for life

Survey of Zero-
Knowledge Proof
Libraries

TNO Publiek) TNO 2023 R12080
2 November 2023

) TNO Publiek

for life

ICT, Strategy & Policy
www.tno.nl

+31 88 866 00 00
info@tno.nl

TNO 2023 R12080 - 2 November 2023
Survey of Zero-Knowledge Proof Libraries

Author(s)

Classification report
Classified by
Classification date
Title
Managementuittreksel
Summary

Report text

Number of copies
Number of pages
Number of appendices
Sponsor

Programme name
Programme number
Project name

Project number

) TNO Publiek

Anne Nijsten, Ward van der Schoot and Jodo Diogo de Faria
Miranda Duarte
TNO Publiek

Classification Classified By

Classification Date Classification validity period
TNO Publiek

TNO Publiek

TNO Publiek

TNO Publiek

1

10 (excl. front and back cover and distribution list)
0

Ministerie van Justitie en Veiligheid

VPVM
FUTURE-PET
060.46534

) TNO Publiek) TNO 2023 R12080

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

© 2023 TNO

) TNO Publiek

) TNO Publiek) TNO 2023 R12080

Managementuittreksel

Programma Project

Programmanaam: Projectnaam:

VP Veilige Maatschappij FUTURE-PET
Programmanummer: VPVM Projectnummer: 060.46534

) TNO Publiek 3/10

) TNO Publiek) TNO 2023 R12080

Summary

This document serves as an overview of available ZKP libraries. This document was originally
drafted as support for the verifiable credentials work package of the 2023 FUTURE PET
project, but should also provide a generally useful reference for ZKP projects in our
department. This document aims to provide the reader with basic details about the different
ZKP libraries. For more comprehensive details on ZKP libraries, please visit the
‘Implementations of proving systems’ section in What is a zero-knowledge proof? | Zero-
Knowledge Proofs (zkp.science).

) TNO Publiek 4/10

https://zkp.science/
https://zkp.science/

) TNO Publiek) TNO 2023 R12080

Contents

MANAGEMENTUITETEKSEL ..ottt 3
SUIMIMIAEY ottt ittt ettt st ettt bbbttt bbbttt ettt esnacne 4
CONTENES ettt ettt et ettt et e st et et et et e st et e st e st eat et et entententent et et enean 5
1 I EOAUCTION ettt ettt ettt es ettt ettt es et eae et e s eseaseseanens 6
2 OVEIVIEW OF ZKP LIDTATIES ..o ve s sess s sse e sesssen e sesenns 7
2.1 ZoKrates

2.2 Libsnark........

2.3 Cairo...nne..

2.4 Bellman........

2.5 DIALEK ettt nanan

2.6 AQJOINEI0 1ottt eaees .8
2.7 DIZK ettt ettt ettt ettt ettt e et ea et e st e a s s et e s e b ertebe s e st b en s et et es et ensete s entesensese s easetensesesenserens 8
3 BIDlIOGIAPNY ettt ettt ettt 9

) TNO Publiek 5/10

) TNO Publiek) TNO 2023 R12080

1

Introduction

Zero-knowledge proofs (ZKPs) allow one party to prove knowledge over a piece of
information to another party, whilst never actually revealing the information itself [1]. There
are many kinds of protocols that achieve this functionality. Notable families are (zk-)SNARKs
[2], (zk-)STARKSs [3], and Bulletproofs [4]. Whilst there are plenty of differences between each
family, the main characteristics that are relevant for us are performance, necessity for a
trusted setup, and post-quantum security.

The performance can be measured in various ways, but usually the prover complexity,
verifier complexity or communication complexity is used. A trusted setup is a process that
occurs before initialising the actual proof and it establishes the parameters that will be used
during the proof. It normally requires at least one honest party. Naturally, a trusted setup
can be acceptable in some use cases but poses a strong limit on the versatility of the proof
system. Post-quantum security is attained by schemes for which their implementation is
safe against attempted breaks by a quantum computer.

Generally, SNARKs are more performant than STARKs or bulletproofs, but are generally not
quantum-safe and often require a trusted setup. On the other hand, STARKs are less
performant than SNARKs, but are quantum-safe and do not require a trusted setup.
Bulletproofs are generally less performant than SNARKs but more performant than STARKs,
are not quantum-safe, but they do not require a trusted setup. A more extensive
comparison between SNARKs, STARKs and bulletproofs can be found in the table at GitHub -
matter-labs/awescme-zero-knowledge-proofs.

) TNO Publiek 6/10

https://github.com/matter-labs/awesome-zero-knowledge-proofs
https://github.com/matter-labs/awesome-zero-knowledge-proofs

) TNO Publiek) TNO 2023 R12080

2 Overview of ZKP Libraries

ZKP libraries normally provide a toolbox for developers to create, manage and verify zero-
knowledge proofs. Once again, differences between libraries are often nuanced, but for our
use case, the main characteristics we consider are:

1. Protocol: In this overview, only SNARKs, STARKs and bulletproofs are considered, as
other forms of ZKPs are generally less developed.

2. Trusted setup: Some libraries do not require a trusted setup to be performed.

3. Quantum safety: Some libraries are safe against attacks by a quantum device.

4. Programming language: Most libraries only allows instructions written in specific
programming languages.

A general overview of the above characteristics can be found in Table 1. A detailed
explanation of the different libraries can be found below.

