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Abstract

Objective: Congenital hypothyroidism (CH) is an inborn thyroid hormone (TH) deficiency 
mostly caused by thyroidal (primary CH) or hypothalamic/pituitary (central CH) 
disturbances. Most CH newborn screening (NBS) programs are thyroid-stimulating-
hormone (TSH) based, thereby only detecting primary CH. The Dutch NBS is based on 
measuring total thyroxine (T4) from dried blood spots, aiming to detect primary and 
central CH at the cost of more false-positive referrals (FPRs) (positive predictive value 
(PPV) of 21% in 2007–2017). An artificial PPV of 26% was yielded when using a machine 
learning-based model on the adjusted dataset described based on the Dutch CH NBS. 
Recently, amino acids (AAs) and acylcarnitines (ACs) have been shown to be associated 
with TH concentration. We therefore aimed to investigate whether AAs and ACs 
measured during NBS can contribute to better performance of the CH screening in the 
Netherlands by using a revised machine learning-based model.
Methods: Dutch NBS data between 2007 and 2017 (CH screening results, AAs and ACs) 
from 1079 FPRs, 515 newborns with primary (431) and central CH (84) and data from 
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1842 healthy controls were used. A random forest model including these data  
was developed.
Results: The random forest model with an artificial sensitivity of 100% yielded a PPV of 
48% and AUROC of 0.99. Besides T4 and TSH, tyrosine, and succinylacetone were the 
main parameters contributing to the model’s performance.
Conclusions: The PPV improved significantly (26–48%) by adding several AAs and ACs to 
our machine learning-based model, suggesting that adding these parameters benefits 
the current algorithm.

Introduction

Congenital hypothyroidism (CH), an inborn thyroid 
hormone (TH) deficiency, can be divided into primary  
(or thyroidal) CH and central (or secondary) CH.  
Primary CH is most prevalent and results from an  
un(der)developed thyroid gland or a defect in TH 
synthesis. Central CH is caused by insufficient  
stimulation of an otherwise normal thyroid gland 
due to a defect at the level of the pituitary and/or  
hypothalamus. Primary CH is characterized by a low 
serum thyroxine (T4) concentration in combination 
with an increased thyroid-stimulating hormone (TSH) 
concentration, while central CH is characterized by  
a low T4 concentration and a normal, decreased, or  
slightly elevated TSH concentration (1).

The Dutch newborn screening (NBS) yearly screens 
approximately 170,000 newborns for, among others, 
CH. Blood withdrawal is normally performed between 
72 and 168 h after birth and detects CH by measuring 
total T4 concentrations in every newborn as a first tier, 
expressed as standard deviation from the daily mean 
(T4_SD). In case of a T4_SD ≤ −0.8, TSH is measured 
(approximately the lowest 20% of the daily mean) 
and in case of a T4_SD ≤ −1.6, thyroxine binding 
globulin (TBG) is measured as well (approximately the  
lowest 5% of the daily T4 concentrations). TBG is  
used to reduce the number of false-positive referrals  
(FPRs) due to (partial) TBG deficiency which is  
associated with reduced total T4 concentrations in 
combination with normal free T4 (fT4) concentrations  
(2, 3). A calculated T4/TBG ratio serves as an indirect 
measure of fT4. A visual representation of this algorithm 
can be found in the review of Boelen et  al. (4). If  
gestational age is ≤36 weeks or birthweight ≤2500 g, 
newborns are referred solely based on TSH concentration, 
since T4 concentration is not reliable yet. Most  
national NBS programs use TSH as primary marker, 
thereby not detecting central CH (5). In The Netherlands, 
the T4–TSH–TBG algorithm effectively detects 

primary CH as well as central CH, resulting in a higher  
prevalence (1:16,404) of central CH compared to other 
countries (6). A lower prevalence of primary CH was  
found, which may be explained by mild cases of  
primary CH with a normal T4 concentration that can  
be missed (7).

