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Abstract

Objective: Congenital hypothyroidism (CH) is an inborn thyroid hormone (TH) deficiency Keywords
mostly caused by thyroidal (primary CH) or hypothalamic/pituitary (central CH)
disturbances. Most CH newborn screening (NBS) programs are thyroid-stimulating-
hormone (TSH) based, thereby only detecting primary CH. The Dutch NBS is based on
measuring total thyroxine (T4) from dried blood spots, aiming to detect primary and
central CH at the cost of more false-positive referrals (FPRs) (positive predictive value
(PPV) of 21% in 2007-2017). An artificial PPV of 26% was yielded when using a machine
learning-based model on the adjusted dataset described based on the Dutch CH NBS.
Recently, amino acids (AAs) and acylcarnitines (ACs) have been shown to be associated
with TH concentration. We therefore aimed to investigate whether AAs and ACs
measured during NBS can contribute to better performance of the CH screening in the
Netherlands by using a revised machine learning-based model.

Methods: Dutch NBS data between 2007 and 2017 (CH screening results, AAs and ACs)
from 1079 FPRs, 515 newborns with primary (431) and central CH (84) and data from

congenital hypothyroidism
newborn screening
amino acids

acylcarnitines

vV vV.v. v VY

machine learning based

4.0 International License.
http://creativecommons.org/licenses/by/4.0/

https://etj.bioscientifica.com © 2023 the author(s) Down Ldadethis warkds licensed under a Grgative COMMOENS»3 12:19: 49pM
https://doi.org/10.1530/ET)-23-0141 Published by Bioscientifica Ltd. Vji AccThis worAttibutiop4.Q lnternational kcense: e commons Attribution



http://orcid.org/0000-0003-2359-2865
http://orcid.org/0000-0001-6466-8497
http://orcid.org/0000-0002-6712-9955
http://orcid.org/0000-0002-4994-2918
mailto:a.boelen@amsterdamumc.nl
https://doi.org/10.1530/ETJ-23-0141
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1842 healthy controls were used. A random forest model including these data

was developed.

Results: The random forest model with an artificial sensitivity of 100% yielded a PPV of
48% and AUROC of 0.99. Besides T4 and TSH, tyrosine, and succinylacetone were the

main parameters contributing to the model’s performance.

Conclusions: The PPV improved significantly (26-48%) by adding several AAs and ACs to
our machine learning-based model, suggesting that adding these parameters benefits

the current algorithm.

Introduction

Congenital hypothyroidism (CH), an inborn thyroid
hormone (TH) deficiency, can be divided into primary
(or thyroidal) CH and central (or secondary) CH.
Primary CH is most prevalent and results from an
un(der)developed thyroid gland or a defect in TH
synthesis. Central CH is caused by
stimulation of an otherwise normal thyroid gland
due to a defect at the level of the pituitary and/or
hypothalamus. Primary CH is characterized by a low
serum thyroxine (T4) concentration in combination
with an increased thyroid-stimulating hormone (TSH)
concentration, while central CH is characterized by
a low T4 concentration and a normal, decreased, or
slightly elevated TSH concentration (1).

The Dutch newborn screening (NBS) yearly screens
approximately 170,000 newborns for, among others,
CH. Blood withdrawal is normally performed between
72 and 168 h after birth and detects CH by measuring
total T4 concentrations in every newborn as a first tier,
expressed as standard deviation from the daily mean
(T4_SD). In case of a T4_SD < —0.8, TSH is measured
(approximately the lowest 20% of the daily mean)
and in case of a T4_SD < -1.6, thyroxine binding
globulin (TBG) is measured as well (approximately the
lowest 5% of the daily T4 concentrations). TBG is
used to reduce the number of false-positive referrals
(FPRs) due to (partial) TBG deficiency which is
associated with reduced total T4 concentrations in
combination with normal free T4 (fT4) concentrations
(2, 3). A calculated T4/TBG ratio serves as an indirect
measure of fT4. A visual representation of this algorithm
can be found in the review of Boelen et al. (4). If
gestational age is <36 weeks or birthweight <2500 g,
newborns are referred solely based on TSH concentration,
since T4 concentration is not reliable yet. Most
national NBS programs use TSH as primary marker,
thereby not detecting central CH (5). In The Netherlands,
the T4-TSH-TBG algorithm  effectively detects

