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Abstract

An overview is presented of research on the hydrogeochemical aspects of groundwater resources in the Netherlands conducted
since the early nineteenth century. The earliest studies investigated groundwater as a resource for drinking water. The first
systematic, national study was in 1868 and was motivated by the cholera epidemics at that time. At the beginning of the
twentieth century, research for drinking water production was institutionalised at national level. Since the 1960s, the range of
organisations involved in hydrogeochemical research has broadened. Societal motives are also identified: shallow, biogenic
methane as fossil fuel (already researched since the 1890s); groundwater contamination; freshening/salinisation of aquifers;
ecohydrology and nature conservation; aquifer thermal energy storage; national and regional groundwater monitoring for
policy evaluation; impact of climate change and weather variability; and occurrence of brackish groundwater and brines in the
deeper subsurface. The last-mentioned has been driven by a series of motives ranging from water supply for recreational spas
and mineral water production to subsurface disposal of radioactive waste. There have been two major scientific drivers: the
introduction of techniques for using isotopes as tracers, and geochemical computer modelling. Another recent development
has been the increasing capabilities in analytical chemistry in relation to the contamination of groundwater with emerging
pollutants. Many of the motives for research emerged in the 1980s. Overall, the societal and associated technical motives
turn out to be more important than the scientific motives for hydrogeochemical research on groundwater in the Netherlands.
Once a research motive has emerged, it commonly tends to remain.
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Introduction Netherlands. Virtually all this research has been driven by

management of groundwater resources and environmental

Hydrogeochemistry is the scientific discipline that addresses
the chemistry of groundwater and, according to some,
also surface waters, particularly the relationship between
the chemical characteristics and quality of waters and the
regional geology. The primary aspects of hydrogeochemis-
try are the characterisation of the aqueous composition and
interpretation of the controls in terms of recharge origin and
geochemical processes during transport.

This paper is intended to give a brief overview of
the hydrogeochemical research on groundwater in the
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management in a broader sense. Therefore, the paper pre-
sents, in a systematic way, a discussion of the emergence
of research topics, the motivations for the research from a
groundwater management perspective, the introduction of
new international research methods, and insight into whether
research on the topic did continue. With respect to the lat-
ter, a limited number of references is given as an example,
without aiming to cite all available literature if valid.

The focus on hydrogeochemical research on groundwa-
ter implies that only studies that deal with reactive solutes
will be considered. Thus, salinity as a more physical prop-
erty, lies beyond the scope of this paper; it merits a separate
study because so much research on groundwater salinity
and its controls has been done in the Netherlands. Microbial
research on groundwater quality is not covered here either,
even though it may be interlinked with hydrogeochemistry.
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Methods and study area

Methods

This study comprises a review of the scientific literature,
focusing on the scope of the research investigations as
well as the methods employed. The core body of literature
reviewed comprised articles and other manuscripts as col-
lected by the author in the past 35 years. It has been aug-
mented with peer-reviewed articles published since 1945
and found using scientific search engines and keywords
such as groundwater, quality, Netherlands and nitrate.
Older literature was collected from reference lists and
report overviews in institutional anniversary manuscripts.
Groundwater studies were classified as “hydrogeochemi-
cal” if they dealt with groundwater analyses (or the experi-
mental equivalent) in some way.

Study area

The typical situation of the Netherlands with respect to
groundwater is summarised as follows (Griffioen et al.
2013). The Netherlands has a temperate climate with
an average 850 mm/year precipitation and 700 mm/year
potential evaporation. The population density is ca. 500
inhabitants/km?, which is high when compared interna-
tionally. Especially the western part is strongly urbanised
and also industrialised. Two-thirds of the country has agri-
cultural land use, which is commonly intensive.