The downside of detecting primary and central  
CH is a low positive predictive value (PPV) of 21%, 
determined in the period of 2007–2017 (7). Our previous 
study aimed to improve the PPV of the Dutch CH  
screening algorithm by establishing reference intervals 
for T4 and TBG and thereby refining the cutoff value  
for a (partial) TBG deficiency (3) and by using machine 
learning (8). The latter study used a dataset containing 
almost all children with a referral in the historical CH 
screening from 2007 to 2017 (CH cases and FPRs) and 
children with normal CH NBS results from a cohort  
in 2019 (3). With machine learning (random forest  
model) using only general information and NBS CH 
screening results a PPV of 26% was obtained on this  
dataset, while all known CH cases were indicated as such 
by the algorithm. Thus, machine learning may have 
the potential to improve the PPV of the Dutch CH NBS. 
Nevertheless, the contrast with the PPV of a TSH-based 
screening is still large (67% in a UK cohort (9)). Besides 
TBG deficiency, another reason for FPRs can be non-
thyroidal illness syndrome (NTIS), leading to a reduced  
T4 with a normal TSH concentration. To further  
improve the specificity of the Dutch NBS program for 
the detection of central CH, we sought for additional 
parameters. Recent studies describing an association 
between THs and serum amino acid (AA) and  
acylcarnitine (AC) concentrations (10, 11, 12, 13, 14) led 
us to explore the relationship between AAs, ACs, and  
the screening parameters T4, TSH, and the T4/TBG ratio  
in dried blood spots (DBS) at the time of neonatal  
screening. This is especially interesting since several  
AAs and ACs are measured in the NBS program to 
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detect metabolic diseases. ACs play a role in the fatty 
acid β-oxidation under the influence of carnitine 
palmitoyltransferase 1 (CPT-1). The active TH 
triiodothyronine (T3) enhances the expression of the 
CPT-1 gene, resulting in increased CPT-1 concentrations, 
thereby stimulating fatty acid β-oxidation (15). Recently, 
it has been shown that the AAs tyrosine (tyr) and its 
precursor phenylalanine (phe) correlate with serum T4 
concentrations (12, 13). During TH synthesis, tyrosyl 
residues of thyroglobulin-forming iodotyrosines and 
iodothyronines are iodinated, which may explain the 
correlation with these AAs (16). Furthermore, it was 
shown that protein metabolism, shown by tyrosine and 
phenylalanine flux, was altered during the early stages of 
hyperthyroidism (17). The Dutch NBS program contains 
several metabolic disorders that are detected by a variety 
of AAs and ACs measured in DBS. Therefore, the aim of 
our study was to investigate whether the already known 
AA and AC concentrations could be of added value in 
the prediction of CH, and specifically central CH, in the 
Dutch NBS. We hypothesized that adding AA and AC 
concentrations to a CH prediction machine learning-
based model could improve the PPV and thereby reduce 
the number of FPRs.

Materials and methods

Database

Parents participating in the Dutch neonatal screening 
program gave consent for both participation and 
anonymous use of leftover heel puncture blood and 
relevant data for scientific research, unless they actively 
declined. With the permission of the NBS privacy 
committee (located at The Netherlands Organization 
for Applied Scientific Research (i.e. TNO), Department 
of Child Health) and approved by the National Research 
Committee for Neonatal Screening (i.e. WONHS) of 
the Dutch National Institute for Public Health and the 
Environment (i.e. RIVM), data were extracted from 
a national database containing data of NBS referrals 
including both newborns with CH and FPRs in the  
period 2007–2017 (n = 3308) in succession of previously 
published studies aiming to further optimize the NBS 
for CH (7, 8). Permission from our local Medical Ethical 
Committee of Amsterdam UMC was not necessary,  
as the data were derived from a national database that 
is under the management of the abovementioned 
national institutes. The database contained the  
following variables: sex, gestational age, gestational  

weight, age at NBS samplings, T4, TSH, and TBG 
concentrations, T4_SD, T4/TBG ratio and the diagnosis. 
The T4/TBG ratio is calculated by the following  
formula: T4/TBG ratio = (T4_SD + 5.1) × 1000)/TBG. 
Due to the nature of the screening algorithm, TSH and 
TBG concentrations were not always available (n = 71 
and n = 46) and subsequently imputed (see the section 
‘Statistical analysis’). Four missing values were detected 
for T4.

Data of newborns with a normal CH screening  
result (hereafter named healthy controls) from a  
dataset from a recent study to establish neonatal  
reference intervals for T4, TSH, and TBG concentrations 
and the T4/TBG ratio were reused as healthy controls 
(3). This data (n = 1926) was collected between February 
and March 2019 at the Newborn Screening Laboratory  
of Amsterdam UMC, and for every subject, sex,  
gestational age, gestational weight, age at NBS sampling, 
T4, TSH, TBG concentrations, T4_SD, and the T4/TBG 
ratio were available. There were no missing T4, TSH,  
and TBG data.

