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ABSTRACT

Aquitards are common hydrogeological features and their hydraulic conductivity is an important property for
various groundwater management issues. Predicting their hydraulic conductivity proves challenging, given its
dependence on numerous variables. In this study, the dominant factors for predicting aquitard hydraulic con-
ductivity are identified. To this end, a random forest model is trained on a dataset consisting of more than 1000
hydraulic conductivity measurements of core-scale sediment samples from a wide range of stratigraphic units
and depths in the Netherlands. The dataset contains textural properties, such as the grain size distribution and
porosity, as well as structural data, such as location, sampling depth, stratigraphical unit, lithofacies, organic
carbon content, carbonate content and groundwater chloride concentration. Results show that clay fraction,
stratigraphic unit, depth, lithofacies and x-coordinate are the most important features for predicting the hy-
draulic conductivity. Here, x-coordinate is presumably a proxy for distance from marine influence. Using a more
detailed grain size distribution or using derived parameters such as the grain size percentiles does not improve
the model any further. Our findings indicate that structural properties play a significant role in predicting
aquitard conductivity, as they serve as indicators of processes such as compaction and soft-sediment deformation.
The model is furthermore an effective method to estimate hydraulic conductivity for sediment samples without
conducting costly and time-consuming hydraulic conductivity measurements.

1. Introduction

We focus on aquitards which consist mostly of unconsolidated
sediment with a large fraction of clay, silt and organic matter. The hy-

Aquitards play an important role in hydrogeological studies, for e.g.
water resource management (Gurwin and Lubczynski, 2005), land
subsidence (Zhuang et al., 2017), contaminant transport (Ponzini et al.,
1989), subsurface energy storage (Sommer et al., 2015) and radioactive
waste disposal (Hendry et al., 2015). Although the importance of aqui-
tards is widely recognized (Hart et al., 2006; Keller et al., 1989), many
hydrogeological field studies focus on the characterization of aquifers
and ignore aquitards (Fogg and Zhang, 2016). However, in recent years
there has been a growing interest in the characterization of aquitard
properties (e.g. Bense et al., 2022; Ferris et al., 2020; Zhao and Illman,
2018; Zhuang et al., 2020, 2019).
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draulic conductivity of such matrices can vary by several orders of
magnitude (Neuzil, 1994). This underlines the importance of having
accurate estimates regarding the hydraulic conductivity. However,
collecting samples and measuring the hydraulic conductivity of aquitard
material is difficult, as the samples are easily disturbed during collec-
tion, transport and lab analysis (Clark, 1998). Also, the pressure and
flow conditions of the sample in the field have to be reproduced in the
lab to obtain representative hydraulic conductivity values (Boynton and
Daniel, 1985; Dafalla et al., 2015). In addition the hydraulic conduc-
tivity measurements themselves can be time consuming for low hy-
draulic conductivity values (e.g. Yu et al., 2013).
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For these reasons, alternative methods to estimate hydraulic con-
ductivity values based on material properties have been studied for a
long time. Hydraulic conductivity in any medium is primarily dependent
on the number, size distribution and connectivity of pores (Alaoui et al.,
2011; Bittelli et al., 2015; Nielsen et al., 2018). These factors are related
to the texture and structure of the material. The texture determines the
distribution of the pore size, while the structure determines how pores
are connected. Diagenetic cement may also influence these properties
but this lies beyond the scope of this manuscript. As the texture can
easily be measured in soils, parameters such as the grain size distribution
and porosity have been used widely in pedotransfer functions. Initially,
pedotransfer functions were physically based, such as the Carman-
Kozeny equation (Carman, 1937; Kozeny, 1927) and have been
extended with empirical relationships from regression (Jabro, 1992;
Puckett et al., 1985). Van Looy et al. (2017) and Zhang & Schaap (2019)
reviewed pedotransfer functions extensively.