Geologically, the Netherlands lies at the southeastern
border of the North Sea sedimentary basin. The groundwa-
ter compartment is wedge-shaped, increasing in thickness
from about 50 m in the east-southeast to about 400-500 m
in the west—northwest (Dufour 2000). Reservoirs for oil,
gas and geothermal energy production are present down to
4 km depth. The groundwater compartment contains mul-
tiple sandy layers that act as aquifers and the availability
of groundwater is high compared to other countries. The
Netherlands can be divided into a Holocene area and a
Pleistocene area according to surface geology and related
landscape (Fig. 1; De Mulder et al. 2003; De Gans 2007).
The low-lying western and northern part of the country as
well as the central, riverine part contain a Holocene layer
at the top. This Holocene layer comprises of (1) surficial
aeolian sediments along the North Sea, (2) marine sedi-
ments and peat in the northern part and also fluvial sedi-
ments in the western part, and (3) fluvial sediments and
peat in the central, riverine part.

The aeolian, Holocene sands along the North Sea form
dunes and barriers. The maximum elevation of these dunes
is several tens of metres above mean sea level. Nowadays,
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Fig.1 The Netherlands, showing the occurrence of Holocene (light
green) versus Pleistocene and older sediments (dark green) at the
surface, the major rivers and the locations of the geographical names
referred to in this paper

they serve as a natural area of groundwater recharge for
the adjacent polders or as an artificial area of recharge for
the production of drinking water through the infiltration of
prepurified River Rhine and Lake [Jssel water. Large parts
of the Holocene area consist of polders that are artificially
discharged through a system of drains and ditches where
surface water is pumped out of these polders. In the polders,
the Holocene layer often acts as a semiconfining layer for
the Pleistocene aquifers below, which are predominantly
composed of fluvial sands; however, Pleistocene glacial sed-
iments and Eemian marine sediments are also found in parts
of the Netherlands. Many of these polders lie below sea
level. Lakes are also frequently present in this area. Surface
runoff and shallow subsurface runoff of rainwater are sub-
stantial in these polders, while the recharge of aquifers from
relatively high-lying polders is limited to 30—100 mm/year
(NHV 2004). Additional groundwater recharge occurs via
infiltration from lakes, rivers and the North Sea or Wadden
Sea and also from ditches when water from the large rivers
is channelled into the polders during dry summer months.
A considerable number of drinking-water production sites
is present along the Rhine River and rely on riverbank
infiltration. As indicated by tritium dating of groundwa-
ter, much shallow groundwater under the polders is “old”,
i.e., has infiltrated before 1950 and may be brackish (Cl
is 300-1,000 mg/L) or saline (CI1> 1,000 mg/L; Frapporti
et al. 1993; Van den Brink 2007).
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The Pleistocene area of the Netherlands comprises older
fluvial deposits and glacial or periglacial deposits near the
surface. Phreatic aquifers are found here and groundwa-
ter is recharged via rainwater infiltration. This recharge is
around 350 mm/y but lower under pine forest. Groundwater
is regionally discharged through a natural drainage system
of rivers and brooks that is genetically controlled by the
precipitation surplus, the hydraulic resistance of the subsur-
face and the topography (De Vries 1976). Tritium dating has
revealed that most groundwater at depths between 10 and
30 m has infiltrated since 1950 (Frapporti et al. 1993; Van
den Brink et al. 2007), indicating that most but not all shal-
low groundwater is “young”. Many groundwater abstractions
for drinking water purposes are present in this area. The
southernmost part of the Netherlands has an entirely differ-
ent shallow geology. Here, Pleistocene loess deposits lie at
the surface, covering Cretaceous carbonate rocks or Tertiary
clastic sediments. Several groundwater abstraction sites for
drinking water purposes are present in this part of the coun-
try. It has been less well studied hydrogeochemically.

Three hydrogeological situations have been distinguished
when it comes to hydrogeochemical studies of Paleogene
and older deposits (Griffioen et al. 2016): (1) shallow, semi-
confined aquifers, (2) deep, oil and gas reservoirs that also
serve as reservoirs for geothermal energy and (3) deep,
buried aquifers. The first deals with Palacogene and older
sediments lying close to or at the surface near the border
with Belgium or Germany. The second deals with formation
waters in Permian to Early Cretaceous oil and gas reservoirs
at 950—4,000 m depth in western and northern Netherlands.
The last deals with Upper Devonian to Palacogene aquifers
and buried deep at several hundreds to 1,100 m depth as
especially sampled in southern Netherlands.