Next, the already available AA and AC concentrations 
from both abovementioned cohorts were extracted 
from the Neonat Database of the Reference Laboratory 
for Neonatal Screening (RIVM) along with their year 
of birth, sex, gestational age, gestational weight, age at 
NBS sampling, and CH NBS results. The CH screening  
results and AC and AA data (C0, C2, C5, C5DC, C5OH, 
C6, C8, C10, C10:1, C14, C14:1, C14:2, C16, C16OH, 
C16:1, C18OH, phenylalanine, tyrosine, leucine, valine, 
succinylacetone) from the healthy control cohort 
were paired based on one unique parameter. Healthy  
controls were included if at least a T4, TSH, or TBG 
concentration and at least one AC or AA concentration 
were available and the coefficient of variation (CV) 
for T4, TBG, and TSH (manually assessed) was smaller  
than 20%. Furthermore, subjects with deviant AA or  
AC results suggestive of a metabolic disease were  
excluded. The CH screening results and AA and AC  
data from the referred cohort were paired using a  
manual multistep matching process, since no  
unique matching key was available. Subjects with  
identical values for a selection of variables were matched, 
and all one-to-one matches were extracted from the 
datasets. Matches that were not one-to-one (i.e. a  
subject in one dataset corresponds to multiple subjects 
in the other dataset) were investigated and manually 
adjusted. Finally, the data without a match were  
included in the next matching step. This was repeated  
five times for different sets of variables. The data that  
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were not matched after these five steps were inspected 
manually in order to find additional matches that were 
not found before due to missing values or discrepancies. 
Referrals missing all TH parameters or all AA and AC 
data were excluded. Furthermore, referrals with an 
inconclusive diagnosis or CH with an unknown cause 
were excluded from the dataset as well as subjects with 
deviant AA or AC results suggestive of a metabolic  
disease. After matching, the datasets of referred  
newborns and nonreferred newborns were combined.

Sample analysis

Heel prick punctures were performed between 72 
and 168 h after birth and analyzed in one of the five 
regional laboratories in the Netherlands. The CH 
screening algorithm and the analyses of its parameters 
in our laboratory were extensively described (7). The 
measurement of AAs between 2007 and 2017 have 
been described previously (18) and the same method 
was used for the analysis of ACs. All five screening 
laboratories used the same measurement method 
(NeoBase 2 non-derivatized tandem mass spectrometry kit 
(PerkinElmer)) and the same cutoff values. All screening  
laboratories participated in external quality controls,  
and both intra- and interlaboratory variations were 
assessed and were within limits. Therefore, absolute  
values were comparable as well.

Statistical analysis

First, the relationship between T4 and the AAs and  
ACs in all newborns was investigated to test our  
hypothesis that AA and AC concentrations were  
correlated to T4 concentrations. Pearson’s correlations 
were used, where the P-values were adjusted for  
multiple testing using the Benjamini–Hochberg  
procedure, reported as a false discovery rate (FDR)  
value. Data from newborns with a TBG concentration 
≤105 nmol/L were excluded from the correlation  
analysis, as these subjects show a (partial) TBG  
deficiency and are currently not referred anymore since 
March 1, 2021 (3).

Second, linear regression analyses were performed  
to investigate whether AA and AC concentrations  
differed between the referred groups (referred controls, 
primary CH, central CH) and healthy controls. The 
Benjamini–Hochberg procedure was used to adjust the 
corresponding P-values for multiple testing. Regression 
analysis was not performed for ACs with less than ten 

unique values due to detection limit and sensitivity of  
the assay (C5, C5OH, C14:2, C16OH, C18:1OH).