insufficient

primary CH as well as central CH, resulting in a higher
prevalence (1:16,404) of central CH compared to other
countries (6). A lower prevalence of primary CH was
found, which may be explained by mild cases of
primary CH with a normal T4 concentration that can
be missed (7).

The downside of detecting primary and central
CH is a low positive predictive value (PPV) of 21%,
determined in the period of 2007-2017 (7). Our previous
study aimed to improve the PPV of the Dutch CH
screening algorithm by establishing reference intervals
for T4 and TBG and thereby refining the cutoff value
for a (partial) TBG deficiency (3) and by using machine
learning (8). The latter study used a dataset containing
almost all children with a referral in the historical CH
screening from 2007 to 2017 (CH cases and FPRs) and
children with normal CH NBS results from a cohort
in 2019 (3). With machine learning (random forest
model) using only general information and NBS CH
screening results a PPV of 26% was obtained on this
dataset, while all known CH cases were indicated as such
by the algorithm. Thus, machine learning may have
the potential to improve the PPV of the Dutch CH NBS.
Nevertheless, the contrast with the PPV of a TSH-based
screening is still large (67% in a UK cohort (9)). Besides
TBG deficiency, another reason for FPRs can be non-
thyroidal illness syndrome (NTIS), leading to a reduced
T4 with a normal TSH concentration. To further
improve the specificity of the Dutch NBS program for
the detection of central CH, we sought for additional
parameters. Recent studies describing an association
between THs and serum amino acid (AA) and
acylcarnitine (AC) concentrations (10, 11, 12, 13, 14) led
us to explore the relationship between AAs, ACs, and
the screening parameters T4, TSH, and the T4/TBG ratio
in dried blood spots (DBS) at the time of neonatal
screening. This is especially interesting since several
AAs and ACs are measured in the NBS program to
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detect metabolic diseases. ACs play a role in the fatty
acid p-oxidation under the influence of carnitine
palmitoyltransferase 1 (CPT-1). The active TH
trilodothyronine (T3) enhances the expression of the
CPT-1 gene, resulting in increased CPT-1 concentrations,
thereby stimulating fatty acid g-oxidation (15). Recently,
it has been shown that the AAs tyrosine (tyr) and its
precursor phenylalanine (phe) correlate with serum T4
concentrations (12, 13). During TH synthesis, tyrosyl
residues of thyroglobulin-forming iodotyrosines and
iodothyronines are iodinated, which may explain the
correlation with these AAs (16). Furthermore, it was
shown that protein metabolism, shown by tyrosine and
phenylalanine flux, was altered during the early stages of
hyperthyroidism (17). The Dutch NBS program contains
several metabolic disorders that are detected by a variety
of AAs and ACs measured in DBS. Therefore, the aim of
our study was to investigate whether the already known
AA and AC concentrations could be of added value in
the prediction of CH, and specifically central CH, in the
Dutch NBS. We hypothesized that adding AA and AC
concentrations to a CH prediction machine learning-
based model could improve the PPV and thereby reduce
the number of FPRs.