19" century: drinking water and fossil fuel

The oldest known hydrogeochemical study done in the Neth-
erlands that presents groundwater analyses is that by Mulder
(1827), who presented five groundwater analyses together
with a series of surface water analyses. The groundwater
samples were collected from wells in Amsterdam and the
villages of Vianen and Rheden in the centre of the Neth-
erlands and reported in terms of dissolved constituents of
NaCl, MgCl,, Na,SO,, CaSO,, CaCO; and MgCQO;, as com-
monly done in the nineteenth century. His study addresses
water quality for drinking water purposes, focusing on salin-
ity and odour. The interpretation is strongly hypothetical.
The PhD thesis by Harting (1852) on the geology underly-
ing Amsterdam also includes a discussion on the quality
of groundwater in Amsterdam for a depth range of 60 m
below the surface (and one outlier down to 151 m). Using
groundwater analyses from 1850-1851, Harting interpreted

the hydrogeochemical data in terms of drinking water qual-
ity and hypothesised that infiltrating marine water during
the Holocene marine transgressions was responsible for the
high salinity of some of the groundwater. Here, one may
realise that Amsterdam is situated in the coastal lowlands of
western Netherlands where Holocene marine sediments lie
at the surface. In his PhD study on rain, surface water and
groundwater in the Netherlands, Gunning (1853) collected
nine samples from groundwater wells producing the “best
and tastiest drinking water”. The wells were spread across
the country. He paid considerable attention to the analyti-
cal aspects of water analyses and the origin of soluble (like
carbonate and chloride) versus insoluble salts (like silicates)
dissolved in water.

In the mid-nineteenth century, against a background
of a growing population and outbreaks of cholera, physi-
cians became increasingly aware of the inadequacy of the
drinking water (PIE 1997). In response to this and because
of the frequent occurrence of brackish and saline water in
Amsterdam and other cities in western Netherlands, the
first central drinking water supply was set up by the Dune-
water Company at Leiduin in 1853 to supply Amsterdam
with drinking water sourced from the dunes (Fig. 2). The
city of Den Helder in northwest Netherlands soon followed
with a central supply system. Unfortunately, no groundwa-
ter analyses associated with the early stages of dune water
abstraction for central drinking water supply could be found.
The oldest systematic investigation on regional groundwater
quality was reported in 1868 (Report to the King 1868).
The related commission had been appointed by the king in
1866 to investigate the relationship between the quality of

Fig.2 The Oranjekom (Orange bowl; photographed in 1909), which
was excavated by the Dunewater Company and named after King
Willem van Oranje, who (as the 11-years-old crown prince) dug the
first sod in the ground at the construction site of the first centralised
drinking water production facility in the Netherlands (obtained from
Noord-Hollands Archief, 1100 — Image collection of the municipality
of Haarlem, inventory number 38723)
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drinking water and the extent of the cholera epidemic. Of the
272 water samples collected throughout the Netherlands and
analysed for their chemical constituents, 171 were ground-
water. The suitability of surface water or groundwater for
drinking water purposes was evaluated based on four criteria
that addressed whether the sample had a pristine nature or
wastewater characteristics. In the last three decades of the
nineteenth century, 57 cities obtained a centralised drinking
water supply thanks to the acceptance of the causal relation-
ship between human health and safe drinking water and the
realization that the need for safe drinking water was greatest
in cities (PIE 1997).