Third, a random forest model was trained to predict 
the presence of CH. Prior to fitting the model, synthetic 
minority oversampling technique (SMOTE) (19) was 
used to create synthetic patient samples (n = 1612) based 
on the CH cases from the training set. The number of  
nearest neighbors for SMOTE was determined by 
evaluation of the performance for each integer  
between 5 and 50, and the best setting was 20 nearest 
neighbors. Randomized search cross-validation on 
the training set was used to select the values of four 
hyperparameters: the number of trees was set to 500, 
maximum depth of the trees to 15, five features were 
considered at each split, and 77% of the data were 
considered at each tree. The total dataset after matching 
with AA and AC data (n = 3436) was split in a training 
and test set (67%/33%) using a stratified split to preserve 
the prevalence of CH in both samples. Missing values 
were imputed using random forest-based imputation 
(20). The random forest was fit on the training set and 
thereafter used to impute the training and test sets. The 
F1 score was used as the performance metric for both 
hyperparameter tuning and model training. A receiver 
operating characteristic (ROC) analysis was performed 
to evaluate the performance of the model on the test set 
at different classification thresholds. PPV and accuracy 
of the model were calculated at a sensitivity set at 1.0, 
0.99, and 0.98 (artificial sensitivity). The permutation 
feature importance was computed to investigate which 
parameters contributed most to the predictions (21). It 
is defined as the mean decrease in model performance  
in case one feature is randomly shuffled. The  
permutation feature importance was calculated on 
the whole test set as well as the test set without the  
primary CH cases, where the latter was used to  
determine which parameters contributed specifically 
to the prediction of central CH. The following variables  
were included in the model: sex, gestational age and  
weight, age at NBS samplings, T4, TSH, TBG  
concentrations, T4_SD, T4/TBG ratio, C0, C2, C5, C5DC, 
C5OH, C6, C8, C10, C10:1, C14, C14:1, C14:2, C16, 
C16OH, C16:1, C18OH, phenylalanine, tyrosine, leucine 
(leu), valine (val), succinylacetone (sa), and diagnosis.

Results

Sample characteristics

After applying exclusion criteria, the dataset consisted  
of 3436 newborns, of which 515 (15.0%) were diagnosed 
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with CH, 1079 (31%) were FPRs, and 1842 (54%) were 
healthy controls. The percentages of primary CH and 
central CH in our database were 12.5% (431) and 2.4% 
(84), respectively.

Relation between AA/AC and T4 levels 
(correlation analysis)

The Pearson correlations between T4 and the measured 
ACs and AAs in all newborns are shown in Fig. 1. T4 
concentrations correlated significantly (FDR < 0.05)  
with all ACs and AAs. However, the correlation  
coefficients (ρ) varied widely. Of the 16 ACs, T4 was 
most strongly correlated with C8 (ρ = −0.291), C10:1 
(ρ = −0.391), and C16 (ρ = 0.334). The strongest  
correlations were between T4 and phenylalanine 
(ρ = −0.550) and succinylacetone (ρ = −0.565).

Comparison of AC and AA levels between referred 
and non-referred cohorts (linear regression analyses)

Table 1 provides the results obtained from the linear 
regression analyses (after adjustment for multiple  
testing) to compare AC and AA results of the FPRs,  
primary CH and central CH cases with the healthy  
controls (HCs). The intercept represents the average 
concentration of the different ACs and AAs in the HCs, 
whereas the slopes are the additional value on top of the 
intercept that led to the concentrations of the different 
ACs and AAs in the FPRs, primary CH and central CH. 
Most ACs showed a statistically significant difference 
between HCs and FPRs, primary CH and central CH 
(Table 1). The difference between HCs and all other  
groups for phenylalanine and succinylacetone and the 
AC C10:1 showed the largest slopes and correlation 
coefficients (R2). Furthermore, a clear difference in 
tyrosine was found between HCs and central CH,  
whereas this was less evident between HCs and primary 
CH and non-existent between HCs and FPRs. In contrast, 
valine did not show any difference between HCs and 
central CH, whereas significantly lower concentrations 
were observed in primary CH compared to HCs and 
significantly higher concentrations in FPRs.

Prediction model

The PPV and accuracy of the random forest model, on  
the described database with relatively few healthy  
controls compared to the number of healthy controls 
in the actual 2007–2017 cohort, obtained for different 
sensitivities are shown in Table 2. The random forest 
model was able to yield an artificial sensitivity of 

100%, while obtaining a PPV of 48%. Decreasing the  
sensitivity to 99% led to a substantial increase in PPV 
(65%). Figure 2 shows the ROC curve including the 
corresponding area under the ROC curve (AUROC) of 