Materials and methods

Database

Parents participating in the Dutch neonatal screening
program gave consent for both participation and
anonymous use of leftover heel puncture blood and
relevant data for scientific research, unless they actively
declined. With the permission of the NBS privacy
committee (located at The Netherlands Organization
for Applied Scientific Research (i.e. TNO), Department
of Child Health) and approved by the National Research
Committee for Neonatal Screening (i.e. WONHS) of
the Dutch National Institute for Public Health and the
Environment (i.e. RIVM), data were extracted from
a national database containing data of NBS referrals
including both newborns with CH and FPRs in the
period 2007-2017 (n = 3308) in succession of previously
published studies aiming to further optimize the NBS
for CH (7, 8). Permission from our local Medical Ethical
Committee of Amsterdam UMC was not necessary,
as the data were derived from a national database that
is under the management of the abovementioned
national institutes. The database contained the
following variables: sex, gestational age, gestational

weight, age at NBS samplings, T4, TSH, and TBG
concentrations, T4_SD, T4/TBG ratio and the diagnosis.
The T4/TBG ratio is calculated by the following
formula: T4/TBG ratio=(T4_SD+5.1) x 1000)/TBG.
Due to the nature of the screening algorithm, TSH and
TBG concentrations were not always available (n=71
and n=46) and subsequently imputed (see the section
‘Statistical analysis’). Four missing values were detected
for T4.

Data of newborns with a normal CH screening
result (hereafter named healthy controls) from a
dataset from a recent study to establish neonatal
reference intervals for T4, TSH, and TBG concentrations
and the T4/TBG ratio were reused as healthy controls
(3). This data (n=1926) was collected between February
and March 2019 at the Newborn Screening Laboratory
of Amsterdam UMC, and for every subject, sex,
gestational age, gestational weight, age at NBS sampling,
T4, TSH, TBG concentrations, T4_SD, and the T4/TBG
ratio were available. There were no missing T4, TSH,
and TBG data.

Next, the already available AA and AC concentrations
from both abovementioned cohorts were extracted
from the Neonat Database of the Reference Laboratory
for Neonatal Screening (RIVM) along with their year
of birth, sex, gestational age, gestational weight, age at
NBS sampling, and CH NBS results. The CH screening
results and AC and AA data (CO, C2, C5, C5DC, C50H,
C6, C8, C10, C10:1, C14, C14:1, C14:2, C16, C160H,
C16:1, C180H, phenylalanine, tyrosine, leucine, valine,
succinylacetone) from the healthy control cohort
were paired based on one unique parameter. Healthy
controls were included if at least a T4, TSH, or TBG
concentration and at least one AC or AA concentration
were available and the coefficient of variation (CV)
for T4, TBG, and TSH (manually assessed) was smaller
than 20%. Furthermore, subjects with deviant AA or
AC results suggestive of a metabolic disease were
excluded. The CH screening results and AA and AC
data from the referred cohort were paired using a
manual multistep matching process, since no
unique matching key was available. Subjects with
identical values for a selection of variables were matched,
and all one-to-one matches were extracted from the
datasets. Matches that were not one-to-one (i.e. a
subject in one dataset corresponds to multiple subjects
in the other dataset) were investigated and manually
adjusted. Finally, the data without a match were
included in the next matching step. This was repeated
five times for different sets of variables. The data that
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were not matched after these five steps were inspected
manually in order to find additional matches that were
not found before due to missing values or discrepancies.
Referrals missing all TH parameters or all AA and AC
data were excluded. Furthermore, referrals with an
inconclusive diagnosis or CH with an unknown cause
were excluded from the dataset as well as subjects with
deviant AA or AC results suggestive of a metabolic
After matching, the datasets of
newborns and nonreferred newborns were combined.

disease. referred

Sample analysis

Heel prick punctures were performed between 72
and 168 h after birth and analyzed in one of the five
regional laboratories in the Netherlands. The CH
screening algorithm and the analyses of its parameters
in our laboratory were extensively described (7). The
measurement of AAs between 2007 and 2017 have
been described previously (18) and the same method
was used for the analysis of ACs. All five screening
laboratories used the same measurement method
(NeoBase 2 non-derivatized tandem mass spectrometry kit
(PerkinElmer)) and the same cutoff values. All screening
laboratories participated in external quality controls,
and both intra- and interlaboratory variations were
assessed and were within limits. Therefore, absolute
values were comparable as well.