Although pedotransfer functions are useful due to their simplicity in
relating soil properties to conductivity, they have limitations with
regards to the impact of soil and sediment structural properties on hy-
draulic conductivity. Sedimentary aquitards generally contain signifi-
cant clay fractions, which are more prone to structural alteration than
sands due to the less rigid chemical and physical properties of clay.
They, therefore, have a wide range of hydraulic conductivity values for
similar textures (Neuzil, 1994). In addition, it is difficult to find quan-
titative measures for these structural properties that can be universally
applied, due to highly non-linear effects of these types of properties on
the hydraulic conductivity (Diaz-Zorita et al., 2002).

To incorporate the non-linear control of material properties on hy-
draulic conductivity, machine learning models have been used
increasingly. These have mainly been applied towards conductivity
values for (unsaturated) soils, where other parameters impact flow
behaviour compared to aquifers and aquitards. The first model using a
simple neural network for soils was Rosetta, which applied multiple
pedotransfer functions to predict hydraulic conductivity and the water
retention curve for soils (Schaap et al., 2001) considering only textural
properties for the prediction. In many studies since then, various algo-
rithms have been used to predict hydraulic conductivity based on
textural properties of the solid matrix, such as k-nearest neighbours
(Botula et al., 2013; Nemes et al., 2006), support vector regression
(Kotlar et al., 2019; Mady and Shein, 2018; Singh et al., 2021) and tree-
based regression (Granata et al., 2022; Sihag et al., 2019; Szabo et al.,
2019; Tilahun and Korus, 2023). Structural properties were used in the
training of machine learning models in the form of land use and bulk
density (Jorda et al., 2015) and showed to be the most important pre-
dictor for hydraulic conductivity for that dataset. Araya and Ghezzehei
(2019) used bulk density and organic carbon content as indicators for
soil structural parameters on a large dataset, which also included
textural parameters, and used several algorithms to train the model. The
model predicted the hydraulic conductivity better than any pedotransfer
function model, but the dataset consisted mostly of sandy soils, and had
a relatively low number of silt and clay samples.

We developed a machine learning model for predicting hydraulic
conductivity that incorporates an extensive list of textural and structural
properties with a focus on aquitard material.. Given the general
importance of aquitards in shallow sedimentary basins, we fill a research
gap as previous work has considered either soils (e.g. Araya and Ghez-
zehei, 2019a; Zhang and Schaap, 2017) or (sandy) aquifer materials (e.
g. Rogiers et al., 2012). The model will be trained on data from the
terrestrial part of the Netherlands using additional features compared to
pedotransfer functions, as improvement suggested by Zhang and Schaap
(2019).
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2. Methods
2.1. General approach

We use the random forest regression model for predicting saturated
hydraulic conductivity (target variable) from textural and structural
sediment properties (model features). The model data stems from the
TOPINTEGRAAL dataset, where we make use of a subset containing
aquitard sample data. A variety of properties and information is avail-
able for each sample. We will only outline those used during modelling,
focusing on particle size distributions and derived quantities thereof,
such as sand/silt/clay content, diameter percentiles (such as D10) as
well as stratigraphic unit and lithofacies.

2.2. Data

The TOPINTEGRAAL dataset (Vernes et al., 2020) stems from a data
collection program that currently covers about 60 % of the terrestrial
part of the Netherlands and provides detailed information on sedimen-
tological, physical and geochemical properties of the upper 30-50 m of
the subsurface. The drilling locations are not selected randomly, but at
sites where certain stratigraphic units and lithofacies are expected. This
way the diverse dataset covers all lithostratigraphic units that have been
identified in the shallow subsurface of the Netherlands (TNO-GDN,
2023). Having started in 2006, the data collection is actively progressing
with new data being continuously added. We use the TOPINTEGRAAL
dataset version of the 1% of June 2023. The compiled dataset as used for
training the model is publicly available (Harting et al., 2023).