Figure 1
Pearson’s correlations (ρ) between the T4 concentrations and the AC and 
AA concentrations. All correlations were statistically significant (FDR < 
0.05). AA, amino acid; AC, acylcarnitine; FDR, false discovery rate; leu, 
leucine; phe, phenylalanine; sa, succinylacetone; T4, thyroxine; tyr, 
tyrosine; val, valine.
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0.99. The permutation feature importance was estimated 
to quantify which parameters contributed most to the 
prediction of CH (Fig. 3). TSH had a mean F1 decrease 
around 0.175 and evidently played the most important 
role in predicting CH. Additionally, T4_SD, TBG, T4/TBG 
ratio, T4, and tyrosine contributed to the prediction of 
CH as well, followed by a lesser extent by succinylacetone, 
C10:1, gestational age, and age at NBS samplings in 
days (hd_day). Figure 4 shows which parameters were  
important in predicting central CH (Fig. 4). TSH has no 
explanatory value for these cases. The most important 
parameters for this model were the T4/TBG ratio, T4_
SD, TBG, T4, and tyrosine followed by succinylacetone, 
gestational age, C16:1, phenylalanine, and C2.

Discussion

The Dutch NBS program for CH is based on a T4–
TSH–TBG algorithm aiming to detect newborns with 

either central CH or primary CH. Although the added 
value of the current screening program based on T4 is  
significant, this algorithm also results in more FPRs 
compared to TSH-based screening programs. An FPR  
often leads to stress and anxiousness in parents, which 
might even be transferred to the newborn (22). In 
an attempt to reduce the number of FPRs for CH, we 
investigated whether AAs and ACs could be of added 
value in the prediction of CH, and specifically central 
CH, in the Dutch NBS by using a machine learning- 

Table 1 Linear regression analysis including Benjamini–Hochberg adjustment for multiple testing to compare AC and AA results 
from the false-positive referrals (FPR), primary and central CH groups with the HC group.

Intercept
FPR vs HC Primary CH vs HC Central CH vs HC

R2Slope Adj. P Slope Adj. P Slope Adj. P

AC
 C0 17.898 1.772 0.000 0.287 0.616 2.716 0.013 0.012
 C2 15.451 0.947 0.007 1.289 0.008 3.283 0.002 0.007
 C5DC 0.06 0.003 0.119 0.008 0.008 0.007 0.210 –0.001
 C6 0.028 0.009 0.000 0.007 0.000 0.007 0.004 0.056
 C8 0.032 0.016 0.000 0.009 0.000 0.009 0.002 0.093
 C10 0.055 –0.004 0.000 –0.007 0.000 –0.001 0.731 0.015
 C101 0.03 0.03 0.000 0.02 0.000 0.022 0.000 0.226
 C14 0.158 –0.009 0.006 0 0.985 0.033 0.000 –0.003
 C141 0.049 0.014 0.000 0.018 0.000 0.018 0.000 0.083
 C16 2.705 –0.522 0.000 –0.559 0.000 –0.25 0.111 0.051
 C161 0.145 –0.015 0.000 –0.008 0.135 –0.005 0.616 0.009
AA
 Leu 143.939 16.826 0.000 3.424 0.267 14.361 0.018 0.039
 Phe 39.266 22.725 0.000 17.257 0.000 19.934 0.000 0.285
 SA 0.133 0.282 0.000 0.265 0.000 0.262 0.000 0.429
 Tyr 83.427 1.797 0.488 17.017 0.000 47.456 0.000 0.022
 Val 134.185 7.69 0.000 –9.417 0.002 –0.451 0.952 0.027

AA, amino acids; AC, acylcarnitines; Adj., adjusted; Leu, leucine; Phe, phenylalanine; SA, succinylacetone; Tyr, tyrosine; Val, valine.

Table 2 The positive predictive value (PPV) and accuracy 
reached by the model for different values of the artificial 
sensitivity (1.00, 0.99, 0.98), as well as the corresponding 
numbers of true-negative (TN), true-positive (TP), false-
negative (FN), and false-positive (FP) results.