Focusing especially on the west of the Netherlands,
Lorié (1899) addressed groundwater quality with respect
to salinity, dissolved Fe and high carbonate concentrations,
based on a number of studies conducted in the second half
of the nineteenth century. One unique set of 16 samples was
collected by means of multilevel sampling of a geological
boring to a depth of 335 m. Another boring went down to
200 m from which 11 samples were collected. The other
borings resulting in single samples commonly reached down
to 60 m below average sea level with three outliers of 178,
150 and 94 m below average sea level. The analyses were
interpreted in terms of percentage of seawater, based on the
Cl1 concentration, and deviations from this for Ca, Mg and
SO, (indicated as SO;) as other major ions were attributed
to hydrogeochemical processes. Three issues remained enig-
matic: the cause of the salinity inversion (i.e., fresh ground-
water below saline groundwater that has a higher density)
in the deep boring with multilevel sampling; the possible
role of cation exchange in controlling Ca, Na, K and Mg
concentrations; and the likelihood that SO, reduction and
methane production are microbially mediated. These became
frequently studied national and international hydrogeochem-
ical research topics.

By the end of the nineteenth century, hydrogeochemi-
cal research was also investigating the presence of meth-
ane within the first tens of metres of groundwater in polder
areas in the west of the Netherlands (Ribbius 1898a, b, c).
This biogenic methane was first discovered in 1870 when
drilling a groundwater well in Delft. In the next few dec-
ades, interest rose in the production of this methane as fuel,
and hypotheses were put forward about the source of the
methane and the flow of groundwater between the dunes
and the polders. Methane in groundwater has remained a
research issue until now, for various reasons: the need for
water treatment, especially when groundwater is intended to
be used for drinking water (cf. Kruithof and Koppers 1989;
De Vet et al. 2013), technical complications arising from gas
clogging when groundwater is reinjected in aquifer thermal
energy storage installations (Fortuin and Willemsen 2005)
and background concentrations in relation to potential leak-
age of thermogenic methane from the deeper subsurface,
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especially via leakage at gas wells (Schout 2020). A drink-
ing water supply company has recently started to produce
methane as fuel from extracted groundwater at a produc-
tion station where groundwater contains on average 40 mg
methane/L (P+ 2014).

Early 20'" century: institutionalisation
and health

At the beginning of the twentieth century, hydrogeochemical
research relating to the drinking water supply was intensi-
fied, and it remains a major motivation for hydrogeochemi-
cal research today. A shortage of fresh groundwater reserves
was noted in the dune area around 1900, at a time when
interest in managed aquifer recharge (MAR) was already
growing (Romijn 1973). Instead, deeper wells were installed
in the dunes, resulting in overexploitation. Not until 1957
was artificial recharge with water from the River Rhine
started, to ensure the supply of drinking water to Amster-
dam (Roebert 1972), leading to hydrogeochemical research
on MAR (e.g. Engelen and Roebert 1974; Stuyfzand 1993).
More recently, hydrogeochemical research on MAR has
extended beyond the drinking water supply to include water
availability for greenhouse horticulture and agriculture (e.g.
Zuurbier et al. 2016; Kruisdijk and Van Breukelen 2021).
An important early milestone is the PhD thesis of Van
der Sleen (1912) on the groundwater chemistry of the
dunes. Although it is not the first Dutch PhD thesis that
deals with groundwater analyses, it is the first that applies
hydrogeochemical principles. A year later, the Dutch Rijks-
bureau voor Drinkwatervoorziening (RBD; State Office for
Drinking Water Supply) was established, together with the
Centrale Commissie voor Drinkwatervoorziening (Central
Committee for Drinking Water Supply). That office and its
successor, the Rijksinstituut voor Drinkwatervoorziening
(RID; State Institute for Drinking Water Supply), played
a major role in hydrogeochemical research in the follow-
ing decades. In 1984, the RID was merged into the RIVM
together with the RIV (Rijksinstituut voor Volksgezondheid)
and the IVA (Instituut voor Afvalstoffenonderzoek). Since
the 1960s, hydrogeochemical research has been institu-
tionally broadened: hydrogeological research began at the
Vrije Universiteit Amsterdam in the late 1960s, TNO-DGV
had been mapping groundwater resources since 1967, and
KIWA (with the drinking water companies as sharehold-
ers) had been doing research on drinking water since 1972.
Much research was published in Dutch as reports. Later,
other organisations also became active in hydrogeochemical
research, and from 1980 on, more and more of the findings
were published in English-language peer-reviewed journals.
Only two publications were published in peer-reviewed jour-
nals between 1945 and 1969, two in the 1970s, an average
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of 3.2/year between 1980 and 2000, and an average of 6.0/
year since 2001 (Fig. 3).