The data set used in this study contains 1033 samples. From the
complete TOPINTEGRAAL dataset, we selected samples that originate
from aquitards, such as clay, loam and peat. The locations where the
aquitard samples were collected are shown in Fig. 1. The properties of
the samples we used during modelling are: x and y coordinates, depth,
particle size distribution (PSD, fraction up to 2000 pm), porosity,
organic carbon content (OC), calcium carbonate content (CaCOs), esti-
mated chloride concentration of the pore water at the sampled location,
stratigraphic unit, lithofacies and the measured hydraulic conductivity.
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Fig. 1. Locations of samples of the TOPINTEGRAAL dataset. The colour in-
dicates the depth of the deepest collected sample. Samples from sediment cores
at different depths have been collected per sampling site.
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The samples from the TOPINTEGRAAL dataset stem from the Pleis-
tocene and Holocene deposits. In these Epochs sedimentation occurred
at the border of the North Sea sedimentary basin, resulting in marine and
deltaic sediments in the western part and mainly fluvial deposits in the
eastern and central part of the country. On multiple occasions the fluvial
environments were interrupted by glacial environments in the north.
Due to this, the samples in the dataset belong to three main depositional
environments: marine, fluvial and glacial. Furthermore, the strati-
graphic units are defined by the different rivers where the sediment
originates and geological age, following the stratigraphic nomenclator
of the Netherlands (TNO-GDN, 2023). Each sample is assigned to a
formation, some of which contain members. If samples belong to a
member with more than 10 samples, they are assigned to the member
instead of the formation for training the model. This results in 41
different stratigraphic units in the dataset. Of the 1033 samples 461
belong to fluvial deposits, 312 to marine deposits and 260 to glacial and
periglacial deposits. The lithofacies as used in this study are units with
specific lithological, textural and structural characteristics that distin-
guish them from other lithofacies units within a sedimentary environ-
ment (i.e. marine, fluvial, eolian, glacial and organic environments, and
other). These units are interpreted based on their characteristics from
the cores. A lithofacies unit can be present in multiple lithostratigraphic
units, as opposed to being a subdivision within a unit. In the TOP-
INTEGRAAL programme, undisturbed cores are collected in PVC liners
with a diameter of 100 or 110 mm and a length of 1 m, covering the
entire depth of the drilling. The cores are sawed into two parts asym-
metrically, resulting in a thicker and a thinner core segment. The thinner
segment is used for detailed lithological description and stratigraphic
interpretation from which a stratigraphic unit and lithofacies are
assigned.

Hydraulic conductivity is measured in samples taken from the
thicker part of the cores. Samples of aquitard material are tested for the
vertical hydraulic conductivity only. If the sample interval in the core is
visually homogeneous, vertical hydraulic conductivity is measured in an
adapted falling head oedometer containing a sample with thickness of 2
cm. If the sample interval is heterogeneous, e.g. due to sedimentological
layering, vertical hydraulic conductivity is measured in a constant head
triaxial setup, using a sample with thickness of 10 cm. During the dril-
ling, transport, storage and opening stages, the core material can be
expected to deform to some extent due to abnormalities from the in-situ
ground pressure at the depth of origin. Therefore, the sample is sub-
jected again to the in-situ ground pressure. This pressure is estimated by
overburden calculations based on the lithological characteristics of the
overlying sedimentary succession, and standard values for volumetric
weight for each lithology.

After testing, quality checks are performed with respect to drift of the
hydraulic conductivity during the test, and the extent to which the
sample is deformed when subjected to the estimated in situ pressure in
the test setup. The measurements of samples that showed deformation
are not taken into account in this study. A histogram of the measured
hydraulic conductivity values (being the target variable in the machine
learning model) of the 1033 accepted aquitard samples is shown in
Fig. 2.

For textural properties, subsamples were sieved over a 2000 pm
sieve. One such subsample was analysed with thermal graphimetric
analysis (TGA) to obtain organic carbon content and carbonate content.
The particle size distribution (PSD) was performed on a similarly sieved
sample, after removal of the organic matter fraction with HyO5 15 %
treatment as well as removal of the carbonate fraction using 0.5 % HCl
treatment and suspension in 1 % Na4P507-10H50 solution.