Statistical analysis

First, the relationship between T4 and the AAs and
ACs in all newborns was investigated to test our
hypothesis that AA and AC concentrations were
correlated to T4 concentrations. Pearson’s correlations
were used, where the P-values were adjusted for
multiple testing wusing the Benjamini-Hochberg
procedure, reported as a false discovery rate (FDR)
value. Data from newborns with a TBG concentration
<105 nmol/L were excluded from the correlation
analysis, as these subjects show a (partial) TBG
deficiency and are currently not referred anymore since
March 1, 2021 (3).

Second, linear regression analyses were performed
to investigate whether AA and AC concentrations
differed between the referred groups (referred controls,
primary CH, central CH) and healthy controls. The
Benjamini-Hochberg procedure was used to adjust the
corresponding P-values for multiple testing. Regression
analysis was not performed for ACs with less than ten

unique values due to detection limit and sensitivity of
the assay (C5, C50H, C14:2, C160H, C18:10H).

Third, a random forest model was trained to predict
the presence of CH. Prior to fitting the model, synthetic
minority oversampling technique (SMOTE) (19) was
used to create synthetic patient samples (n=1612) based
on the CH cases from the training set. The number of
nearest neighbors for SMOTE was determined by
evaluation of the performance for each integer
between 5 and 50, and the best setting was 20 nearest
neighbors. Randomized search cross-validation on
the training set was used to select the values of four
hyperparameters: the number of trees was set to 500,
maximum depth of the trees to 15, five features were
considered at each split, and 77% of the data were
considered at each tree. The total dataset after matching
with AA and AC data (n = 3436) was split in a training
and test set (67%/33%) using a stratified split to preserve
the prevalence of CH in both samples. Missing values
were imputed using random forest-based imputation
(20). The random forest was fit on the training set and
thereafter used to impute the training and test sets. The
F1 score was used as the performance metric for both
hyperparameter tuning and model training. A receiver
operating characteristic (ROC) analysis was performed
to evaluate the performance of the model on the test set
at different classification thresholds. PPV and accuracy
of the model were calculated at a sensitivity set at 1.0,
0.99, and 0.98 (artificial sensitivity). The permutation
feature importance was computed to investigate which
parameters contributed most to the predictions (21). It
is defined as the mean decrease in model performance
randomly shuffled. The
permutation feature importance was calculated on
the whole test set as well as the test set without the
primary CH cases, where the latter was used to
determine which parameters contributed specifically
to the prediction of central CH. The following variables
were included in the model: sex, gestational age and
weight, age at NBS samplings, T4, TSH, TBG
concentrations, T4_SD, T4/TBG ratio, CO, C2, C5, C5DC,
C50H, Cé6, C8, C10, C10:1, C14, C14:1, C14:2, Cl6,
C160H, C16:1, C180H, phenylalanine, tyrosine, leucine
(leu), valine (val), succinylacetone (sa), and diagnosis.

in case one feature is

Results
Sample characteristics

After applying exclusion criteria, the dataset consisted
of 3436 newborns, of which 515 (15.0%) were diagnosed
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with CH, 1079 (31%) were FPRs, and 1842 (54%) were
healthy controls. The percentages of primary CH and
central CH in our database were 12.5% (431) and 2.4%
(84), respectively.

Relation between AA/AC and T4 levels
(correlation analysis)

The Pearson correlations between T4 and the measured
ACs and AAs in all newborns are shown in Fig. 1. T4
concentrations correlated significantly (FDR < 0.05)
with all ACs and AAs. However, the correlation
coefficients (p) varied widely. Of the 16 ACs, T4 was
most strongly correlated with C8 (p=-0.291), C10:1
(p=-0.391), and C16 (p=0.334). The strongest
correlations were between T4 and phenylalanine
(p=-0.550) and succinylacetone (p=-0.565).