Before World War II, RBD (i.e., State Office for Drink-
ing Water Supply) had done research on iodide and fluoride
in groundwater for reasons of human health: the realization
that a lack of iodide in drinking water could induce goitre led
to a national investigation of iodide in groundwater (Hey-
mann 1925, 1927; Krul 1933). It is worth pointing out that
these authors, who wrote in Dutch, noted that iodide may
become incorporated in Ca carbonate as an impurity—this
conclusion was presented internationally as a new finding
nine decades later within the framework of subsurface dis-
posal of radioactive waste (Claret et al. 2010). The practical
environmental relevance of the finding is that '?°I is among
the radioisotopes that obtain strongest attention in subsur-
face disposal of radioactive waste as it becomes produced in
radioactive waste, has a long half-life of 16.1 million years
and is potentially mobile in the groundwater environment.

Post World War ll: intensification
and internationalisation

The importance of hydrogeochemical processes during the
freshening of saline aquifers was first recognised interna-
tionally by Rutten (1949) together with Foster (1950). The
existence of a fresh Na-HCO; groundwater type in the Neth-
erlands had been realised earlier, but Rutten was the first
to explain it in terms of cation exchange during freshening.
The presence of such a water type was initially enigmatic
as it is commonly associated with the weathering of rocks
rich in Na-feldspar like granite or dissolution of NaHCO,
salts, which does not hold for the Netherlands. The topic of
freshening and salinisation of coastal aquifers has remained a
major research topic since then nationally and internationally,
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and it is also important within the framework of sea-level
rise induced by climate change as well as urbanisation and
associated overexploitation of groundwater resources. Some
of this research has investigated groundwater salinity as a
physical attribute, but the hydrogeochemical processes asso-
ciated with freshening/salinisation have also been intensively
studied (e.g. Geirnaert 1973; Beekman 1991).

In the late 1960s, isotope research at Groningen Univer-
sity led to tracers being adopted in groundwater research.
Mook (1968) wrote his PhD thesis on the use of '*C-car-
bonate, SISO—HZO and 8'3C-carbonate analyses as tracers in
surface water and groundwater. The first Dutch study using
3H analysis of groundwater for groundwater aging was by
Herweijer et al. (1985) and traced the history of manure
leaching to groundwater. Later, Visser et al. (2007) used
combined *H/*He analysis for similar reasons, as *H analysis
loses its sensitivity over time. Other isotopic and chemical
tracers that have been used as tracers for contaminants and
to elucidate the hydrogeochemical processes are 8'Li, 5''B,
$’H-CH, 8'°C-CH,, 5"°C-DOC, §'°N-NO,, §'50-NO;,,
5°*s-80,, 8'*0-S0,, 8*'Cl, ¥7Sr/*®Sr, §°H and 8'°C of
benzene and ethylbenzene, and the rare earth elements, par-
ticularly gadolinium (Mancini et al. 2002; Van Breukelen
et al. 2003; Petelet-Giraud et al. 2009; Beekman et al. 2011;
Zhang et al. 2012; Negrel et al. 2020).

Groundwater contamination emerged as a research topic
at the end of the 1970s. Its importance was consolidated by
the International Symposium on the Quality of Groundwater
organised by the RID and held in 1981 in the Netherlands.
Ten papers by Dutch researchers were among the proceed-
ings papers published in a special issue of the journal Sci-
ence of the Total Environment (Van Duijvenbooden et al.
1981). In particular, they addressed local contamination
from landfills and diffuse contamination from agriculture.
Soon thereafter, line contamination of groundwater by
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riverbank infiltration became a research topic, particularly
in relation to the drinking water supply, as along the Rhine
and Meuse there is a series of drinking-water-abstraction
sites (Van der Kooij et al. 1985; Stuyfzand 1989).