The particle size distribution (PSD) of each sample is given in 32
fractions in the 0 tot 2000 um range. The gravel fraction (greater than 2
mm) was excluded in our dataset. For the machine learning model, we
used different groupings of the PSD-data:
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Fig. 2. Histogram of the measured hydraulic conductivity values for the
entire dataset.

e 3 textural classes: clay (<8 um), silt (8-63 um) and sand (63-2000
um) fractions

e 8 fractions [in micron]: 0.1-0.5, 0.5-2, 2-25, 25-63, 63-150,
150-300, 300-600, 600 — 2000

e derived descriptive values: D10, D50, D60, D70, D90 and D10/D60
where D refers to the percentile.

One may note that the laser diffraction fraction of <8 pm (that we
employed) is equivalent to the classic clay fraction <2 pm found by the
pipette method (Konert and Vandenberghe, 1997). Further, 63 pm is
more often used as boundary between silt and sand than 50 ym in the
Netherlands (NEN 5104, 1989). The median grain size of the sand
fraction was used as a feature, too. The grain size distributions only
relate to the clastic fraction. The textures of the 1033 aquitard samples
are shown in Fig. 3.

We use the groundwater chloride concentration to identify whether
salinization/freshening of clays impact the hydraulic conductivity as
fresh to saline groundwater is present at shallow depth in the Western
and Northern part of the Netherlands. This property is not provided by
the TOPINTEGRAAL data set. Instead, we used chloride concentrations
from the nationwide LHM fresh-salt groundwater model (Delsman et al.,
2023).

2.3. Machine learning model

We used the random forest regression model (Breiman, 2001) as it is
well suited for categorical data, detects highly non-linear patterns and is
robust to outliers. Tree based regression models have shown to perform
well in various studies on hydraulic conductivity predictions (Araya and
Ghezzehei, 2019; Gupta et al., 2021; Jorda et al., 2015; Tilahun and
Korus, 2023). The model is developed with the sklearn library in Python
(Pedregosa et al., 2011).

We tested the random forest model with three combinations of
sample properties as model features, summarized in Table 1. The target
variable is the logarithm of the measured hydraulic conductivity in all
cases. Categorical data, such as stratigraphical units and lithofacies were
transformed using target encoding. Here, the categories were replaced
with the mean hydraulic conductivity values of those samples within the
categorical unit at hand. The encoder is trained on the training set and
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Fig. 3. Composition of the samples. A) a texture triangle based on the NEN5104 in which clay (<8 pum), silt (8-63 ym) and sand (63-2000 um) fractions add up to
100 % and B) triangle where organic matter (OC), clay, and silt + sand fractions add up to 100 %. The colour indicates the hydraulic conductivity.

Table 1
Random forest models with different features and their performance results (R%-
coefficient of variation and RMSE - root mean square error).

Set  Model Name Features R RMSE (log
K) [m/d]
1 Main features X, ¥, Z, 1, Msand, OC, CO3, Cl, 0.551 0.734
Strat, Lith, clay, silt, sand
2 Extended grain X, Y, Z, N, Mgana, OC, CO3, Cl, 0.542 0.742

Strat, Lith, 0.1-2, 2-8, 8-16,

16-35, 35-63, 63-210,

210-420, 420-2000

X, ¥, Z, 1, Mgang, OC, CO3, Cl, 0.547  0.737
Strat, Lith, D10, D50, D60, D70,

D90, D60/D10

size fractions

3 Grain size
percentiles

x: x-coordinate, y: y-coordinate, z: depth below ground level, clay, silt and sand
are their respective fractions, n: porosity, Msang: median grain size of sand
fraction, OC: organic carbon content, CO3: carbonate content, Cl: chloride
concentration, Strat: Stratigraphic unit, Lith: lithofacies, 0.1-2, 2-8,..: grain size
fractions, D10, D50, ...: grain size diameter percentiles.

applied to both the training and the test data set.

