job model and <equipment name> is the name 
specified in the first line of the Equipment model, contains the aggregated timing 
constraints between the input nodes of the equipment. This is the outcome of the 
analysis presented in Chapter 4.  
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6 Conclusion 

This chapter provides a summary of this report in Section 6.1 and it lists possible directions 
for future work in Section 6.2. 

6.1 Summary 
In this report, we have described a domain model for the timing behaviour of production 
systems consisting of multiple connected units. The domain model consists of four domain-
specific languages: 
 The Material language specifies the materials to be handled by a production system and 

the operations that can be performed on these materials. 
 The Equipment language describes the topology of a production system in terms of the 

processing stations and their connections. 
 The Job language specifies the batch of work to be performed by the production system 

in terms of products, parts and subparts. 
 The Allocation language specifies how the work is assigned to the available processing 

stations and the order in which the work is to be executed. 
 
The report describes a transformation from instances of the domain model to constraint 
graphs, a constraint model involving relative timing constraints between events. These 
constraint graphs can be used to derive a schedule for the allocated work. Constraint graph 
analysis can also be used for a modular timing analysis: the constraints of one system unit 
are combined into constraints for the arrivals of work at the unit’s inputs and these 
constraints are added to the constraints of the upstream unit as constraints on the arrival at 
the upstream unit’s outputs. 

6.2 Directions for future work 
This section lists some directions to extend (the expressiveness of) the domain model or to 
extend its analysis capabilities beyond the current scheduling/timing prediction. 

6.2.1 Disassembly operations 
The domain model introduced in this report has been applied to several production systems 
covering assembly operations. In the running example, sheets of paper become a leaflet. 
Production systems may also have disassembly operations. For instance, a wooden log may 
be cut into planks and a large sheet of paper may be cut into business cards. A Job model 
(implicitly) assumes that a piece of material does not fundamentally change. This is not true 
for inline disassembly, i.e. disassembly while material is moving: the disassembled pieces of 
material may follow separate paths. The Equipment language’s input and output nodes are 
used to model subpart paths with a moving start or end. A similar principle may be needed 
to capture the start and end of material paths involving inline disassembly. 
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6.2.2 Language parameterisation 
Equipment models may be very verbose. If an equipment node can handle many different 
material instances, the timing of the node’s operations must be specified for each material 
instance separately. Often the timing of an operation depends on the characteristics of the 
material on which the operation is performed. In such cases, operation durations can be 
specified in terms of the parameters of a material type instead of listing the durations for 
each instance of that material type. This could greatly shorten an Equipment model. 
 
Moreover, operations may depend on parameters that are not related to a material 
instance. These could be introduced in the Equipment model to increase expressiveness of 
the domain model. 
 
These types of parameterisation require changes in the Material language and the 
Equipment language. Both the Material and the Equipment language need to be extended 
with user-defined (material or operation) properties and the Equipment language must be 
extended with expressions using these properties. 

6.2.3 Language element reuse 
The Job language is used to specify the operations that need to be performed on pieces of 
material. Such a list must be specified for every subpart separately. Similarly, an Allocation 
model defines a path to each individual subpart. It is however not uncommon that multiple 
subparts of one part require the same operations and even must follow the same path to 
realise a certain production intent. For instance, this holds for the running example 
introduced in Chapter 2. Job and Allocation models would be much shorter if one could 
define the operations and path for a sequence of identical subparts. Job and Allocation 
models can also be shortened by defining several identical products or identical parts at 
once instead defining them individually. 
 
The same applies to Equipment models. Production systems may have multiple instances of 
the same machine. Instead of defining each machine individually, the Equipment language 
could be extended by a machine template which can be instantiated multiple times. 

6.2.4 Part/subpart dependencies 
The Job language defines the work to be executed in terms of operations to be performed 
on subparts. As explained in Chapter 2, the Allocation language does not provide any 
support to check whether an allocation of a job matches a specifier’s intent. To allow such 
checks, this intent should be captured. A first step in this direction would be to define 
dependencies between parts and subparts. For the running example, individual sheets of 
paper are collected and they continue as a stack of sheets. This could be introduced to the 
Job language by specifying the subparts of a composite piece of material. 

6.2.5 Node (cluster) capacities 
The constraint graph generation has several assumptions. These main assumptions are the 
following: 
 There is at most one piece of material being handled at an equipment node. 
 The number of pieces of material that can be stored at an (internal) equipment node is 

unbounded. 
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 There may be multiple pieces of material on an equipment segment, but they do not 
overtake each other. 

 
These assumptions may be very restrictive. There may be equipment nodes that can handle 
multiple pieces of material simultaneously. Moreover, any equipment node has a finite 
storage capacity. These capacities could be added to the Equipment language by 
introducing operation and storage capacities per node. 
 
Adding these capacities will significantly influence the constraint graph construction. For 
instance, an equipment node that can handle two pieces of material simultaneously can be 
modelled by a constraint between an arrival of one piece of material and the arrival of the 
piece of material after the next. This means that constraints are needed between non-
consecutive pieces of material. This also implies that the state of the equipment can no 
longer be captured by the last material leaving/last operation finished: a history of multiple 
arrivals/operations is needed. 

6.2.6 Constraint graph analysis speedup 
Recently, a single source shortest path algorithm has been developed with an expected 
near-linear time computational complexity [4] [5]. Using this algorithm instead of the 
quadratic Bellman-Ford algorithm could greatly improve the scalability of the timing analysis 
using constraint graphs. Whether the new algorithm indeed improves scalability is a topic for 
follow-up research. 

6.2.7 Loosely coupled systems 
Not all equipment in a manufacturing facility is mechanically coupled. Some pieces of 
equipment are decoupled by buffers and manual or AGV-based transportation. With 
changes to the timing specification in the Equipment language, such loosely coupled 
systems can also be described by the domain model. 
 