Research on groundwater contamination has continued
since then, and the types of contaminants studied have broad-
ened from nutrients, heavy metals, acid rain and classical
organic microcontaminants such as biocides (e.g. Peters and
Den Blanken 1985; Krajenbrink et al. 1988; Van Bennekom
et al. 1993; Gaus 2000; Griffioen 2001; Fest et al. 2007; Van
der Grift and Griffioen 2008) and now include nanoparticles,
gasoline additives, antibiotics, per- and poly-fluoroalkyl sub-
stances, etc. (e.g. Van Wezel et al. 2009; Eschauzier et al.
2013; Hamann et al. 2016; Bauerlein et al. 2017; Kivits et al.
2018). A rarity is the study by Veen and Meijer (1989) on
137Cs as fallout from the Chernobyl accident (in nowadays
Ukraine) near the MAR site in the dunes at Castricum in
western Netherlands. Contamination from agriculture has
remained a primary concern, but other sources of pollution
also need attention. The realisation that groundwater contami-
nation poses a threat to drinking water production (as noted by
the references mentioned in the preceding) was accompanied
by the realisation that groundwater contamination also threat-
ens surface-water quality. So, research on groundwater quality
was combined with research on the interaction between sur-
face water and groundwater, and the role of the riparian zone
in the attenuation of contaminants such as nitrate also came
to be investigated (e.g. Bleuten 1989; Hefting and De Klein
1998; Van Lanen and Dijksma 2004; Yu et al. 2019).

The issue of national-scale characterisation of ground-
water quality returned at the end of the 1970s. From 1979
to 1984, the RID set up a national groundwater quality
monitoring network, which was followed later by provin-
cial groundwater quality monitoring networks. There were
three official motives for the national network (Van Duijven-
booden et al. 1981): (1) to make an inventory of the current
groundwater quality to complement the information already
available; (2) to identify long-term changes in groundwater
quality; (3) to provide the information required for adequate
groundwater management. The introduction of the European
Water Framework Directive in 2000 further stimulated inter-
est in trends in groundwater quality. The data from these
monitoring networks have been used in research to serve pol-
icy evaluations and in terms of data mining (e.g. Frapporti
et al. 1996; Pebesma and De Kwaadsteniet 1997). Later, the
data were also used in research to identify trends in ground-
water quality, which is the purpose they were intended for
(e.g. Broers and Van der Grift 2004; Visser et al. 2007).
Alternative nation-wide investigations were conducted by
Mendizabal et al. (2011, 2012), who took a hydrological
system analysis perspective and used water quality analyses
from drinking-water-production stations, and by Griffioen
et al. (2013), who took a geochemical/palaecohydrological
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perspective and mined the groundwater quality database of
TNO Geological Survey of the Netherlands.

Hydrogeochemical research in relation to drinking water
production has remained important not only in relation to
groundwater contamination, MAR and methane chemistry.
Hydrogeochemical research on the technical problem of well
clogging began in the 1980s, with papers by Van Beek and
Kooper (1980) and Van Beek (1985). One of the aspects
that subsequent studies have investigated is the feasibility of
subsurface iron removal to avoid clogging (Appelo and De
Vet 2003; Wolthoorn et al. 2004).

The composition of deep groundwater (frequently as
brines, which are much more saline than seawater) also
started to be investigated in the 1980s by Glasbergen (1981)
and Coenegracht et al. (1984). Also worth mentioning in
this context is an early study by Kimpe (1963), published in
French, on the groundwater composition in the coal mining
district in southeast Netherlands. In this area, brackish to
highly saline groundwater or formation water is present in
Paleogene and older geological units, and surficial recharge
as a driving force for flow is absent or negligible in these
buried layers (see Griffioen et al. 2016). There have been
various reasons behind the research on deep groundwa-
ter, but especially important topics of investigation are the
diagenesis of oil and gas reservoirs, water supply for recrea-
tional spas and mineral water production, subsurface dis-
posal of radioactive waste, production of geothermal energy
and the risk of leakage of brines to shallow groundwater.