Fig. 4 shows the workflow of the model. The procedure is applied to
each model feature set separately (Table 1). We used a data set split ratio
of 80% and 20% for training and testing, respectively. We combined this
with cross-validation to ensure that testing and training performance is
representative of the entire data set and not impacted by the specific
data set split. We, therefore, divided the entire data set into five parts.
Four parts were used to train the model, and the fifth was used to test.
This procedure was repeated 5 times (K-folds) resulting in 25 combi-
nations of training and test sets applied to RF separately.

The sample data was not distributed completely random to the
training and testing data sets, but stratified on the stratigraphic unit. So,
we ensured that every split (of 20% data) contained a similar distribu-
tion of all stratigraphic units as the complete dataset. This is important
to not miss out on this feature during training for stratigraphical units
having a small number of samples.

We performed hyperparameter tuning on the depth of the trees and
the considered features per split. These hyperparameters were opti-
mized using (separate) cross validation for each of the 25 training sets
(Fig. 4). The objective function we used for optimization as well as
testing is the minimum mean squared error.

The random forest was trained for each of the 25 combinations using
the optimized hyperparameters (Fig. 4). The permutation importance is
calculated of each trained model for each feature, using 50 permuta-
tions. The trained model was then applied to the test data set for all 25
combinations. The model performance was evaluated using the coeffi-
cient of variation R? and the root mean square error (RMSE) of the
modelled and measured log-conductivity values. Model performance
results for a fixed set of model features is shown using the mean of the 25

Dataset [ Selected features ’

v v

[ Remove not available ]
S

data for selected feature

v

Cleaned dataset

v

[ 5 times 5 fold K-fold ]

I
\v v

25 training sets 25 test sets

v v

Target encode ) 25 encoded

categorical variables L ENELEOD test sets

25 encoded
training sets

Hyperparameter
tuning

Train RF

Hyperparameters

Test RF models

Trained models

—

>

/ /VRZIRM:SF ] H

‘ Feature importarncesi “
Fig. 4. Flow chart of the model workflow.
combinations as well as statistical visualization in box plots.
3. Results
3.1. Model performance
Table 1 shows the average performance of each of the three feature

sets. The best performance was obtained by feature model #1. Only
using the clay, silt and sand fractions from the PSD outperforms the
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models that contain more grain size descriptions. We partly link this to
overfitting and increased complexity in the model which is not fully
represented in the data, due to the limited amount of samples compared
to the number of features. This result can also be explained by the fact
that the hydraulic conductivity of the samples is largely dependent on
structural parameters, which causes the grain size to be of lesser
importance.

The mean predicted values versus measured values are shown in
Fig. 5. The predictions are best in the range between 10> m/d and 10"
m/d that also contains most measurements. They systematically deviate
from the measured values towards both ends. Random forest does not
extrapolate beyond the minimum and maximum values in the training
set and will overestimate the lowest value and underestimate the highest
value in the test set, if these are outside these limits. In addition these
ranges have a limited number of samples, decreasing the prediction
accuracy for these samples. This effect is also found in other hydraulic
conductivity prediction models, especially for low values (Araya and
Ghezzehei, 2019; Zhang and Schaap, 2019).

The residuals are larger for high hydraulic conductivity values as
compared to low values. This is possibly caused by the fact that sample
disturbance during collection, installation and measurement could cause
preferential flow paths through cracks or along the wall. These paths
carry more water than the matrix, which will likely result in over-
estimated hydraulic conductivity values, unrelated to the properties of
the sample (Tokunaga, 1988). As all the samples have been measured
once, the measurement error is not known, causing difficulty in sepa-
rating model error versus measurement error.