Sensitivity PPV Accuracy TN TP FN FP

1.00 0.48 0.84 781 170 0 183
0.99 0.65 0.92 874 168 2 90
0.98 0.82 0.96 927 166 4 37

Figure 2
ROC analysis for the prediction of CH using a random forest model including 
AAs and ACs with an AUROC of 0.99. AAs, amino acids; ACs, acylcarnitines; 
AUROC, area under the ROC curve; ROC, receiver operating characteristic.
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based model. Our study showed that the previously 
developed predictive machine learning-based model 
for the Dutch CH NBS can be optimized by adding AAs  
and ACs resulting in a strong improvement of the 
PPV of 26% in the study of Stroek et  al. (8) up to 48%  
while preserving an artificial sensitivity of 100%. It  
should be mentioned here that our study population 
is not fully equal to that of Stroek et  al. due to the  
availability or unavailability of AAs and ACs. These 
improvements are most likely caused by better 

discrimination between healthy controls and central 
CH. The large improvement of the PPV using this 
machine learning-based model does not yet equal the 
PPV of a TSH-based screening. However, the advantage 
of detecting primary and central CH instead of only 
primary CH is still considered most important. As the  
gap in PPV is now narrowing, this advantage even 
increases. A previous study using several NBS  
parameters and advanced modeling showed the  
possibility to reduce the amount of false-positively  
referred newborns (4–50%) in the CH NBS as well (23), 
both in TSH-based as T4-based screening programs.  
When specifically assessing their two T4–TSH based 
screening programs, reductions of false-positive cases 
with 17 and 31% were found. Similar to our approach, 
advanced modeling and additional markers that screen  
for unrelated conditions were used to improve the 
model. In contrast to our study, TBG was not assessed. 
Furthermore, a different approach was used (CLIR) and 
our study used all available AAs and ACs instead of a  
few selected ones (due to comparability with other  
centers in the study of Rowe et  al.). In addition, the  
study by Rowe et  al. already referred to a false-positive  
case if the first NBS indicated CH and the repeated 
NBS ruled out CH, whereas in the Netherlands a false- 
positive case is defined if a referred newborn is classified 
as healthy after a visit to the pediatrician. Although this 
study cannot be fully compared to our cohort due to  
the discrepancies mentioned here, it also highlighted  
the applicability of advanced modeling in improving  
the CH NBS by reducing the number of false-positive 
referrals using partially similar additional variables.

As expected, TSH played the most important role in 
our machine learning-based model in predicting CH. 
Since primary CH is the most common form of CH and 
characterized by an increased TSH concentration in the 
DBS, this subsequently will have the greatest impact on  
the model. T4, TBG, and the T4/TBG ratio are primarily  
used to detect central CH and were, therefore, also 
important. Interestingly, the AA tyrosine was a  
contributing parameter as well. When removing the 
primary CH group from the model to focus on the 
parameters that specifically predicted central CH, 
we confirmed that T4, TBG, T4/TBG ratio, tyrosine, 
succinylacetone, and gestational age were still important. 
Furthermore, C16:1, phenylalanine, and C2 contributed 
to the prediction of central CH. As expected, TSH did 
not contribute to the prediction of central CH at all. In 
accordance with the important predictive parameters, 
phenylalanine, succinylacetone, and C10:1 had the 

Figure 3
Permutation feature importance on the test set of the 10 parameters 
with the highest importance. hp_day, age at heel prick in days; phe, 
phenylalanine; sa, succinylacetone; T4_sd, thyroxine standard deviation; 
TBG, thyroxine-binding globulin; TSH, thyroid-stimulating hormone.

Figure 4
Permutation feature importance on the central CH cases, false-positive 
referred newborns and healthy controls in the test set of the 10 
parameters with the highest importance. phe, phenylalanine; sa, 
succinylacetone; T4_sd, thyroxine standard deviation; TBG, thyroxine-
binding globulin; tyr, tyrosine.
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strongest correlation coefficients with T4. As a matter 
of fact, these parameters differed strongly between the 
groups in the linear regression analyses as well, thereby 
strengthening their added value. Tyrosine seemed 
especially powerful to distinguish central CH from HCs 
and FPRs explaining the importance of tyrosine as a 
parameter in our machine learning-based model.

TH parameters contribute most to the prediction 
of CH using this model, while the separate AAs and ACs 
contribute less. Indeed, THs and TSH are still key in 
diagnosing CH, but the addition of AAs and ACs may 
help to distinguish CH from HCs in some ‘difficult’ 
cases in the current algorithm. These difficult cases are 
most often FPRs that are mistakenly suspected of central 
CH. Although the individual contribution of AAs and  
ACs may be small, their cumulative effect on the  
prediction model is substantial as shown by the large 
improvement of the PPV by adding these parameters.