Library Protocol Trusted Quantum- Program
setup? safe? language

JavaScript*
Multiple (C++ in base)
Rust

ZoKrates | SNARK
Libsnark | SNARK
Ca/'ro STARK

Bellman | SNARK Rust

Dalek | Bulletproofs Rust
Adjoint-io Bulletproofs Haskell

DIZK | SNARK Java

Table 1: Qverview of notable Zero Knowledge Proof libraries. Note that this table does not
provide a comprehensive overview of the libraries’ characteristics. Notable characteristics
such as the performance and versatility of the library are not depicted, as these
characteristics are not clearly and fairly depicted by the different libraries.

2.1 ZoKrates

ZoKrates provides a toolbox for ZKPs using zk-SNARK and works on the Ethereum blockchain.
It is written procedurally in a version of JavaScript that is tweaked to satisfy the
requirements for writing ZKPs. With this language, you can represent JSON files and the
statement you want to prove, such as certain file contents. It requires a trusted setup, is not
quantum-safe and is normally used for smart contracts [5].

2.2 Libsnark

Libsnark provides low-level APIs and tools for ZKP using zk-SNARK. It is written procedurally
in C++ but offers bindings for other programming languages. In fact, it is the same
technology that powers ZoKrates. The information you want to prove is represented as ¢

) TNO Publiek 7/10

) TNO Publiek) TNO 2023 R12080

circuit, which can include JSON files and operations operations on JSON files. The process of
mapping a JSON file to a circuit is non-trivial but could include mapping each field to an
input of the circuit. It requires a trusted setup and is not quantum-safe [6].

2.3 Cairo

Cairo provides a toolbox for ZKPs using zk-STARK. It is written procedurally in a version of
Rust called Cairo. The process of proving knowledge of a JSON file or the contents of a JSON
file is like ZoKrates. It does not require a trusted setup, but is quantum-safe [7]. It should be
noted that although it is normally used for the same application as ZoKrates, its
characteristics are very different.

From the overview, it seems that there are not as many STARK libraries as SNARK libraries.
This is indeed the case for ZKP libraries in general. This is mainly due to the fact that STARKs
do not compete with SNARKs, and the advantage of quantum-safety is not that relevant yet.
In the future, it is expected that STARKs (or a different post-quantum ZKP family) will
become more relevant.

2.4 Bellman

Bellman provides a so-called ‘crate’ of resources for building SNARK circuits written in Rust. It
provides circuit traits, primitive structures, and basic implementations of objects such as
Booleans and number abstractions. It requires a trusted setup and is not quantum-safe [8].

2.5 Dalek

Dalek provides a variety of implementations of ZKP using bulletproofs protocols. Examples
are single-party and multi-party range proofs, multi-party constraint system proofs. In
addition, it has an implementation of a programmable constraint system API suitable for
expressing rank-1 constraint sytems. Tt claims to be the fastest bulletproofs implementation
written to date. It is written in Rust, is not quantum-safe, but does not require a trusted
setup [9].

2.6 Adjoint-io
Adjoint-io provides an implementation of a variety of ZKPs using the bulletproofs protocol.
Examples are range proofs, inner-product range proofs and aggregating logarithmic proofs.

It also has functionality suitable for proving statements regarding arithmetic circuits. It is
written in Haskell, has no quantum-safety, but requires no trusted setup [10].

2.7 DIZK

DIZK provides functionality specifically suitable for implementing distributed zero knowledge
proof systems. It contains implementations of distributed polynomial evaluation and
interpolation, distributed computation of Lagrange polynomials and distributed multi-scalar
multiplication. It is built on the SNARK protocol and is written in Java. The current
implementation is an academic proof-of-concept prototype. It requires a trusted setup and
has no quantum-safety [11].

) TNO Publiek 8/10

) TNO Publiek) TNO 2023 R12080

3 Bibliography

[1] O. Goldreich, Foundations of Cryptography, vol. 1. Cambridge: Cambridge University Press,
2001.

[2] B. Blinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille and G. Maxwell, "Bulletproofs: Short
Proofs for Confidential Transactions and More," 2018 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 2018, pp. 315-334, doi: 10.1109/SP.2018.00020.

[3]1 N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From Extractable Collision Resistance to
Succinct Non-Interactive Arguments of Knowledge, and Back Again,” in Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, 2012, pp. 326-349. doi:
10.1145/2090236.2090263.

[4] B. BUnz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, Bulletproofs: Short
Proofs for Confidential Transactions and More. Cryptology ePrint Archive, Paper 2017/1066,
2017. [Online]. Available: https://eprint.iacr.org/2017/1066.

[5] ZoKrates: A toolbox for zkSNARKs on Ethereum. https://github.com/Zokrates/ZoKrates.

[6] libsnark: a C++ library for zkSNARK proofs. https://github.com/scipr-lab/libsnark.

[7] Cairo. https://qgithub.com/starkware-libs/cairo.

[8] Bellman. GitHub - zkcrypto/bellman: zk-SNARK library.

[9] Dalek. https://github.com/dalek-cryptography/bulletproofs.

[10] Adjoint-io. GitHub - sdiehl/bulletproofs.

[11] DIZK. GitHub - scipr-lab/dizk.

) TNO Publiek 9/10

https://eprint.iacr.org/2017/1066
https://github.com/Zokrates/ZoKrates
https://github.com/scipr-lab/libsnark
https://github.com/starkware-libs/cairo
https://github.com/zkcrypto/bellman/
https://github.com/dalek-cryptography/bulletproofs
https://github.com/sdiehl/bulletproofs
https://github.com/scipr-lab/dizk

) TNO Publiek) TNO 2023 R12080

) TNO Publiek 10/10

Distribution list

TNO Publiek) TNO 2023 R12080

ICT, Strategy & Policy

Anna van Buerenplein 1
2595 DA Den Haag
www.tno.nl

m innovation
for life