Comparison of AC and AA levels between referred
and non-referred cohorts (linear regression analyses)

Table 1 provides the results obtained from the linear
regression analyses (after adjustment for multiple
testing) to compare AC and AA results of the FPRs,
primary CH and central CH cases with the healthy
controls (HCs). The intercept represents the average
concentration of the different ACs and AAs in the HCs,
whereas the slopes are the additional value on top of the
intercept that led to the concentrations of the different
ACs and AAs in the FPRs, primary CH and central CH.
Most ACs showed a statistically significant difference
between HCs and FPRs, primary CH and central CH
(Table 1). The difference between HCs and all other
groups for phenylalanine and succinylacetone and the
AC C10:1 showed the largest slopes and correlation
coefficients (R2). Furthermore, a clear difference in
tyrosine was found between HCs and central CH,
whereas this was less evident between HCs and primary
CH and non-existent between HCs and FPRs. In contrast,
valine did not show any difference between HCs and
central CH, whereas significantly lower concentrations
were observed in primary CH compared to HCs and
significantly higher concentrations in FPRs.

Prediction model

The PPV and accuracy of the random forest model, on
the described database with relatively few healthy
controls compared to the number of healthy controls
in the actual 2007-2017 cohort, obtained for different
sensitivities are shown in Table 2. The random forest
model was able to yield an artificial sensitivity of

Correlation
0.6
c0 - -0.0259
c2 - 0.0040
c5 - -0.2001
c5dc - -0.1032 0.4
c50h - 0.2056
c6 - -0.2097
c8 - -0.2908
-0.2
cl0 - 0.1443
clo1l -0.3907
cl4g - 0.1300
cl4l - -0.2336 -0.0
cl4?2 - -0.2189
c16-} .334
clel - 0.1551
--0.2
cl6oh - -0.1736
cl81loh - -0.0908
leu - -0.1033
phe -0.5504 -0.4
tyr - -0.0659
sa -0.5646
val - -0.0438
| -—0.6
T4
Figure 1

Pearson’s correlations (p) between the T4 concentrations and the AC and
AA concentrations. All correlations were statistically significant (FDR <
0.05). AA, amino acid; AC, acylcarnitine; FDR, false discovery rate; leu,
leucine; phe, phenylalanine; sa, succinylacetone; T4, thyroxine; tyr,
tyrosine; val, valine.

100%, while obtaining a PPV of 48%. Decreasing the
sensitivity to 99% led to a substantial increase in PPV
(65%). Figure 2 shows the ROC curve including the
corresponding area under the ROC curve (AUROC) of
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Table 1 Linear regression analysis including Benjamini-Hochberg adjustment for multiple testing to compare AC and AA results
from the false-positive referrals (FPR), primary and central CH groups with the HC group.

FPR vs HC Primary CH vs HC Central CH vs HC
Intercept Slope Adj. P Slope Adj. P Slope Adj. P R?
AC
co 17.898 1.772 0.000 0.287 0.616 2.716 0.013 0.012
2 15.451 0.947 0.007 1.289 0.008 3.283 0.002 0.007
C5DC 0.06 0.003 0.119 0.008 0.008 0.007 0.210 -0.001
(@) 0.028 0.009 0.000 0.007 0.000 0.007 0.004 0.056
C8 0.032 0.016 0.000 0.009 0.000 0.009 0.002 0.093
c10 0.055 -0.004 0.000 -0.007 0.000 -0.001 0.731 0.015
C101 0.03 0.03 0.000 0.02 0.000 0.022 0.000 0.226
c14 0.158 -0.009 0.006 0 0.985 0.033 0.000 -0.003
141 0.049 0.014 0.000 0.018 0.000 0.018 0.000 0.083
C16 2.705 -0.522 0.000 -0.559 0.000 -0.25 0.111 0.051
C161 0.145 -0.015 0.000 -0.008 0.135 -0.005 0.616 0.009
AA
Leu 143.939 16.826 0.000 3.424 0.267 14.361 0.018 0.039
Phe 39.266 22.725 0.000 17.257 0.000 19.934 0.000 0.285
SA 0.133 0.282 0.000 0.265 0.000 0.262 0.000 0.429
Tyr 83.427 1.797 0.488 17.017 0.000 47.456 0.000 0.022
Val 134.185 7.69 0.000 -9.417 0.002 -0.451 0.952 0.027