4. Feature importance

The feature importances are shown in Fig. 6 for the three models. In
all models, there is a clear distinction between the top five features i.e.,
stratigraphic unit, clay (or similar description of the fine grained frac-
tion), depth, x-coordinate and lithofacies, which contribute the largest
part and all other features. The importance of all features is addressed
below.

4.1. Grain size

Fig. 5 shows the mean permutation importance and mean prediction
results for the different models. For all models, the clay fraction is the
most important textural feature. This is in line with the results of Bilardi
et al. (2020) and Granata et al. (2022). In model set #2 that contains the
extended grain size distribution, the 2-8 um fraction is the most
important textural feature and contains a large part of the clay fraction.
Interestingly the contribution of the silt and sand fractions is minor. The
model is only trained on aquitard material, causing most of the variation
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Fig. 6. Permutation feature importance and R? distribution for the three
models with feature sets as listed in Table 1.

in sand fraction to be small compared to the silt and clay fractions. In
model set #3 with the percentile description of the grain size distribu-
tion, D10 is the most important of the textural features. Araya &
Ghezzehei (2019) also found that D10 was the most important feature in
soils, although their study also contained sand samples without any clay
fraction.

4.2. Geology

The stratigraphic unit is the most important general feature in all
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Fig. 5. Mean predicted vs measured hydraulic conductivity for the three models with feature sets as listed in Table 1.
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three models. Lithofacies has a significant contribution, too. Although
research on the determinants of hydraulic conductivity of aquitards has
been limited, these findings are in line with a few studies on sands that
incorporated e.g. depositional environment (Rosas et al., 2014) and
river setting (Khaja et al., 2023) to determine hydraulic conductivity
values. Stratigraphical units and lithofacies indirectly describe physical
characteristics that are not covered by just the grain size distribution,
such as sedimentological characteristics like layering, aggregating and
sorting. Sorting is known to be an important factor to determine hy-
draulic conductivity as it may influence the existence and size of pref-
erential pathways (Lind, 1999; Lopez et al., 2020). Within stratigraphic
units it can also be expected that secondary processes after deposition,
such as soil formation, chemical diagenesis and bioturbation are
comparable.

4.3. Depth and location

The models show that accounting for depth of the samples is
important. Depth dependence of hydraulic conductivity in aquitards has
been demonstrated to be present in previous work (Ferris et al., 2020)
and is an important consideration in groundwater resource management
(Zhuang et al., 2022). Increasing compaction rates with depth cause a
decrease in porosity, and reordering of clay particles, which will reduce
the hydraulic conductivity. This effect is larger for samples with higher
clay fractions, as sand is less sensitive to compaction due to the rigorous
solid matrix (Revil et al., 2002). In addition, some stratigraphical units
are present only at certain depth intervals, which cause variation in
hydraulic conductivity not only caused by the depth itself, but also by
other properties.

The location where the samples are taken is of minor importance in
the models. Interestingly the x-coordinate contributes more to the per-
formance than the y-coordinate. An explanation is that the sedimentary
processes in the Netherlands occurred in direction of the major rivers
flowing from east to west. Thus, depositional environments over time
are mainly oriented from east to west, and less in north-south (y) di-
rection. Exceptions to this are specific lithostratigraphical units which
vary in the north-south direction, specifically units from glacial origin
that are only found in the northern part of the Netherlands. This factor
is, however, partly taken into account in the stratigraphic unit feature.

4.4. Chemical properties

Organic carbon content is of minor importance in predicting hy-
draulic conductivity compared to several other model features. This
effect is in line with Araya & Ghezzehei, (2019) and Dexter et al., (2008)
who showed that for clayey materials a higher organic carbon content
correlates with higher hydraulic conductivity values. This effect how-
ever is limited, which might be caused by a skewed distribution of the
organic carbon content within the samples, as the number of samples
with high organic carbon content is limited (Fig. 3b).