Geochemical computer modelling arrived on the scene in
the mid-1980s. Appelo and Willemsen (1987) coupled the
geochemical model code EQ3/6 to a one-dimensional (1D)
mixing cell transport model and used this to model freshen-
ing in the Groot Mijdrecht polder to augment theoretical
modelling. Since then, geochemical batch models and 1D or
multi-dimensional reactive transport models have been used
in studies on groundwater in the Netherlands. Among the
applications of this research are managed aquifer recharge
and natural attenuation of landfill leachate plumes (e.g. Saal-
tink et al. 2003; Van Breukelen et al. 2004).

Meanwhile, Dutch ecohydrological research was becom-
ing more internationally oriented. Tollenaar and Ryckborst
(1975) published the results obtained from analysing data
that had been collected as early as 1946—-1962 from lysim-
eters in vegetated and bare sites in the coastal dunes. Addi-
tionally, the role of groundwater dynamics and the chemistry
of groundwater began to be studied as abiotic aspects that
influence the plant ecology in wetlands in terms of loca-
tion factors (e.g. Grootjans et al. 1988; Wassen et al. 1989).
Water-related research on nature-based solutions may also
fall under ecohydrological research—an example is the
research on groundwater composition in the Sand Motor,
an experimental mega coastal sand nourishment that uses a
nature-based approach, reported by Pit et al. (2017).
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Another topic that emerged at the end of the 1980s was
the hydrogeochemistry of aquifer thermal energy storage
systems (ATES). Initially, research focused on technical
complications, particularly on potential well clogging by
carbonate precipitation (“scaling”) in high-temperature
ATES (Griffioen and Appelo 1993). In the early 1990s,
interest in ATES as a research topic disappeared due to low
oil and gas prices and associated lack of socio-economic
interest, but since around 2000 it has revived in the context
of the energy transition, first with a focus on low-tempera-
ture ATES and more recently focusing on high-temperature
ATES too. The research scope has also been broadened to
cover environmental effects in addition to technical com-
plications (e.g. Bonte et al. 2013a, b, ¢) as well as physical
attributes such as system interference.

The most recent major research motive that has emerged
is the impact of climate change. Visser et al. (2012)
addressed the impact of leaching of heavy metals near a
historical Zn ore smelter. Earlier, the impact of weather vari-
ability had been investigated, especially in relation to leach-
ing of nitrate from farmers’ fields and its annual variability
(e.g. Fraters et al. 1998; Boumans et al. 2001).

Discussion and conclusions

The preceding overview of the history of hydrogeochemical
research on groundwater in the Netherlands shows that the
motives for the research are diverse (see Fig. 4 for a sum-
mary). Most are societal in origin, with a reliable and safe
supply of drinking water being the main driver of research
for 200 years. There are technical motives associated with
the research relating to drinking water supply. Energy supply

and storage have also been important motives. Scientific
curiosity and technical innovations per se have rarely been
the primary motives, as the research objectives have usually
been embedded in water resources management, although
the research methods have certainly been determined by
technical innovations, particularly in the case of analytical
techniques (Johnson et al. 2013). In terms of the geographi-
cal extent of the research, groundwater contamination has
been and continues to demand much research throughout
the Netherlands because this is a rich industrialised country
with a strong tradition in intensive agriculture and associated
large emissions to the environment. The overview confirms
the pivotal role that hydrogeochemistry has had in ground-
water quality management (Edmunds 2009).

Some of the research motives were transitory, e.g., chol-
era outbreaks and concern about a lack of iodine in drinking
water (the latter was subsequently dealt with by the intro-
duction of iodised table salt). However, most of the motives
remain relevant today, which illustrates how stubborn the
problems associated with groundwater quality management
often are. This persistence runs counter to what Meybeck
and Helmer (1989) noted for rich, developed countries; they
argued that water quality problems continue to rise until
unacceptable conditions are reached and then decline after
the problems have been recognised and effective measures
have been implemented. Although this view may hold for
many individual contaminants, it does not necessarily hold
for groundwater resources as a whole. On the one hand,
there is a continuously repeating water-quality-management
process, with new contaminants demanding attention. On the
other hand, recognition of contamination may not always
lead to effective, preventive measures being implemented at
the source. There may be no political will for such measures
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Fig.4 Summary of the incentives that have driven hydrogeochemical research on groundwater in the Netherlands since its beginnings in the

early nineteenth century
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Fig.5 Numbers of peer-reviewed articles per annum that address
leaching of nitrate to the groundwater or the chemistry of nitrate in
aquifers of the Netherlands for the period 1975-2022