AA, amino acids; AC, acylcarnitines; Adj.,

0.99. The permutation feature importance was estimated
to quantify which parameters contributed most to the
prediction of CH (Fig. 3). TSH had a mean F1 decrease
around 0.175 and evidently played the most important
role in predicting CH. Additionally, T4_SD, TBG, T4/TBG
ratio, T4, and tyrosine contributed to the prediction of
CH as well, followed by a lesser extent by succinylacetone,
C10:1, gestational age, and age at NBS samplings in
days (hd_day). Figure 4 shows which parameters were
important in predicting central CH (Fig. 4). TSH has no
explanatory value for these cases. The most important
parameters for this model were the T4/TBG ratio, T4_

adjusted; Leu, leucine; Phe, phenylalanine; SA, succinylacetone; Tyr, tyrosine; Val, valine.

either central CH or primary CH. Although the added
value of the current screening program based on T4 is
significant, this algorithm also results in more FPRs
compared to TSH-based screening programs. An FPR
often leads to stress and anxiousness in parents, which
might even be transferred to the newborn (22). In
an attempt to reduce the number of FPRs for CH, we
investigated whether AAs and ACs could be of added
value in the prediction of CH, and specifically central
CH, in the Dutch NBS by using a machine learning-

1.0 A
SD, TBG, T4, and tyrosine followed by succinylacetone,
gestational age, C16:1, phenylalanine, and C2. 084
Discussion o 06 1
=
The Dutch NBS program for CH is based on a T4- z
[}
TSH-TBG algorithm aiming to detect newborns with @ 047
Table 2 The positive predictive value (PPV) and accuracy 021
reached by the model for different values of the artificial
sensitivity (1.00, 0.99, 0.98), as well as the corresponding 00 — Classifier (AUC = 0.99)
numbers of true-negative (TN), true-positive (TP), false- . . . . . .
) o 0.0 0.2 0.4 0.6 0.8 1.0
negative (FN), and false-positive (FP) results. o
1 - Specificity
Sensitivity PPV Accuracy TN TP FN FP
Figure 2
1.00 0.48 0.84 /81 170 0 18 ROC analysis for the prediction of CH using a random forest model including
0.99 0.65 0.92 874 168 2 90 i : o L
0.98 0.82 0.96 927 166 4 37 AAs and ACs with an AUROC of 0.99. AAs, amino acids; ACs, acylcarnitines;
. . . AUROC, area under the ROC curve; ROC, receiver operating characteristic.
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Feature importances using permutation on test set

TSH

T4_sd

TBG
T4TBG_ratio
T4

tyr

sa

cl101
gestational_age

hp_day

k T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Mean F1 decrease

Figure 3

Permutation feature importance on the test set of the 10 parameters
with the highest importance. hp_day, age at heel prick in days; phe,
phenylalanine; sa, succinylacetone; T4_sd, thyroxine standard deviation;
TBG, thyroxine-binding globulin; TSH, thyroid-stimulating hormone.

based model. Our study showed that the previously
developed predictive machine learning-based model
for the Dutch CH NBS can be optimized by adding AAs
and ACs resulting in a strong improvement of the
PPV of 26% in the study of Stroek et al. (8) up to 48%
while preserving an artificial sensitivity of 100%. It
should be mentioned here that our study population
is not fully equal to that of Stroek et al. due to the
availability or unavailability of AAs and ACs. These
improvements are most likely caused by better