Previous research showed ambiguous results with 
both a positive and a negative association between  
fT4 and tyrosine, whereas the negative association of  
T4 with succinylacetone is new (10, 11, 12, 14, 24). The 
negative association between T4 and tyrosine might be 
explained by the fact that tyrosine is incorporated in 
the synthesis of THs (12, 16). However, it is not known if  
and how tyrosine might influence TH concentrations,  
so the exact nature of the relation is still unclear. As 
aromatic AAs, both tyrosine and phenylalanine seem to 
have an inhibitory effect on T3 uptake (25). Furthermore, 
it is noteworthy that tyrosine is particularly high in 
central CH. Central CH is mostly due to genetic mutations 
and is often associated with multiple pituitary hormone 
deficiency, an inborn deficiency of at least two anterior 
pituitary hormones (4). It is known that liver pathologies 
can increase tyrosine concentrations although the  
observed relation is difficult to explain (26, 27). 
Comorbidities to central CH might explain the selective 
increase in tyrosine in central CH. Succinylacetone 
is a by-product of the breakdown of tyrosine and 
relevant concentrations can only be detected when 
tyrosine metabolism is affected. This might explain why 
succinylacetone contributed as a parameter as well. 
However, we have to keep in mind that succinylacetone  
is a challenge to measure with the current method used 
for the metabolic screening, leading to less accurate  
results and more variation than desirable. Therefore, 
we cannot draw any definite conclusions regarding  
this biomarker yet. Once the measurement of 
succinylacetone becomes more accurate, the correlation 
with THs should be investigated again. The study of  

Chng et  al. (12) found a positive association between 
tyrosine and fT4 concentrations in a small group of  
patients with hyperthyroidism before and after  
treatment. Our study, on the other hand, showed a 
negative association between those components (low 
T4 and high tyrosine). Further research is needed to  
clarify this discrepancy. Even though a connection 
between ACs and THs is present as discussed before, a 
causative relation is still lacking, and the mechanism 
involved is unknown. Several ACs contributed to the 
machine learning-based model to predict CH (C2,  
C10:1, C16:1); however, they played a smaller role 
compared to tyrosine and succinylacetone.

The strength of our study is that we included all 
primary and central CH cases from a large period of  
time in our dataset. We used a smaller healthy control 
cohort than the number of actual nonreferred newborns 
in the period 2007–2017. These healthy controls were 
necessary to get insight into results of parameters for 
nonreferrals. However, we acknowledge that this is not 
fully representative for the Dutch newborn screening 
population and results of our machine learning-based 
model can therefore not be 1:1 extrapolated to clinical 
practice. Nonetheless, this model attempted to mimic 
reality and its median T4, TSH, and TBG concentrations 
(described in the paper of Stroek et  al. (3)) was proved 
to be comparable to the median T4, TSH, and TBG 
concentrations of the whole NBS population from 2008 
to 2018 (7). Therefore, this model may be considered 
representative and could be reliably used. In March  
2021, a new TBG cutoff value of 105 nmol/L was  
introduced to the screening. This has most likely  
improved the PPV of the NBS for CH already and 
adding AAs and ACs could improve the PPV even more.  
Therefore, a follow-up retrospective study cohort is 
necessary to validate our findings in a more recent  
dataset. Our machine learning-based model did not take 
false-negative newborns into account, as these cases are 
not well registered. Based on experience, approximately 
one to four false-negative results per year can be  
expected in the Dutch NBS program. Our machine 
learning-based model was built to have a sensitivity 
of 100% in our dataset, however this is an artificial 
sensitivity of 100% and thus cannot be compared to 
the Dutch screening population. Furthermore, tools  
should be provided to implement the predicted outcomes 
of a machine learning-based model in daily practice.

Another strength of our study is that we used AA  
and AC data from the NBS that were already measured  
for the screening of several metabolic conditions. Since 
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these parameters are measured in every newborn, it 
can easily be implemented in our machine learning- 
based model to predict CH without much additional  
work or costs. Other AAs or ACs not yet measured may 
improve the model as well. However, the addition of 
the already available NBS data improved the model and  
did not lead to additional costs and is therefore preferred.

Conclusion

In conclusion, we showed that the PPV of the previously 
developed predictive machine learning-based model for 
the Dutch NBS for CH was improved from 26% to 48% 
by adding several AAs and ACs. In particular, tyrosine 
contributed to this improvement. If this conclusion 
can be confirmed, implementation possibilities for this  
model need to be investigated, with the aim of reducing 
the number of false-positive referred newborns in the 
Dutch NBS for CH.
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