(Dietz and Hoogervorst 1991). If that is the case, drinking
water companies must resort to curative, end-of-pipe meas-
ures that are accompanied by hydrogeochemical and other
kinds of research.

The situation described previously holds in the Nether-
lands for the implementation of the European Nitrates Direc-
tive and the Dutch Manure and Fertilisers Act. They came
into force in 1991 and 1987, respectively, but their effec-
tiveness has been limited, especially since about 2000 (Van
Eerdt and Fong 1998; Van Grinsven et al. 2016; PBL 2017).
The motive for research associated with nitrate pollution
also remains valid because the problem did not get solved
and new research questions arose such as the impact of cli-
mate change, which is illustrated in Fig. 5 and shows the
number of groundwater-related publications per annum that
address nitrate chemistry in groundwater in the Netherlands.
Two types of research can be distinguished: (1) hydrogeo-
chemical studies on the chemistry of nitrate in groundwa-
ter aquifers and (2) soil chemistry studies on the leaching
of nitrate to groundwater that present chemical analyses of
groundwater sampled at the groundwater table. The first
addresses nitrate-contaminated groundwater below agricul-
tural areas and topics such as managed aquifer recharge with
nitrate-containing water. The second are studies conducted
in nature and agricultural areas. It is striking that before the
legislation came into force, there were few publications on
nitrate contamination, which indicates that the legislation on
nitrate contamination was not primarily a response to scien-
tific publications. The period 2000-2012 yielded the most
publications on nitrate contamination per annum. Scientific
attention was thus greatest during that period, covering both
soil leaching and aquifer chemistry. Thereafter, the number
of scientific publications on nitrate contamination of ground-
water in the Netherlands decreased, yet the environmental

@ Springer

problem of nitrate contamination did not disappear despite
the legislative framework present.

It is worth noting that some topics have many research
motives and that the motives also shift over time in response
to societal and technological developments, which is par-
ticularly the case for research on the presence of saline and
brackish groundwater in deeper aquifers (Fig. 2). It also
holds for methane chemistry: methane-rich groundwater was
studied as a fossil fuel resource more than a century ago, but
nowadays it is also studied in relation to potential leakage
from deep oil and gas wells.

A few remarks can be made from an international per-
spective. The Netherlands was among the first countries
to pay attention to MAR (Dillon et al. 2019). The inter-
est was driven by the salinisation of the dune aquifers
from which groundwater was abstracted to supply drink-
ing water to Amsterdam and other large cities in western
Netherlands. Somewhat related, it is worth noting that the
papers by Rutten (1949) and Foster (1950) on the role of
cation exchange to explain the Na-HCO; groundwater
type as present in coastal aquifers were published in close
succession presumably without knowing about each other.

Edmunds (2009) has dated the emergence of hydro-
geochemical research to after World War II, noting in
particular the appearance of hydrogeochemical papers
in the journal Geochimica et Cosmochimica Acta and
the publications by Hem (1959) and Garrels and Christ
(1964). However, as the present overview has demon-
strated, hydrogeochemical studies were being conducted
in the Netherlands before World War II: hydrogeochemical
research methods that go beyond reporting water analyses
were employed as early as ~1900 (Lorié 1899; Van der
Sleen 1912). V.I. Vernadsky also used hydrogeochemical
methods to study natural water in the 1930s, publishing his
findings in Russian (Edmunds and Bogush 2012). In main-
land Europe, scientific publishing in the national language
or in French or German was much more common in the
past, so any attempt to chart the global history of hydro-
geochemical research requires a multilingual approach.
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