Feature importances using permutation on test set

T4TBG_ratio
T4_sd

TBG

T4

tyr

sa
gestational_age
cl6l

phe

@

k T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Mean F1 decrease

Figure 4

Permutation feature importance on the central CH cases, false-positive
referred newborns and healthy controls in the test set of the 10
parameters with the highest importance. phe, phenylalanine; sa,
succinylacetone; T4_sd, thyroxine standard deviation; TBG, thyroxine-
binding globulin; tyr, tyrosine.
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discrimination between healthy controls and central
CH. The large improvement of the PPV wusing this
machine learning-based model does not yet equal the
PPV of a TSH-based screening. However, the advantage
of detecting primary and central CH instead of only
primary CH is still considered most important. As the
gap in PPV is now narrowing, this advantage even
A previous study using several NBS
parameters and advanced modeling showed the
possibility to reduce the amount of false-positively
referred newborns (4-50%) in the CH NBS as well (23),
both in TSH-based as T4-based screening programs.
When specifically assessing their two T4-TSH based
screening programs, reductions of false-positive cases
with 17 and 31% were found. Similar to our approach,
advanced modeling and additional markers that screen
for unrelated conditions were used to improve the
model. In contrast to our study, TBG was not assessed.
Furthermore, a different approach was used (CLIR) and
our study used all available AAs and ACs instead of a
few selected ones (due to comparability with other
centers in the study of Rowe et al.). In addition, the
study by Rowe et al. already referred to a false-positive
case if the first NBS indicated CH and the repeated
NBS ruled out CH, whereas in the Netherlands a false-
positive case is defined if a referred newborn is classified
as healthy after a visit to the pediatrician. Although this
study cannot be fully compared to our cohort due to
the discrepancies mentioned here, it also highlighted
the applicability of advanced modeling in improving
the CH NBS by reducing the number of false-positive
referrals using partially similar additional variables.

As expected, TSH played the most important role in
our machine learning-based model in predicting CH.
Since primary CH is the most common form of CH and
characterized by an increased TSH concentration in the
DBS, this subsequently will have the greatest impact on
the model. T4, TBG, and the T4/TBG ratio are primarily
used to detect central CH and were, therefore, also
important. Interestingly, the AA tyrosine was a
contributing parameter as well. When removing the
primary CH group from the model to focus on the
parameters that specifically predicted central CH,
we confirmed that T4, TBG, T4/TBG ratio, tyrosine,
succinylacetone, and gestational age were still important.
Furthermore, C16:1, phenylalanine, and C2 contributed
to the prediction of central CH. As expected, TSH did
not contribute to the prediction of central CH at all. In
accordance with the important predictive parameters,
phenylalanine, succinylacetone, and C10:1 had the

increases.
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strongest correlation coefficients with T4. As a matter
of fact, these parameters differed strongly between the
groups in the linear regression analyses as well, thereby
strengthening their added value. Tyrosine seemed
especially powerful to distinguish central CH from HCs
and FPRs explaining the importance of tyrosine as a
parameter in our machine learning-based model.

TH parameters contribute most to the prediction
of CH using this model, while the separate AAs and ACs
contribute less. Indeed, THs and TSH are still key in
diagnosing CH, but the addition of AAs and ACs may
help to distinguish CH from HCs in some ‘difficult’
cases in the current algorithm. These difficult cases are
most often FPRs that are mistakenly suspected of central
CH. Although the individual contribution of AAs and
ACs may be small, their cumulative effect on the
prediction model is substantial as shown by the large
improvement of the PPV by adding these parameters.