However, the constraint graph analyses presented in this report are not suited for the full 
facility. Especially, the no-overtake assumption is too restrictive for loosely coupled 
transportation. Instead, one can generate a discrete event simulation (DES) model from a 
specification of a loosely coupled system. 
 
If a production facility consists of a mixture of loosely and tightly coupled systems, a hybrid 
model consisting of a DES model and constraint graph models can be generated. The DES 
model sends material arrival events to the inputs of constraint graph models, and the latter 
send material arrival events at their output node to the DES model. Here the assumption 
that a piece of material can be allocated in a tightly coupled system without having to 
consider future materials is an important strength of the constraint graph analysis. 

6.2.8 Optimisation 
The domain model described in this report consists of four domain-specific languages. The 
analyses presented in Chapters 3 and 4 use instances of all languages to create constraint 
graphs for scheduling/timing prediction of a fully specified scenario. A partial specification 
can be used as a basis for optimisation: 
 Given a specification of the material, the equipment, the job and the allocation, one can 

optimise the order in which products should be allocated. 
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 Given a specification of the material, the equipment, and the job, one can find the 
optimal allocation of products to equipment. This should consider the limitations 
addressed in Section 6.2.4 and preferably have dealt with them before going for this kind 
of optimisation. 

 
Ideally, one would like to generate optimum Job and Allocation specifications from a 
specification of the material and the equipment and a specification of the products to be 
created. This is out of scope for the languages described in Chapter 2; these do not capture 
sufficient information about the functional aspects of operations to derive recipes to create 
desired products. Such recipes correspond to sequences of operations for the products’ parts 
and subparts. A first step in this direction is possible by introducing available recipes per 
product; then optimisation involves selecting recipes for all products and allocating them to 
the equipment. 
 
Constraint graph analysis, possibly combined with simulation, provides a prediction of the 
timing behaviour of a production system. Other formalisms are required for optimisation. 
The most promising concept seems constraint programming, which can capture all aspects 
of (tightly and loosely coupled) manufacturing systems. 

6.2.9 Gantt chart visualisation 
The analyses presented in Chapters 3 and 4 produce a schedule, i.e. an assignment of a 
timestamp to every event. This schedule is represented as a CSV file, which does not 
(directly) provide insight in the schedule’s timing. To allow this insight directly, we propose 
an additional transformation: from an Allocation specification and generated schedule, one 
can generate a Gantt chart which shows the transports and operations of all subparts over 
time and the dependencies between these actions. 
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Appendix A 

Domain model language 
syntax and validation 

In Chapter 2, we have introduced the languages of the domain model using an example. 
This appendix shows the underlying syntax of the languages and the validation rules to 
restrict the allowed language instances. 
 

A.1 Material language 
The syntax of the Material language is shown in Figure A.1. The white nodes in the syntax 
graph represent the language’s keywords. The grey nodes in this syntax graph correspond to 
the language’s non-terminals and terminals. Each non-terminal has a corresponding part in 
the syntax graph. 
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Figure A.1: Material language syntax 
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The syntax shown in Figure A.1 allow undesirable material definitions. The following 
validation rules have been implemented to avoid these: 
 Every material type has a unique name. 
 Every material instance has a unique name. 
 Every operation has a unique name. 
 The dimensions of every material instance are positive. 
 Basic material types do not have composite material types. 
 Composite material types have composite material type. 
 Basic material instances do not have composite material instances. 
 Composite material instances have composite material instances. 

A.2 Equipment language 
The syntax of the Equipment language is shown in Figure A.2. 
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Figure A.2: Equipment language syntax 

The following validation rules forbid Equipment specifications that the syntax in Figure A.2 
allows: 
 Each node has a unique name. 
 Each segment has a unique name. 
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 Each path has a unique name. 
 The state of the equipment does not have negative timestamps. 
 All operation durations are positive. 
 All switch durations are positive. 
 All segment durations are non-negative. 
 All setup delays are non-negative. 
 Arrival setup timing is defined at most once for each pair of material instances. 
 Operation setup timing is defined at most once for each pair of material instances. 
 Switch states are only defined for switch segments. 
 Switch durations are only defined for switch segments. 
 The duration of a segment must match its length and speed (if defined). 
 Switch segments do not have duplicate source nodes. 
 Switch segments do not have duplicate target nodes. 
 There are no segments from a node to itself. 
 Input nodes do not have incoming segments. 
 Output nodes do not have outgoing segments. 
 There is at most one segment between every pair of nodes. 
 Every path is connected. 
 The operations on a path can be performed by the specified nodes. 
 The equipment is fully connected. 

A.3 Job language 
The syntax of the Job language is shown in Figure A.3. 

 
Figure A.3: Job language syntax 

In addition, the following validation rules have been implemented for Job models: 
 Each product has a unique name. 
 Each part of a production has a unique name (within the scope of the product). 
 Each subpart of a part has a unique name (within the scope of the part). 

A.4 Allocation language 
The syntax of the Allocation language is shown in Figure A.4. 
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Figure A.4: Allocation language syntax 

In addition, the following validation rules have been implemented for Allocation models: 
 Every product is allocated at most once.11 
 If a product is allocated, all its parts and subparts are allocated exactly once, and their 

order matches the order in the corresponding Job model. 
 The equipment path to which a subpart is allocated provides the operations specified in 

the Job model in the order specified in the Job model.  
 Both events of an external constraint correspond to an arrival of a subpart at an output 

node. 
 There are no externals constraints between an event and itself. 
 There is at most one external constraint between a pair of events. 
 The value of an external constraint may not be negative (and should be positive). 

 
 
 
 

_______ 
11 It is allowed to not allocate all products. 
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