Although no literature studies have shown that carbonate content
has a significant impact on the hydraulic conductivity of unconsolidated
clastic sediments, the data was included as it was available. In fact, the
feature has a very limited effect. This can be partially caused by the
distribution of the carbonate content in the dataset, but it is also likely
that it has no effect on the hydraulic conductivity. Detrital calcium
carbonate is typically found in the silt fraction of Dutch marine and
fluvial sediments and shell fragments are usually larger than 200 ym
(Griffioen et al., 2016). This explains why the hydraulic conductivity of
poorly permeable clayey samples is invariant of carbonate content.

The chloride concentration neither is of significant importance in
predicting the hydraulic conductivity for this dataset, even though
freshening of salt aquifers and salinization of fresh aquifers is known to
alter hydraulic conductivity (Goldenberg et al., 1983). This can be partly
due to the uncertainty in the chloride estimates, which do not come from
the pore water of the samples themselves but have been obtained from a
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hydrological model. The model may have difficulty predicting the large
variation of fresh, brackish and saline groundwater that is present at
shallow depth in the western and northern part of the Netherlands.

5. Discussion

This study presents a machine learning model for predicting hy-
draulic conductivity of aquitard material from textural and structural
parameters. Considering the challenges associated with measuring hy-
draulic conductivity in aquitard materials, we view the performance
metrics of our random forest model as evidence of a successful appli-
cation of Al for the prediction of this important hydrogeological
parameter. Aquitard sediments cover a large range of hydraulic con-
ductivity values and are sensitive to structural changes and therefore the
hydraulic conductivity is difficult to predict accurately. In addition, the
aquitard samples are more difficult to gather from larger depths and are
more prone to disturbance during collection and measurement than
sandy aquifer samples or soil samples, even with adequate quality
control in place. Due to these issues the performance can not directly be
compared to other hydraulic conductivity prediction models designed
for soils or aquifers. Despite these challenges we deem the performance
sufficient to provide useful indications for the feature importance. The
random forest model developed in this study can be used to estimate
hydraulic conductivity values for samples where the hydraulic con-
ductivity testing failed, e.g. due to leakage along the wall of the sample
container or disturbance during installation, while the analytical and
other data are available. To negate the need for (costly) hydraulic con-
ductivity measurements altogether, it is necessary to determine the
measurement error and to compare it with the model error to be certain
to what extent the model can replace the measurements (McIntyre et al.,
1979; Tokunaga, 1988).

Although the random forest model is only applicable for data from
The Netherlands, we deem the findings about the feature importance
have more general validity. The models benefit greatly from additional
data, such as the depth and geology, not using only textural measure-
ments, which seems adequate for predicting hydraulic conductivities of
sandy material. This suggests that structural properties are more
important for aquitard material than for aquifers, as aquitards are more
sensitive to compaction and soft sediment deformation.. The results also
suggest that the sedimentological and geological properties of the
samples cause variation in the hydrological properties of the samples
that do not show in grain size distribution, but do affect the hydraulic
conductivity, such as the degree of sorting and roundness of the grains.
The geological properties as encountered in this study cannot be
extrapolated to other regions, but it is promising to incorporate this type
of information in hydraulic conductivity prediction models and to make
them more useful not only for soils, but for all sorts of sediments.

6. Conclusions

Three random forest models have been developed to predict hy-
draulic conductivity of core-scale samples from sedimentary aquitard
layers in The Netherlands, using textural and structural properties. The
best fitting model has an R? of 0.56 and an RMSE of the log conductivity
of 0.734. The five most important features are stratigraphic unit, clay
fraction, depth, x-coordinate and lithofacies. Results thus show that the
addition of geological properties to the model greatly improves the
model performance, apart from the grain size distribution. Training the
model using a grain size distribution with eight fractions and training
the model with grain size percentiles did not yield better performances
than the model with only clay, silt and sand fractions. Other features
such as organic carbon content, carbonate content, porosity and
groundwater chloride concentration are of minor importance in pre-
dicting the hydraulic conductivity of aquitard sediments.
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