Previous research showed ambiguous results with
both a positive and a negative association between
fT4 and tyrosine, whereas the negative association of
T4 with succinylacetone is new (10, 11, 12, 14, 24). The
negative association between T4 and tyrosine might be
explained by the fact that tyrosine is incorporated in
the synthesis of THs (12, 16). However, it is not known if
and how tyrosine might influence TH concentrations,
so the exact nature of the relation is still unclear. As
aromatic AAs, both tyrosine and phenylalanine seem to
have an inhibitory effect on T3 uptake (25). Furthermore,
it is noteworthy that tyrosine is particularly high in
central CH. Central CH is mostly due to genetic mutations
and is often associated with multiple pituitary hormone
deficiency, an inborn deficiency of at least two anterior
pituitary hormones (4). It is known that liver pathologies
can increase tyrosine concentrations although the
observed relation is difficult to explain (26, 27).
Comorbidities to central CH might explain the selective
increase in tyrosine in central CH. Succinylacetone
is a by-product of the breakdown of tyrosine and
relevant concentrations can only be detected when
tyrosine metabolism is affected. This might explain why
succinylacetone contributed as a parameter as well.
However, we have to keep in mind that succinylacetone
is a challenge to measure with the current method used
for the metabolic screening, leading to less accurate
results and more variation than desirable. Therefore,
we cannot draw any definite conclusions regarding
this biomarker yet. Once the measurement of
succinylacetone becomes more accurate, the correlation
with THs should be investigated again. The study of

Chng et al. (12) found a positive association between
tyrosine and fT4 concentrations in a small group of
patients with hyperthyroidism before and
treatment. Our study, on the other hand, showed a
negative association between those components (low
T4 and high tyrosine). Further research is needed to
clarify this discrepancy. Even though a connection
between ACs and THs is present as discussed before, a
causative relation is still lacking, and the mechanism
involved is unknown. Several ACs contributed to the
machine learning-based model to predict CH (C2,
C10:1, C16:1); however, they played a smaller role
compared to tyrosine and succinylacetone.

The strength of our study is that we included all
primary and central CH cases from a large period of
time in our dataset. We used a smaller healthy control
cohort than the number of actual nonreferred newborns
in the period 2007-2017. These healthy controls were
necessary to get insight into results of parameters for
nonreferrals. However, we acknowledge that this is not
fully representative for the Dutch newborn screening
population and results of our machine learning-based
model can therefore not be 1:1 extrapolated to clinical
practice. Nonetheless, this model attempted to mimic
reality and its median T4, TSH, and TBG concentrations
(described in the paper of Stroek et al. (3)) was proved
to be comparable to the median T4, TSH, and TBG
concentrations of the whole NBS population from 2008
to 2018 (7). Therefore, this model may be considered
representative and could be reliably used. In March
2021, a new TBG cutoff value of 105 nmol/L was
introduced to the screening. This has most likely
improved the PPV of the NBS for CH already and
adding AAs and ACs could improve the PPV even more.
Therefore, a follow-up retrospective study cohort is
necessary to validate our findings in a more recent
dataset. Our machine learning-based model did not take
false-negative newborns into account, as these cases are

after

not well registered. Based on experience, approximately
one to four false-negative results per year can be
expected in the Dutch NBS program. Our machine
learning-based model was built to have a sensitivity
of 100% in our dataset, however this is an artificial
sensitivity of 100% and thus cannot be compared to
the Dutch screening population. Furthermore, tools
should be provided to implement the predicted outcomes
of a machine learning-based model in daily practice.
Another strength of our study is that we used AA
and AC data from the NBS that were already measured
for the screening of several metabolic conditions. Since
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these parameters are measured in every newborn, it
can easily be implemented in our machine learning-
based model to predict CH without much additional
work or costs. Other AAs or ACs not yet measured may
improve the model as well. However, the addition of
the already available NBS data improved the model and
did not lead to additional costs and is therefore preferred.

Conclusion

In conclusion, we showed that the PPV of the previously
developed predictive machine learning-based model for
the Dutch NBS for CH was improved from 26% to 48%
by adding several AAs and ACs. In particular, tyrosine
contributed to this improvement. If this conclusion
can be confirmed, implementation possibilities for this
model need to be investigated, with the aim of reducing
the number of false-positive referred newborns in the
Dutch NBS for CH.
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